CN114797897B - 一种硫掺杂钴单原子碳材料及其合成方法和应用 - Google Patents
一种硫掺杂钴单原子碳材料及其合成方法和应用 Download PDFInfo
- Publication number
- CN114797897B CN114797897B CN202210369070.9A CN202210369070A CN114797897B CN 114797897 B CN114797897 B CN 114797897B CN 202210369070 A CN202210369070 A CN 202210369070A CN 114797897 B CN114797897 B CN 114797897B
- Authority
- CN
- China
- Prior art keywords
- sulfur
- carbon material
- cobalt
- doped cobalt
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/086—Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/722—Oxidation by peroxides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
- C02F2101/345—Phenols
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/02—Specific form of oxidant
- C02F2305/023—Reactive oxygen species, singlet oxygen, OH radical
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种硫掺杂钴单原子碳材料及其合成方法和降解废水中双酚A的应用。合成的硫掺杂钴单原子碳材料能够通过活化过一硫酸钾产生单线态氧降解水体中的双酚A,一方面能够快速活化过一硫酸盐,高效利用过一硫酸盐,减少剩余过一硫酸盐排放所产生的二次污染,另一方面能够不受水体背景离子干扰,保持高效降解,使其更好的应用在水污染控制领域。
Description
技术领域
本发明涉及材料工程与环境工程领域,具体涉及一种硫掺杂钴单原子碳材料及其合成方法和降解废水中双酚A的应用。
背景技术
双酚A是一种典型的内分泌干扰物,存在于比如矿泉水瓶、食品包装内里、镜片等生活用品中。双酚A由于具有生物毒性、难降解性,造成的水体污染问题引起了科研人员的广泛关注。在众多水处理手段中,催化活化过硫酸盐降解能够有效降解双酚A,是一直以来的研究热点之一。
过硫酸盐能通过产生高氧化电位的自由基降解难降解的有机物,而开发能够高效活化过硫酸盐的催化剂是关键。过渡金属类催化剂往往具有较好的活化效果,其中,单原子催化剂(Single-atom catalysts,SACs)是将金属元素以单个原子的形式负载在固体载体表面的一种新型催化剂。与其它金属催化剂相比,SACs在各种催化反应中都表现出显著增强的活性和巨大的应用潜力。但是目前已开发的SACs利用过硫酸盐的效率较低,反应后过一硫酸盐仍有大部分的剩余,而且往往是通过产生自由基降解水体中污染物,会受到复杂水体背景离子的干扰,与水体中的卤离子等反应产生有毒副产物,阻碍了目标污染物的降解。而硫、磷等杂原子的引入,能够为金属单原子提供新的配位原子,改善活性中心(金属单原子)的活化效率,提高催化剂的性能。
发明内容
本发明提供了一种硫掺杂钴单原子碳材料及其合成方法和降解废水中双酚A的应用,利用硫掺杂钴单原子材料活化过一硫酸盐,以期具有更好的催化降解污染物特性。
本发明中合成的硫掺杂钴单原子材料,通过活化过一硫酸钾产生单线态氧降解水体中的双酚A,一方面能够快速活化过一硫酸盐,高效利用过一硫酸盐,减少剩余过一硫酸盐排放所产生的二次污染,另一方面能够不受水体背景离子干扰,保持高效降解,使其更好的应用在水污染控制领域。
本发明处理条件如下:一种硫掺杂钴单原子碳材料的合成方法,包括以下步骤
1)将酞菁钴、磺化酞菁钴和双氰胺研磨,得到均匀混合粉末;
2)取混合粉末在氩气保护的氛围下700~900℃下煅烧1~4小时,随后将所得含钴固体研磨,酸洗,真空干燥,得到硫掺杂钴单原子碳材料,所得固体呈现黑色,研磨备用。
本发明合成的硫掺杂钴单原子碳材料能够通过活化过一硫酸钾产生单线态氧降解水体中的双酚A,一方面能够快速活化过一硫酸盐,高效利用过一硫酸盐,减少剩余过一硫酸盐排放所产生的二次污染,另一方面能够不受水体背景离子干扰,保持高效降解,使其更好的应用在水污染控制领域。
步骤1)中,所述的酞菁钴、磺化酞菁钴和双氰胺的质量比为0.05~0.1g:0.05~0.1g:2~4g,进一步优选为0.075g:0.075g:3g。
所述的球磨的条件为:在球磨机中研磨0.2~0.8小时,进一步优选在球磨机中研磨0.5小时。
步骤2)中,所述的煅烧的条件为:750~850℃下煅烧1~3小时,进一步优选在800℃下煅烧2小时。
所述的酸洗的条件为:用硫酸在75~85℃下酸洗10~14小时,进一步优选,所述的硫酸的浓度为0.2~0.8mol/L,进一步优选用0.5M硫酸在80℃下酸洗12小时。
所述的真空干燥的条件为:在55~65℃烘箱中真空干燥10~14h,进一步优选在60℃烘箱中真空干燥12h,
具体地,硫掺杂钴单原子碳材料的合成方法,具体包括:将0.075g酞菁钴、0.075g磺化酞菁钴和3g双氰胺固体颗粒在球磨机中研磨0.5小时,得到均匀混合粉末。之后取上述混合粉末在氩气保护的氛围下800℃下煅烧2小时。随后将所得含钴固体研磨,用0.5M硫酸在80℃下酸洗12小时。最后在60℃烘箱中真空干燥12h,所得固体呈现黑色,研磨备用。
硫掺杂钴单原子碳材料作为催化剂在一硫酸钾降解废水中双酚A的应用,具体包括:
取3mg所得固体粉末于30mL合成的双酚A废水中(浓度为20mg/L),超声2min使粉末在体系中均匀分散后,搅拌30min,以使得非均相界面之间达到吸附平衡。随后加入12mg过一硫酸钾,进行催化反应。
与现有技术相比,本发明具有以下的突出特点和有益效果:
(1)该方法合成的催化剂能够快速活化过一硫酸盐,较低的过一硫酸盐浓度(0.15mM)也能快速降解双酚A,且降解后几乎没有过一硫酸盐剩余。
(2)硫掺杂钴单原子碳材料活化过一硫酸盐产生的单线态氧是反应中的重要氧化活性物质,反应不受水体中其他离子的干扰。
(3)该方法以磺化酞菁钴同时作为钴和硫的来源,能够合成硫掺杂钴单原子,且硫与钴配位,形成Co-S键。而利用热重分析技术检测到了该材料中钴的质量分数高达11.67wt%。这至少说明铜并非以纳米颗粒的形式存在。值得一提的是,11.67wt%的单原子铜含量是在当前的研究的铜单原子碳基催化剂中占有相当优势。
(4)通过反应的机理分析,S-Co@NC/过一硫酸钾体系是一种产生单线态氧的反应机制。说明该体系能够选择性降解去除水体中含酚类的有机污染物,不受水体复杂环境的影响。S-Co@NC/过一硫酸钾体系抵抗阴离子以及天然有机质干扰实验也证明了这一优势。
(5)本发明选用酞菁钴和磺化酞菁钴作为金属前驱体,同时利用磺化酞菁钴作为硫源、双氰胺作为氮源通过高温裂解使钴与氮、硫配位形成钴单原子碳基材料。同步辐射光谱证明了钴呈现单原子分布。实验结果表明,催化剂活化过一硫酸钾的机制,并非是自由基氧化(如·OH和SO4·-氧化),而是单线态氧作用机制。该反应途径有利于对有机污染物的选择性降解,减轻了体系受到复杂水体的干扰。因此,本体系能够快速活化过一硫酸盐降解污染物,且具有较强的抵抗水体中离子干扰能力。
附图说明
图1为硫掺杂钴单原子材料的形貌结构图,其中,(a)为透射电镜图,(b)为扫描电镜图,(c)为元素分布图,(d)为X射线晶体衍射(XRD)图。
图2为硫掺杂钴单原子材料的X射线吸收精细结构(XAFS)测试结果,Co箔片、Co3O4、CoPc以及S-Co@NC的Co K边X射线吸收近边结构(XANES)光谱(a)和傅里叶变换扩展X射线吸收精细结构(FT-EXAFS)光谱(b)。
图3为硫掺杂钴单原子材料与其他含钴催化剂的降解双酚A效果对比图。
图4为硫掺杂钴单原子材料对不同体系中PMS(过一硫酸盐)分解情况,其中,(a)为不同浓度PMS分解速率,(b)为双酚A降解时PMS的浓度变化。
图5为通过投加捕获剂和EPR(电子自旋共振)技术检测体系中可能存在的自由基的图,其中(a)为不同捕获剂对双酚A降解的影响,(b)为不同浓度的糠醇(FFA)对双酚A降解的影响,(c)为通过EPR(电子自旋共振)技术检测体系中可能存在的自由基的图。
图6为不同体系中双酚A的降解情况,其中,(a)为不同离子和腐殖酸(HA)对双酚A降解的影响,(b)为不同水体对双酚A降解的影响。
具体实施方式
本发明通过以下实施例结合附图进一步详述。
(1)本发明的方法处理过程
将0.075g酞菁钴、0.075g磺化酞菁钴和3g双氰胺固体颗粒在球磨机中研磨0.5小时,得到均匀混合粉末。之后取上述混合粉末在氩气保护的氛围下800℃下煅烧2小时。随后将所得含钴固体研磨,用0.5M硫酸在80℃下酸洗12小时。最后在60℃烘箱中真空干燥12h,所得固体呈现黑色,研磨备用。
取3mg所得固体粉末于30mL合成的双酚A废水中(浓度为20mg/L),超声2min使粉末在体系中均匀分散后,搅拌30min,以使得非均相界面之间达到吸附平衡。随后加入12mg过一硫酸钾,进行催化反应。
双酚A的浓度检测方法为:在预设的时间间隔中取0.5mL反应溶液于0.5mL的亚硫酸钠溶液(浓度为0.5M)中,混匀所得样品过膜后在高效液相色谱上检测残留双酚A,液相条件为甲醇:水=70:30。
PMS(过一硫酸钾)的检测方法为:在预设的时间间隔中取0.1mL样品溶液与4.9mL碘化钾溶液(浓度为10mM)混匀后放置5分钟,用紫外分光光度计检测,检测波长为352nm。
(2)该实施例所获得效果
合成材料的电镜和元素扫描图,如图1所示。(a)和(b)分别为合成的硫掺杂钴单原子材料(S-Co@NC)的透射电镜和扫描电镜图,可以看出为层状结构。(c)扫描电镜图,表明材料中含有钴、硫,且均匀分布,表明材料合成成功。(d)图为硫掺杂钴单原子材料的XRD图,仅有峰值在2θ=27.5°对应的石墨碳(002)晶面(参考JCPDS no.087-1526卡片),结合图(a)表明钴在合成材料中是以原子形势分散。
如图2所示,(b)是由(a)进行傅里叶变换所得,Cu-Cu和Cu-O键的缺失证实了S-Co@NC中的Co不以纳米颗粒或者是Co氧化物的形式存在,有力证明了Co以单原子的形式存在。而且在S-Co@NC中形成了Co-S,说明S的掺入给Co提供了新的配位原子,证实了Co-S键的形成。
如图3所示,通过比较不同含钴材料,本发明中合成的硫掺钴单原子材料(S-Co@NC)去除效果最佳,目的是说明本发明合成的材料具有很高的催化活化PMS(过一硫酸钾)降解双酚A的能力。
如图4所示,通过比较不同体系中,PMS(过一硫酸钾)分解情况,说明硫掺钴单原子材料(S-Co@NC)可以快速的活化PMS。(a)为不同浓度的PMS的分解情况,表明无论PMS浓度高低,S-Co@NC都可以快速分解PMS,10分钟内分解90%以上。(b)则说明了当BPA(双酚A)降解完全时,PMS也消耗完毕,不需要额外的手段处理剩余的PMS。
如图5所示,图5是通过投加捕获剂和EPR技术检测体系中可能存在的自由基。(a)中甲醇用来捕获均相反应中的·OH和SO4·-,二甲基亚砜用来捕获催化剂表面的·OH和SO4·-,苯醌用来捕获O2·-。通过这些捕获剂的投加可知,体系中不存在上述自由基。(b)中糠醇用来捕获单线态氧,随着糠醇浓度升高,BPA(双酚A)的降解受到了抑制,说明体系中主要是单线态氧起作用。EPR技术则证明了上述观点的正确性,确认了体系中不存在上述自由基以及存在单线态氧。由此可以探究了BPA被高效去除的原因是硫掺杂钴单原子材料活化过一硫酸钾产生了大量了单线态氧。
如图6所示,对于催化活化过硫酸盐降解BPA(双酚A)的体系来说,水体中原本存在的离子和HA(腐殖酸)等会干扰反应,阻碍BPA的降解。而在合成的硫掺杂钴单原子材料催化的体系中,如(a)所示,加入了其他离子或腐殖酸反应速率并没有发生明显改变。(b)图中在真实水体中的反应也说明了该体系不受水体中背景物质的干扰,能保持较高的BPA去除效率。
Claims (9)
1.一种硫掺杂钴单原子碳材料的合成方法,其特征在于,包括以下步骤
1)将酞菁钴、磺化酞菁钴和双氰胺研磨,得到均匀混合粉末;
所述的酞菁钴、磺化酞菁钴和双氰胺的质量比为0.05~0.1g:0.05~0.1g:2~4g;
2)取混合粉末在氩气保护的氛围下700~900℃下煅烧1~4小时,随后将所得含钴固体研磨,酸洗,真空干燥,得到硫掺杂钴单原子碳材料。
2.根据权利要求1所述的硫掺杂钴单原子碳材料的合成方法,其特征在于,步骤1)中,所述的研磨的条件为:在球磨机中研磨0.2~0.8小时。
3.根据权利要求1所述的硫掺杂钴单原子碳材料的合成方法,其特征在于,步骤2)中,所述的煅烧的条件为:750~850℃下煅烧1~4小时。
4.根据权利要求1所述的硫掺杂钴单原子碳材料的合成方法,其特征在于,步骤2)中,所述的酸洗的条件为:用硫酸在75~85℃下酸洗10~14小时。
5.根据权利要求4所述的硫掺杂钴单原子碳材料的合成方法,其特征在于,所述的硫酸的浓度为0.2~0.8mol/L。
6.根据权利要求1所述的硫掺杂钴单原子碳材料的合成方法,其特征在于,步骤2)中,所述的真空干燥的条件为:在55~65℃烘箱中真空干燥10~14 h。
7.根据权利要求1~6任一项所述合成方法获得的硫掺杂钴单原子碳材料。
8.根据权利要求7所述的硫掺杂钴单原子碳材料在降解废水中双酚A中的应用。
9.根据权利要求7所述的硫掺杂钴单原子碳材料作为催化剂在过一硫酸钾降解废水中双酚A中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210369070.9A CN114797897B (zh) | 2022-04-08 | 2022-04-08 | 一种硫掺杂钴单原子碳材料及其合成方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210369070.9A CN114797897B (zh) | 2022-04-08 | 2022-04-08 | 一种硫掺杂钴单原子碳材料及其合成方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114797897A CN114797897A (zh) | 2022-07-29 |
CN114797897B true CN114797897B (zh) | 2023-04-25 |
Family
ID=82534100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210369070.9A Active CN114797897B (zh) | 2022-04-08 | 2022-04-08 | 一种硫掺杂钴单原子碳材料及其合成方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114797897B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116037190B (zh) * | 2023-01-31 | 2024-01-30 | 温州大学 | 一种过渡金属钴负载石墨烯三维宏观体催化剂及应用 |
CN116393148B (zh) * | 2023-04-07 | 2024-09-20 | 华侨大学 | 二硫化钨限域钴纳米片及其制备方法和其活化亚硫酸盐降解抗生素的应用及方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109390597B (zh) * | 2018-10-22 | 2020-10-30 | 北京海得利兹新技术有限公司 | 一种高载量金属单原子燃料电池催化材料及其制备方法 |
KR102182065B1 (ko) * | 2018-11-23 | 2020-11-23 | 한국과학기술연구원 | 황 도핑 환원 그래핀 옥사이드, 그 제조방법 및 황 도핑 환원 그래핀 옥사이드를 함유한 폴리이미드 나노복합체 |
CN112090422B (zh) * | 2020-09-14 | 2023-01-17 | 黄河科技学院 | 一种碳基锚定非贵金属单原子催化剂、其制备方法及应用 |
CN112916009A (zh) * | 2021-01-25 | 2021-06-08 | 合肥工业大学 | 一种生物质衍生多孔碳限域单原子金属复合材料的制备方法 |
CN113413903A (zh) * | 2021-07-14 | 2021-09-21 | 中国科学院长春应用化学研究所 | 碳基过渡金属单原子材料的制备方法及其应用 |
CN113769773A (zh) * | 2021-09-27 | 2021-12-10 | 西南石油大学 | 一种金属单原子催化剂及其制备方法和环境修复中的应用 |
CN113856731B (zh) * | 2021-11-05 | 2024-04-02 | 南方科技大学 | 用于类芬顿反应的铁系催化剂及其制备方法、应用 |
-
2022
- 2022-04-08 CN CN202210369070.9A patent/CN114797897B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN114797897A (zh) | 2022-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Switching the reaction mechanisms and pollutant degradation routes through active center size-dependent Fenton-like catalysis | |
CN114797897B (zh) | 一种硫掺杂钴单原子碳材料及其合成方法和应用 | |
Zhao et al. | Single atom Fe-dispersed graphitic carbon nitride (g-C3N4) as a highly efficient peroxymonosulfate photocatalytic activator for sulfamethoxazole degradation | |
Li et al. | Designing oxygen vacancy mediated bismuth molybdate (Bi2MoO6)/N-rich carbon nitride (C3N5) S-scheme heterojunctions for boosted photocatalytic removal of tetracycline antibiotic and Cr (VI): Intermediate toxicity and mechanism insight | |
Zhao et al. | Single-atom Co embedded in BCN matrix to achieve 100% conversion of peroxymonosulfate into singlet oxygen | |
Xu et al. | Enhanced adsorption and photocatalytic degradation of perfluorooctanoic acid in water using iron (hydr) oxides/carbon sphere composite | |
US11629052B2 (en) | Single-atom catalyst for activation of persulfate to generate pure singlet oxygen as well as preparation method and application thereof | |
He et al. | Realizing a redox-robust Ag/MnO2 catalyst for efficient wet catalytic ozonation of S-VOCs: Promotional role of Ag (0)/Ag (I)-Mn based redox shuttle | |
Wang et al. | Degradation of bisphenol a using peroxymonosulfate activated by single-atomic cobalt catalysts: different reactive species at acidic and alkaline pH | |
Wang et al. | Activation of persulfate with dual-doped reduced graphene oxide for degradation of alkylphenols | |
Zheng et al. | A novel Fenton-like catalyst of Ag3PO4/g-C3N4: Its performance and mechanism for tetracycline hydrochloride degradation in dark | |
Lin et al. | Heterogeneous photo-Fenton degradation of acid orange 7 activated by red mud biochar under visible light irradiation | |
Hong et al. | Selenization governs the intrinsic activity of copper-cobalt complexes for enhanced non-radical Fenton-like oxidation toward organic contaminants | |
CN109569729B (zh) | 一种负载型双金属高级氧化催化剂、制备方法及其各强化功能贡献的分析方法 | |
Zhu et al. | Cu2O/CuO induced non-radical/radical pathway toward highly efficient peroxymonosulfate activation | |
Xu et al. | Efficient catalytic ozonation over Co-ZFO@ Mn-CN for oxalic acid degradation: Synergistic effect of oxygen vacancies and HOO-Mn-NX bonds | |
Xu et al. | Efficient degradation of ciprofloxacin by activated peroxymonosulfate using OV-rich NiCo4-LDH: Insights into radical production pathway and catalytic mechanism | |
Li et al. | Role of in-situ electro-generated H2O2··· bridge in tetracycline degradation governed by mechanochemical Si-O anchoring Cu2+ as electron shuttle during E-peroxone process | |
Wang et al. | Tuning the surface electronic state by the introduction of Mn on Fe2O3 to boost the activity of peroxymonosulfate | |
Kim et al. | Synergy between single atoms and nanoclusters of Pd/g-C3N4 catalysts for efficient base-free CO2 hydrogenation to formic acid | |
Zhao et al. | ZIF-8-derived hollow carbon polyhedra with highly accessible single Mn-N6 sites as peroxymonosulfate activators for efficient sulfamethoxazole degradation | |
Wang et al. | Improving water stability and photocatalytic activity of MIL-101 (Fe) via in-situ modification strategy | |
Han et al. | A bifunctional single-atom catalyst assisted by Fe2O3 for efficiently electrocatalytic perfluorooctanoic acid degradation by integrating reductive and oxidative processes | |
Hou et al. | Cobalt-based sea urchin-shaped hollow microspheres promotes PMS activation for ultrafast removal of PAHs | |
Zhou et al. | The enhanced peroxymonosulfate activation ability and mechanism on low-coordinated Fe-N3 single sites for organic pollutant degradation in wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |