CN114768847B - 一种可见光高效降解四溴双酚a光催化材料制备方法及应用 - Google Patents

一种可见光高效降解四溴双酚a光催化材料制备方法及应用 Download PDF

Info

Publication number
CN114768847B
CN114768847B CN202210299065.5A CN202210299065A CN114768847B CN 114768847 B CN114768847 B CN 114768847B CN 202210299065 A CN202210299065 A CN 202210299065A CN 114768847 B CN114768847 B CN 114768847B
Authority
CN
China
Prior art keywords
znc
bpn
tbbpa
visible light
degradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210299065.5A
Other languages
English (en)
Other versions
CN114768847A (zh
Inventor
于明川
刘聪
周玉菲
牛军峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan University of Technology
Original Assignee
Dongguan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan University of Technology filed Critical Dongguan University of Technology
Priority to CN202210299065.5A priority Critical patent/CN114768847B/zh
Publication of CN114768847A publication Critical patent/CN114768847A/zh
Application granted granted Critical
Publication of CN114768847B publication Critical patent/CN114768847B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明属于环境工程技术领域,提供了一种可见光高效降解四溴双酚A光催化材料制备方法及应用。以C@ZnC、Bpn和g‑C3N4为前体,通过高温煅烧法构建了g‑C3N4/C@ZnC/Bpn(CZB)三元异质结光催化材料。通过将C@ZnC和Bpn引入含N缺陷的g‑C3N4构建三元异质结不仅能提高光谱利用率和导电性,还能优化带隙结构,产生较强的氧化还原能力。CZB上光生载流子的迁移能力也随之加强,从而抑制其复合率,提高光催化降解性能。本发明所制备的异质结材料在可见光条件下,50min内对TBBPA的降解率可达96%以上。该三元异质结光催化剂制备方法简单、原料来源广泛、价格低廉,易于大规模化生产。

Description

一种可见光高效降解四溴双酚A光催化材料制备方法及应用
技术领域
本发明属于环境工程技术领域,涉及到碳化锌、黑磷纳米片和石墨相氮化碳三元异质结光催化材料制备技术研究,特别涉及到应用该材料在可见光条件下高效降解四溴双酚A方法的革新。
背景技术
四溴双酚A(TBBPA)是目前常用的溴代阻燃剂,加入到有机合成材料中能抑制燃烧并减少浓烟和有毒气体产生。TBBPA在环境中易于沉降和挥发,可以通过水和空气等介质迁移,致使其成为全球性污染物。大量实验证明,TBBPA对人和动物有肝肾毒性、生殖毒性、胚胎毒性、神经毒性和致癌毒性等,其通过干扰内分泌系统,可改变动物的本能行为,且特别是对儿童可能具有发育毒性。
目前对于环境中TBBPA的降解方法主要分为:生物法、吸附法和光催化法。Liang等人Application of a novel gene encoding bromophenol dehalogenase fromOchrobactrum sp.T in TBBPA degradation.文章中通过将一种具有降解TBBPA能力的基因表达到大肠杆菌中并实现菌株构建,使得菌株可以在96h内完全降解TBBPA(6mg/L)并实现脱溴率78%和矿化率37.8%。利用生物法可以基本实现TBBPA的降解和脱溴,降低其毒性。但是生物降解法也存在缺少具有高选择性的优质微生物,微生物降解机理尚不清楚,环境中溴代阻燃剂含量少,微生物难以对其进行富集和降解等问。Zhang等人的Sorptionenhancement of TBBPA from water by fly ash-supported nanostructuredγ-MnO2.文章中提出使用负载纳米γ-MnO2的煤灰粉吸附TBBPA,在40min后达到98%的去除率。该类方法可简单高效地去除TBBPA,但无法将TBBPA降解和矿化,且存在脱吸附困难和吸附剂重复利用率低等劣势。与前两者相比,光催化技术作为一种高级氧化技术,其具有反应条件温和、能耗较少和绿色环保可持续等优势,被认为是处理环境污染有潜力的方法。但该技术存在光生载流子易复合和光利用率低等问题,限制了其实际应用。研究者们通过形貌调控、元素掺杂和晶体结构工程等方法提高光催化剂性能。如Zhou等人的g–C3N4 and polyaniline-co-modified TiO2nanotube arrays for significantly enhanced photocatalyticdegradation of tetrabromobisphenol A under visible light.文章中成功合成了有序的g-C3N4和聚苯胺改性的TiO2纳米管阵列,在可见光下120min内去除了94%的TBBPA。Visible light-driven degradation of tetrabromobisphenol A overheterostructured Ag/Bi5Nb3O15 materials等文章中提到光催化剂能够实现TBBPA的去除,但仍存在降解效率低、脱溴率低、光谱利用率低、载流子复合率高、无法完全脱毒和制备工艺复杂等问题。因此,本专利选择改性g-C3N4作为基底,与带隙结构合理的半导体材料形成异质结催化材料,构筑界面电场,增加光生载流子分离能力,拓宽光谱利用率,促进活性物种的产生,实现高效低耗降解环境中TBBPA污染的目的。
发明内容
本发明提供一种碳化锌、黑磷纳米片以及石墨相氮化碳三元异质结光催化材料的制备方法,并应用于可见光催化降解TBBPA。通过加入二维层状黑磷纳米片(Bpn)和具有碳壳核结构的碳化锌(C@ZnC)助催化剂,能够在石墨相氮化碳(g-C3N4)表面形成异质结界面,加速光生电子的转移。此外,三元异质结的构建还能有效调控催化材料的带隙结构,延长其光谱吸收范围和提高光利用率及光生载流子分离效率,从而增加其光催化降解能力,实现可见光高效低耗降解TBBPA。
本发明的技术方案:
一种可见光降解TBBPA光催化材料方制备方法,步骤如下:
步骤1:按照质量比为1:1:15-75:75:1将三聚氰胺、三聚氰酸和2-氨基巴比妥酸分散在去离子水中,搅拌2-4h直至充分混合均匀,其中三聚氰胺浓度为0.1-1mol/L;将得到的混合液体60-80℃干燥后,放入管式炉在N2氛围中煅烧,温度控制在400-600℃,反应时间3-6h,反应结束后待其冷却到室温取出,以去离子水和乙醇分别清洗3次,再在烘箱中60℃干燥,得到淡黄色改性g-C3N4
步骤2:制备助催化剂C@ZnC粉末和Bpn溶液。将ZIF-8研磨后,放入管式炉在N2氛围中煅烧,温度控制在800-1200℃,反应时间3-6h,反应结束后待其冷却到室温取出,得到黑色表面带有石墨相碳壳层的C@ZnC粉末。将50-500mg黑磷固体分散于100mL N-甲基吡咯烷酮中,超声搅拌至均匀分散后,将其离心沉淀,取上层清液得0.5-5mg/L的二维层状Bpn溶液。
步骤3:将步骤1得到的g-C3N4和步骤2得到的C@ZnC均匀混合后,将上述混合物和步骤2得到的Bpn溶液分散在100mL无水乙醇中(g-C3N4:Bpn:C@ZnC质量比为200:5:1-10:5:1),搅拌让其充分混合均匀。将混合溶液在在烘箱中60℃干燥后,得到深黄色混合固体并放入管式炉中,在N2氛围下煅烧,温度控制在300-500℃,反应时间1-4h,得到g-C3N4/C@ZnC/Bpn(CZB)三元异质结光催化材料。
步骤4:以步骤3得到的CZB三元异质结光催化材料作为光催化剂降解TBBPA。当实验温度25℃且在可见光条件下,反应进行到50min时,10ppm TBBPA降解率达到96%以上。
本发明的有益效果:本发明方法中首次以CZB三元异质结光催化材料实现可见光条件下溴代阻燃剂TBBPA的高效降解。通过步骤1中方法所制备的改性g-C3N4形貌得到优化,与传统方法制备的g-C3N4 [7]相比,本专利中制备的改性g-C3N4不仅展现了层状多孔结构,能有效地提高材料的光利用率和传质效率,同时还存在大量N缺陷结构,能够捕获光生电子且有利于异质结的形成及稳定。与再以g-C3N4、Bpn和C@ZnC粉末为原料,经煅烧得到CZB三元异质结光催化材料,该制备方法简便且无需添加贵金属,是一种易于工业化生产的光催化材料方法。异质结结构中,C@ZnC是石墨相碳包裹ZnC的壳核结构,作为一种半导体材料,具有较好的光响应、导电性和高的还原电位。Bpn是具有二维层状结构、优良导电性和较窄的带隙宽度的非金属半导体材料。在g-C3N4表面引入C@ZnC和Bpn形成CZB三元光催化材料,合适的带隙结构能够增加材料的光谱吸收范围,异质结界面电场的存在和优良的导电性能促进了光生载流子的迁移,能够使其具有高的光谱利用率、传质效率和较低的载流子复合率。同时,C@ZnC较高的还原电位,使CZB在保留g-C3N4原有的氧化能力的同时强化了原本较弱的还原能力。因此,该材料可以实现可见光条件下对TBBPA的高效低耗降解。
具体实施方式
以下结合技术方案详细叙述本发明的具体实施方式。
实施例1
CZB三元异质结光催化材料制备方法:
将1g三聚氰胺、1g三聚氰酸和0.2g 2-氨基巴比妥酸分散在50ml去离子水中,搅拌2h直至充分混合均匀。将得到的混合液体60℃干燥后,放入管式炉在N2氛围中煅烧,温度控制在500℃,反应时间3h,反应结束后待其冷却到室温取出,以去离子水和乙醇分别清洗3次,再在烘箱中60℃干燥,得到淡黄色改性g-C3N4。再选择400、450、550、600煅烧温度制备一系列改性g-C3N4(命名改性g-C3N4-400、改性g-C3N4-450、改性g-C3N4-500、改性g-C3N4-550和改性g-C3N4-600)。通过透射电镜、漫反射光谱、X射线光电子能谱、傅里叶变换红外光谱、固态13C核磁共振和电子自旋共振光谱等表征手段,考察改性g-C3N4不同煅烧条件下结构和形貌变化,发现随着温度的升高,改性g-C3N4微观形貌中片层结构表面孔洞逐渐增多,这有利于增加比表面积和光利用率。当温度超过600℃时,产物基本完全裂解,无改性g-C3N4生成。对比发现改性g-C3N4-550具有最大的比表面积和最多的N缺陷结构,将其作为后续异质结催化材料的基底。
制备助催化剂C@ZnC粉末和Bpn溶液。将ZIF-8研磨后,放入管式炉在N2氛围中煅烧,温度控制在1000℃,反应时间3h,反应结束后待其冷却到室温取出,得到具有核壳结构的C@ZnC。C@ZnC煅烧温度对于材料的导电性有较大影响,随着温度的升高,导电性逐渐增强,当温度超过1000℃时,产物逐渐减少,当温度超过1200℃时,无C@ZnC生成。综合产物产量和理化性能最优,选择1000℃煅烧C@ZnC作为助催化剂。将50mg黑磷固体分散于100mL N-甲基吡咯烷酮中,超声搅拌至均匀分散后,将其离心沉淀,取上层清液得1mg/L的二维层状Bpn溶液。
将改性0.2g g-C3N4-550和0.01g C@ZnC混合研磨后,与10ml 1mg/L Bpn溶液一起加入到100mL无水乙醇中,搅拌让其充分混合均匀。将混合溶液在在烘箱中60℃干燥后,得到深黄色混合固体并放入管式炉中,在N2氛围下煅烧,温度控制在300℃,反应时间1h,得到g-C3N4/C@ZnC/Bpn(CZB)三元异质结光催化材料。
实施例2
可见光降解TBBPA方法:称取0.02g CZB异质结光催化剂,分散进装有100mL TBBPA溶液(10ppm)的光催化反应器中。在降解实验前,将反应器在黑暗条件下搅拌30min,使催化剂与TBBPA达到吸附饱和,后续进行可见光条件下的光催化降解测试,反应时间120min,反应温度25℃,间隔10min取反应液一次,取出的反应液用0.22μm滤膜过滤后取1mL待用,仪器测试后得到降解率。
通过超高效液相色谱测定TBBPA浓度,结果表明反应进行到50min时,TBBPA降解率已经达到96%以上。
TBBPA降解性能对比测试,在相同测试条件下,选择传统方法制备g-C3N4 [7]和过往研究中降解性能最优的g-C3N4和聚苯胺改性的TiO2纳米管阵列[3]作为对照组,结果表明,反应50min时,两者的降解率分别为10%和21%。
实施例3
模拟太阳光降解TBBPA方法:称取0.02g CZB异质结光催化剂,分散进装有100mLTBBPA溶液(10ppm)的光催化反应器中。在降解实验前,将反应器在黑暗条件下搅拌30min,使催化剂与TBBPA达到吸附饱和,后续进行模拟太阳光条件下的光催化降解测试,反应时间120min,反应温度25℃,间隔10min取反应液一次,取出的反应液用0.22μm滤膜过滤后取1mL待用,仪器测试后得到降解率。
通过超高效液相色谱测定TBBPA浓度,结果表明反应40min时,TBBPA降解率已经达到95%以上。
实施例4
离子对降解实验影响测试:使用阳离子:钠离子(NaNO3)、钙离子(Ca(NO3)2)、镁离子(Mg(NO3)2)、铁离子(Fe(NO3)3);使用阴离子:硝酸根离子(NaNO3)、硫酸根离子(Na2SO4)、氯离子(NaCl)、碳酸氢根(Na2CO3)分别在降解反应前分散于装有100mL TBBPA溶液(10ppm)和0.02g CZB异质结光催化剂的光催化反应器中,用于探究阴阳离子对可见光催化降解反应效率的影响。在降解反应前,在黑暗条件下,搅拌30min使催化剂和TBBPA达到吸附饱和,后续打开循环冷凝系统使反应液在氙灯光源模拟的可见光照射下不至于温度过高,测试时间为60min。每隔10min取一次反应液并用0.22μm的滤膜过滤后取1mL待用,仪器测试后得到降解率。通过与步骤2中不添加其他阴阳离子的TBBPA降解效率对比,从而证明阴阳离子对降解效率的影响。
结果表明,加入阴阳离子之后,TBBPA的降解效率没有发生明显的变化,因此说明阴阳离子的加入对CZB异质结光催化剂可见光降解TBBPA没有明显的影响。

Claims (2)

1.一种可见光高效降解四溴双酚A光催化材料的制备方法,其特征在于,步骤如下:
步骤1:按照质量比为1:1:15-75:75:1将三聚氰胺、三聚氰酸和2-氨基巴比妥酸分散在去离子水中,搅拌2-4h直至充分混合均匀,其中三聚氰胺浓度为0.1-1mol/L;将得到的混合液体60℃干燥后,放入管式炉在N2氛围中煅烧,温度控制在400-600℃,反应时间3-6h,反应结束后待其冷却到室温取出,以去离子水和乙醇分别清洗3次,再在烘箱中60℃干燥,得到淡黄色改性g-C3N4
步骤2:制备助催化剂C@ZnC粉末和Bpn溶液;将ZIF-8研磨后,放入管式炉在N2氛围中煅烧,温度控制在800-1200℃,反应时间3-6h,反应结束后待其冷却到室温取出,得到黑色表面带有石墨相碳壳层的C@ZnC粉末;将黑磷固体分散于N-甲基吡咯烷酮中,超声搅拌至均匀分散后,将其离心沉淀,取上层清液得0.5-5mg/L的二维层状Bpn溶液;
步骤3:将步骤1得到的淡黄色改性g-C3N4和步骤2得到的C@ZnC粉末均匀混合后,将上述混合物和步骤2得到的Bpn溶液分散在无水乙醇中,控制g-C3N4:Bpn:C@ZnC质量比为200:5:1-10:5:1,搅拌至其充分混合均匀;将混合溶液在在烘箱中60℃干燥后,得到深黄色混合固体并放入管式炉中,在N2氛围下煅烧,温度控制在300-500℃,反应时间1-4h,得到g-C3N4/C@ZnC/Bpn(CZB)三元异质结光催化材料。
2.权利要求1所述的制备方法得到的g-C3N4/C@ZnC/Bpn(CZB)三元异质结光催化材料作为光催化剂降解TBBPA,当实验温度25℃且在可见光条件下,反应进行到50min时,10ppmTBBPA降解率达到96%以上。
CN202210299065.5A 2022-03-25 2022-03-25 一种可见光高效降解四溴双酚a光催化材料制备方法及应用 Active CN114768847B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210299065.5A CN114768847B (zh) 2022-03-25 2022-03-25 一种可见光高效降解四溴双酚a光催化材料制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210299065.5A CN114768847B (zh) 2022-03-25 2022-03-25 一种可见光高效降解四溴双酚a光催化材料制备方法及应用

Publications (2)

Publication Number Publication Date
CN114768847A CN114768847A (zh) 2022-07-22
CN114768847B true CN114768847B (zh) 2023-06-02

Family

ID=82424967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210299065.5A Active CN114768847B (zh) 2022-03-25 2022-03-25 一种可见光高效降解四溴双酚a光催化材料制备方法及应用

Country Status (1)

Country Link
CN (1) CN114768847B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108611658A (zh) * 2018-05-03 2018-10-02 北京化工大学 一种一维多孔纳米复合材料及其制备方法和在电解水中的应用
CN110195240A (zh) * 2019-06-03 2019-09-03 东莞理工学院 一种超声辅助四溴双酚a高效电化学氢化脱溴方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108611658A (zh) * 2018-05-03 2018-10-02 北京化工大学 一种一维多孔纳米复合材料及其制备方法和在电解水中的应用
CN110195240A (zh) * 2019-06-03 2019-09-03 东莞理工学院 一种超声辅助四溴双酚a高效电化学氢化脱溴方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一锅法制备Co_3O_4/g-C_3N_4复合光催化剂及其光催化性能;段丽颖;路姗姗;段芳;陈明清;;无机化学学报(05);全文 *

Also Published As

Publication number Publication date
CN114768847A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN108722497B (zh) 一种TiO2-MOFs光催化剂及其制备方法与应用
CN102198405B (zh) 一种净化室内甲醛用的复合催化剂及其制备方法
CN108325555B (zh) 氮自掺杂石墨化氮化碳纳米片光催化剂及其制备方法和应用
CN108620113B (zh) 一种氮掺杂的碳-铈复合纳米片的制备方法
CN110624566B (zh) CuInS2量子点/NiAl-LDH复合光催化剂的制备方法及其应用
CN106861626B (zh) 一种吸附-光催化双功能材料及其制备方法与在挥发性有机气体治理工艺的应用
CN113398974A (zh) 一种Fe掺杂g-C3N4光催化剂及其制备方法和应用
CN108940349B (zh) 利用铬酸银/硫掺氮化碳z型光催化剂去除染料污染物的方法
Ding et al. Biomass porous carbon as the active site to enhance photodegradation of oxytetracycline on mesoporous gC 3 N 4
CN114515590A (zh) 一种异质光催化材料及其制备和应用
CN114768847B (zh) 一种可见光高效降解四溴双酚a光催化材料制备方法及应用
CN111821967A (zh) 一种异质结二氧化钛复合光催化剂及其制备方法
CN108940348B (zh) 铬酸银/硫掺氮化碳z型光催化剂及其制备方法
GB2616103A (en) Nitrogen-doped carbon material and preparation method thereof
CN112844432B (zh) 一种三元磁性复合纳米材料及其制备方法与应用
CN115814829A (zh) 一种Co与Mo2C共掺杂的生物炭基复合材料及其制备方法与应用
Wang et al. Photocatalytic degradation of tetracycline hydrochloride by lanthanum doped TiO 2@ gC 3 N 4 activated persulfate under visible light irradiation
CN109201026B (zh) 一种可见光响应自掺杂光催化剂的制备方法及应用
CN108745415B (zh) 一种聚邻苯二胺修饰AgCl/g-C3N4复合光催化剂及其制备与应用
US20230338926A1 (en) Porous manganese-containing fenton catalytic material and preparation method and use thereof
CN117244552B (zh) 一种钛酸钠载体限域氧化钴催化剂及其制备方法和应用
CN113649012B (zh) 一种碳包覆铁酸锌催化剂的制备方法及其应用
CN115353189B (zh) 一种调控溶解氧处理含环丙沙星的废水的方法
CN113813954B (zh) 一种层状CeO2-x材料及其制备方法和应用
Hu et al. Improving the photocatalytic activity of silver orthophosphate by thermal annealing for photocatalytic degradation of beta-naphthol

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant