CN114774466A - 转基因小鼠 - Google Patents

转基因小鼠 Download PDF

Info

Publication number
CN114774466A
CN114774466A CN202210143798.XA CN202210143798A CN114774466A CN 114774466 A CN114774466 A CN 114774466A CN 202210143798 A CN202210143798 A CN 202210143798A CN 114774466 A CN114774466 A CN 114774466A
Authority
CN
China
Prior art keywords
vector
mouse
murine
gene
domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210143798.XA
Other languages
English (en)
Inventor
滕毓敏
乔伊斯·杨
布莱恩·麦吉尼斯
麦克·罗曼诺斯
玛丽安娜·布鲁格曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crescendo Biologics Ltd
Original Assignee
Crescendo Biologics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51842672&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN114774466(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Crescendo Biologics Ltd filed Critical Crescendo Biologics Ltd
Priority to CN202210143798.XA priority Critical patent/CN114774466A/zh
Publication of CN114774466A publication Critical patent/CN114774466A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Knock-in vertebrates, e.g. humanised vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • A01K2217/052Animals comprising random inserted nucleic acids (transgenic) inducing gain of function
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/072Animals genetically altered by homologous recombination maintaining or altering function, i.e. knock in
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/15Animals comprising multiple alterations of the genome, by transgenesis or homologous recombination, e.g. obtained by cross-breeding
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/01Animal expressing industrially exogenous proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/569Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • C12N2015/8518Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic expressing industrially exogenous proteins, e.g. for pharmaceutical use, human insulin, blood factors, immunoglobulins, pseudoparticles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/20Pseudochromosomes, minichrosomosomes
    • C12N2800/206Pseudochromosomes, minichrosomosomes of yeast origin, e.g. YAC, 2u
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/30Vector systems having a special element relevant for transcription being an enhancer not forming part of the promoter region

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Environmental Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

本发明涉及用于在小鼠中表达产生仅有重链的抗体和VH结构域的核酸构建体、转基因小鼠、相关的方法和应用。

Description

转基因小鼠
本申请是国际申请日为2014年10月22日、国际申请号为PCT/GB2014/053146于2017年3月31日进入中国国家阶段、申请号201480082416.0、发明名称“转基因小鼠”的申请的分案申请。
发明领域
本发明涉及用于在小鼠中表达的核酸构建体。本发明还涉及这些构建体在产生仅有重链的抗体中的应用,所述仅有重链的抗体例如,在轻链(L-链)和重链(H-链)基因座的表达方面受损(compromised)的小鼠中产生。本发明还涉及来源于所述仅有重链的抗体的单个VH结构域的分离和应用。
引言
大部分天然抗体或免疫球蛋白(Ig’s)通常包含两条重(H)链和两条轻(L)链。H-链通过位于柔性铰链结构域附近的二硫键彼此连接,并且每条H-链具有与其N端区域键合的L-链二硫化物,从而形成H2L2异四聚体。每条L-链具有可变(VL)结构域和恒定(CL)结构域,而每条H-链包含可变结构域(VH)、第一恒定结构域(CH1)、铰链结构域和两个或三个另外的恒定结构域(CH2、CH3以及任选地CH4)。在正常的二聚体抗体(H2L2)中,每个VH与VL结构域的相互作用形成抗原结合区(还已知在CH1结构域与CL结构域之间的相互作用促进重链与轻链之间的功能性缔合)。
已知几种不同种类的天然Ig。这些种类(或同种型)的区别在于它们H-链的恒定结构域,其又影响Ig的功能。在哺乳动物中,五种Ig同种型为IgA,IgD,IgE,IgG和IgM。IgA包含由Cα基因节段编码的CH结构域,并且在粘膜免疫中起主要作用。分泌性的IgA是含有通过一个J链连接的两个H2L2单位的二聚体,并且通常大量存在于分泌物中,如乳汁和初乳中。血清IgA以H2L2单体存在于人中。IgD包含由Cδ基因节段编码的CH结构域,是单体的,并且作为B细胞(即,负责产生抗体的细胞)上的抗原受体起作用。IgE具有由Cε基因节段编码的CH结构域,也是单体的,并且在与肥大细胞上的高亲和性Fcε受体结合时,能够由引发细胞因子和组胺释放(变态反应)的变应原交联。在人中,IgG以四种不同的亚型存在,全部这些亚型都是单体的并且包含由Cγ基因节段编码的CH结构域。IgG同种型包括大部分基于成熟抗体的(体液)免疫应答。最后,IgM具有由Cμ基因节段编码的CH结构域,并且(类似于IgG,A和E)在B细胞表面上表达并且还以分泌形式表达。分泌的IgM是五聚体的并且作为早期体液应答的一部分在清除病原体中起关键作用。
B细胞中正常的Ig表达涉及有序的一系列基因重排。通过组装VH、多样性(D)和连接(JH)节段在体内构建编码H-链可变区的外显子。L-链的可变区以等效方法通过组装VL和JL节段编制。重排的VDJ区最初与Cμ基因节段缔合转录,导致IgM H-链的合成。随后,在周围,转换重组(switch recombination)使得其他下游CH基因节段(δ,γ,α或ε)靠近VDJ外显子,导致Ig种类转换。在内质网中通过H-链的伴侣分子缔合来防止表达H-链而不表达L-链的B细胞的成熟。然而,如果H-链缺失CH1,这一控制被去除,并且H-链能够不受阻碍地移动到细胞表面并被分泌。事实上,我们之前已经表明,非常出乎意料地,无需任何进一步的遗传操作,L-/--/-λ-/--缺陷型)小鼠在血清中产生多种仅有H链的抗体,并且由于从H-链转录本自发丢失CH1外显子,它们以相对低的水平产生。
在胼足亚目(Tylopoda)或骆驼科(camelids)(单峰驼(dromedaries)、骆驼(camels)和美洲驼(llamas))中,除了常规的H2L2抗体之外,作为针对抗原的正常体液免疫应答的一部分产生仅由成对的重链构成的主要的Ig类型(仅有重链的抗体,HCAb)(Padlan,E.A.1994,Mol.Immunol.31:169-217)。引起这些动物中的HCAb表达的发育过程是未知的,然而,已知它们使用特定种类的VH(VHH)和Cγ基因,其产生比常规重链更小的缺少CH1结构域(通过RNA转录体的交替剪接去除)的重链。在一些原始鱼类中也存在重链抗体;例如,在护士鲨(nurse shark)中的新抗原受体(new antigen receptor,NAR)和在银鲛(ratfish)中的专门的重链(COS5)(Greenberg等人,1996,Eur.J.Immunol.26:1123-1129,Rast等人,1998,Immunogenetics,47:234-245)。同样地,这些重链Ig缺少CH1-型结构域。
基于它们针对靶抗原的极度的选择性、特异性和功效,常规抗体长久以来被视为是有效的工具。实际上,现在它们被充分确立为高度有效的治疗剂,在2012年销售额为540亿美元,预计在未来几年内继续显著增长。然而,为了得到下一代基于抗体的治疗候选物,对于开发备选形式和更小的片段的益处存在日益增长的需求。
VH或VHH片段是免疫球蛋白分子保留靶标特异性和功效的最小部分,并且是在稳定性、溶解性、改造和制备容易性方面最稳健的抗体片段。这使得它们成为高度有吸引力的治疗剂,特别是对于开发用于区域和局部递送的产品、纯的拮抗剂和双特异性药或多特异性药(multi-specifics)具有显著的优点。特别地,关于要用作潜在药物产品的骆驼科VHH结构域的潜力已经吸引了众多关注。然而,它们不具有人氨基酸序列的事实是妨碍骆驼科VHH结构域成为最佳药物候选物的一个主要特征,原因在于,当施用给人(特别是疾病适应证需要长期施用的情形)时,它们具有引发抗-药物抗体反应的可能。
结果,对于产生作为治疗候选物的人VH(或VL)结构域已有大量的兴趣。公知来源于常规抗体的VH结构域需要VL结构域的陪伴(当其不存在时,它们难以表达,通常是不溶的并且失去针对靶抗原的结合亲和性和特异性)。因而,为了增强溶解性和稳定性,来源于用在存在配偶体(partner)结构域的条件下开发的结构域构建的体外展示文库的分离的人VH(或VL)结构域需要大量的改造。
本发明起因于下述令人惊讶的发现(见下述实施例):通过在敲除小鼠中表达嵌合核酸构建体能够产生多种不具有CH1的HCAb,所述嵌合核酸构建体包含至少10个以其天然构型存在的功能性的人的且未改造的V基因。在本发明的小鼠(其具有整合到其基因组中的人的或嵌合重链基因座)中产生HCAb在治疗剂的制备中提供了多种优点。所述HCAb抗体包含全人VH结构域,在体内其在不存在配偶体VL结构域的条件下成熟。来源于所述HCAb的VH结构域是高度有效的、可溶的、稳定的并且能够以高水平表达。
现有技术公开了在免疫球蛋白轻链已被功能性沉默且其中H-链转录本天然经历自发的CH1外显子丢失的小鼠中产生仅有重链的抗体(US 12/455,913)。现有技术还记载了使用包含骆驼科VHH基因的构建体产生HCAb(例如,参见WO 2006/008548)。
本发明目的在于提供用于转化小鼠并且产生人VH结构域的改良的构建体。
发明概述
在第一方面,本发明涉及包含下述各项的载体:
a)至少10个功能性的人重链V基因,其中至少10个功能性的人重链V基因以其天然构型存在;
b)至少一个人重链D基因和至少一个人重链J基因;
c)缺少CH1外显子的鼠C区域。
在一个实施方案中,所述载体包含鼠3’增强子区或基因。在一个实施方案中,所述鼠3’增强子区或基因的大小为至少约42kb。在一个实施方案中,所述鼠3’增强子区包含选自增强子元件hs3A、hs1.2、hs3B、hs4、hs5、hs6和hs7的一种或多种增强子元件。在一个实施方案中,所述鼠3’增强子区包含增强子元件hs3A、hs1.2、hs3B、hs4、hs5、hs6和hs7。
本发明还涉及转化有本发明的载体的鼠宿主细胞。本发明还涉及包含根据本发明所述的载体或宿主细胞的转基因小鼠。优选地,小鼠是不产生任何功能性内源轻链或重链的三重敲除小鼠。
在另一方面,本发明涉及在本发明的转基因小鼠中产生的或可从本发明的转基因小鼠获得的仅有重链的抗体或VH结构域。
在另一方面,本发明涉及用于制备HCAb、其片段或来源于其的抗体的方法,所述方法包括在小鼠中引入并表达本发明的载体。例如,所述片段是VH结构域。
在另一方面,本发明涉及包含人VH区和鼠恒定区、缺少CH1区的仅有重链的抗体。在另一方面,本发明涉及通过本发明的方法得到的或可通过本发明的方法得到的VH结构域。
在另一方面,本发明涉及本发明的转基因小鼠在构建文库、例如未免疫文库(
Figure BDA0003507289230000041
library)中的应用。
在另一方面,本发明涉及使用本发明的转基因小鼠来制备文库、例如未免疫文库的方法。
在另一方面,本发明涉及用于制备文库的方法,其包括离体免疫本发明的转基因小鼠或离体免疫本发明的转基因小鼠的组织或细胞。
在另一方面,本发明涉及包含通过本发明的方法得到的VH结构域或可通过本发明的方法得到的VH结构域的组合物。所述组合物单独包含或与另一种VH结构域、蛋白或其他治疗有益的分子组合包含VH结构域。
附图
在下述非限制性附图中进一步描述本发明。
图1:人BAC。
图2:小鼠BAC。
图3:具有克隆的a1和a2的pYAC3。
图4:通过TAR克隆将BAC转换成YAC。
图5:经由BIT连接两个YAC。L:LYS2;A:ADE2;T:TRP1;U:URA3;K:KANr。
图6:小鼠Eμ-Sμ区的扩增。
图7:具有缺失的CH1的小鼠Cγ1片段的扩增。
图8:pYNOT载体。
图9:用于产生Hy-HIS3-端粒YAC臂的载体pHKT-Hy。
图10:本发明的构建体。
YAC1:从左到右,端粒-酵母TRP1标记基因-着丝粒-10个人V基因-人D基因-人J基因-小鼠μ增强子和转换(switch)-小鼠Cγ1(CH1Δ)基因-小鼠3’增强子-潮霉素抗性基因-酵母标记基因HIS3-端粒。
YAC2:从左到右;端粒-酵母TRP1标记基因-着丝粒-23个人V基因-人D基因-人J基因-小鼠μ增强子和转换-小鼠Cγ1(CH1Δ)基因-小鼠3’增强子-潮霉素抗性基因-酵母标记基因HIS3-端粒。
YAC3:从左到右,端粒-酵母TRP1标记基因-着丝粒-23个人V基因-人D基因-人J基因-小鼠μ增强子和转换-小鼠Cγ1(CH1Δ)基因-小鼠Cγ2b(CH1Δ)基因-小鼠Cγ2a(CH1Δ)基因-小鼠3’增强子-潮霉素抗性基因-酵母标记基因HIS3-端粒。
图11:使用来自具有或不具有靶向的内源性免疫球蛋白链基因座的小鼠的gDNA的基因分型PCR反应。
图12:血清中小鼠免疫球蛋白的ELISA。TKO小鼠在血清中没有小鼠重链。TKO小鼠在血清中没有小鼠重链-轻链复合物。TKO小鼠在血清中没有小鼠轻链。
图13:转基因程序的示意性图示。
图14:在ES克隆内靶向构建YAC转基因的示意图。
图15:来自前核显微注射后出生的幼仔的基因组DNA的PCR筛选和从F0到F1代的种系传递的检测。a)YAC1,b)凝胶电泳,c)结果。
图16:插入的YAC转基因的拷贝数。
图17:噬菌粒载体的图谱。
图18:由重排的转基因基因座产生的转录本的实例。
图19:a)和b)克隆的VH序列的多样性。从单个未免疫
Figure BDA0003507289230000061
的转基因YAC1小鼠分离的转录本的序列分析。分析的序列总数:409。不同的CDR3的数量:346。平均CDR3长度:13.24。使用了全部的V基因。
图20:检测血清中的HCAb的ELISA。
图21:使用染色的骨髓细胞的流式细胞术。
图22:a)至c)显示脾细胞染色的流式细胞术。
图23:在用苏木精和曙红染色后脾切片的免疫组织化学。
图24:检测针对免疫的HCAb反应的ELISA。在(预取血)免疫前以及在实验结束时从用不同抗原免疫的小鼠采集血清,并且在ELISA中检测与靶抗原的结合。
图25:噬菌体展示选择过程的示意图。
图26:在来自免疫的小鼠的克隆的VH的噬菌体选择之前和之后HIS-标记的粗VH制剂的ELISA。
图27:来自免疫的小鼠的选择前和选择后文库的序列
a).在选择之前的文库大小和序列多样性。由4只免疫的小鼠构建噬菌体文库,并且,在针对抗原进行选择之前,从这些文库之一中取样少数(n=69)的克隆并测序。显示了在这些克隆中CDR3长度的分布和每种CDR3序列存在的频率。具有4个构架区的克隆1(SEQID NO.143,144,145,146,147和CDR)显示在b)中。c).显示了导致ELISA中的较高亲和性结合的体内体细胞超变的实例。使用噬菌体展示从免疫的小鼠分离的抗原-结合VH家族的总结。
图28:针对所选的VH的结合动力学的BIAcore测量。
图29:VH介导的对配体与受体结合的抑制。
图30:a)和b)实验室规模的培养的克隆的VH的产量。
图31:纯化的重组VH的解链温度(melting temperature)。
图32:纯化的VH的HPLC分析。
图33:ELISA证明在三重KO背景下携带YAC2的转基因小鼠产生没有内源性轻链污染的HCAb。任何内源性轻链(HC-/-,κ-/-,λ+/-或HC-/-,κ+/-,λ-/-或HC-/-,κ+/-,λ+/-)的存在导致HCAb与轻链的配对。
图34:从用3种不同抗原免疫的小鼠分离的812个抗原-结合VH克隆的Kabat和Wu变异性图(Variability Plot)。绘制了每个氨基酸位置处的变异性%。在每个所示的氨基酸位置,有5条线条,依次表示VH1(16个克隆),VH2(14个克隆),VH3(514个克隆),VH4(163个克隆)和VH6(105个克隆)家族序列。形成CDR1、CDR2和CDR3环的序列用方框框出。
图35:未免疫文库。VH1,2,3,4和6文库由113只未免疫的YAC1小鼠的脾产生。
i.)每个文库中的克隆数目。
ii.)来自每个未免疫文库的样品的序列分析显示良好的多样性。
iii.)来自每个未免疫文库的序列样品中CDR3氨基酸长度的频率。
发明详述
现在将进一步描述本发明。在下述篇幅中,更详细地定义本发明的不同方面。除非有清楚的相反指示,这样的定义的每个方面可以与任意另一个方面或多个方面组合。具体地,证明是优选的或有利的任意特征可以与证明是优选的或有利的任意另一种特征或多种特征组合。除非另外指明,本发明的实施将利用常规的免疫学、分子生物学、化学、生物化学的技术和重组DNA技术,这些技术属于本领域的技术。所述技术在文献中充分阐释。
酵母人工染色体(YAC)是可以用于在酵母中克隆非常大的DNA插入物的载体。除了包含用于如天然酵母染色体一样表现所需要的所有三个顺式作用结构元件(自主复制序列(ARS),着丝粒(CEN)和两个端粒(TEL))之外,它们接受大DNA插入物的能力允许它们达到在酵母细胞中的染色体样稳定性和传递的保真性所需要的最小尺寸(150kb)。YAC的构建和使用在本领域内是公知的(例如,Bruschi,C.V.和Gjuracic,K.Yeast ArtificialChromosomes,ENCYCLOPEDIA OF LIFE SCIENCES 2002Macmillan Publishers Ltd,NaturePublishing Group/www.els.net)。
本发明人已经制备了一系列用于在小鼠中表达的酵母人工染色体(YAC)(图10)。这些YAC编码能够在转基因小鼠中进行体细胞重组的人重链基因座,从而产生仅有B细胞重链的抗体组库(repertoire)。该系列的YAC具有增加的复杂性,与YAC2或YAC3相比,YAC1具有较少的VH基因节段,并且YAC3具有可用的另外的免疫球蛋白恒定区基因。如本文所述,该系列的YAC能够形成其他具有另外的VH基因的YAC构建体的基础,使得V(N)具有至少10个与鼠恒定区组合的种系构型的人VH
技术人员将清楚,另外的特征,例如,辅助向胚胎干细胞转染构建体、ES的选择和筛选或在转基因过程中促进限定的整合,也可以包括在本发明的YAC构建体内。技术人员将清楚,可以使用除YAC外的载体。如本文所述,本发明的载体、载体构建体、构建体或转基因可以用于在转基因小鼠中响应抗原攻击(challenge)产生完全功能性的、抗原特异性的、高亲和性的所选种类的HCAb或VH结合结构域的方法中。
本发明的表达载体具有包含人和鼠源序列的嵌合的重链基因座。因此,所述载体包含异源重链基因座。所述载体包含不编码CH1结构域的重链恒定区。所述载体可以用于在啮齿动物中表达异源重链基因座。当在啮齿动物中表达时,例如,在小鼠中表达时,所述基因座能够形成稳定的且可溶性的HCAb或VH结构域。
在本文所述的本发明多个方面的一个实施方案中,所述载体是YAC。然而,按照本发明,也可以使用技术人员已知的其他载体,诸如BAC。
在第一方面,本发明涉及包含下述各项的载体:
a)至少10个功能性的人重链V基因,其中至少10个功能性的人重链V基因以其天然构型存在;
b)至少一个人重链D基因和至少一个人重链J基因;
c)缺少CH1外显子的鼠C基因。
在一个实施方案中,所述构建体包含鼠3’增强子区或基因。在一个实施方案中,所述鼠3’增强子区或基因的大小为至少约42kb。在一个实施方案中,所述鼠3’增强子区包含选自增强子元件hs3A、hs1.2、hs3B、hs4、hs5、hs6和hs7的一种或多种增强子元件。在一个实施方案中,所述鼠3’增强子区包含增强子元件hs3A、hs1.2、hs3B、hs4、hs5、hs6和hs7。
在一个实施方案中,所述载体包含多于一种鼠C基因。在一个实施方案中,所述鼠C基因是鼠Cγ1基因。
在一个实施方案中,所述载体包含鼠μ增强子和转换μ元件或转换γ元件。因此,所述转换μ元件或转换γ元件位于鼠μ增强子的下游,并且这些元件由此以它们的天然构型存在。
因此,在一个实施方案中,本发明涉及包含下述各项的载体:
a)至少10个功能性的人重链V基因,其中至少10个功能性的人重链V基因基本上以其天然构型存在;
b)至少一个人重链D基因和至少一个人重链J基因;
c)鼠μ增强子和转换μ元件或转换γ元件;
d)缺少CH1外显子的鼠Cγ1基因,和
e)包含增强子元件hs3A、hs1.2、hs3B、hs4、hs5、hs6和hs7的鼠3’增强子基因。
a)至e)中所述的元件以5’→3’的顺序存在。本发明的载体是嵌合的,并且包含人和鼠序列。人序列位于载体的5’端并且包含重链V、D和J基因。位于人J基因下游的载体3’区包含鼠源的序列并且不包含人源的序列。
如其他地方提及的,在一个实施方案中,所述载体是YAC。
在一个实施方案中,所述载体包含至少约0.5MB的人序列。
按照本发明,所述载体包含至少10个以基本上天然构型存在的功能性人重链V基因。在一个实施方案中,所述载体可以包含至少10个至全部的功能性人V基因。在一个实施方案中,V基因的数目是10个至约44个。在一个实施方案中,功能性V基因的数目是10-20个、10-30个或10-44个。在一个实施方案中,功能性V基因的数目是10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,2526,27,28,29,30,31,32,33,34,35,36,37,28,29,40,41,42,43或44个。在一个实施方案中,功能性V基因的数目是10-23个。
在一个实施方案中,所述载体可以包含功能性V基因的串联重复。每个串联重复包含至少10个基本上以其天然构型存在的人重链V基因。因此,所述载体可以包含至少10个至数百个功能性V基因,例如,10个至约50个,10个至约100个,10个至约200个或更多。在一个实施方案中,所述载体可以包含多于10个功能性V基因。在每个串联重复中,至少10个功能性V基因基本上以其天然构型存在。
例如,根据本发明所述的分别具有10个或23个功能性人重链V基因的载体在图10中显示为YAC 1、2和3。然而,技术人员将理解,本发明不限于图10所示的YAC,并且可以包括另外的功能性V基因,条件是不损害根据本发明所述的载体的其他设计特征。
V基因是人源的并且有功能的。因此,所述V基因编码基因产物并且不是假基因(尽管在构建体内可以存在假基因,但是,当确定功能性V基因的数目时不计算在内)。
并且,按照本发明的载体构建体,存在于所述载体中的至少有10个功能性V基因基本以其天然构型存在。换言之,本发明的构建体包含至少10个基本上以未重排的天然构型存在的功能性人V基因。在一个实施方案中,本发明的构建体包含至少10个以未重排的天然构型存在的功能性人V基因。在一个实施方案中,术语天然构型是指基因顺序和/或DNA序列。因此,在一个实施方案中,包含在本发明的载体中的人V基因中的至少10个功能性人V基因以与它们在人种系中可能存在的顺序次序相同的顺序次序存在。换言之,本发明的构建体包含至少10个未重排顺序的功能性人V基因。在一个实施方案中,所述载体包含10个未重排顺序的功能性人V基因。在一个实施方案中,所述载体包含多于10个功能性人V基因,并且这些中的10个以未重排顺序存在。在一个实施方案中,所述载体包含多于10个功能性人V基因,其中全部以未重排顺序存在。由此本发明不包括下述情况:组合至少10个不同的功能性人V基因,其中选择并组合人V基因使得它们不再以其天然顺序存在。
所述以其天然顺序存在的至少10个V基因还包含间插序列。
此外,至少10个功能性人V基因及其间插区的序列基本上与它们在人种系中可能存在的序列一样。例如,所述序列表现出与在人种系中可能存在的序列至少90%,91%,92%,93%,94%,95%,96%,97%,98%或99%的序列同一性。所述间插区是重要的,原因在于它们影响对V基因的接近并且决定怎样利用它们产生抗体组库。技术人员应该理解,在构建本发明的载体构建体的过程中,由于酵母中的重组事件,可能发生序列中的小差异。
因此,优选地,按照本发明,用于本发明的构建体的至少10个功能性人V基因不通过靶向操作进行修饰而去除或改变位于功能性V基因之间的一个或多个间插序列。所述靶向操作排除在构建本发明的载体构建体过程中由于酵母中的重组事件引起的序列中的小差异。由此,本发明的构建体包含至少10个以基本上天然序列存在的功能性人V基因。
此外,优选地,所述V基因不被改造而改变残基以增加溶解性。换言之,所述V基因是天然存在的。
实施例中显示了用在本发明的载体(例如YAC)中的功能性人V基因的特定组合。然而,不要求V基因的任何特定组合,并且任何功能性人V基因都可以用于HCAb的高效表达,条件是所述载体中包含的至少10个功能性人V基因以与它们在人种系中可能存在的顺序相同的顺序存在。
如上文所述,所述载体包括人重链D和J基因。由此,在本发明的构建体中存在至少一个、优选多个人重链D基因以及至少一个、优选多个人J基因。在一个实施方案中,所述构建体包括1-19个,例如至少5个,至少10个,至少15个或更多个人重链D基因。在一个实施方案中,所述构建体包括至少5个,至少10个,至少15个或更多个人重链J基因。在一个实施方案中,所述构建体包括1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18或19个人重链J和D基因。在一个实施方案中,本发明的构建体包括全部人重链D基因。在一个实施方案中,本发明的构建体包括全部人重链J基因。在另一个实施方案中,所述人重链D和J基因基本上以其天然构型存在。在一个实施方案中,所述人重链D和J基因以与它们在人种系中可能存在的顺序相同的顺序存在。因此,优选地,按照本发明,用于本发明的构建体的D和J基因不通过靶向操作进行修饰而去除或改变一个或多个间插序列。
在一个实施方案中,本发明的载体构建体还包括鼠μ增强子,IgH基因转录和VDJ重组的主要调节子和鼠转换μ元件。转换元件是种类转换必不可少的。
在一个实施方案中,所述载体还包含至少一个或多个鼠C区基因。在一个实施方案中,所述C区基因选自Cγ1、Cγ2b和/或Cγ2a。在一个实施方案中,所述载体包含Cγ1、Cγ2b和Cγ2a。
由此,本发明的载体构建体包括缺少CH1外显子的小鼠Cγ1基因。然而,所述载体构建体可能还包含另外的C基因或区域。
此外,在一个实施方案中,所述载体包含鼠3’增强子区。优选地,这是大小约为42kb的区域。在一个实施方案中,该区域包含增强子元件hs3A、hs1.2、hs3B、hs4和预测的含有元件hs5、hs6和hs7的绝缘子区(Garrett等人,2005;Chatterjee等人,2011)。如在实施例中所示,这是包含多个指示调节元件存在的DNA酶I高敏感性(hs)位点的大小约为42kb的区域。表明3’增强子是B细胞发育过程中的种类转换重组过程和IgH表达必不可少的(Lieberson等人,1995;Vincent-Fabert等人,2010)。通过体外测定经测量人β-珠蛋白基因的转录鉴定大鼠3’增强子中的747bp区域具有增强子活性(Pettersson等人,1990)。具有每个个体增强子元件hs3A、hs1.2、hs3B和hs4的靶向缺失的小鼠在种类转换方面与野生型对照不可区分(Cogne等人,1994;Manis等人,1998;Zhang等人,2007;Vincent-Fabert等人,2009;Bebin等人,,2010)。然而,所有四种hs元件的组合缺失消除了向所有同种型的种类转换(Vincent-Fabert等人,2010)。预测绝缘子区将IgH基因座与位于下游或其他地方的非IgH基因隔开(Chatterjee等人,2011)。因此,在本发明的YAC构建体中包含完整大小的3’增强子提供了所有具有丰富且协同作用的增强子元件以及保护其余基因座的绝缘子的来源。
所述载体还可以包含标记基因,例如,酵母标记基因TRP1、HIS3和/或ADE2,和/或潮霉素抗性基因。可以包括另外的选择标记。
如在实施例中所示,根据本发明所述的具有10个或更多个功能性人V基因的载体构建体可以在体外或在体内产生。例如,对于在体内产生,将图10所示的YAC1引入到小鼠ES细胞中,并且通过在ES细胞中的靶向基因敲入而扩充V基因的数目。简言之,利用具有添加的V基因以及现有的转基因的同源区域的靶向载体经由同源重组事件扩充转基因。
包含本发明的载体作为载体转基因的ES细胞可以通过经转染将载体DNA直接引入到ES细胞中或通过来自携带转基因的小鼠的ES细胞的衍生而得到。再衍生的ES细胞将携带与小鼠相同的拷贝数和相同的基因组位置的转基因,而转染的细胞可能具有变化的拷贝数且可能整合到小鼠基因组中的任何位置,除非特异性靶向。
本发明所述的YAC或其他载体可以作为转基因引入到小鼠细胞或小鼠中,用于产生HCAb或其片段。由此,本发明还涉及本文所述的载体在制备HCAb的方法中的应用。如下文所阐释的,可以在小鼠中产生可溶的、不聚集且基本上单体的VH结合结构域,如下文详述。本发明还涉及本文所述的载体在产生生产HCAb的小鼠和由所述小鼠产生VH结构域中的应用。
在另一方面,本发明提供转基因小鼠或转基因鼠宿主细胞,其转化有本文所述的本发明的载体,并且如本文所述由此表达异源重链基因座。由此,在一方面,本发明涉及转化有包含下述各项的YAC或其他载体的转基因小鼠:
a)至少10个功能性的人重链V基因,其中至少10个功能性的人重链V基因以其天然构型存在;
b)至少一个人重链D基因和至少一个人重链J基因;
c)鼠μ增强子和转换μ元件或转换γ元件;
d)缺少CH1外显子的鼠C基因,和
e)鼠3’增强子元件。
所述鼠3’增强子元件如其他地方所述。所述载体的其他特征也在其他地方记载。在一个实施方案中,所述载体是YAC。
在一个实施方案中,所述鼠C基因是鼠Cγ1基因。在一个实施方案中,所述鼠3’增强子元件包含增强子元件hs3A,hs1.2,hs3B,hs4,hs5,hs6和hs7。由此,在一个实施方案中,本发明涉及转化有包含下述各项的YAC的转基因小鼠或鼠宿主细胞:
a)至少10个功能性的人重链V基因,其中至少10个功能性的人重链V基因基本上以其天然构型存在;
b)至少一个人重链D基因和至少一个人重链J基因;
c)鼠μ增强子和转换μ元件或转换γ元件;
d)缺少CH1外显子的鼠Cγ1基因,和
e)包含增强子元件hs3A、hs1.2、hs3B、hs4、hs5、hs6和hs7的鼠3’增强子元件。
在一个实施方案中,所述宿主细胞是鼠宿主细胞。在一个实施方案中,所述转基因小鼠具有降低的表达内源性抗体基因的能力。由此,在一个实施方案中,所述小鼠具有降低的表达内源性轻链和/或重链抗体基因的能力。因此,所述小鼠可以包含另外的修饰以破坏内源性轻链和/或重链抗体基因的表达,从而不产生功能性的轻链和/或重链。
在一个实施方案中,所述小鼠可以包含非功能性λ轻链基因座。由此,所述小鼠不产生功能性的内源λ轻链。在一个实施方案中,所述λ轻链基因座部分或完全缺失,或经由插入变成非功能性的。例如,至少恒定区基因C1、C2和C3可以被缺失或经由插入而变成非功能性的。在一个实施方案中,所述基因座在功能上是沉默的,使得所述小鼠不产生功能性的λ轻链。
此外,所述小鼠可以包含非功能性的κ轻链基因座。由此,所述小鼠不产生功能性的内源性κ轻链。在一个实施方案中,所述κ轻链基因座部分或完全缺失或经由插入变成非功能性的。在一个实施方案中,所述基因座在功能上是沉默的,使得所述小鼠不产生功能性的κ轻链。
例如,具有功能性沉默的内源性λ和κL-链基因座的小鼠可以如WO2003/000737中公开那样产生,其通过引用整体上结合在本文中。
此外,所述小鼠可以包含非功能性的重链基因座。由此,所述小鼠不产生功能性的内源性重链。在一个实施方案中,所述重链基因座部分或完全缺失或经由插入变成非功能性的。在一个实施方案中,所述基因座在功能上是沉默的,使得所述小鼠不产生功能性的重链。
例如,如在WO2004/076618中所述,在小鼠中不存在全部8种内源性重链恒定区免疫球蛋白基因(μ,δ,γ3,γ1,γ2a,γ2b,ε和α),或部分不存在到它们是非功能性的程度,或者不存在基因δ、γ3、γ1、γ2a、γ2b和ε并且侧翼基因μ和α部分不存在到它们变成非功能性的程度,或者不存在基因μ、δ、γ3、γ1、γ2a、γ2b和ε并且α部分不存在到其变成非功能性的程度,或者不存在δ、γ3、γ1、γ2a、γ2b、ε和α并且μ部分不存在到其变成非功能性的程度。WO2004/076618通过引用整体结合在本文中。
部分缺失意指内源性基因座基因序列已被删除或破坏(例如,通过插入)至该基因座不编码功能性的内源性基因产物的程度,即,由该基因座不表达功能性的产物。在另一个实施方案中,所述基因座在功能上是沉默的。
在一个实施方案中,表达本发明的载体的小鼠包含非功能性的重链基因座、非功能性的λ轻链基因座和非功能性的κ轻链基因座。因此,所述小鼠不产生任何功能性的内源性轻链或重链。由此,所述小鼠是三重敲除(TKO)小鼠。
转基因小鼠可以按照标准技术产生,如实施例中所示(参见图13)。两种最有特点的产生转基因小鼠的途径是通过将遗传物质原核显微注射到刚受精的卵母细胞中或通过将稳定转染的胚胎干细胞引入到桑椹胚或胚泡期的胚胎中。
携带转基因的ES细胞系在体外产生或来源于转基因小鼠的胚胎。通过同源重组或利用插入载体可以向转基因中引入新的特征。利用(例如)脂转染(lipofection)、电穿孔或本领域已知的其他方法将构建体引入到ES细胞中。挑取携带选择抗性标记的克隆并筛选成功的整合。构建体和ES细胞二者都可以用分子特征修饰,以辅助需要的构建体的整合以及正确靶向的ES克隆的筛选和选择。
转基因改造可以包括下述特征中的一种或多种,所有这些都是本领域中已知的:
·选择标记:Bsd,Zeo,Puro,Hyg,它们可以以任意组合使用
·负选择标记:胸苷激酶(TK)。负选择可以与一种或多种选择标记组合使用
·标记和/或载体序列可以侧连loxP、变体loxP、Frt或变体Frt位点。成对的位点可以相同或不相同。可以使用多于两个位点。
·使用重组酶(Cre,Flp)来删除、倒置或替换序列
·例如,经由下述各项在限定的序列产生基因组双链断裂,:
ο锌指
οTALENs
οCRISPR
οMega核酸酶(归巢内切核酸酶(homing endonucleases))
靶向的建立可以以一个或多个步骤实现。序列可以经由同源重组插入,并且选择标记通过后续重组酶介导的缺失而被去除。备选地,第一修饰步骤可能引入诸如重组酶识别位点和任选地负选择标记的特征,其可以用于通过重组介导的盒交换(recombinationmediated cassette exchange)引入序列。
用于靶向建立的策略可以包括置换型载体(replacement vector)、插入型载体或重组介导的盒交换(RMCE)。可以在每个步骤引入和/或缺失DNA。引入的DNA可以是人、细菌、酵母或病毒来源的。DNA可以被引入到转基因内的任意位置。转基因改造可以利用周围的基因组序列。
靶向的建立将产生这样的转基因基因座:其中V、D和J基因以与在天然人IgH基因座中相同的顺序和间隔存在,并且其中C区与在天然小鼠基因座中一样。可能导致多态性,包括由重组工程(recombineering)引起的最小的变化(如瘢痕(scars)或小缺失)。
不管怎样引入遗传物质,将操作的胚胎转移到假孕雌性接受体中,在其中继续妊娠并且生下候选的转基因幼仔。
这些宽泛的方法之间的主要不同在于可以在将ES克隆用于产生转基因动物之前广泛地筛选所述ES克隆。另外,转基因可以在确定的位置整合到ES细胞中、或随机整合。相反,原核显微注射依赖于在其引入后其整合到宿主基因组中的遗传物质,并且一般来说,直到幼仔出生后才能验证转基因的成功结合和功能。
本领域中已知多种辅助并确定是否发生转基因的成功整合的方法。转基因动物可以通过多种方式产生,包括构建体随机整合到基因组中,位点特异性的整合,或同源重组。有多种工具和技术可以用于驱动和选择转基因整合和后续的修饰,包括使用药物抗性标记(正选择)、重组酶、重组介导的盒交换、负选择技术和核酸酶,从而改善重组效率。这些方法中的大部分常用于ES细胞的修饰。然而,一些技术可以用于提高经由原核注射介导的转基因发生。
进一步的精细化可以用于在需要的背景内提供更有效的转基因品系生成。如上文所述,在优选的实施方案中,内源性小鼠免疫球蛋白表达被沉默,从而仅允许HCAb表达,以用于药物发现。如上文所述,可以使用遗传操作的小鼠,例如,所有内源性免疫球蛋白基因座(小鼠重链、小鼠κ链和小鼠λ链)沉默的TKO小鼠。将任意引入的转基因转移到该TKO背景可以通过繁殖实现(常规的,或包括IVF步骤,以提供方法的有效比例缩放)。然而,在转基因发生过程中包括TKO背景也是可能的。例如,对于显微注射,卵母细胞可以来源于TKO供体。类似地,我们还从TKO胚胎得到ES细胞(见下文)用于转基因发生。此外,如上文提及的,由于YAC1是存在于备选构建体中的共有核心结构(图10中所述),来源于YAC1转基因小鼠的ES细胞可以用于靶向添加,从而产生具有如在YAC2、3或其他带有核心YAC1设计的YACS中的特征相同的特征的转基因。所述多种转基因发生的选择方案总结在图13中。
本发明的另一方面是本文所述的表达本发明的载体的小鼠在制备缺少功能性CH1结构域的HCAb中的应用。这优选是本文所述的三重敲除小鼠。在一个实施方案中,所述HCAb可以是嵌合抗体,例如,包括来源于啮齿动物和人的序列。在另一个实施方案中,本发明的小鼠用于制备可溶性VH结构域的方法中。由此,可以使用本发明的小鼠产生可溶性VH结合结构域。
本发明的小鼠还可以用于构建文库,诸如体外展示文库。这显示在非限制性实例中。在一个实施方案中,本发明的小鼠用于构建未免疫文库。由此,本发明涉及本发明的小鼠在构建文库中的应用。在一个实施方案中,所述文库是未免疫文库。在一个实施方案中,免疫是离体的。
还提供产生用于产生HCAb的鼠细胞或小鼠的方法,所述方法包括将本文所述的载体引入到小鼠中。优选地,所述小鼠包含非功能性重链基因座、非功能性λ轻链基因座和非功能性κ轻链基因座。在一个实施方案中,所述方法包括由所述小鼠产生未免疫文库。在另一个实施方案中,所述小鼠被免疫,例如,通过离体免疫进行免疫。
本发明还提供用于从小鼠获得HCAb或其片段(例如,VH结构域)的方法,所述方法包括下述步骤:
(i)引入本发明的载体,例如YAC;
(ii)允许在所述小鼠中形成缺少功能性CH1结构域的HCAb或抗原结合分子;并且
(iii)从小鼠血清获得所述HCAb或抗原结合分子。
优选地,所述小鼠包含非功能性重链基因座、非功能性λ轻链基因座和非功能性κ轻链基因座。
当在小鼠中表达时,V、D和J基因节段能够重组,形成VDJ编码序列。此外,当在小鼠中表达时,异源基因座能够形成任意种类的功能性免疫球蛋白分子,其恒定基因包含在引入到小鼠中的载体中。抗体种类将由构建体中存在的C基因控制。由此,抗体的同种型选自IgG、IgA、IgD、IgE或IgM或其混合物。优选地,同种型是IgG。IgG可以选自任意亚组。由此,本发明提供一种有效改造种类特异性的HCAb和单结构域抗体、特别是可溶性VH结构域的方式。
本发明还提供使用本发明的方法得到的或可通过使用本发明的方法得到的分离的产生HCAb的或产生VH结构域的细胞。细胞的选择和分离可以利用流式细胞术或其他细胞分离法,例如,用于鉴定和分离其中产生缺少功能性CH1结构域的抗原-特异性的HCAb的B220int/+,黏结蛋白聚糖+脾来源的血浆细胞。然而,熟练的技术人员将知晓生产不限于这些类型的B细胞或方法。
本发明这一方面的产生抗体的细胞可以分离自周围淋巴器官(secondarylymphoid organ)。例如,周围淋巴器官可以是非脾器官,例如,由下述各项组成的组中的任一种:淋巴结,扁桃体,和粘膜相关的淋巴组织(mucosa-associated lymphoid tissue,MALT),包括肠相关的淋巴组织(gut-associated lymphoid tissue,GALT),支气管相关的淋巴组织(bronchus-associated lymphoid tissue,BALT),鼻相关的淋巴组织(nose-associated lymphoid tissue,NALT),喉相关的淋巴组织(1arynx-associated lymphoidtissue,LALT),皮肤相关的淋巴组织(skin-associated lymphoid tissue,SALT),血管相关的淋巴组织(vascular-associated lymphoid tissue,VALT),和/或结膜相关的淋巴组织(conjunctiva-associated lymphoid tissue,CALT)。在一个实施方案中,所述产生抗体的细胞是腹膜细胞。在一个实施方案中,本发明这一方面的产生抗体的细胞可以分离自骨髓。
本发明的小鼠提供缺少功能性CH1结构域的HCAb或VH结构域。本发明的抗体可以是分离的和纯化的形式。所述抗体可以使用本领域公知的方法分离和/或表征。一旦表征,可以使用在本领域中也是公知的重组或合成方法来制备所述HCAb或VH结构域。对于适用的现有技术的方法,参见下文列出的参考文献。
根据本发明所述的转基因小鼠携带包含HCAb的重链B细胞组库,所述HCAb可以用来产生针对治疗靶标的分离的人VH结构域。所述VH结构域可以以多种方式分离。例如,可以从来自转基因小鼠的多个淋巴来源提取包含B细胞的淋巴细胞群体,并且甚至可以在鉴定靶标特异性VH之前在体外进行选择或刺激。文库可以由克隆的离体转录本构建,并且使用多种体外展示平台筛选抗原结合结构域,所述体外展示平台包括,但不限于噬菌体和核糖体展示。此类文库可以由未免疫小鼠或由免疫的包含针对特定靶抗原反应的亲和力成熟的免疫组库的动物构建。
按照本发明的方法产生HCAb可以包括从产生抗体的细胞表达,通过表达在细胞表面上或分泌(即,从细胞释放抗体)进行表达。
优选地,所述HCAb或VH结构域可以在小鼠中以生理水平产生。在一个实施方案中,所述HCAb或VH结构域可以以高于野生型中的水平产生。如在图20中所示,当已经引入转基因时,可以在三重敲除小鼠的血清中产生游离的HCAb。
此外,如在实施例中所示,按照本发明的方法产生的HCAb或VH结构域是可溶的并且稳定的。
所述HCAb或VH结构域可以被修饰以增加溶解性,例如,通过一种或多种编码抗体的基因的遗传改造进行。
由此,本发明还涉及使用本发明的小鼠产生可溶性VH结构域的方法。所述VH结构域是可溶的,不聚集,具有高的热稳定性和亲和性。在一个实施方案中,用于产生可溶性VH结构域的方法包括下述步骤:
a)在转基因小鼠中表达本发明的载体,
b)分离表达HCAb的细胞或组织,
c)由来源于所述分离的细胞或组织的mRNA克隆编码VH结构域的序列,
d)由克隆的转录本构建文库,并且
e)分离所述VH结构域。
如其他地方所阐释的,所述小鼠优选是不产生任意功能性内源性轻链或重链的三重敲除小鼠。
构建的文库可以用于展示选择技术用来分离VH结构域。展示选择技术包括噬菌体展示、酵母或核糖体展示。
在另外的步骤中,所述VH结构域可以在表达系统中表达,例如,在微生物或哺乳动物表达系统中表达。
在另外的步骤中,可以测定VH结构域的亲和性。这可以通过多种本领域已知的技术进行,包括,但不限于ELISA和BIAcore。另外,与细胞表面抗原的结合可以通过荧光激活的细胞分选(fluorescence activated cell sorting,FACS)进行测量。分离的VH结构域针对靶抗原的亲和力是决定候选VH结构域是否可能进一步继续到作为治疗候选物开发的决定性参数。亲和力通常通过解离常数Kd(Kd=[抗体][抗原]/[抗体/抗原复合物])(以摩尔(M)单位)测量。高的Kd值表示具有相对低的针对靶抗原的亲和力的抗体。相反,通常在纳摩尔(nM)以下的范围内的低的Kd表示高亲和力抗体。
除了对靶抗原的结合强度,还可以测定VH影响给定靶标的功能的能力。
在一个实施方案中,所述方法还包括用靶抗原免疫动物从而引发免疫应答的步骤,所述免疫应答包括抗原-特异性的抗体产生。然而,也可以由未免疫动物构建文库。
可以使用多种免疫流程来驱动转基因动物内的HCAb反应。最常用的方法依赖于与佐剂联合施用基于蛋白的靶标。靶标通常是纯化的形式,但是也可以使用粗抗原制剂。也可以使用细胞作为抗原的来源,其中天然地或由于遗传操作由所述细胞表达需要的靶标。DNA也可以用作免疫原的来源。在这一情形中,与分子或细胞因子佐剂组合的表达质粒通常用于体内转染,产生蛋白免疫原。在免疫过程中和在免疫后,可以通过使用(例如)血清-ELISA或ELISpot技术监测HCAb反应。
除了基于文库的发现方法,可以使用杂交瘤技术,其中将离体B细胞(在淋巴群体内或预先选择的)与配偶体骨髓瘤细胞融合,以产生生产HCAb的单克隆杂交瘤,可以针对需要的结合特性对其进行筛选。然后,可以从杂交瘤克隆VH序列,并且转换成需要的终形式。
由此,在另一方面,本发明还涉及用于产生可溶性VH结构域的方法,所述方法包括下述步骤:
a)在转基因小鼠中表达本发明的载体,
b)分离表达HCAb的细胞或组织,
c)由所述细胞产生杂交瘤,
d)分离所述VH结构域。
按照本发明还提供可通过将本文定义的产生HCAb的细胞或产生VH结构域的细胞与B细胞肿瘤细胞系融合得到的杂交瘤。在本发明的某些实施方案中,用于形成杂交瘤的产生抗体的细胞是非脾周围淋巴器官细胞(见上文)。公知的产生和选择用于产生单克隆抗体的单个克隆杂交瘤的方法可以适用于本发明的应用。
按照本发明还提供通过本文所述的方法得到的或可通过本文所述的方法得到的HCAb、来源于其的抗体或其片段。因此,本发明提供在小鼠中制备的HCAb、或获自或来源于表达本发明的载体的小鼠的片段。在一个实施方案中,来源于本发明的小鼠、优选转基因TKO小鼠的片段是VH结构域。
所述HCAb或VH结构域可以特异性针对抗原。所述HCAb或VH结构域可以被改造成具有一种或多种特异性的二价或多价抗体。
所述HCAb可以是单克隆抗体、IgG-样抗体或IgM-样抗体。通过本发明的方法和小鼠产生的HCAb或VH结构域可以用作诊断、预后或治疗成像剂。所述HCAb或VH结构域可以另外或备选地用作细胞内结合剂或抗体酶(abzyme)。
还提供包含本文所述的HCAb或VH结构域和任选地药用载体的药物、药物制剂或组合物。典型地在施用给患者之前,用公知方法配制所述药物。由此,本发明涉及包含通过本发明的方法得到的或可通过本发明的方法得到的VH结构域的组合物。所述组合物单独或与另一种VH结构域、蛋白或其他有治疗益处的分子组合包含VH结构域。非限制性的实例如下文所列。
在一个实施方案中,缀合可以是与有毒的结构部分(有效负载物)缀合,从而形成抗体药物缀合物(ADC),或与放射线核素缀合,以形成放射线免疫缀合物,其目的是利用人VH结构域与其靶抗原在体内的结合而将有毒的结构部分递送到细胞外或细胞内的位置。因此,所述VH结构域将有毒的有效负载物导向靶细胞(其可以是癌细胞),在其中所述有效负载物可以展现其细胞毒性活性并且杀伤所述细胞。所述有毒的结构部分可以直接与VH结构域融合。在另一个实例中,所述有毒的结构部分可以直接或通过接头与VH结构域化学偶联。所述接头可以包括肽、寡肽、或多肽,它们中的任一种可以包含天然的或非天然的氨基酸。在另一个实例中,所述接头可以包括合成的接头。所述接头可以是可分裂的或不是可分裂的。典型地,接头通过赖氨酸残基的氨基、或通过半胱氨酸残基上的硫醇基团连接到抗原结合分子上。技术人员已知多种接头,例如,这些记载在Ducry等人,BioconjugateChem.2010,21,5-13和WO 2004/01095中。这两篇参考文献通过引用都结合在本文中。在另一个实施方案中,VH结构域与Fc区或其部分融合。
在组合物的一个实施方案中,至少两个VH结构域线性融合在一起或通过本领域已知的方法偶联或缀合。VH结构域可以结合相同的靶抗原或不同的抗原。
由此,所述VH结构域可以作为药物用于治疗疾病。由此,本发明涉及治疗医学病况的方法,所述方法包括向有此需要的患者施用本发明的VH结构域。
对使用根据本发明所述的抗体的治疗敏感的疾病包括,但不限于:伤口愈合,细胞增生病症(cell proliferative disorders),包括赘生物(neoplasm),黑素瘤(melanoma),肺、结直肠、骨肉瘤(osteosarcoma)、直肠、卵巢、肉瘤(sarcoma)、子宫颈、食道、乳腺、胰腺、膀胱、头颈和其他实体瘤;骨髓增生病症(myeloproliferative disorders),诸如白血病(leukemia),非霍奇金淋巴瘤(non-Hodgkin lymphoma),白血球减少症(leukopenia),血小板减少症(thrombocytopenia),血管发生病症(angiogenesis disorder),卡波西肉瘤(Kaposis′ sarcoma);自身免疫/炎性病症(autoimmune/inflammatory disorders),包括变态反应(allergy),炎性肠病(inflammatory bowel disease),关节炎(arthritis),银屑病(psoriasis)和呼吸道炎症(respiratory tract inflammation),哮喘(asthma),免疫病症(immunodisorders)和器官移植排斥(organ transplant rejection);心血管和血管病症(cardiovascular and vascular disorders),包括高血压(hypertension),水肿(oedema),心绞痛(angina),动脉粥样硬化(atherosclerosis),血栓形成(thrombosis),败血症(sepsis),休克(shock),再灌注损伤(reperfusion injury),和缺血(ischemia);神经病症(neurological disorders),包括中枢神经系统疾病(central nervous systemdisease),阿尔茨海默病(Alzheimer′s disease),脑损伤(brain injury),肌萎缩侧索硬化(amyotrophic lateral sclerosis),和疼痛(pain);发育障碍(developmentaldisorders);代谢紊乱(metabolic disorders),包括糖尿病(diabetes mellitus),骨质疏松症(osteoporosis),和肥胖(obesity),AIDS和肾病;传染病,包括病毒感染,细菌感染,真菌感染和寄生虫感染,与胎盘相关的病理学病症和其他病理学病症。适宜的给药途径是技术人员所知的。
此外,本发明涉及缺少功能性CH1结构域、包含人VH和小鼠恒定区的HCAb。
本发明包括本文之前参考附图中的一幅或多幅所述的载体构建体。在一方面,本发明涉及如图10所示的载体。
毫无疑问,技术人员将想到许多其他有效的备选方案。应该理解,本发明不限于所述的实施方案,并且包括对本领域技术人员是显而易见的且在后附的权利要求书的精神和范围内的改进。
本文提及的所有文件和公布通过引用都完全结合在本文中。
“和/或”在用于本文时应该理解为具体公开了两个特定的特征或成分中的每一个与或不与另一个。例如,“A和/或B”应该理解为下述每一种的具体公开:(i)A,(ii)B和(iii)A与B,正如同每一种在本文中单独所述一样。
除非上下文另外指明,上文所述的特征的描述和定义不限于本发明的任何特定的方面或实施方案,并且同等适用于所述的所有方面和实施方案。
在下述非限制性实施例中进一步描述本发明。
实施例
实施例1:YAC的构建
1.1材料
载体:
pYAC3(来自Bruschi,ICGEB,Yeast Molecular Genetics Group,Trieste,意大利)
pYNOT(衍生自pYAC3,用LEU2标记替代URA3。来自Bruschi,ICGEB,YeastMolecular Genetics Group,Trieste,意大利)
pHTK(衍生自pYNOT,用HIS3标记替代LEU2)
pHKT-Hy(插入到pHKT中的潮霉素(Hy)抗性基因)
pYES1L(Invitrogen)
酵母菌株:
YLBW1(Hamer等人,1995),AB1380(Markie,2006).
1.2将BAC转换成YAC
BAC(环形形式的细菌人工染色体)是本领域公知的促进大小为~150kbp-350kbp的DNA节段的操作(例如,测序和克隆)的工具(Methods in Molecular Biology,卷54和349)。包含来源于人或小鼠的重链免疫球蛋白基因座的DNA的BAC有多种并且在本领域中是公知的。此类BAC的实例(也在图1和2中列出)包括,但不限于下述各项:
人:
·RP11-1065N8
·RP11-659819
·RP11-14117
·RP11-72N10
·RP11-683L4
·RP11-12F16
鼠:
·RP23-354L16
·RP24-72M1
本领域公知BAC可以用于促进包含重叠(互补)序列的多个DNA节段的顺次分子结合,从而产生大得多的DNA分子。用于实现此的一种这样的方法,即BIT(桥诱导的易位(bridge induced translocation)),需要首先必须在酵母中将BAC转换成非重叠的线性形式作为酵母人工染色体(YAC)。
通过转化相关的重组(TAR)克隆的BAC转换
BAC转换和YAC操作是本领域中记载的得到确认的技术,例如,在YAC Protocols(Methods in Molecular Biology,卷54和349)中描述,其中详细描述了关于营养缺陷标记、酵母选择、培养基、酵母转化、YAC筛选、YAC转移、YAC修饰和扩增的配方和方法。
简言之,通过PCR扩增两个锚定序列,即锚定子1(a1)和锚定子2(a2),其侧连要从BAC中保留用于后续连接的非重合序列,在PCR引物的末端具有改造的限制性位点(SalI和SphI),该位点用于克隆到pYAC3(http://genome-www.stanford.edu/vectordb/vector_ descrip/COMPLETE/PYAC3.SEQ.html)载体(图3)中。关于所述锚定序列的设计要求在本领域中是公知的(例如,Alasdair MacKenzie,2006,YAC protocols,第2版)。将限制性酶消化的a1和a2顺次克隆到pYAC3(图3)中。然后,将pYAC3-a1-a2载体用SphI和BamHI消化,产生两个YAC臂,即a1-URA3-端粒和a2-着丝粒-TRP1-端粒。用这两个YAC臂转化携带原始BAC的酵母,涂布在不含色氨酸和尿嘧啶的酵母培养基上,并且在30℃温育三天。在所述锚的位置处的YAC臂与BAC之间的同源重组产生转换的YAC(图4)。通过连接处的PCR以及通过关于尺寸的脉冲场凝胶电泳(PFGE)筛选转化子中正确转换的产物。然后通过BIT组装包含要连接的邻近DNA序列的非重合的YAC。
通过BIT连接两个非重合的YAC
通过向每个末端添加FRT位点和特异性针对两个YAC末端的用于连接的65bp的YAC同源序列片段而建立卡那霉素抗性基因KANR盒(图5)。将该盒转化到包含两个要连接的YAC的酵母中。通过PCR和DNA印迹(Southern blot)进一步表征卡那霉素抗性克隆,以证实成功的连接。然后用FLP重组酶选出KANR基因。将在连接区域的DNA进行测序,并且证实在该连接位点处存在含有FRT序列的DNA‘瘢痕’(DNA‘scar’)。在YAC操作的每个步骤,应用PFGE来证实YAC的大小。利用包含来自原始人免疫球蛋白重链基因座的邻近序列的YAC的顺次连接来产生多种YAC构建体,其分别具有人C-、D-和J-基因和增加数量的V-基因。
1.3使用小鼠元件进行C区构建
为了提高由YAC构建体驱动的免疫应答的效率,将它们随后分别进行修饰,以用鼠重链恒定区的元件替换人C-区基因。
利用酵母占用并且有效地重组重合的DNA片段的能力(Gibson等人,2008),使用多个重合片段将鼠μ增强子、鼠μ转换和鼠恒定γ1基因(后者缺失CH1结构域)添加到最后的人J基因的3’端,从而产生具有单个恒定基因的YAC构建体。随后,采用相似的方法产生包含多个全部缺失CH1结构域的鼠恒定基因Cγ1、Cγ2b和Cγ2a的YAC构建体。
1.3.1具有单个鼠C-基因的YAC
制备用于酵母转化的DNA片段
小鼠μ增强子和转换μ元件
正向引物:GACATTCTGCCATTGTGATTACTACTACTACTACGGTATGGACGTCTGGGGGCAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAAT(SEQ ID NO.1)。该引物的前69bp来自人J6(ID:J00256,http://www.imgt.org/IMGTleet/?query=201+J00256)。该引物的后24bp与在J43’的小鼠序列互补。反向引物:TTGAGGACCAGAGAGGGATAAAAGAGAAATG(SEQ ID NO.2),该引物与小鼠IGHμ CH1 5’的区域反向互补(图6)。使用BAC RP23-354L16作为模板,利用这两种引物PCR,产生5.8kb的片段,该片段涵盖小鼠μ增强子和μ转换区,一个末端与人J6区同源。
具有缺失的CH1的小鼠Cγ1基因
正向引物:AGAGGACGTATAGGGAGGAGGGGTTC(SEQ ID NO.3);反向引物:AACACCTTCAGCGATGCAGAC(SEQ ID NO.4)。使用BAC RP23-354L16作为模板利用这两个引物的7.8kb PCR产物涵盖除CH1外显子外的完整的小鼠Cγ1转录区(图7)。
桥接非重合的Eμ、Cγ1和YAC臂片段的接头
用于Eμ和Cγ1片段的接头1:
Figure BDA0003507289230000271
Figure BDA0003507289230000272
为了制备接头1,使用BAC RP23-354L16作为模板,合成PCR1(313bp,引物1F:TCATGCCCCTAGAGTTGGCTG;引物1R:GAACCCCTCCTCCCTATACGTCCTCTTTGAGGACCAGAGAGGGATAAAAGAGAAATG(SEQ ID NO.6))和PCR2(258bp,引物2F:AGAGGACGTATAGGGAGGAGGGGTTC(SEQ IDNO.7);引物2R:ATGCCAGGCTGTTTTTGGGTA(SEQ ID NO.8))。使用引物1F和引物2R通过融合PCR将具有重合序列的PCR1和PCR2组装成接头1。
用于Cγ1和YAC臂片段的接头2:
Figure BDA0003507289230000281
YAC臂
通过用PshAI和BamHI限制性酶消化pYNOT载体(图8,衍生自pYAC3,用LEU2标记替换URA3)产生5.7kb具有LEU2基因标记的YAC臂。
通过酵母同源重组用小鼠C-区替换人C-区
使用酵母原生质球转化(Sanchez和Lanzer,2006),将5个片段(鼠Eμ,鼠Cγ1,YAC臂,接头1和接头2)引入到携带包含人C-区的YAC的酵母YLBW1菌株中。在不含色氨酸和亮氨酸的培养基上选择转化子。在人J6处的重合序列之间的同源重组导致小鼠Eμ和Cγ1替换了人基因。通过连接位点的PCR和测序表征新的YAC。
添加3’增强子
将42kb的3’增强子片段克隆到BAC-YAC载体中
小鼠3’增强子包含元件hs3A,hs1.2,hs3B,hs4,hs5,hs6和hs7,这些元件分散在最后的恒定基因Cα的3’的42kb区域内。为了向Cγ1基因的3’位点添加完整的增强子,按照invitrogen提供的使用说明,将涵盖所有增强子元件的42kb MfeI片段亚克隆到BAC-YAC载体pYES1L(Invitrogen)中。将该构建体通过PCR、PFGE和测序进行充分表征。MfeI消化从所述载体释放该42kb片段,用于后续的酵母转化。
制备潮霉素-HIS3 YAC臂
通过向pHKT(衍生自pYNOT,用HIS3标记替换LEU2)中插入潮霉素(Hy)抗性基因而构建YAC载体(pHKT-Hy,图9)。用SpeI和BamHI双重消化该载体产生6.2kb的包含Hy-HIS3-端粒的YAC臂片段。
桥接3’增强子片段与小鼠Cγ1基因以及Hy-HIS3 YAC臂的接头
用于小鼠Cγ1和42kb 3’增强子的接头1(626bp)
Figure BDA0003507289230000291
Figure BDA0003507289230000292
为了制备接头1,使用BAC RP23-354L16作为模板,合成PCR1(604bp,引物1F:ACGGCTCAGGAGGAAAAGGCAC(SEQ ID NO.11);引物1R:TCACCTGTGATTTTGGCAATTGAACACCTTCAGCGATGCAGAC(SEQ ID NO.12))。然后通过引物1F和引物R:GTCCCGGGTATGCATCTGGGCTCACCTGTGATTTTGGCAATTG(SEQ ID NO.13),将PCR1延伸至626bp。
用于42kb 3’增强子和Hy-HIS3 YAC臂的接头2(766bp)
Figure BDA0003507289230000301
Figure BDA0003507289230000302
为了制备接头2,使用BAC RP23-354L16和BAC RP24-72M1作为模板,分别合成PCR1(379bp,引物1F:GAGGTACAGGGGGCTCATGGGT(SEQ ID NO.15);引物1R:AGCCTCACTAGGGACACTAGGGGGCATTTAAGC(SEQ ID NO.16))和PCR2(387bp,引物2F:CCCTAGTGTCCCTAGTGAGGCTCCGGTGCCCGT(SEQ ID NO.17);引物2R:GCGCAAGGCCTCGAACTCTC(SEQ ID NO.18))。使用引物1F和引物2R通过融合PCR组装具有重合序列的PCR1和PCR2,产生接头2。
酵母转化
通过酵母原生质球转化,将4个片段(3’增强子,Hy-HIS3-端粒YAC臂,接头1和接头2)引入到含有YAC的酵母YLBW1株中,用于添加3’增强子。在不含色氨酸和组氨酸的培养基上选择转化子。所述重合片段之间的同源重组导致对所选的YAC添加3’增强子和Hy-HIS3-端粒臂,产生Crescendo YAC1或YAC2(图10)。通过连接位点的PCR和测序表征新的YAC。通过PFGE和DNA印迹验证新的YAC的大小。
1.3.2具有多个恒定基因的YAC
除了包含小鼠Cγ1基因的YAC之外,设计其他YAC,从而包含多种恒定基因-小鼠恒定基因Cγ1、Cγ2b和Cγ2a,它们全部具有缺失的CH1结构域(图10)。
产生45kb包含缺失的CH1的Cγ2b和Cγ2a的片段。
使用下文列出的引物,使用RP24-72M1作为模板,扩增7个重合PCR片段。通过融合PCR合成片段3,其具有Cγ2b(缺失CH1);并且通过融合PCR合成片段6,其具有Cγ2a(缺失CH1)。
用于7次PCR的引物:
片段1:45k-1 8057bp
正向:GGTTGGATTCTATCTTCGCATGG(SEQ ID NO.19)
反向:TGGGTCCTGTCTTTCTACCTTTG(SEQ ID NO.20)
片段2:45k-2 8304bp
正向:GCTCCTTGCTGGGTCTTAATGTT(SEQ ID NO.21)
反向:TTAGAACCGTGTCTTCTACAATTGA(SEQ ID NO.22)
片段3:45k-3 1.3kb CH
45k-3-左
正向:GGGTAGGAGGTTGTTGGTTA(SEQ ID NO.23)
反向:CCCGCTGGGCTCTGCAAGAGAGGAGAATGTGTGA(SEQ ID NO.24)
45K-3-右
正向:CTCTCTTGCAGAGCCCAGCGGGCCCATTTCA(SEQ ID NO.25)
反向:GCTTGTTTTTATATCGAGCTTGC(SEQ ID NO.26)
片段4:45k-4 8412bp
正向:TCAGTCTCACTTGCCTGGTCGT(SEQ ID NO.27)
反向:CTTTGTAGCACATGCGTCATCC(SEQ ID NO.28)
片段5:45k-5 9012bp
正向:TGAAGGCATGAAGGAGTTGAGC(SEQ ID NO.29)
反向:ACAACCCCCTATCCTACACATT(SEQ ID NO.30)
片段6:45k-6 2274b CH
45k-6-左
正向:GGGTCCTGGCAACATTAGCG(SEQ ID NO.31)
反向:CACTCTGGGCTCTGCAAGAAAGGAGGATGTGTGA(SEQ ID NO.32)
45k-6-右
正向:CTTTCTTGCAGAGCCCAGAGTGCCCATAACAC(SEQ ID NO.33)
反向:TGGTGTTCAGCAGGCTAATTTG(SEQ ID NO.34)
片段7:45k-7 9968bp
正向:CAGGCCCCACTTCTTTACCTAA(SEQ ID NO.35)
反向:TTGTTAGTTCATCACAGGGCAATTC(SEQ ID NO.36)
将这7个PCR产物和在末端具有针对片段1和7的重合序列的线性化BAC-YAC载体转化到酵母中进行同源重组。通过连接物的PCR、PFGE和测序证实45kb-YAC。PmeI限制性酶从环形YAC中释放该45kb片段。
产生58kb包含缺失CH1的Cγ1、Cγ2b和Cγ2a的片段。
将小鼠μ增强子和转换μ片段、具有缺失的CH1和接头1的Cγ1片段(1.3.1)、45kb含有Cγ2b和Cγ2a的PmeI限制性片段和在末端具有与μ增强子片段的5’和与所述45kb片段的3’重合的序列的线性的BAC-YAC载体转化到酵母中,用于同源重组。通过连接物的PCR、PFGE和测序证实58kb-YAC。PmeI限制性酶从环形YAC中释放该58kb片段。
具有多个恒定基因的YAC的酵母转化
通过原生质球转化,将包含YAC的酵母中引入两个片段,即一个是包含Cγ1-Cγ2b-Cγ2a的58kb片段,另一个是具有与所述58kb片段的3’末端的重合序列的YAC臂,目的是添加Cγ1-Cγ2b-Cγ2a基因。依赖于在YAC臂上携带的营养缺陷标记,在去除氨基酸的培养基上选择转化子。重合的片段之间的同源重组导致在所选的YAC中添加所述Cγ1-Cγ2b-Cγ2a片段和新的YAC臂。新的YAC通过连接位点的PCR和测序进行表征。新的YAC的大小通过PFGE和DNA印迹进行证实。随后,添加42kb的小鼠3’增强子(如上文所述),产生CrescendoYAC3(图10)。
实施例2:敲除小鼠的产生
用于沉默小鼠重链基因座(WO2004/076618+Ren,L.,等人,Genomics 84(2004),686-695)、小鼠λ基因座(Zou,X.,等人,EJI,1995,25,2154-2162和WO2003/000737)和κ基因座(Zou,X.,等人,JI 2003 170,1354-1361和WO2003/000737)的方法在之前已有记载。简言之,小鼠重链恒定区和小鼠λ链基因座的大规模缺失导致这两种免疫球蛋白链的沉默。κ轻链通过新霉素抗性盒的靶向插入而被沉默。
a)重链和轻链KO小鼠的杂交
通过常规育种产生内源性轻链(κ和λ)双重沉默的小鼠(Zou,X.,等人,JI 2003170,1354-1361)。这些轻链-KO小鼠进一步与重链KO小鼠繁育产生三重杂合子动物,用于繁殖产生三重敲除(TKO)品系。证明该品系是可育的,并且保持为纯育品系。
b)杂交后代的基因分型
设计引物,以允许对内源性重链、κ和λ轻链区域中的每一个区分野生型和沉默的基因座。从取自幼仔的尾或耳活组织检查样品提取基因组DNA并在PCR反应内用作模板DNA。gDNA使用充分描述的方法(例如,使用Viagen直接PCR裂解试剂(Viagen Direct PCR lysisreagent)(尾)目录号102-T,按照供应商的使用说明)提取。在PCR反应中使用下述引物(购自Sigma):
重链引物
Figure BDA0003507289230000341
PCR产物大小:
WT:1027bp
KO:613bp
HET:1027和613bp
κ引物
TPMoKfor CCATCTTCCCACCATCCAGTGAGC(SEQ ID NO.40)
TPMoKrev GCAACAGTGGTAGGTCGCTTGTGG(SEQ ID NO.41)
κPCR产物大小:
WT:400bp
KO:1700bp
HET:400bp和1700bp
λ引物
LJ2B FW GGAGATCAGGAATGAGGGACAAAC(SEQ ID NO.42)
LC1 RV GCCTTTCCCATGCTCTTGCTG(SEQ ID NO.43)
Lamgen WT rev2 GGCAGGAAAGAAGGGTTAAGAT(SEQ ID NO.44)
λPCR产物大小:
WT:1127bp
KO:686bp
HET:1127bp和686bp
这些引物可以与多种DNA聚合酶和缓冲液一起使用,并且可以调整循环条件以适应特定的酶。作为一个实例,可以如下所述使用Fermentas DreamTaq-Ready Mix(#K1081):
ul/反应
2x Dream Taq 10
引物(10uM) 每种0.2(x5)
加H<sub>2</sub>O至19ul 8
反应使用1ul的模板。在待基因分型的样品中总是包括阳性对照和水对照。
对于这种特定的酶,使用下述循环条件:
Figure BDA0003507289230000351
PCR反应后,在1%琼脂糖凝胶上电泳之后使用DNA染色显现产物。图11显示了从2只具有野生型(wt)、重链KO、轻链KO或TKO基因型的动物提取的基因组DNA的代表性基因分型实验的结果。
c)在TKO小鼠中缺少内源性免疫球蛋白的表达
使用特异性针对小鼠重链、重链/轻链复合物和轻链的酶联免疫吸附测定(ELISA)证实TKO小鼠的无效表型(null phenotype)。简言之,将免疫吸附平板(例如,NuncMaxisorb 96F孔平板,目录号443404)用稀释在磷酸盐缓冲盐水(PBS)中的5ug/ml的捕获抗体溶液包被。用PBS/0.05%吐温、PBS洗涤并用3%奶粉溶液封闭后,将血清稀释液(在3%奶粉/PBS中)应用到所述平板上。洗掉未结合的蛋白后,使用适当的生物素化的-检测抗体溶液(以预先确定的最佳稀释液使用)检测结合的蛋白,然后用中性亲和素(neutravidin)-HRP显现。多种可商购的抗体可以用于这些ELISA。表1给出了此类抗体的实例。
表1用于ELISA的抗体
Figure BDA0003507289230000352
Figure BDA0003507289230000361
如在图12中所示,证明TKO小鼠没有可检测的内源性免疫球蛋白链。测定了来自2只野生型和2只TKO小鼠中的每一只的血清样品。
d)ES细胞的分离和培养
胚胎干细胞的分离已有记载(Ying,Q.L.等人,Nature,453,519-523,2008,Nichols,J.等人,Development,1136,3215-3222,2009,Nagy,K.&Nichols,J.,“Derivationof Murine ES Cell Lines”,第431-455页,在“Advanced Protocols for AnimalTransgenesis”.An ISTT Manual.Ed.Shirley Pease&Thomas L.Saunders中)。2i方法利用阻断FGF/Erk信号传导途径的小分子抑制剂,将ES细胞保持在未分化状态。并且,在包含这些抑制剂的培养基中温育早期胚胎将胚胎的细胞内物质(intracellular mass)转向上胚层谱系,阻碍分化诱导的下胚层的发育。这提供了富集的上胚层区室,由此能够更容易地衍生出ES细胞系。
ES细胞系已经来源于TKO胚胎。如在引用的方法中所定义那样,将早期TKO胚胎由冷冻保藏解冻并且培养,直到它们达到胚泡期。然后,在释放上胚层之前,将它们再培养2天,上胚层的释放通过使用抗-小鼠血清和补体去除滋养外胚层而实现。然后,在胰蛋白酶溶液中去聚集和扩增得到的ES细胞系之前,将上胚层扩增。用于ES细胞系和克隆增殖的培养基是充分描述的。在本情形中,将ES细胞系保持在2i培养基中,或者隔离到(weanedonto)补充有LIF和血清的培养基。
实施例3:转基因发生
a)原核显微注射
原核显微注射DNA产生转基因动物的技术是充分记载的(例如,参见K.Becker&B.Jerchow“Generation of Transgenic Mice by Pronuclear Microinjection”第99-115页,在“Advanced Protocols for Animal Transgenesis”.An ISTT Manual.Ed.ShirleyPease&Thomas L.Saunders.Springer Protocols 2011中)。简言之,从已经与配种雄性交配的超排卵的雌性小鼠分离受精的卵母细胞。为了提供超排卵,在第-2天,对雌性腹膜内注射100ul含有5I.U.怀孕母体血清促性腺素(pregnant mare’s serum gonagotropin,PMSG)的PBS。46-48小时后,施用(腹膜内(i.p.))在100ul PBS中的5 I.U.人绒毛膜促性腺素(hCG),并且使雌性与配种雄性交配。次日上午,从收集的输卵管采集卵匠复合物(cumuluscomplexes)并通过用透明质酸酶溶液消化而释放卵母细胞。可以成功地使用多种小鼠品系来产生用于显微注射的受精卵母细胞。
使用C57B16 x CBA F2野生型(wt)小鼠,采用上述程序引入纯化的YAC DNA。如在转基因发生概括(图13)中所示,当使用TKO小鼠时,采用类似的程序。为了促进它们的纯化以用于显微注射,将YAC转化到所谓的‘窗口’菌株酵母中(Hamer等人,PNAS,1995,92(25),11706-10)。‘窗口’菌株酵母是利用内源性染色体的策略性分裂产生的一系列宿主酵母,使得在进行凝胶电泳时,过客YAC以不含酵母内源性染色体的尺寸迁移。备选地,适当的“窗口”是使用适当的引物和PCR策略分裂酵母染色体从头产生的。由此,使用脉冲场凝胶电泳(PFGE),然后第二凝胶电泳洗脱过程,来纯化用于显微注射的YAC。该程序由A.Fernandez,D.Munoz&L.Montoliu记载在“Generation of Transgenic Animals by Use of YACs(使用YAC产生转基因动物)”中,在“Advanced Protocols for Animal Transgenesis”(An ISTTManual.Ed.Shirley Pease&Thomas L.Saunders.Springer Protocols 2011)中第137-158页。
在收集受精的卵母细胞后,使用拉玻璃制成的显微注射针将纯化的YAC DNA溶液注射到原核中。所有的工作都在带有加热台并且封固在隔振台上的显微镜下使用显微操作器进行。显微注射后,允许卵母细胞恢复多至24小时,然后转移到假孕代孕母亲的输卵管中。假孕的雌性通过在转移日期前24小时将雌性与切除输精管的配种雄性交配而产生。幼仔通常在19-21天后分娩。由于它们的大小,YAC的显微注射是一个要求高的过程,并且插入效率低于使用较小的BAC或质粒所观察到的效率。表2总结了来源于使用2个相关的YAC构建体进行的显微注射项目的统计学。
表2经由原核显微注射纯化的YAC的转基因发生
Figure BDA0003507289230000381
b.ES细胞
存在将YAC构建体引入到ES细胞中的多种途径(下文所述)。不管选择哪种途径,目的是获得已经成功整合了转基因的ES克隆。与原核显微注射技术相比,ES-介导的转基因的优点在于,ES克隆能够在它们用于产生转基因品系之前被充分表征。对ES克隆进行的表征基本上与用于筛选来源于原核注射的F0和F1动物的那些(见下文)相同。还可以应用原位杂交来确定整合的染色体。如果ES细胞是野生型的而不是TKO的,这可能是部分合乎需要的;仅有在缺少内源性小鼠免疫球蛋白基因座的染色体上整合了YAC的ES克隆将被选择用于产生转基因品系。这种预先选择将确保不存在可能妨碍与TKO背景有效回交的连锁的基因座。
今后,支持ES细胞体外分化为B细胞谱系的过程的研发可以允许在转基因发生之前功能性检测引入的转基因基因座。然而,目前,这在技术上是不可行的。
i)纯化的YAC的转染
YAC可以基本上如之前所述进行纯化((参见上文,“用于显微注射的YAC的制备”)。例如,使用脂转染(例如,使用Invitrogen Lipofectamine试剂)将纯化的YAC引入到ES细胞中,然后使用潮霉素(可以使用备选的选择试剂,如YAC设计所示)对所述ES细胞进行选择。挑取并筛选克隆,使用适当的克隆来产生转基因品系。可以将多种特征引入到构建体和/或靶向的ES细胞中,从而促进转染的ES克隆的衍生(参见下文)。
ii)原生质球融合方法
一种将YAC引入到ES细胞中的备选方法是通过原生质球融合。该方法提供这样的优点:使大构建体的操作减至最少,由此限制通过剪切对构建体发生损害的可能性。原生质球融合技术已有记述(Davies,N.,等人,“Human Antibody repertoires in transgenicmice:manipulation and transfer of YACs(在转基因小鼠中的人抗体组库:YAC的操作和转移)”第59-76页,在“Antibody Engineering.A Practical Approach(抗体改造。实践方法)”中,McCafferty等人编,IRL Press at Oxford University Press,1996)。简言之,通过酶解酶(zymolyase)消化酵母细胞壁产生酵母原生质球。将去聚集的ES细胞与该原生质球混合,并且通过加入聚乙二醇溶液而实现融合。在重悬在培养基中后,洗涤ES细胞,并如下文所述进行选择培养、克隆和筛选。
iii)Tg/TKO ES细胞的靶向建立
向YAC1转基因(其包含所有后续YAC构建体所共有的核心结构)中加入另外的特征的备选策略,是进行位于ES细胞系中的YAC1转基因的靶向延伸(图14)。携带YAC1转基因的ES细胞系在体外产生或来源于YAC1转基因小鼠的胚胎。新的特征可以通过同源重组或使用本文其他地方所述的插入载体而引入到转基因中。
实施例4:建立者的表征和筛选
a)转基因的存在和种系传递
检查所有在转移显微注射的卵母细胞后出生的幼仔在它们的基因组DNA中是否存在YAC。对于ES细胞-来源的转基因幼仔,也可以利用毛色遗传与适当的胚泡供体动物的选择组合,以允许根据它们的毛皮颜色容易地鉴定嵌合的幼仔。下述筛选实例使用来源于原核显微注射转基因发生的同窝仔。然而,可以在转基因发生之前对ES克隆进行类似的分析,对得到的同窝仔进行筛选以得到确定的结果。
YAC转基因的检测涉及从尾或耳组织活检样品中纯化gDNA和使用PCR反应检测YAC的多个区域。gDNA的分离和PCR方法之前已有记载(参见上文)。进行靶向YAC的每个末端的区域的PCR反应,然后使用设计用来扩增YAC转基因的不同内部区域的其他引物筛选具有针对两个区域的阳性整合体的任意样品。在表3中列出了用于这些筛选的PCR引物。然后,使任意给出PCR阳性结果的建立者小鼠(F0)交配,以检查转基因的种系传递,并且还用以证明PCR筛选结果是由于完整的YAC的存在而不是片段的存在;在后一种情形中,最可能的情景是所述片段位于不同的染色体上,并且由此通过它们在F1代中独立的分离而鉴定出来。筛选建立者及其种系传递的一个实例显示在图15中。
表3用于筛选转基因的存在和种系传递的PCR引物
Figure BDA0003507289230000401
Figure BDA0003507289230000411
Figure BDA0003507289230000421
Figure BDA0003507289230000431
Figure BDA0003507289230000441
b)YAC转基因的指纹分析
在所有的情形中,转基因基因座携带人基因组DNA序列。因此,可能筛选人DNA Alu元件G15N2(Genbank X55929.1)的存在,该元件是存在于人序列中的重复基序。用限制性酶消化人gDNA的给定区域在使用Alu探针进行DNA印迹分析后产生特有的条带模式。由此,将YAC的Alu指纹与由提取自转基因动物的gDNA获得的那些进行比较,以提供转基因的结构完整性的指示。预测完整的YAC转基因提供与在酵母中存在的YAC相似的指纹。
所述Alu探针使用下述引物由克隆的序列(Genbank X55929.1)或gDNA制备:
Figure BDA0003507289230000451
下述循环条件是:
Figure BDA0003507289230000452
将探针用放射性或非放射性方法标记(例如,在PCR步骤过程中使用DIG探针合成试剂盒(Roche cat#11636090910),以添加DIG-dUTP残基)。然后,通过加入碱性磷酸酶-标记的抗-洋地黄毒苷抗体,接着加入适当的底物(例如,CDP-Star发光底物,Sigma C0712),调控探测的-DNA印迹的化学发光检测。
c)转基因的拷贝数
可能的是,在转基因小鼠(或选择的ES克隆)的基因组中可能存在多于一个拷贝的YAC。这可以存在于不同的整合位点或者以重复方式存在于单个染色体位置。独立分离的整合位点的数目可以由基因遗传模式和孟德尔遗传学应用的研究推导。例如,单个整合位点将导致后代中50%的遗传模式,而2个整合位点将产生3∶1的转基因∶非转基因遗传。
使用基于Q-PCR的方法利用看家基因的PCR反应来比较来自YAC的区域的扩增子的相对量。使用多路反应进行拷贝数评估,在所述多路反应中使用独立的染料报告参比扩增子和转基因扩增子。例如,使用TaqMan探针技术(或适当的备选方案),其使用对看家二倍体基因(例如,小鼠转铁蛋白受体;Invitrogen目录号4458366)和YAC的区域(例如,转基因的人J区;Taqman拷贝数测定id Hs03892805_cn或潮霉素选择基因;测定id Mr00661678)特异性的测定。对于这些反应,使用可商购的试剂(例如,Taqman基因分型主混合物(TaqmanGenotyping Master Mix)400rxns,目录号4371355)使用基于供应商所推荐的那些的条件设置Q-PCR,并且在同一个PCR反应中测量每个扩增子的CT值。拷贝数分析的实例显示在图16中。在该实例中,显示了来自对YAC2杂合的(单拷贝整合体)或对YAC2转基因纯合的(2个拷贝)小鼠的DNA的Q-PCR分析。
实施例5:针对TKO的育种
a)常规育种
将在野生型背景上产生的转基因小鼠与TKO品系回交,从而将转基因转移到该需要的背景下。这通过常规育种使用顺次的育种步骤实现,选择仔细基因分型的后代用于每个育种计划。
b)结合IVF的回交
将转基因品系带到TKO背景是一个长时间的过程,每一轮育种需要9-12周完成。然而,使用IVF将育种扩大到这样的规模:仔细安排时间,可以在从Tg/wt与TKO品系的初始交配起的~15周内完成回交,提供相当大的Tg/TKO幼仔团体。表5包含来自所述IVF-增强的育种项目的数据。可以使用类似的IVF步骤快速扩展已经在TKO背景上产生的转基因品系(例如,从TKO/ES细胞或从原核显微注射到TKO卵母细胞)。
确定允许TKO小鼠用于提供大量用来用来源于转基因供体雄性小鼠的精子受精的卵母细胞的条件。简言之,将8-12周龄的雌性小鼠用激素处理,以诱导超排卵(见实施例3)。将卵母细胞用来自配种转基因雄性的精子受精,并且将受精的卵母细胞在4-24小时内转移到假孕雌体中或冷冻保藏用于以后的转移。
表5来自YAC1品系的IVF育种的数据
Figure BDA0003507289230000471
实施例6:转基因应用的评价
在B细胞发育过程中,发生免疫球蛋白基因座的体细胞重组,产生抗体组库(例如,关于综述参见Kuby Immunology,第六版;T.J.Kindt,R.A.Goldsby,B.A.Osborne,J Kuby.由W.H.Freeman and Company出版,New York,2007.)。对于重链,该过程涉及V-D-J区重组。这些基因节段的不精确连接增加了天然组库的潜在可获得的多样性。剪接的VDJ基因片段产生VH结构域并且这与由恒定区基因编码的其他结构域连接。重排的gDNA在B细胞内产生RNA转录物,并且这些被翻译,提供膜表达的和分泌的HcAb分子二者。由此,当寻找YAC转基因转录物的功能活性时,对B细胞和血清蛋白二者进行测定。
以下部分描述可以用于确定引入的转基因是否是功能性的多种分子、蛋白和细胞测定中的一些。
a)分子分析;转录物-RT-PCR,克隆和测序
淋巴样品获自转基因动物(例如,血液样品,脾)。使用可商购的试剂(例如,RNeasyQiagen试剂盒,目录号74106)从所述淋巴样品分离RNA,并用适当的引物(下文详述)或寡dT(oligodT)引物(Gibco)用Supercript III酶(Gibco)反转录。所有相关的缓冲液和条件如供应商所推荐的。使用对VH结构域特异性的引物(一些具有改变,用于以后的文库产生(onward library generation)-见下文)或使用用于VH前导序列和恒定区的引物(表6),将由此得到的cDNA用在PCR反应中,从而扩增VH区。
表6用于转基因小鼠分析的引物
Figure BDA0003507289230000481
Figure BDA0003507289230000491
在下述实施例中,PCR反应使用校正酶(proof-reader enzymes)(例如,Phusion高保真度DNA聚合酶,目录号F530S)和“递降”PCR循环条件。
实例递降程序;
Figure BDA0003507289230000492
Figure BDA0003507289230000501
纯化PCR产物并克隆到可商购的克隆载体(例如pJET1.2,Fermentas K1231)中或在克隆到噬菌粒载体中之前用NcoI和XhoI消化或利用基于PCR的克隆策略结合到噬菌粒载体中(关于噬菌粒载体的详情参见图17和下文)。
对克隆测序并分析,以确定是否存在来源于所述转基因的转录物。由转基因动物克隆的转录物的实例显示在图18中。转基因动物中VH组库的可用的多样性还可以由所述序列分析估测(尽管可能例如由取样过程或包括特定的PCR扩增步骤导致偏见)。在图19所示的实例中,从个体未免疫转基因小鼠克隆VH。清楚的是,转基因动物携带多样性的B细胞组库,尽管在克隆步骤中使用聚合酶链式扩增,但是发现很少复本序列。根据该单个小鼠分析,宽范围的CDR3长度是明显的。将序列与种系VH序列比较,并且构建变异性图。来源于未免疫小鼠的VH主要是种系的,在CDR3区之外很少变异。除了上述常规克隆和测序之外,例如,可以使用下一代测序来分析VH组库,从而探寻转基因动物的转录物组。
b)蛋白分析-血清ELISA
夹心ELISA技术在之前已有记载(参见TKO小鼠的表征)。使用适当的抗体对进行捕获和检测,在转基因小鼠的血清中检测由转基因编码的蛋白。用于夹心ELISA的试剂是可商购得到的。转基因小鼠的分析显示在图20中,其中使用ELISA检测血清中的HcAb。
我们还检验了三重敲除背景对转基因平台产生使用人VH基因的HCAb的表现的重要性。为此,我们使用ELISA寻找HCAb和重链/轻链复合物在敲除了内源性重链基因但是具有多种内源性免疫球蛋白轻链基因敲除背景的小鼠的血清中的存在(见图33)。对于捕获抗体,使用多克隆山羊抗-小鼠IgG(H+L)(Jackson,cat#415-005-166),其具有最小程度的与人、牛、马、兔、和大鼠血清蛋白的交叉反应性。由于其不能直接与用于测定的检测抗体(生物素-大鼠抗-小鼠Ig,κ轻链,克隆87.1,BD Pharmingen cat#559750,生物素-大鼠抗-小鼠Ig,λ1,λ2和λ3轻链,克隆R26-46,BD Pharmingen cat#553433,和生物素-SP-缀合的affini-Pure山羊抗-小鼠IgG,Fc-γ片段特异性的,Jackson cat#115-065-008)结合,选择该抗体。由此,检测到任何信号可能归因于检测抗体与捕获的重链蛋白的结合,而不归因于与夹心ELISA中的捕获抗体的结合。简言之,对于ELISA,小鼠血清中的抗体通过包被的抗-小鼠IgG抗体捕获。在洗涤后,使用生物素化的-抗-小鼠IgG重链-特异性的抗体或生物素化的-抗-小鼠κ轻链Ab或生物素化的-抗-小鼠λ链Ab检测捕获的重链蛋白或复合的轻链。检测抗体使用TMB底物显现,其中比色反应由与检测抗体的生物素标签结合的中性亲和素-HRP复合物引发。如之前所示(见图12),缺少转基因的TKO小鼠在其血清中没有抗体。然而,当存在YAC2转基因时,在所有情形中都可以发现HcAb,而与内源性免疫球蛋白轻链基因背景无关。如果存在有功能的内源性κ基因座,可能在捕获的重链上检测到κ轻链,这表明存在转基因HcAb,其与内源性κ轻链复合。类似地,如果存在有功能的λ基因座,可能检测到与捕获的重链缔合的λ轻链,这表明存在转基因HcAb,其与内源性λ轻链蛋白复合。当存在内源性的κ和内源性的λ轻链基因座二者时,优先使用κ链,这在通过成功地产生κ轻链蛋白而防止λ重排的小鼠中是正常的。由此,在这一情形中,λ轻链更难检测到与转基因嵌合HCAb缔合。这些ELISA的结果证明具有三重敲除背景、不能产生任意内源性免疫球蛋白对于提供能够仅产生仅有Hc的抗体的转基因小鼠的必要性。
实施例7:细胞分析-流式细胞术
B细胞发育途径可以利用使用多种充分表征的试剂和与特定发育步骤相关的标记的流式细胞术进行监测。例如,早期的前B细胞表达c-Kit和IL7R,随着所述细胞进展成成熟的表面Ig-阳性的B细胞,得到其他标记,诸如CD43,CD19,B220(例如CD19,B220)或得到并下调所述其他标记(例如CD43)(见图21)。并且,在B细胞组库中,标记可以用于区分B-2B细胞(CD23+,CD5-)与其他B细胞亚组,前者能够参与获得性体液免疫应答(见图22)。
对于流式细胞术分析,从淋巴组织(例如骨髓,脾)制备单细胞混悬液,封闭(例如,用Fc片段(Rockland))后在FACS缓冲液(PBS/1%BSA/0.01%NaN2)中用针对表面标记的抗体或同种型对照染色。使用适当的链霉亲和素缀合物(例如,PE-Cy7链霉亲和素)检测生物素-缀合的抗体。染色后,将细胞用3.7%甲醛溶液固定,并用流式细胞仪(例如,FACSCalibur或LSRII机器)使用适当的电压和修正设置进行分析。数据使用多种软件包进行分析,包括FlowJo&WinMDI,一种免费的程序(见图21和22)。用于在流式细胞术分析之前染色的试剂在本领域中是公知的(例如,参见http://www.bd.com/uk/products/main.asp)。
实施例8:脾的免疫组织化学
脾具有有组织性的构造,具有红色和白色的髓区(pulp areas),后者包含富含B细胞和T细胞的区域。使用取自甲醛固定的石蜡包埋的组织的组织切片的苏木精和曙红染色来揭示这种构造,并且显示野生型、三重KO、和Tg/TKO小鼠的比较图像(图23)。对于这些,明显的是,在TKO小鼠中,该构造被损坏,滤泡中具有更少的细胞并且在滤泡周围不存在边缘区。这些特征与在TKO小鼠中不存在B细胞相一致。关于对Tg小鼠显示的图像,构造得到恢复,滤泡更致密地存在并且被明显的边缘区围绕。
实施例9:VH结构域的产生
使用用来源于免疫的或来源于未免疫的转基因小鼠的RNA产生的展示文库分离靶标特异性的VH结构域。
a)免疫
使用本领域公知的多种免疫流程中的一种,将不同靶抗原的集合(selection)施用给转基因小鼠。血清ELISA的实例显示在图24中。夹心ELISA与上文所述的那些类似。简言之,将吸附平板用抗原包被,并在洗涤和封闭后,加入来自动物的血清的稀释液。在用生物素化的抗-Fc Ab然后中性亲和素-HRP温育和加入底物后,检测与抗原包被的平板结合的任何HCAb。
b)未免疫文库
使用来自YAC1转基因小鼠的113个脾,构建每种VH家族的大文库。每个脾单独进行处理,并且使用个体RNA的等分试样进行不同VH家族文库的构建,如上文所述。该文库的特性的总结显示在图35未免疫文库(
Figure BDA0003507289230000531
Libraries)中。该文库由大约3.81x1010个克隆组成,并且来自每个家族的测序样品表明高克隆多样性,大部分克隆仅在样品内被单次分离。
cDNA文库的构建和应用
从未免疫的和经免疫的转基因动物构建展示文库。简言之,收集之后转换成RNA的淋巴组织,然后进行机械匀浆和裂解。备选地,新鲜的淋巴组织、血液或另一种B细胞来源(包括杂交瘤)可以用作RNA的来源。提取RNA(总或信使RNA)后,制备cDNA。然后,使用PCR扩增VH序列,添加适当的衔接子(adapter)以允许克隆到噬菌粒载体中。可以使用多种策略来克隆VH。在本情形中,使用针对转基因中存在的前导序列的简并引物联合针对J/H连接的简并引物。备选的方法依赖于使用末端脱氧转移酶添加重复的脱氧核苷酸碱基尾或锚定子,从而用于替换前导序列。扩增之后,将VH产物用NcoI和XhoI消化并且连接到载体中,或用作引物并使用基于PCR的策略结合到噬菌粒载体中。所述噬菌粒载体内部构建(见图17)。具有添加的衔接序列(adaption sequences)的引物记载在之前的部分中(参见分子分析;转录物-RT-PCR,克隆和测序)。
然后将这样构建的文库用在噬菌体展示选择中(参见图25的过程示意图)。可以使用这种技术的变化形式,包括,但不限于,可溶性选择,解离速率(off-rate)或结合速率(on-rate)偏向选择,和竞争性选择。
通过ELISA筛选每个选择过程的输出,并且在噬菌体选择之前和之后的一些文库筛选的实例显示在图26中。在这种情形中,从经免疫的小鼠克隆VH文库,并且在针对免疫的抗原选择之前和之后都通过ELISA筛选所述文库。按照公布的方法(AntibodyEngineering,由Benny Lo编,第8章,第161-176页,2004),使用从大肠杆菌(E.coli)周质纯化的VH,通过ELISA鉴定特异性针对免疫原的VH抗体。明显的是,离体文库包含低频率的免疫原结合物(binder)。这与转基因小鼠内B细胞的挖掘(mining)(响应的和未免疫的)一致。噬菌体选择后,富集结合抗原的VH(图26)。事实上,如图27所示,在预先选择的文库中,高多样性是明显的,并且在通过噬菌体展示一轮严格选择后,发现结合抗原的VH属于50个序列家族,其按照CDR3多样性分组。并且,根据CDR1、CDR2和CDR3序列的检查,体细胞超变的迹象是明显的,并且分离多种亲缘序列(sibling sequences),推测是种系中心(germinalcentres)内体内体细胞超变的结果(见图27a)i))。体细胞超变导致增加的针对抗原的亲和力的事实得到四种亲缘序列的选择组的证实,其中也显示了与抗原的结合(见图27a)i)。导致VH的序列多样化的体细胞超变的其他证据显示在图34中-Kabat和Wu,Antigen Binders(抗原结合物)。在这一情形中,分析105个与三种抗原中的一种结合的VH,并且绘制与种系序列相比较,在每个氨基酸位置处的变异。通过与来自未免疫小鼠的类似的图的比较(见图19),明显的是,已经积聚了大量的突变,在CDR1和2区域中的突变是普遍存在的。
除了按照已知的技术和上述所述分离VH结构域之外,测定VH结构域,以确定针对靶抗原的亲和力(图28)。这可以通过本领域已知的多种技术进行,包括,但不限于,ELISA和BIAcore。另外,与细胞表面抗原的结合可以通过荧光激活的细胞分选(FACS)进行检测。
除了与靶抗原的结合强度之外,还可以测定VH影响给定靶标的功能的能力(例如,这将包括对配体:受体结合的抑制作用)。图29显示了通过包含特异性针对配体的VH对配体/受体相互作用的抑制的实例。
实施例10:VH的特性
携带上述YAC构建体中的一种的转基因小鼠提供显著的用于发现高质量药物候选物的益处。与分离自常规来源(例如,人cDNA)的VH结构域不同,所述VH结构域在不存在轻链的条件下形成(develop)和成熟。由此,来源于转基因小鼠的VH结构域不依赖配偶体轻链的存在而稳定它们的折叠或保持它们的溶解性。其证据来源于将分离自未免疫的转基因小鼠的VH与在体外来源于人cDNA文库的那些进行比较的实验。如之前所述,将VH序列克隆到噬菌粒载体中,并且在大肠杆菌中进行小规模(50ml)表达研究。进行这些,无需序列优化,无需使用使蛋白产量最大化的专用方法。在用IPTG诱导之后,确定可溶性VH的表达。使用来自匹配的V-基因家族的VH,观察到仅有47%(15/32个克隆)人cDNA-来源的VH克隆能够从大肠杆菌来源的周质提取物中提供至少10ug的可溶性蛋白。通过比较,由未免疫的转基因YAC1/TKO小鼠克隆的VH的79%(27/34)提供超过10ug的可溶性表达产量。并且,由图30中所示的结果表明,在群体基础上,与来源于人cDNA文库的那些(平均值=37.6ug/50m1)(我们假设其与配偶体轻链缔合形成)相比,使用在不存在轻链的条件下在转基因小鼠内形成的VH(平均值=176ug/50ml),明显有更高的产量。因此,尽管来自每种来源的VH能够以可溶形式表达,但是在转基因小鼠内形成的群体表现出提高的溶解性,提高整体高约5-倍的可溶性蛋白产量。对于从免疫后的小鼠克隆的体内亲和性成熟的VH,提高的产量是显而易见的。在这一情形中,小的实验室规模培养产生~10mg/升,这是使用没有任何优化的噬菌粒表达系统获得的。
蛋白的解链温度(Tm)可以用作该蛋白稳定性的替代量度。在纯化它们之后,使用差示扫描荧光测定(Differential Scanning Fluorimetry,DSF)测量上述VH克隆集合的Tm。人cDNA-来源的VH中有多种不能检测,原因在于它们异常少的生产产量,并且,因此,关于该克隆群体的平均Tm值可能表示最好的情形(best-case scenario)。简言之,该技术依赖于对来自报告染料的荧光的检测,所述报告染料在成功与暴露的疏水残基结合时发射信号。由此,当蛋白被加热并解折叠时,报告染料能够结合并且可以检测到荧光。图31中所示的结果是使用蛋白热转换试剂盒(ProteinThermal Shift Kit)(Applied Biosytems,目录号4461146)和使用蛋白热转换软件(目录号4466037)进行分析产生的。报告来源于Boltzmann拟合的Tm值(图31),并且明显的是,与分离自人cDNA的那些相比,分离自转基因小鼠的VH群体提供显著更高的Tm(对于转基因小鼠来源的VH为57.9℃,相比之下,从人来源克隆的VH为54.1℃)。应该注意,这些数据是来自未免疫的小鼠,并且表示主要是种系序列并且没有进行亲和性成熟的VH。与本文所示的那些相比,在免疫之后,抗原-特异性的、亲和性成熟的VH通常表现出显著升高的Tm。
来自经免疫的小鼠的VH不表现出聚集倾向性(见图32)。进行纯化的VH的HPLC大小排阻分析。简言之,在TSK凝胶G2000SWXL(TOSOH)柱(在280nM检测)上,使用Waters 2795分离模块,使用10%异丙醇、90%PBS或100mM磷酸盐缓冲液pH6.8,150mM NaCl作为移动相,和以0.5-0.7ml/min的流速,分析VH溶液。对于一些VH制剂,所用的特定的大肠杆菌菌株允许读取到噬菌粒载体中的基因III序列,并且少量的VH-基因III融合产物是明显的。然而,存在可忽略的量的二聚体的或聚集的VH
综上所述,这些实验证明,与同重排的配偶体轻链缔合形成的那些相比,来源于转基因小鼠的人VH具有提高的溶解性和稳定性。
参考文献
Bébin AG,Carrion C,Marquet M,Cogné N,Lecardeur S,Cogné M,Pinaud E(2010).In vivo redundant function of the 3’ IgH regulatory element HS3b inthe mouse(在小鼠中3′IgH调节元件HS3b的体内的丰富功能).J Immunol.184:3710-7.
Brownstein BH,Silverman GA,Little RD,Burke DT,Korsmeyer SJ,Schlessinger D,Olson MV(1989).Isolation of single-copy human genes from alibrary of yeast artificial chromosome clones(从酵母人工染色体克隆文库分离单拷贝的人基因).Science,244:1348-51.
Chatterjee S,Ju Z,Hassan R,Volpi SA,Emelyanov AV,Birshtein BK(2011).Dynamic changes in binding of immunoglobulin heavy chain 3′ regulatoryregion to protein factors during class switching(在种类转换过程中,免疫球蛋白重链3’调节区与蛋白因子的结合中的动态变化).J Biol Chem.286:29303-12.
Cogné M,Lansford R,Bottaro A,Zhang J,Gorman J,Young F,Cheng HL,Alt FW(1994).A class switch control region at the 3’ end of the immunoglobulinheavy chain locus(在免疫球蛋白重链基因座3′端的种类转换控制区).Cell.199477:737-47.
Davies NP,Rosewell IR,Brüggemann M(1992).Targeted alterations inyeast artificial chromosomes for inter-species gene transfer(在酵母人工染色体中用于物种间基因转移的靶向改变).Nucleic Acids Res.20:2693-8.
Garrett FE,Emelyanov AV,Sepulveda MA,Flanagan P,Volpi S,Li F,LoukinovD,Eckhardt LA,Lobanenkov VV,Birshtein BK(2005).Chromatin architecture near apotential 3’ end of the Igh locus involves modular regulation of histonemodifications during B-Cell development and in vivo occupancy at CTCF sites(在B细胞发育和体内占据CTCF位点过程中,在Igh基因座潜在的3’端附件的染色质构造包括组蛋白修饰的模块调节).Mol Cell Biol.25:1511-25.
Gibson DG,Benders GA,Axelrod KC,Zaveri J,Algire MA,Moodie M,MontagueMG,Venter JC,Smith HO,Hutchison CA 3rd(2008).One-step assembly in yeast of 25overlapping DNA fragments to form a complete synthetic Mycoplasma genitaliumgenome(在酵母中25个重组DNA片段一步组织形成完整的合成的生殖器支原体基因组).ProcNatlAcadSciUSA.105:20404-9.
Hamer L,Johnston M,Green ED(1995).Isolation of yeast artificialchromosomes free of endogenous yeast chromosomes:construction of alternatehosts with defined karyotypic alterations(分离不含内源性酵母染色体的酵母人工染色体:构建具有确定的核型变化的备用宿主).ProcNatlAcadSci USA.92:11706-10.
Lieberson R,Ong J,Shi X,Eckhardt LA(1995).Immunoglobulin genetranscription ceases upon deletion of a distant enhancer(当缺失远端增强子时,免疫球蛋白基因转录停止).EMBO J.14:6229-38.
Manis JP,van der Stoep N,Tian M,Ferrini R,Davidson L,Bottaro A和AltFW(1998).Class switching in B cells lacking 3′ immunoglobulin heavy chainenhancers(在缺少3′免疫球蛋白重链增强子的B细胞中的种类转换).J.Exp.Med.188,1421-1431
Markie D(2006).Markers,selection,and media in yeast artificialchromosome cloning(在酵母人工染色体克隆中的标记、选择和培养基).Methods MolBiol.349:1-12.
Neuberger MS(1983).Expression and regulation of immunoglobulin heavychain gene transfected into lymphoid cells(转染到淋巴细胞中的免疫球蛋白重链基因的表达和调节).EMBO J.2:1373-8.
Pettersson S,Cook GP,Brüggemann M,Williams GT,Neuberger MS(1990).Asecond B cell-specific enhancer 3′ of the immunoglobulin heavy-chain locus(免疫球蛋白重链基因座3’的第二B细胞特异性的增强子).Nature.344:165-8.
Sanchez CP和Lanzer M(2006).Construction of yeast artificialchromosome libraries from pathogens and nonmodel organisms(从病原体和非模式生物体构建酵母人工染色体文库).YAC protocols,2nd.Methods in Molecular Biologv.卷349,13-26.
Tosato V,Waghmare SK,Bruschi CV(2005).Non-reciprocal chromosomalbridge-induced translocation(BIT)by targeted DNA integration in yeast(在酵母中通过靶向的DNA整合的非相互性染色体桥-诱导的易位(BIT)).Chromosoma.114(1):15-27.
Vincent-Fabert C,Fiancette R,Pinaud E,Truffinet V,Cogné N,Cogné M,Denizot Y(2010).Genomic deletion of the whole IgH 3′ regulatory region(hs3a,hs1,2,hs3b,and hs4)dramatically affects class switch recombination and Igsecretion to all isotypes(完整IgH 3’调节区(hs3a,hs1,2,hs3b,和hs4)的基因组缺失显著影响种类转换重组和所有同种型的Ig分泌).Blood.116:1895-8.
Vincent-Fabert C,Truffinet V,Fiancette R,Cogné N,Cogné M,Denizot Y(2009).Ig synthesis and class switching do not require the presence of thehs4 enhancer in the 3′ IgH regulatory region(Ig合成和种类转换不需要在3′ IgH调节区中存在hs4增强子).J Immunol.182:6926-32.
Zhang B,Alaie-Petrillo A,Kon M,Li F,Eckhardt LA(2007).Transcriptionof a productively rearranged Ig VDJC alpha does not require the presence ofHS4 in the IgH 3’ regulatory region(高产的重排的Ig VDJCα的转录不需要在IgH 3’调节区中存在hs4增强子).J Immunol.178:6297-306.

Claims (42)

1.一种载体,其包含:
a)至少10个功能性的人重链V基因,其中至少10个功能性的人重链V基因以其天然构型存在;
b)至少一个人重链D基因和至少一个人重链J基因;
c)缺少CH1外显子的鼠C基因。
2.根据权利要求1所述的载体,其中所述载体包含鼠3’增强子区。
3.根据权利要求2所述的载体,其中所述鼠3’增强子区的大小为至少约42kb。
4.根据权利要求2或3所述的载体,其中所述鼠3’增强子区包含选自hs3A、hs1.2、hs3B、hs4、hs5、hs6和hs7的一种或多种增强子元件。
5.根据权利要求4所述的载体,其中所述鼠3’增强子区包含增强子元件hs3A、hs1.2、hs3B、hs4、hs5、hs6和hs7。
6.根据前述权利要求所述的载体,其中所述载体包含鼠μ增强子。
7.根据前述权利要求所述的载体,其中所述载体包含转换μ元件。
8.根据前述权利要求所述的载体,其中所述载体包含鼠Cγ基因。
9.根据权利要求1-5中任一项所述的载体,其中所述载体包含鼠μ增强子和转换μ元件或鼠μ增强子和鼠Cγ基因。
10.根据前述权利要求所述的载体,其中所述载体包含鼠Cγ1基因。
11.根据前述权利要求所述的载体,所述载体包含10个至约44个功能性人V基因。
12.根据前述权利要求所述的载体,所述载体还包含至少一个或多个鼠Cγ基因。
13.根据权利要求12所述的载体,其中所述Cγ基因选自Cγ2b和Cγ2a。
14.根据权利要求13所述的载体,其包含Cγ2b和Cγ2a。
15.根据任意前述权利要求所述的载体,其还包含选择标记。
16.根据任意前述权利要求所述的载体,其中所述载体是酵母人工染色体(YAC)。
17.转基因鼠宿主细胞,其转化有根据前述权利要求所述的载体。
18.根据权利要求17所述的转基因鼠宿主细胞,其中所述细胞是ES细胞。
19.转基因小鼠,其包含根据权利要求1-16中任一项所述的载体或根据权利要求17或18所述的细胞。
20.根据权利要求19所述的转基因小鼠,其中所述小鼠包含一个或多个非功能性内源性免疫球蛋白基因座。
21.根据权利要求20所述的转基因小鼠,其中所述小鼠包含非功能性内源性λ轻链基因座。
22.根据权利要求20-21所述的转基因小鼠,其中所述小鼠包含非功能性内源性κ轻链基因座。
23.根据权利要求20-22所述的转基因小鼠,其中所述小鼠包含非功能性内源性重链基因座。
24.根据权利要求20所述的转基因小鼠,其中所述小鼠包含非功能性内源性λ轻链基因座、非功能性内源性κ轻链基因座和非功能性内源性重链基因座。
25.根据权利要求19-24中任一项所述的转基因小鼠或根据权利要求17或18所述的细胞在产生HCAb或VH结构域中的应用。
26.根据权利要求19-24中任一项所述的转基因小鼠在构建文库中的应用。
27.根据权利要求26所述的转基因小鼠的应用,其中所述文库是未免疫文库。
28.用于制备文库的方法,所述方法使用根据权利要求19-24中任一项所述的转基因小鼠。
29.根据权利要求28所述的方法,其中所述文库是未免疫文库。
30.用于制备文库的方法,其包括离体免疫根据权利要求19-24中任一项所述的转基因小鼠或根据权利要求19-24中任一项所述的转基因小鼠的离体组织或细胞。
31.HCAb或VH结构域,其在根据权利要求17或18所述的宿主细胞或根据权利要求19-24中任一项所述的转基因小鼠中产生或从根据权利要求17或18所述的宿主细胞或根据权利要求19-24中任一项所述的转基因小鼠得到。
32.用于制备HCAb或VH结构域的方法,其包括在小鼠或鼠宿主细胞中引入并表达根据权利要求1-16中任一项所述的载体。
33.根据权利要求32所述的方法,其中所述小鼠包含一个或多个非功能性内源性免疫球蛋白基因座。
34.根据权利要求33所述的方法,其中所述小鼠包含非功能性内源性λ轻链基因座。
35.根据权利要求32-34所述的方法,其中所述小鼠包含非功能性内源性κ轻链基因座。
36.根据权利要求32-35所述的方法,其中所述小鼠包含非功能性内源性重链基因座。
37.根据权利要求32所述的方法,其中所述小鼠包含非功能性内源性λ轻链基因座、非功能性内源性κ轻链基因座和非功能性内源性重链基因座。
38.根据权利要求32-37中任一项所述的方法,其中所述方法包括从来源于分离的细胞或组织的mRNA克隆编码VH结构域的序列,从克隆的转录物构建文库并且分离所述VH结构域。
39.一种用于产生可溶性VH结合结构域的方法,所述方法包括下述步骤:
a)在转基因小鼠中表达权利要求1-16中任一项所述的载体,
b)分离表达HCAb的细胞或组织,
c)从来源于所述分离的细胞或组织的mRNA克隆编码VH结构域的序列,
d)从克隆的转录物构建文库,并且
e)分离所述VH结构域。
40.可溶性VH结构域,其通过权利要求38或39所述的方法得到或可通过权利要求38或39所述的方法得到。
41.组合物,其包含根据权利要求40所述的VH结构域。
42.根据权利要求41所述的组合物,其包含单独的或与另一种VH结构域、蛋白或其他有治疗益处的分子组合的VH结构域。
CN202210143798.XA 2014-10-22 2014-10-22 转基因小鼠 Pending CN114774466A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210143798.XA CN114774466A (zh) 2014-10-22 2014-10-22 转基因小鼠

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201480082416.0A CN107002092A (zh) 2014-10-22 2014-10-22 转基因小鼠
CN202210143798.XA CN114774466A (zh) 2014-10-22 2014-10-22 转基因小鼠
PCT/GB2014/053146 WO2016062990A1 (en) 2014-10-22 2014-10-22 Transgenic mice

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201480082416.0A Division CN107002092A (zh) 2014-10-22 2014-10-22 转基因小鼠

Publications (1)

Publication Number Publication Date
CN114774466A true CN114774466A (zh) 2022-07-22

Family

ID=51842672

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210143798.XA Pending CN114774466A (zh) 2014-10-22 2014-10-22 转基因小鼠
CN201480082416.0A Pending CN107002092A (zh) 2014-10-22 2014-10-22 转基因小鼠

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201480082416.0A Pending CN107002092A (zh) 2014-10-22 2014-10-22 转基因小鼠

Country Status (16)

Country Link
US (2) US11547099B2 (zh)
EP (2) EP3461848B1 (zh)
JP (1) JP6641379B2 (zh)
KR (1) KR20170073647A (zh)
CN (2) CN114774466A (zh)
AU (1) AU2014409276A1 (zh)
CA (1) CA2963752A1 (zh)
DK (1) DK3209698T4 (zh)
ES (1) ES2701061T5 (zh)
GB (1) GB2547587B (zh)
HR (1) HRP20181892T4 (zh)
IL (1) IL251010B2 (zh)
PL (1) PL3209698T5 (zh)
PT (1) PT3209698T (zh)
SG (1) SG11201702502XA (zh)
WO (1) WO2016062990A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201500463D0 (en) 2015-01-12 2015-02-25 Cresendo Biolog Ltd Therapeutic molecules
CN108473589B (zh) 2016-01-12 2023-05-02 克雷森多生物制剂有限公司 结合前列腺特异性膜抗原(psma)的分子
CN109641049B (zh) 2016-06-21 2023-07-07 特尼奥生物股份有限公司 Cd3结合抗体
GB201612043D0 (en) 2016-07-11 2016-08-24 Crescendo Biologics Ltd Composition for treatment of disorders
CR20220578A (es) 2016-09-14 2023-01-17 Teneobio Inc Anticuerpos de unión a cd3
BR112019012354A2 (pt) 2016-12-21 2019-11-26 Teneobio Inc anticorpos apenas de cadeia pesada anti-bcma
WO2018127710A1 (en) 2017-01-06 2018-07-12 Crescendo Biologics Limited Single domain antibodies to programmed cell death (pd-1)
US11427642B2 (en) 2017-06-20 2022-08-30 Teneoone, Inc. Anti-BCMA heavy chain-only antibodies
JP7303126B2 (ja) * 2017-06-20 2023-07-04 テネオバイオ, インコーポレイテッド 抗bcma重鎖のみ抗体
GB201711068D0 (en) 2017-07-10 2017-08-23 Crescendo Biologics Ltd Therapeutic molecules binding PSMA
CA3082321A1 (en) 2017-11-13 2019-05-16 Crescendo Biologics Limited Single domain antibodies that bind to cd137
GB201802573D0 (en) 2018-02-16 2018-04-04 Crescendo Biologics Ltd Therapeutic molecules that bind to LAG3
CN108486125B (zh) * 2018-03-27 2024-01-05 重庆金迈博生物科技有限公司 一种核酸分子及其在制备人源单域抗体中的应用
GB201818460D0 (en) 2018-11-13 2018-12-26 Crescendo Biologics Ltd Single domain antibodies that bind human serum albumin
SG11202111671QA (en) 2019-05-15 2021-11-29 Crescendo Biologics Ltd Binding molecules
AU2020291938A1 (en) 2019-06-14 2022-01-20 Teneobio, Inc. Multispecific heavy chain antibodies binding to CD22 and CD3
GB201914468D0 (en) 2019-10-07 2019-11-20 Crescendo Biologics Ltd Binding Molecules
IL301137A (en) 2020-09-11 2023-05-01 Regeneron Pharma Identification and production of antigen-specific antibodies
KR20230147048A (ko) 2020-12-16 2023-10-20 리제너론 파마슈티칼스 인코포레이티드 인간화 Fc 알파 수용체를 발현하는 마우스
GB202205589D0 (en) 2022-04-14 2022-06-01 Crescendo Biologics Ltd Mesothelin binders
WO2023199069A1 (en) 2022-04-14 2023-10-19 Crescendo Biologics Limited Chimeric antigen receptor that binds mesothelin

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2495083A (en) * 1947-09-19 1950-01-17 Ashaway Line & Twine Mfg Vise for tying leader ends
US6833268B1 (en) * 1999-06-10 2004-12-21 Abgenix, Inc. Transgenic animals for producing specific isotypes of human antibodies via non-cognate switch regions
GB0115256D0 (en) 2001-06-21 2001-08-15 Babraham Inst Mouse light chain locus
JP4149748B2 (ja) 2002-06-24 2008-09-17 三菱商事プラスチック株式会社 ロータリー型量産用cvd成膜装置及びプラスチック容器内表面へのcvd膜成膜方法
GB2398784B (en) * 2003-02-26 2005-07-27 Babraham Inst Removal and modification of the immunoglobulin constant region gene cluster of a non-human mammal
MX2007000921A (es) 2004-07-22 2007-11-09 Univ Erasmus Medical Ct Moleculas de union.
CN110079550A (zh) 2009-12-10 2019-08-02 瑞泽恩制药公司 生产重链抗体的小鼠
GB2495083A (en) * 2011-09-26 2013-04-03 Kymab Ltd Human VpreB and chimaeric surrogate light chains in transgenic non-human vertebrates
EP2761008A1 (en) * 2011-09-26 2014-08-06 Kymab Limited Chimaeric surrogate light chains (slc) comprising human vpreb
GB2502127A (en) * 2012-05-17 2013-11-20 Kymab Ltd Multivalent antibodies and in vivo methods for their production
DK2931030T4 (da) * 2012-12-14 2024-04-22 Omniab Inc Polynukleotider, der koder for graver-antistoffer med humane idiotyper, og dyr, der omfatter disse
US10993420B2 (en) 2013-03-15 2021-05-04 Erasmus University Medical Center Production of heavy chain only antibodies in transgenic mammals
US9788534B2 (en) * 2013-03-18 2017-10-17 Kymab Limited Animal models and therapeutic molecules
CA2942697A1 (en) 2014-03-21 2015-09-24 Lynn Macdonald Non-human animals that make single domain binding proteins

Also Published As

Publication number Publication date
JP2017537653A (ja) 2017-12-21
ES2701061T5 (es) 2022-05-09
HRP20181892T1 (hr) 2019-01-11
GB2547587B (en) 2020-12-09
CN107002092A (zh) 2017-08-01
PL3209698T5 (pl) 2022-04-25
EP3461848C0 (en) 2023-10-11
DK3209698T4 (da) 2022-04-04
DK3209698T3 (en) 2019-01-07
WO2016062990A1 (en) 2016-04-28
EP3461848B1 (en) 2023-10-11
CA2963752A1 (en) 2016-04-28
HRP20181892T4 (hr) 2022-04-15
KR20170073647A (ko) 2017-06-28
GB2547587A (en) 2017-08-23
EP3209698B1 (en) 2018-09-05
US11547099B2 (en) 2023-01-10
IL251010B2 (en) 2024-01-01
EP3209698B2 (en) 2022-02-09
PL3209698T3 (pl) 2019-03-29
IL251010B1 (en) 2023-09-01
US20180362666A1 (en) 2018-12-20
SG11201702502XA (en) 2017-05-30
EP3209698A1 (en) 2017-08-30
ES2701061T3 (es) 2019-02-20
EP3461848A1 (en) 2019-04-03
US20230133028A1 (en) 2023-05-04
PT3209698T (pt) 2018-12-14
IL251010A0 (en) 2017-04-30
AU2014409276A1 (en) 2017-04-06
JP6641379B2 (ja) 2020-02-05
GB201708074D0 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
US20230133028A1 (en) Transgenic mice
AU2018201501B2 (en) Humanized non-human animals with restricted immunoglobulin heavy chain loci
JP6963542B2 (ja) ハイブリッド軽鎖マウス
JP5866127B2 (ja) Adam6マウス
US20040231012A1 (en) Murine expression of human IgA Lambda locus
JPH06500233A (ja) 異種免疫グロブリンを作る方法及びトランスジェニックマウス
GB2584219A (en) Transgenic mice
NZ709608A (en) Polynucleotides encoding rodent antibodies with human idiotypes and animals comprising same
NZ709608B2 (en) Polynucleotides encoding rodent antibodies with human idiotypes and animals comprising same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination