CN114846630A - 用于数据通信的高速及多触点发光二极管 - Google Patents

用于数据通信的高速及多触点发光二极管 Download PDF

Info

Publication number
CN114846630A
CN114846630A CN202080088740.9A CN202080088740A CN114846630A CN 114846630 A CN114846630 A CN 114846630A CN 202080088740 A CN202080088740 A CN 202080088740A CN 114846630 A CN114846630 A CN 114846630A
Authority
CN
China
Prior art keywords
led
another
processor
leds
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080088740.9A
Other languages
English (en)
Inventor
B·佩泽什基
R·卡尔曼
A·采利科夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avicena Technology Co ltd
Original Assignee
Avicena Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avicena Technology Co ltd filed Critical Avicena Technology Co ltd
Publication of CN114846630A publication Critical patent/CN114846630A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • H01L33/0016Devices characterised by their operation having p-n or hi-lo junctions having at least two p-n junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/502LED transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/801Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/801Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water using optical interconnects, e.g. light coupled isolators, circuit board interconnections
    • H04B10/803Free space interconnects, e.g. between circuit boards or chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

LED可具有针对所述LED的操作速度而优化的结构。所述LED可为微LED。所述LED可具有拥有一或多个量子阱的p掺杂区而不是本征区。所述LED可具有穿过其的蚀刻通孔。

Description

用于数据通信的高速及多触点发光二极管
背景技术
本发明大体涉及LED(发光二极管),且更特定来说,涉及光学通信系统中的LED。
激光由于其窄线宽、单空间模式输出及高速特性而趋于在光学通信中占据主导地位。激光的窄线宽意味着高速信号可长距离通过色散介质而不加宽脉冲。长距离光纤链路经常受到色散限制,且因此窄线宽激光可为长距离光纤链路所必需的。激光的单空间模式也相对容易耦合到单模光纤。
激光的受激发射也可允许高调制速度。直接调制的光链路可能够容易地以25Gb/s运行,并潜在地使用PAM4调制载送50Gb/s的信息。
然而,激光的使用可给非常短距离的光学通信(例如芯片到芯片通信)带来困难。
发明内容
一些实施例提供一种配置用于高速操作的LED。在一些实施例中,所述LED用作数据通信系统的部分。在一些实施例中,所述数据通信系统是芯片内、芯片间或多芯片内模块通信系统。在一些实施例中,所述LED是微LED。
一些实施例提供一种光学通信系统,其用于将由处理器提供的信息传送到所述处理器的另一区域或多芯片模块中的另一模块,所述光学通信系统包括:LED,其与所述处理器相关联;LED驱动器,其用于调制所述LED的输出光学功率,使得所述LED将基于从所述处理器提供给所述LED驱动器的数据产生光;检测器,其用于使用所述光执行光电转换,所述检测器例如具有由入射到所述检测器上的光学功率调制的电输出;以及光学波导,其将来自所述LED的光光学耦合到所述检测器;其中所述LED包括:p型层;n型层;及轻掺杂复合层,所述复合层包含介于所述p型层与所述n型层之间的至少一个量子阱。一些实施例提供一种光学通信系统,其用于将由第一集成电路(IC)(例如处理器)提供的信息传送到所述第一IC的另一区域,或传送到多芯片模块中的第二IC,所述光学通信系统包括:LED,其与所述第一IC相关联;LED驱动器,其用于激活所述LED以基于从所述第一IC提供给所述LED驱动器的数据来产生光;检测器,其用于使用所述光执行光电转换;以及光学波导,其光学耦合所述LED及所述检测器;其中所述LED包含多个蚀刻通孔。在一些实施例中,所述第一及/或第二IC是处理器。
在审阅本公开后将更全面地理解本发明的这些及其它方面。
附图说明
图1是展示根据本发明的方面的LED的使用的实例的框图。
图2A展示典型的p-i-n LED结构,且图2B展示图2A的装置的带图。
图3A展示根据本发明的方面的LED的优化掺杂结构,且图3B展示图3A的装置的带图。
图4展示根据本发明的方面的具有蚀刻通孔的微LED。
图5包含指示具有典型参数的微LED的设计中的权衡的表。
具体实施方式
图1展示使用LED的实例,所述LED在各种实施例中可为微LED,如本文以各种方式讨论。在图1中,硅处理器111对数据执行各种操作或用数据执行各种操作。例如,硅处理器可对数据执行计算,可执行切换功能,或可执行其它功能。硅处理器向LED驱动器113提供至少一些数据。LED驱动器激活微LED 115,以便光学地提供来自处理器的至少一些数据,其中LED驱动器借此调制微LED的输出光学功率,以便光学地提供来自处理器的至少一些数据。由微LED产生的光提供给光学耦合器117,光学耦合器117将光传递到光学传播介质119中。在一些实施例中,可为例如波导的光学传播介质可用于将光从硅处理器的一个区域转移到硅处理器的另一区域。在其它实施例中,光学传播介质可用于将光从硅处理器转移到例如在多芯片模块(图1中未展示)(其中术语“芯片”通常可与“集成电路”或“IC”互换使用,除非上下文另有明确指示)中的另一硅处理器、或存储器、或另一芯片。在这样做时,光学传播介质可将光转移到另一光学耦合器121,后者又将光传递到检测器123(例如光电二极管)以用于进行光电转换。包含至少一些数据的电信号可由放大器125放大,并提供给硅处理器(或多芯片模块中的另一芯片)。在一些实施例中,微LED及检测器可个别地耦合到波导,及/或在一些实施例中,其可作为阵列并联耦合。光学波导除了将光及数据从一个位置转移到另一位置之外,还可将光分成两个或更多个输出,从而允许数据扇出。光学波导或介质也可执行将输出从一个接收器引导到另一接收器的某种切换。如所属领域的技术人员必定理解的,光链路可为双工的,使得当存在从第一芯片到第二芯片的一或多个链路时,也可存在从第二芯片到第一芯片的一或多个链路。
在一些实施例中,微LED与半导体激光器(SL)的区别如下:(1)微LED不具有光学谐振器结构;(2)来自微LED的光学输出几乎完全是自发发射,而来自SL的输出主要是受激发射;(3)来自微LED的光学输出具有时间及空间非相干性,而来自SL的光学输出具有显著的时间及空间相干性;(4)微LED被设计成驱动低至零的最小电流,而SL被设计成驱动低至最小阈值电流,其通常为至少1mA。在一些实施例中,微LED与标准LED的区别在于:(1)具有小于100um x 100um(在一些实施例中小于10um x 10um)的发射区;(2)通常在顶部及底部表面上有正及负触点,而标准LED通常在单个表面上具有正及负触点两者;(3)通常以大阵列用于显示及互连应用。
微LED及检测器可个别耦合到波导,或可作为阵列并联耦合到波导。在一些实施例中,微LED是具有针对速度(例如高调制速度)优化的结构的微LED。在一些实施例中,微LED用于将光学数据耦合到波导中,在一些实施例中提供芯片之间的高度并行的通信,例如在插入器上或通过3D光学结构,例如包含光学波导及/或使用光学元件(例如透镜及全息图)的自由空间光学传播的光学结构。基于GaN的微LED已被开发用于显示应用,且已经开发用于将此类装置安装在硅或玻璃上多晶硅背板上的封装生态系统。通过相对较小的修改,此封装生态系统的元件可用于将IC互连在一起以进行芯片到芯片的通信。
另外,对于芯片到芯片的通信,距离如此短,使得与LED的宽发射光谱宽度相关联的材料色散不一定是问题。简单的计算指示,对于具有在400nm到450nm的范围内的中心波长和20nm的光谱宽度的GaN LED,如果LED以4Gb/s调制且传播通过掺杂SiO2波导或光纤,那么波导或光纤可长达5米,色散功率损失小于2dB。由于多芯片模块(MCM)内侧或跨PC板的芯片到芯片通信通常小于几十厘米,所以LED的较宽光谱可不是问题。此外,我们甚至可以使用相对容易将LED的输出光耦合到其中的高度多模式波导。由于距离较短,多模式波导的模式色散可同样不是问题。在4Gb/s的信号速率下,即使在具有0.67的NA的10%芯包层折算率阶跃的波导中,波导长度可长达85cm,具有较小色散功率损失;较小的芯包层折算率阶跃通常具有较长可达性。因此,在许多实施例中,宽光谱LED及多模式波导对于芯片到芯片的通信来说是足够的。
此外,在各种实施例中,微LED以非常小的尺寸制造,具有小于2um的发射面积直径。此小装置具有非常高的亮度,并且通常可以高耦合效率耦合到多模式波导。尽管输出通常是朗伯式的,但适当地使用反射器,在一些实施例中使用微透镜,并且在一些实施例中将微LED嵌入波导中,耦合效率可为30%或更高。微LED通常具有较高的量子效率,类似于甚至超过激光器的量子效率。由于在短距离上,即使在蓝色或绿色波长下也不会遭受太多的波导损耗,因此不需要太多的发射功率,并且在一些实施例中,以小于10uA运行的小微LED可为足够的。
一般来说,微LED的可实现调制速度受到载子寿命的限制(且如果微LED太大,那么受到电容的限制),并且通常不能达到激光的调制速度的类型。然而,微处理器及逻辑中的时钟速度似乎达到几Gb/s的限制。IC的输入/输出数据通常使用串行器/解串器(SERDES)来加速,以产生较少数量的较高速通道。例如,商业上可用的开关IC目前可以几GHz的时钟速度运行,但以256或512个通道进行通信,每通道50Gb/s或100Gb/s。这些SERDES消耗大量的电功率,且如果开关IC替代地使用更多数目的低速通道,那么可消除这些SERDES。光学互连件通过允许使用更多数目的通道,即使在更慢的通道速度下,也允许更高的并行度及更高的总吞吐量。然而,让LED以尽可能高的调制速度操作可为优选的。
此外,微LED与激光器相比的较大优势在于其没有显著的阈值电流。虽然量子效率是驱动电流的函数,但没有明显的阈值电平,而且微LED可在远低于激光器的电流下运行。鉴于其对显示器的有用性,存在用于在各种衬底上安装、连接及测试微LED的大量基础设施。且GaN微LED通常具有远优于半导体激光器的高温性能及可靠性。
典型地,针对显示应用优化的GaN微LED包括具有p-i-n掺杂分布的圆柱形或类圆柱形结构。通过正向偏置二极管且将来自n区的电子及来自p区的空穴注入到含有InGaN量子阱的中间本征区而接通LED。p触点在结构的一侧上,而n触点在另一侧上。在许多应用中,此圆柱体安装在芯片上,其中“底”侧与芯片电接触,且“顶”侧与共同引线(例如接地或电源引线)接触。顶侧触点可为透明导体,例如氧化铟锡(ITO)。在微LED中,在LED的顶部及底部上有触点的此“垂直”结构通常是优选的,但也存在n触点及p触点定位于同一表面上的“横向”结构。在任何情况下,不需要针对速度而优化这些结构,因为显示器通常以60Hz或120Hz帧率运行,而不是以Gb/s运行。
我们可以进行变化以针对速度优化结构。一般来说,微LED受到LED的电容及载子复合时间的限制。电容与驱动器的输出阻抗形成RC电路,并在高频下引起滚降。载子寿命导致LED关断需要时间,因为即使在电脉冲结束后,我们也必须等待注入的少数载子中的大多数复合以显著降低发光。由于微LED的尺寸较小,其电容(通常只有几毫微微法拉)不会显著地限制装置的调制速度;相反,调制速度通常受到载子寿命的限制。可通过对微LED施加反向偏置并对施加的脉冲进行电整形以拉出载子而提高调制速度,但也可对装置进行结构改变以改进调制速度。
典型的LED结构由p型区、载子复合并发射光的“有源”区及n型区组成。存在在有源区的结构上不同的许多不同的LED结构。在一些实施例中,有源区含有一或多个量子阱(QW)。
一般来说,微LED的速度随着电流电平而增加。载子能够以三种方式在LED中复合。在低电流电平下,复合是由陷阱介导的(称为SRH复合)。在较高的电流密度下,这些陷阱变得饱和,且LED的量子效率改进,因为辐射复合占主导地位。随着载子密度增加,此辐射复合速率加快,提高辐射效率,且降低载子寿命。因此,微LED越难驱动(例如,电流密度越大),其操作越快。在较高电流密度下,例如俄歇复合的非线性非辐射机制进一步降低载子寿命,但这些非发射机制也会降低辐射量子效率。对于具有小直径以在给定电流下增加电流密度的快速微LED,陷阱因为其饱和而相对不重要,且非线性非辐射复合与辐射复合速率的相对重要性确定量子效率。
一些实施例利用p、p-、n结构,其中“本征区”在一些实施例中以10^16/cm^3到10^17/cm^3的合理水平掺杂为p-型。在一些实施例中,与p-i-n结构相比,这导致p-区中的耗尽宽度窄得多。具有高迁移率的电子被注入到已经具有高空穴密度的p-耗尽区。由于载子复合时间是载子密度的函数,所以装置的速度随着耗尽宽度减小而增加。载子复合时间也是电子密度与空穴密度乘积的函数,且耗尽区中的p-掺杂增加了空穴密度,因此增加复合速率,且减少复合时间。较窄的耗尽区也可能具有增加微LED电容的非期望影响,但这对于直径非常小的结构可并不重要,因为RC时间常数仍将比复合时间小得多。
图2A展示典型的p-i-n LED结构,且图3A展示经优化的掺杂结构,其中图2B及3B还分别展示图2A及3A的装置的相关联的带图。图2A的装置具有将具有InGaN量子阱的本征区213夹在中间的p掺杂GaN层211及n掺杂GaN层215。图3A的装置也具有将中间区夹在中间的p掺杂GaN层251及n掺杂GaN层255。然而,在图3A的装置中的中间区掺杂为p-型,并且也含有InGaN量子阱。在一些实施例中,量子阱定位成与n掺杂GaN层相比在物理上更靠近p掺杂GaN层。
图2B的带图展示跨n区221、本征/耗尽区223及p区125的在价带233上方的导带231。导带与价带之间的带隙跨所述区通常是恒定的,其中能级通常在n区与p区之间的本征/耗尽区中增加,使得p区中的能级高于n区。电子从n区注入235到本征/耗尽区,空穴从p区注入237到本征/耗尽区,其中发生复合239。
图3B的带图也展示分别跨n区221、耗尽/p-区265a、265b及p区225的在价带263上方的导带261。与图2B的带图相比,在图3B中可见,耗尽/p-区代替本征/耗尽区,其中耗尽区265邻近n区,而p-区265b邻近p区225。导带与价带之间的带隙跨所述区通常是恒定的,其中能级通常在耗尽/p-区中(主要在耗尽区中)增加,在p区225中高于在n区221中。
与图2A相比,图3B还展示在更薄的耗尽区之上到p-区中的电子注入275,并且复合通常发生在那里。在GaN材料系统中,本底掺杂的增加可使辐射复合时间至少减少一个数量级或几个数量级。
虽然图3A展示p、p-、n结构,但我们也可将量子阱掺杂为n型而不是p型。与p-i-n结构相比,这也增加微LED的速度。与p掺杂相比,n掺杂的优点是n掺杂不会增加缺陷且不会降低辐射效率。还可进一步提高掺杂水平以减少载子复合时间,代价是更高的电容。
一些实施例包含对图3B的掺杂结构的进一步修改,其可进一步改进性能。例如,一些实施例在n区上使用AlGaN势垒以进一步增强载子到p-掺杂复合区中的注入并防止空穴注入到n型区中。一些实施例在数目、宽度及应变方面优化p-区中的InGaN量子阱以减少复合时间。例如,将波长推到较短的波长的较低In浓度也会增加速度。因此,波长在380nm到430nm之间的微LED可比波长更长的微LED本质上更快。对于给定的电流,较少的量子阱也增加量子阱中的载子密度。载子复合时间随载子密度增加而更快减少。因此,在一些实施例中,微LED仅具有一个或几个量子阱。在一些实施例中,量子阱宽度也变得更小。较小的量子阱宽度使电子与空穴更靠近,其中重叠积分增加且辐射复合时间减少。一些实施例使用适当的GaN衬底用于生长以减小量子阱中的内建电场,增加电子及空穴之间的重叠积分,且因此进一步减少载子复合时间。我们也可通过降低铟的摩尔分数来减小内建电场,从而再次获得短波长范围内的较快响应。较小的铟浓度也会降低俄歇复合速率,从而增加LED的量子效率。
在一些实施例中,针对高速操作而优化的结构具有较小尺寸,其直径小于约两微米以增加电流密度及载子密度。在一些实施例中,针对高速操作而优化的结构具有极少的量子阱,也许只有一个,使得在给定的电流密度下,载子密度最大化。在一些实施例中,量子阱的铟浓度较低,因此微LED将以较短的波长发射,例如蓝色或紫外波长,因为较小的铟浓度将给出较低的增加空穴-电子波函数重叠积分并因此增加复合速率的压电场。在一些实施例中,量子阱较小,通常为2nm或更小,以增加电子与空穴之间的重叠。在一些实施例中,量子阱被掺杂为p型或n型以增加本底载子密度。
图5的表I描述具有典型参数的微LED的设计中的权衡。
一般来说,更高的掺杂也会减少非辐射复合时间。这进一步缩短载子寿命,且增加调制速度,但代价是量子效率降低。同样,在波导传播损耗极小的这些非常短距离的应用中,量子效率不如调制速度重要。从根本上说,量子效率与调制速度之间存在权衡:通过增加非辐射复合速率可增加总LED复合速率,此又降低量子效率。因此,在一些实施例中,以较低的量子效率为代价增加LED的速度,在一些实施例中大幅增加。
可通过若干工艺在LED中引发快速复合中心。这些包含在本征区中低温生长晶体、质子植入、使用晶格中的错位故意引发的缺陷密度、粗糙化蚀刻表面或通过其它技术增加暴露表面积。
通常,较小的微LED倾向于具有较低的量子效率,因为载子在蚀刻的外表面扩散及复合。这降低载子寿命,且因此也增加微LED的速度。此效果可通过在结构中蚀刻在通孔侧壁中暴露更多的面积的结构孔或通孔来增加,从而产生更多的复合中心。图4展示具有蚀刻通孔的微LED。图4的实例展示具有大体圆柱形状的微LED,其在圆形基底419到圆形顶部417之间延伸。微LED可包含从圆形基底向上延伸的基极层413(其可为(例如)n GaN层)及从圆形顶部向下延伸的顶层411(其可为(例如)p GaN层)。中间层415位于基极层与顶层之间,并且如我们所理解的,中间层可提供本征耗尽区或p-耗尽区。
图4的微LED还包含从圆形顶部延伸到圆形底部的蚀刻通孔(例如蚀刻通孔421)。因此,蚀刻通孔提供从顶表面到底表面的穿过微LED的孔隙。在图4中,蚀刻通孔具有圆形横截面,借此形成圆柱形通孔,其中通孔通常布置成正方形或菱形图案。蚀刻通孔可在暴露表面引发非辐射复合,以降低载子寿命,且因此增加速度。这可提供比质子植入或低温生长更可控的方法。在这种情况下,当蚀刻装置以形成微LED时,可使用各种结构来增加表面积。在一些实施例中,这些包含蚀刻多个柱,及/或蚀刻通孔,如图展示。在一些实施例中,也可使用或替代地使用例如星形或粗糙边缘的其它形状。
尽管已关于各种实施例讨论本发明,但应认识到,本发明包括受本公开支持的新颖且不明显的权利要求。

Claims (11)

1.一种用于将由处理器提供的信息传送到所述处理器的另一区域或多芯片模块中的另一芯片的光学通信系统,其包括:
LED,其与所述处理器相关联;
LED驱动器,其用于调制所述LED的光学输出功率,使得所述LED将基于从所述处理器提供给所述LED驱动器的数据产生光;
检测器,其用于使用所述光执行光电转换;及
光学波导,其将来自所述LED的光光学耦合到所述检测器;
其中所述LED包括:
p型层;
n型层;
轻掺杂复合层,所述复合层包含介于所述p型层与所述n型层之间的至少一个量子阱。
2.根据权利要求1所述的系统,其中所述轻掺杂复合层的掺杂包括p-掺杂。
3.根据权利要求2所述的系统,其中所述p-掺杂在1016/cm3到1017/cm3的范围内。
4.根据权利要求1所述的系统,其中所述轻掺杂复合层的掺杂包括n-掺杂。
5.根据权利要求1所述的系统,其中所述LED是微LED。
6.根据权利要求1所述的系统,其中所述p型层及所述n型层由GaN组成,并且所述至少一个量子阱包括InGaN。
7.根据权利要求1所述的系统,其进一步包括:
另一LED,其与所述处理器的所述另一区域或所述多芯片模块中的另一芯片相关联;
另一LED驱动器,其用于调制所述另一LED的光学输出功率,使得所述另一LED将基于从所述处理器的所述另一区域或所述多芯片模块中的另一芯片提供给所述另一LED驱动器的数据产生光;及
另一检测器,其用于使用来自所述另一LED的所述光执行光电转换;
其中所述另一LED包括:
p型层;
n型层;
轻掺杂复合层,所述复合层包含介于所述p型层与所述n型层之间的至少一个量子阱。
8.根据权利要求7所述的系统,其中所述光学波导将来自所述另一LED的光光学耦合到所述另一检测器。
9.一种用于将由处理器提供的信息传送到所述处理器的另一区域或多芯片模块中的另一芯片的光学通信系统,其包括:
LED,其与所述处理器相关联;
LED驱动器,其用于激活所述LED以基于从所述处理器提供给所述LED驱动器的数据来产生光;
检测器,其用于使用所述光执行光电转换;及
光学波导,其光学耦合所述LED及所述检测器;
其中所述LED包含多个蚀刻通孔。
10.根据权利要求9所述的光学通信系统,其中所述LED是微LED。
11.根据权利要求9所述的光学通信系统,其进一步包括:
另一LED,其与所述处理器的所述另一区域或所述多芯片封装中的另一芯片相关联;
另一LED驱动器,其用于激活所述另一LED以基于从所述处理器的所述另一区域或所述多芯片封装中的另一芯片提供给所述另一LED驱动器的数据来产生光;及
另一检测器,其用于使用来自所述另一LED的所述光执行光电转换;
其中所述另一LED包含多个蚀刻通孔。
CN202080088740.9A 2019-11-18 2020-11-18 用于数据通信的高速及多触点发光二极管 Pending CN114846630A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962936767P 2019-11-18 2019-11-18
US62/936,767 2019-11-18
US202062971844P 2020-02-07 2020-02-07
US62/971,844 2020-02-07
PCT/US2020/061076 WO2021102013A1 (en) 2019-11-18 2020-11-18 High speed and multi-contact leds for data communication

Publications (1)

Publication Number Publication Date
CN114846630A true CN114846630A (zh) 2022-08-02

Family

ID=75909750

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202080088700.4A Pending CN114868262A (zh) 2019-11-18 2020-11-18 用于数据通信的高速及多触点发光二极管
CN202080088740.9A Pending CN114846630A (zh) 2019-11-18 2020-11-18 用于数据通信的高速及多触点发光二极管

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202080088700.4A Pending CN114868262A (zh) 2019-11-18 2020-11-18 用于数据通信的高速及多触点发光二极管

Country Status (4)

Country Link
US (3) US11418257B2 (zh)
EP (2) EP4062459A4 (zh)
CN (2) CN114868262A (zh)
WO (2) WO2021102034A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11418257B2 (en) * 2019-11-18 2022-08-16 Avicenatech Corp. High speed and multi-contact LEDs for data communication
WO2023069944A1 (en) * 2021-10-18 2023-04-27 Avicenatech Corp. Visible wavelength led-based fiber link
US11592933B1 (en) * 2022-01-07 2023-02-28 X Display Company Technology Limited Displays with integrated touch screens

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140570A (ja) 1986-12-03 1988-06-13 Hitachi Ltd 半導体装置
US5818984A (en) * 1996-11-18 1998-10-06 International Business Machines Corporation Optoelectronic interconnection of integrated circuits
US7961990B2 (en) * 2007-12-21 2011-06-14 Oracle America, Inc. Multi-chip system including capacitively coupled and optical communication
CN102668394B (zh) * 2009-11-09 2014-12-03 量子电镀光学系统有限公司 高速通信
CN103199160B (zh) * 2010-01-13 2015-12-09 晶元光电股份有限公司 发光二极管的形成方法
TWI566429B (zh) * 2010-07-09 2017-01-11 Lg伊諾特股份有限公司 發光裝置
JP5667588B2 (ja) * 2012-02-15 2015-02-12 日本電信電話株式会社 窒化物半導体発光トランジスタ
EP2674992A1 (en) * 2012-06-15 2013-12-18 Imec Led and method for making led
US8816383B2 (en) * 2012-07-06 2014-08-26 Invensas Corporation High performance light emitting diode with vias
US9508707B2 (en) * 2014-02-27 2016-11-29 Texas Instruments Incorporated Quantum well-modulated bipolar junction transistor
WO2015187238A2 (en) * 2014-03-27 2015-12-10 The Regents Of The University Of California Ultrafast light emitting diodes for optical wireless communications
US10797188B2 (en) * 2014-05-24 2020-10-06 Hiphoton Co., Ltd Optical semiconductor structure for emitting light through aperture
US9231153B2 (en) 2014-05-30 2016-01-05 Mikro Mesa Technology Co., Ltd. Micro-light-emitting diode
US9653642B1 (en) * 2014-12-23 2017-05-16 Soraa Laser Diode, Inc. Manufacturable RGB display based on thin film gallium and nitrogen containing light emitting diodes
US9812609B1 (en) * 2016-04-11 2017-11-07 X Development Llc Semiconductor device including oxide current aperture
CN106159047B (zh) * 2016-06-03 2020-02-18 华南理工大学 具有pn掺杂量子垒的发光二极管外延结构及其制备方法
US10629577B2 (en) * 2017-03-16 2020-04-21 Invensas Corporation Direct-bonded LED arrays and applications
US10985046B2 (en) * 2018-06-22 2021-04-20 Veeco Instruments Inc. Micro-LED transfer methods using light-based debonding
GB201816455D0 (en) * 2018-10-09 2018-11-28 Univ Sheffield LED Arrays
FR3087941A1 (fr) 2018-10-31 2020-05-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Transistor bipolaire a emission lumineuse
CN110190083A (zh) * 2019-04-09 2019-08-30 华南师范大学 高带宽GaN基垂直导电结构LED发光器件及制备方法
US10840408B1 (en) * 2019-05-28 2020-11-17 Vuereal Inc. Enhanced efficiency of LED structure with n-doped quantum barriers
US11418257B2 (en) 2019-11-18 2022-08-16 Avicenatech Corp. High speed and multi-contact LEDs for data communication

Also Published As

Publication number Publication date
EP4062460A4 (en) 2023-12-27
EP4062459A1 (en) 2022-09-28
US11791896B2 (en) 2023-10-17
US20210152244A1 (en) 2021-05-20
EP4062460A1 (en) 2022-09-28
WO2021102013A1 (en) 2021-05-27
US20240072895A1 (en) 2024-02-29
CN114868262A (zh) 2022-08-05
US11418257B2 (en) 2022-08-16
EP4062459A4 (en) 2024-02-28
WO2021102034A1 (en) 2021-05-27
US20210151623A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
US11728624B2 (en) Tensile strained semiconductor photon emission and detection devices and integrated photonics system
CN114846630A (zh) 用于数据通信的高速及多触点发光二极管
CN109417082B (zh) 半导体器件以及包括半导体器件的显示装置
CN112234118B (zh) 一种可见光通信的微型阵列光收发集成芯片及制作方法
KR102573587B1 (ko) 반도체 소자 및 이를 포함하는 표시 장치
Bockstaele et al. Realization and characterization of 8/spl times/8 resonant cavity LED arrays mounted onto CMOS drivers for POF-based interchip interconnections
Jiang et al. Experimental demonstration and theoretical analysis of simultaneous emission–detection phenomenon
KR20180005827A (ko) 광통신용 발광 장치
KR20180028331A (ko) 전계 흡수 변조기 및 광 통신 시스템
US20220045234A1 (en) Enhanced microleds for inter-chip communications
US20200144464A1 (en) Semiconductor device
US20230118326A1 (en) Visible wavelength led-based fiber link
CN103794700A (zh) 发光器件封装
KR20180085221A (ko) 반도체 소자 및 이를 포함하는 광 모듈
CN116529894A (zh) 用于低电流密度下的高速操作的GaN LED中的p型掺杂
JPH11238942A (ja) 光システム、光モジュールおよびこれに適した半導体レーザ装置
CN116931653A (zh) 一种光电混合集成运算芯片
KR100459897B1 (ko) 복합소자 및 이를 채용한 광전송모듈

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination