CN110195240A - 一种超声辅助四溴双酚a高效电化学氢化脱溴方法 - Google Patents
一种超声辅助四溴双酚a高效电化学氢化脱溴方法 Download PDFInfo
- Publication number
- CN110195240A CN110195240A CN201910480943.1A CN201910480943A CN110195240A CN 110195240 A CN110195240 A CN 110195240A CN 201910480943 A CN201910480943 A CN 201910480943A CN 110195240 A CN110195240 A CN 110195240A
- Authority
- CN
- China
- Prior art keywords
- tetrabromobisphenol
- added
- ultrasonic wave
- cathode
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/25—Reduction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明属于环境保护的溴代阻燃剂处理技术领域,具体涉及一种超声辅助四溴双酚A高效电化学氢化脱溴方法。该方法是将四溴双酚A溶解在氢氧化钠的水溶液中,加入雷尼镍作为反应催化剂活化阴极板析出的氢气,达到四溴双酚A氢化还原的目的。在超声辅助下阴极析出的氢气泡破裂产生瞬间高压,提高了催化反应速率,从而实现四溴双酚A高效脱溴还原。该方法操作简单,催化剂易回收,成本低廉,初始浓度20mg/L的四溴双酚A在两个小时内降解率达到94.57%,脱溴率为68.19%。
Description
技术领域
本发明属于环境保护的溴代阻燃剂处理技术领域,具体涉及一种超声辅助四溴双酚A高效电化学氢化脱溴方法。
背景技术
四溴双酚A是常用的溴代阻燃剂之一,根据其加入方式可分为反应型阻燃剂和添加型阻燃剂,微溶于水易溶于碱性及有机溶剂,具有卤代芳香族结构的稳定性。据不完全统计其使用量约占溴代阻燃剂的一半,主要用作塑料制品添加剂。由于其应用广泛,目前在多种环境介质中均有检出。又因为其具有持久性,生物累积性和高毒性,研究如何有效的去除环境中的四溴双酚A已经收到了社会的广泛关注。
众所周知,脱溴是四溴双酚A降解的限制性步骤,还原脱溴提高四溴双酚A的可生化性和生物毒性是目前备受关注的研究课题,其技术手段主要涉及厌氧生物法、零价金属还原法以及电催化法等。厌氧生物法需要筛选合适的菌种,严格控制培养条件,对于不同初始浓度的TBBPA,为了达到TBBPA的完全脱溴往往需要长达数天至数月的时间(BioresourceTechnology.2014,169,271-276;JOURNAL OF ENVIRONMENTAL SCIENCES.2017,61,39-48)。零价铁及掺杂其他金属的双金属体系常用来作为TBBPA的还原剂,然而在零价铁的合成中往往要用到高毒性的硼氢化钠或氢化铝锂等试剂(Chemical Engineering Journal.2017,311,173-182),或掺杂贵金属催化剂来提高其催化活性(Chemosphere.2013,92,1321-1327),该还原体系也需要在弱酸或近中性体系下才表现出较好的催化效果,制约了其其工业应用前景。电催化还原脱卤是目前研究的热门领域,通过控制析氢电位实现污染物还原脱卤是目前公认的电催化还原手段,因此如何制备合适的阴极材料是实现高效电化学脱卤需要解决的关键问题,研究发现掺氮半导体材料在卤代物还原脱卤中表现出优异的性(Appl.Catal.B:Environ.2014,154-155,206-212),然而该电极合成过程复杂,制备条件苛刻,对于大规模化工业应用还有一定的差距。
发明内容
针对现有技术中存在的不足,本发明在阴极室加入雷尼镍作为催化剂,活化阴极板产生的微小氢气泡催化四溴双酚A的还原脱溴,引入超声辅助技术强化四溴双酚A的氢化还原。一方面原位利用阴极板产生的氢气,这将使雷尼镍保持更高的催化活性,易于催化加氢的发生,使反应体系的条件更加温和,同时析氢形成碱性环境避免了催化剂的溶出,提高雷尼镍催化反应活性。另一方面超声破碎氢气泡会产生瞬时高压环境,有利于催化反应的发生,从而协同加快四溴双酚A的脱溴加氢过程。
具体的,本发明提供了一种超声辅助四溴双酚A高效电化学氢化脱溴方法,依次包括以下步骤:
步骤一:将含有四溴双酚A的碱性溶液加入阴极室,阳极室为同等电解质浓度的水溶液;
步骤二:将阴极板和阳极板分别插入在阴极室和阳极室;
步骤三:连接稳压直流电源,加入超声装置,调节电流值及超声功率;
步骤四:加入适量的雷尼镍催化剂,同时启动直流电源和超声设备;
进一步的,所述四溴双酚A中溴原子取代位置为邻、间、对中的一种或多种。更进一步的,所述的四溴双酚A为3,3′,5,5′-四溴双酚A,浓度为20mg/L。
进一步的,所述溶剂为氢氧化钠的碱性溶剂,所述溶剂的摩尔百分含量为1mM-100mM,优选为1mM。
进一步的,所述电解质为无水硫酸钠,浓度为5-100mM,优选为50mM。
进一步的,所述的电解槽为双极室,以N211型杜邦质子交换膜为隔膜,每次阴阳极室储备液的加入量为90ml。
进一步的,所述阳极板为钌铱电极,锡锑电极或二氧化铅电极,优选为钌铱电极,极板面积为9cm2。
进一步的,所述阴极板为纯钛板,不锈钢板或石墨板,优选为纯钛板,极板面积为9cm2。
进一步的,所述超声装置功率为130w,强度为0%-100%,优选为40%。
进一步的,所述催化剂为雷尼镍的水溶液,所述催化剂的质量百分含量为50%-90%,优选为90%。
进一步的,所述催化剂与四溴双酚A的质量比为10∶1-100∶1,优选为50∶1。
所述的四溴双酚A可以为纯品,也可以是含有四溴双酚A的液态或固体废弃物。
本发明利用阴极板析出的氢气在雷尼镍催化剂表面形成的活性氢,进攻四溴双酚A的-C-Br-键,通过辅助超声技术,从而实现四溴双酚A的快速深度脱溴降解。
本发明与现有技术相比,具有以下优点:
1、本发明充分利用电化学反应中阴极的析氢副反应和产生的碱性环境,有效的发挥了雷尼镍催化加氢潜能,从而可以实现更高效率的电能的利用,为催化剂提供一个温和舒适的反应环境。
2、本发明阴极板选择范围广,不需要进行严苛的改性和预处理,成本低廉,操作简单。
3、本发明中催化剂价格低廉,有磁性,易回收,整个反应过程中不需要使用水合肼、硼氢化钠和氨硼烷等对环境有害还原剂,成本较低,环境友好,有助于实际体系中四溴双酚A的规模化处理。
4、本发明通过超声辅助可有效的提高四溴双酚A的脱溴降解速率,缩短反应时间。
附图说明
图1为实施例1中不同电流密度下反应液中TBBPA的浓度变化示意图。
图2为实施例2中不同质量催化剂加入下反应液中TBBPA的浓度变化示意图。
图3为实施例3中不同浓度腐植酸存在下反应液中TBBPA的浓度变化示意图。
图4为实施例4中不同浓度硝酸盐存在下反应液中TBBPA的浓度变化示意图。
图5为实施例5中不同功率超声辐射下反应液中TBBPA的浓度变化示意图。
图6为实施例5中TBBPA在强度40%的超声辅助下随反应时间的脱溴率示意图。
具体实施方式
为了使本领域技术人员更加清楚地明白本发明的目的、技术方案及优点,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
一种超声辅助四溴双酚A高效电化学氢化脱溴方法,包括如下步骤:
步骤一:量取预先配置的溶解在1mM氢氧化钠溶液中的20mg/L的TBBPA溶液90ml,加入到阴极室,阳极室量取等量的去离子水,加入电解质,使阴阳电极室电解质浓度均为50mM。阳极插入钌铱电极,阴极插入纯钛板,将直流稳压电源与电极连接。
步骤二:磁力搅拌下,向阴极室加入雷尼镍催化剂,催化剂量为1g/L,同时快速启动电源,按下秒表计时,分别在反应时间为0min、5min、10min、20min、30min、45min、60min、90min、120min时用注射器吸取一定的反应液并快速通过0.22μm微孔滤膜,所得上清液分别进行以下测试。
测试1:将所得上清液直接进行超高效液相色谱—紫外检测器测定TBBPA浓度
(检测条件:检测波长为210nm,流动相为80v/v%甲醇和20v/v%氨水(1v/v%)溶液,流速为0.3mL/min,色谱柱为BEH-C18柱)。
为了更好的研究电流密度对降解TBBPA的影响效果,进行了如下七个实验进行TBBPA的降解研究:步骤二中启动电源前,调至恒电流模式,分别调节电流为0A、0.01A、0.02A、0.05A、0.1A、0.2A、0.5A。其余条件均不变。所得结果如图1所示。图1表明,雷尼镍催化剂本身由于吸附有氢气,具有一定的催化效果,无电流的条件下添加量为1g/L的雷尼镍两小时内可降解8.5%的TBBPA。随着电流密度增加,氢气产生量增加,TBBPA降解率增加,当电流达到0.1A以后,氢气量对催化剂饱和,继续加大电流密度,TBBPA降解率基本不再变化,0.1A时雷尼镍加入量为1g/L,两小时内可降解76%的TBBPA。
实施例2
一种超声辅助四溴双酚A高效电化学氢化脱溴方法,包括如下步骤:
与实施例1不同的是:步骤二中采用恒电流模式,电流为0.1A,每次雷尼镍的加入量为0g/L、0.2g/L、0.5g/L、1g/L、2g/L、5g/L,由此获得雷尼镍加入量对TBBPA降解率的影响。其余条件均不变。所得结果如图2所示。图2表明纯钛板析出的氢气本身具有一定的催化效果,无催化剂加入的条件下0.1A的电流,两小时内可降解10%的20mg/L的TBBPA溶液。随着雷尼镍加入量的增加,催化活性明显增加,当催化剂加入量为5g/L时,两小时内TBBPA可全部降解。
实施例3
一种超声辅助四溴双酚A高效电化学氢化脱溴方法,包括如下步骤:
与实施例2不同之处在于:步骤二中固定电流为0.1A,催化剂加入量为1g/L。
反应开始前分别加入0mg/L、5mg/L、10mg/L、20mg/L、50mg/L的腐植酸,由此获得溶液中腐植酸对四溴双酚A脱溴速率的影响,其余条件均不变。所得结果如图3所示。图3表明低浓度腐植酸对四溴双酚A脱溴还原抑制作用较弱,高浓度腐植酸可显著抑制四溴双酚A氢化还原,当腐植酸浓度为50mg/L,四溴双酚A的还原率下降为36%。
实施例4
一种超声辅助四溴双酚A高效电化学氢化脱溴方法,包括如下步骤:
与实施例3不同之处在于:步骤二中固定电流为0.1A,催化剂加入量为1g/L。
反应开始前分别加入0mM、0.5mM、1mM、2mM、10mM的硝酸钠,由此获得溶液中硝酸根浓度对四溴双酚A脱溴速率的影响,其余条件均不变。所得结果如图4所示。图4表明溶液中微量硝酸盐的存在即可对TBBPA脱溴产生显著影响,硝酸根与TBBPA在雷尼镍催化体系下竞争还原。
实施例5
一种超声辅助四溴双酚A高效电化学氢化脱溴方法,包括如下步骤:
与实施例4不同之处在于:步骤二中固定电流为0.1A,催化剂加入量为1g/L。
在阴极室插入超声发射器,调节超声功率分别为0%、20%、40%、60%、80%,由此获得超声对TBBPA还原脱溴的影响,其余条件均不变。所得结果如图5所示。图5表明在低功率下超声使得阴极析出的氢气泡聚集变大从溶液中释放,反而抑制雷尼镍催化氢气氢化还原TBBPA,当超声功率大于等于40%,析出的氢气泡超声破碎形成瞬间高压环境,有利于雷尼镍催化氢气还原TBBPA。反应时间2小时,TBBPA的降解率达到94.57%。为了探明超声作用,我们做了控制实验,分别用不同功率的超声对20mg/L的TBBPA溶液超声处理两小时,采用超高效液相测试均没有发现TBBPA的降解。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (8)
1.一种超声辅助四溴双酚A高效电化学氢化脱溴方法,依次包括以下步骤:
步骤一:将含有四溴双酚A的碱性溶液加入阴极室,阳极室为同等电解质浓度的水溶液;
步骤二:将阴极板和阳极板分别插入在阴极室和阳极室;
步骤三:连接稳压直流电源,加入超声装置,调节电流值及超声功率;
步骤四:加入适量的雷尼镍催化剂,同时启动直流电源和超声设备。
2.根据权利要求1所述的方法,其特征在于,所述四溴双酚A中溴原子取代位置为邻、间、对中的一种或多种,所述四溴双酚A的浓度为0-50mg/L。
3.根据权利要求1所述的方法,其特征在于,所述溶剂为氢氧化钠或氢氧化钾的碱性溶剂,所述溶剂的摩尔百分含量为1mM-100mM。
4.根据权利要求1所述的方法,其特征在于,所述阳极板为钌铱电极,锡锑电极或二氧化铅电极。
5.根据权利要求1所述的方法,其特征在于,所述阴极板为纯钛板,不锈钢板或石墨板。
6.根据权利要求1所述的方法,其特征在于,所述超声装置功率为130w,强度为0%-100%。
7.根据权利要求1所述的方法,其特征在于,所述催化剂为雷尼镍的水溶液,所述催化剂的质量百分含量为50%-90%。
8.根据权利要求1所述的方法,其特征在于,所述催化剂与四溴双酚A的质量比为10∶1-100∶1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910480943.1A CN110195240B (zh) | 2019-06-03 | 2019-06-03 | 一种超声辅助四溴双酚a高效电化学氢化脱溴方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910480943.1A CN110195240B (zh) | 2019-06-03 | 2019-06-03 | 一种超声辅助四溴双酚a高效电化学氢化脱溴方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110195240A true CN110195240A (zh) | 2019-09-03 |
CN110195240B CN110195240B (zh) | 2020-03-13 |
Family
ID=67753904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910480943.1A Expired - Fee Related CN110195240B (zh) | 2019-06-03 | 2019-06-03 | 一种超声辅助四溴双酚a高效电化学氢化脱溴方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110195240B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113913853A (zh) * | 2021-11-23 | 2022-01-11 | 浙江工业大学 | 一种表面活性剂协同吸附下溴代酚类化合物的电化学深度降解方法 |
CN114768847A (zh) * | 2022-03-25 | 2022-07-22 | 东莞理工学院 | 一种可见光高效降解四溴双酚a光催化材料制备方法及应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU594485B2 (en) * | 1986-07-31 | 1990-03-08 | Dow Chemical Company, The | Nickel alloy anodes for electrochemical dechlorination |
DE4340896A1 (de) * | 1993-12-01 | 1995-06-08 | Hoechst Ag | Verfahren zur Herstellung von 3-Alkyl-2,6-dichloracylaniliden durch elektrolytische Debromierung von 3-Alkyl-4-brom-2,6-dichloracylaniliden |
-
2019
- 2019-06-03 CN CN201910480943.1A patent/CN110195240B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU594485B2 (en) * | 1986-07-31 | 1990-03-08 | Dow Chemical Company, The | Nickel alloy anodes for electrochemical dechlorination |
DE4340896A1 (de) * | 1993-12-01 | 1995-06-08 | Hoechst Ag | Verfahren zur Herstellung von 3-Alkyl-2,6-dichloracylaniliden durch elektrolytische Debromierung von 3-Alkyl-4-brom-2,6-dichloracylaniliden |
Non-Patent Citations (4)
Title |
---|
GUO‐BIN LIU ET AL.: "New Method for the Reduction of Benzophenones with Raney Ni‐Al Alloy in Water", 《SYNTHETIC COMMUNICATIONS》 * |
XINGXING PENG ET AL.: "Degradation of TBBPA and BPA from aqueous solution using organo-montmorillonite supported nanoscale zero-valent iron", 《CHEMICAL ENGINEERING JOURNAL》 * |
ZHENBO PENG ET AL.: "Facile synthesis of Pd–Fe nanoparticles modified Ni foam electrode and its behaviors in electrochemical reduction of tetrabromobisphenolA", 《MATERIALS LETTERS》 * |
彭振波: "Pd.Fe/Ni(CTAB)电极对四溴双酚A的电催化降解研究", 《广西大学硕士学位论文集》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113913853A (zh) * | 2021-11-23 | 2022-01-11 | 浙江工业大学 | 一种表面活性剂协同吸附下溴代酚类化合物的电化学深度降解方法 |
CN114768847A (zh) * | 2022-03-25 | 2022-07-22 | 东莞理工学院 | 一种可见光高效降解四溴双酚a光催化材料制备方法及应用 |
CN114768847B (zh) * | 2022-03-25 | 2023-06-02 | 东莞理工学院 | 一种可见光高效降解四溴双酚a光催化材料制备方法及应用 |
Also Published As
Publication number | Publication date |
---|---|
CN110195240B (zh) | 2020-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wen et al. | Electrochemical reactors for continuous decentralized H2O2 production | |
Luo et al. | Electrochemical degradation of phenol by in situ electro-generated and electro-activated hydrogen peroxide using an improved gas diffusion cathode | |
Wang et al. | Electro-Fenton and photoelectro-Fenton degradation of sulfamethazine using an active gas diffusion electrode without aeration | |
CN101020590B (zh) | 一种自由基处理高难度有机废水的方法 | |
Qu et al. | Simultaneous electro-oxidation and in situ electro-peroxone process for the degradation of refractory organics in wastewater | |
Sim et al. | Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells | |
Kim et al. | Nickel powder blended activated carbon cathodes for hydrogen production in microbial electrolysis cells | |
Coria et al. | Mass transport studies during dissolved oxygen reduction to hydrogen peroxide in a filter-press electrolyzer using graphite felt, reticulated vitreous carbon and boron-doped diamond as cathodes | |
CN109321936B (zh) | 一种基于液流氧化还原媒介分步电解水制氢的装置和方法 | |
Peralta et al. | A comparative study on the electrochemical production of H2O2 between BDD and graphite cathodes | |
CA2989151C (en) | Water treatment system using alkaline water electrolysis device and alkaline fuel cell | |
CN110195240A (zh) | 一种超声辅助四溴双酚a高效电化学氢化脱溴方法 | |
CN108423772B (zh) | 一种基于载纳米零价铁导电复合树脂为催化剂的阴阳两极协同降解硝酸盐的装置及方法 | |
CN106629999A (zh) | 一种声电多元催化氧化装置及其处理废水的方法 | |
Fan et al. | In-situ production of hydrogen peroxide as oxidant for direct urea fuel cell | |
Sun et al. | A three-dimensional gas diffusion electrode without external aeration for producing H2O2 and eliminating amoxicillin using electro-Fenton process | |
Li et al. | Improved bioelectricity production using potassium monopersulfate as cathode electron acceptor by novel bio-electrochemical activation in microbial fuel cell | |
Tian et al. | Formate production from CO2 electroreduction in a salinity-gradient energy intensified microbial electrochemical system | |
Li et al. | Low-nitrite generation Cu–Co/Ti cathode materials for electrochemical nitrate reduction | |
Zhu et al. | Three-dimensional nickel foam electrode for efficient electro-Fenton in a novel reactor | |
Huang et al. | Impact of Local Microenvironments on the Selectivity of Electrocatalytic Nitrate Reduction in a BPM‐MEA System | |
CN117069206A (zh) | 用于降解回收回水中二甲基亚砜的电解-芬顿氧化-电化学铁还原体系 | |
Li et al. | Electrochemical activation of peroxydisulfate using an IrO2 electrode for the efficient degradation of acid orange 74: Mechanisms of different activation methods | |
Su et al. | Removal of sulfamethazine by a flow-Fenton reactor with H2O2 supplied with a two-compartment electrochemical generator | |
Yu et al. | Enhanced electrocatalytic hydrodechlorination of 2, 4-dichlorophenol over palladium nanoparticles loading on dendrite-like Ni-Cu-P interlayer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200313 |