CN114750493B - 一种锂离子隔膜热复合保护膜、生产工艺及其应用 - Google Patents

一种锂离子隔膜热复合保护膜、生产工艺及其应用 Download PDF

Info

Publication number
CN114750493B
CN114750493B CN202210289752.9A CN202210289752A CN114750493B CN 114750493 B CN114750493 B CN 114750493B CN 202210289752 A CN202210289752 A CN 202210289752A CN 114750493 B CN114750493 B CN 114750493B
Authority
CN
China
Prior art keywords
lithium ion
temperature
surface layer
protective film
porous inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210289752.9A
Other languages
English (en)
Other versions
CN114750493A (zh
Inventor
王永祥
韩强
倪静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furong New Materials Co ltd
Original Assignee
Furong New Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furong New Materials Co ltd filed Critical Furong New Materials Co ltd
Priority to CN202210289752.9A priority Critical patent/CN114750493B/zh
Publication of CN114750493A publication Critical patent/CN114750493A/zh
Application granted granted Critical
Publication of CN114750493B publication Critical patent/CN114750493B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/002Combinations of extrusion moulding with other shaping operations combined with surface shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0021Combinations of extrusion moulding with other shaping operations combined with joining, lining or laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/21Anti-static
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • B32B2307/7145Rot proof, resistant to bacteria, mildew, mould, fungi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及塑料薄膜生产技术领域,具体为一种锂离子隔膜热复合保护膜、生产工艺及其应用;包括上表层、芯层及下表层;所述上表层所用原料按重量百分比计由91.5~92.8%的均聚聚丙烯、1.4~2.0%纳米二氧化钛及余量的无机抗粘连剂组成;所述芯层所用原料按重量百分比计由95.2~96.6%的均聚聚丙烯、1.3~1.8%高效抗静电剂及余量的爽滑剂组成;所述下表层所用原料重量百分比计由92.3~93.5%的三元共聚聚丙烯、1.0~1.5%纳米二氧化硅及余量的无机抗粘连剂组成;本发明所生产的锂离子隔膜热复合保护膜不仅具有优良的抗静电性能及抗菌性能,还具有一定的抗紫外老化性能;有效地保证了聚丙烯薄膜品质的同时也延长了其使用寿命。

Description

一种锂离子隔膜热复合保护膜、生产工艺及其应用
技术领域
本发明涉及塑料薄膜生产技术领域,具体为一种锂离子隔膜热复合保护膜、生产工艺及其应用。
背景技术
双向拉伸聚丙烯薄膜简称BOPP,它的生产是将高分子聚丙烯的熔体首先通过狭长机头制成片材或厚膜,然后在专用的拉伸机内,在一定的温度和设定的速度下,同时或分步在垂直的两个方向(纵向、横向)上进行的拉伸,并经过适当的冷却或热处理或特殊的加工(如电晕、涂覆等)制成的薄膜。
常用的BOPP薄膜包括:普通型双向拉伸聚丙烯薄膜、热封型双向拉伸聚丙烯薄膜、香烟包装膜、双向拉伸聚丙烯珠光膜、双向拉伸聚丙烯金属化膜、消光膜、复书膜、激光模压膜、防伪膜和纸球膜等。
目前,市售的双向拉伸聚丙烯薄膜产品虽然具有较好的力学性能,但是其本身的抗静电性能相对较差,且其抗紫外老化性能也相对不足,这不仅影响了其品质,也在一定程度上缩短了其使用寿命。基于此,本发明提供了一种锂离子隔膜热复合保护膜、生产工艺及其应用,以解决上述问题。
发明内容
本发明的目的在于提供一种锂离子隔膜热复合保护膜、生产工艺及其应用,所生产的锂离子隔膜热复合保护膜不仅具有优良的抗静电性能及抗菌性能,还具有一定的抗紫外老化性能;有效地保证了聚丙烯薄膜品质的同时也延长了其使用寿命。
为实现上述目的,本发明提供如下技术方案:
一种锂离子隔膜热复合保护膜,包括上表层、芯层及下表层;所述上表层所用原料按重量百分比计由91.5~92.8%的均聚聚丙烯、1.4~2.0%纳米二氧化钛及余量的无机抗粘连剂组成;所述上表层厚度为0.9~1.0μm、芯层厚度为11~13μm、下表层厚度为1.2~1.6μm;
所述芯层所用原料按重量百分比计由95.2~96.6%的均聚聚丙烯、1.3~1.8%高效抗静电剂及余量的爽滑剂组成;
所述下表层所用所用原料重量百分比计由92.3~93.5%的三元共聚聚丙烯、1.0~1.5%纳米二氧化硅及余量的无机抗粘连剂组成。
更进一步地,所述无机抗粘连剂选用纳米级碳酸钙、纳米级滑石粉中的任意一种。
更进一步地,所述爽滑剂选用油酸酰胺、芥酸酰胺中的任意一种。
更进一步地,所述高效抗静电剂的制备方法包括以下步骤∶
I、按0.01~0.15g/mL的固液比将抗静电剂基材投入适量的质量浓度为4~7%的硫酸溶液中,然后在800~1000r/min的速率下搅拌反应40~60min;待反应完毕,经过滤及去离子水洗涤3~5次后,将所得固体物料保存备用;
II、向反应釜中注入适量浓度为0.04~0.08mol/L的稀硫酸溶液,然后向其中投入适量的重铬酸钾,使重铬酸钾摩尔浓度与稀硫酸溶液相等,并在1000~1400r/min的速率下边搅拌边向所得混合液中依次加入与重铬酸钾等摩尔量的硫杂环戊二烯及质量为重铬酸钾1.3~1.7倍的固体物料,并在20~35℃、1000~1300r/min的条件下搅拌反应50~80min;
III、待反应完毕后,对步骤II中所得的生成物组分进行离心分离,然后先后用去离子水及无水乙醇各对其洗涤3~5次,最后在30~45℃的温度下对其真空干燥处理,所得即为高效抗静电剂成品。
更进一步地,所述抗静电剂基材的制备方法为:
在8~12℃的恒温水浴环境下,依次向8~12mmol/L的氯金酸水溶液中加入与之等浓度且体积为其8~15倍的硝酸银水溶液及体积为氯金酸水溶液20~35%、浓度为0.2~0.32μg/L的改性纳米多孔无机微球水相分散液,然后快速向其中加入体积为氯金酸水溶液0.8~1.2倍、浓度为10~12mmol/L的4-(2-氨基乙基)-1,2-苯二酚水溶液;混合搅拌20~30min,然后用去离子水离心洗涤后再用去离子水重新悬浮,最终制得抗静电剂基材。
更进一步地,所述改性纳米多孔无机微球的制备方法为:
按0.4~0.5g/mL的固液比将纳米多孔无机微球超声分散在适量的去离子水中,然后向其中加入体积为去离子水0.8~1.2倍、浓度为3~4.5%的氯化亚锡的盐酸溶液中,并以500~600r/min的速率磁力搅拌20~30min;待搅拌完毕后,用去离子水对其离心清洗干净;然后对所得的纳米多孔无机微球进行镀金处理5~10h;镀金完毕后,用去离子水对纳米多孔无机微球进行离心清洗及干燥处理,所得即为改性纳米多孔无机微球成品。
更进一步地,所述镀金处理的工序为:按1.0~1.5g/mL的固液比将适量的纳米多孔无机微球投入适量的去离子水中,然后向其中加入质量为纳米多孔无机微球1~1.5倍的羟基氯化铵及体积为去离子水0.4~0.6%、浓度为0.45~0.55mol/L的氯金酸溶液,并以500~600r/min的速率磁力搅拌2~4h,最后用去离子水对其进行离心清洗及干燥处理,即完成镀金工序。
更进一步地,所述纳米多孔无机微球的制备方法为:
i、按1∶4~8的质量比将模数为3的水玻璃与适量的蒸馏水混合均匀,然后分别向所得的混合组分中加入质量为水玻璃0.4~0.6倍、浓度为30~40%的盐酸及质量为去离子水1~1.3倍的辛烷,经混合搅拌均匀,向所得的混合液中加入质量为其1.5~2.0%的Span80,并在350~450r/min的速率下快速搅拌,使之成为乳液;
ii、向所得乳液中加入质量为水玻璃0.5~1.6倍的十六烷基三甲氧基硅烷,并于30~50℃的温度下搅拌反应1~3h;待反应结束后,所得生成物组分经静置及过滤处理,所得固体微粉用己烷洗涤3~5次,然后在80~90℃的气氛下对固体微粉进行干燥处理,所得即为纳米多孔无机微球成品。
一种锂离子隔膜热复合保护膜的生产工艺,包括以下步骤:
步骤一、将上表层、芯层及下表层所用的各原料分别混合搅拌均匀,并分别将之输送至干燥塔内进行干燥处理;然后将各层所用原料投入相匹配的双螺旋挤出机中,并在245~260℃的温度下对将各层原料进行下熔融挤出;
步骤二、将步骤一中挤出的各熔融物料经平膜口缝隙挤出,并分别将之迅速贴附在激冷辊的表面使之形成固体铸片;其中,口模缝隙为2.5~2.8mm,激冷辊的水温为32~36℃,水槽的水温为32~36℃;
步骤三、对步骤二中所得的固体铸片依次进行预热、纵向拉伸及热定型处理;其中,预热温度为110~125℃,拉伸温度为90~11O℃,拉伸比为5~8倍,定型温度为95~115℃;
步骤四、对纵向拉伸处理后的固体铸片进行预热、横向拉伸及热定型处理,然后在30~40℃的温度下对其进行冷却处理;其中,预热温度为160~170℃,拉伸温度为150~165℃,拉伸比6~10倍,定型温度130~140℃;
步骤五、对经过上述工序处理后所得的薄膜进行在线测厚处理后,并对上表层及下表层进行电晕处理,使薄膜润湿张力≥37达因,然后对其进行收卷,所得为锂离子隔膜热复合保护膜半成品;
步骤六、将所得的锂离子隔膜热复合保护膜半成品在温度为28~36℃、相对湿度为65~75%RH的环境中进行时效处理2~3天,然后按要求将其分切成小卷,所得即为锂离子隔膜热复合保护膜成品。
所述锂离子隔膜热复合保护膜用于锂电池的封装用隔膜。
与现有技术相比,本发明的有益效果是:
1、本发明中以水玻璃、盐酸、辛烷及Span80为原料经搅拌均匀后向所得乳液中加入适量的十六烷基三甲氧基硅烷经搅拌反应后,最终制备出比表面积丰富的纳米多孔无机微球。然后将所得的纳米多孔无机微球浸渍在适量浓度的氯化亚锡的盐酸溶液中,而后对其表面进行镀金处理,使得纳米多孔无机微球的表面及其孔隙内被一层金银镀层包覆,被镀金银处理后的纳米多孔无机微球浸渍在含有氯金酸及硝酸银的混合溶液中,并向其中加入适量的4-(2-氨基乙基)-1,2-苯二酚水溶液,使得镀金后的纳米多孔无机微球表面及其孔隙的内壁中沉积生长出相当数量的纳米级锥刺结构,改善了其抗静电性能。而后将抗静电剂基材投入适量的硫酸溶液中,并加入适量的重铬酸钾及硫杂环戊二烯经搅拌反应后对其进行离心分离、洗涤及干燥处理后,最终在表面及内壁生长有丰富纳米级锥刺结构的改性纳米多孔无机微球表面包覆一层硫杂环戊二烯,有效地提高了高效抗静电剂的抗静电性能。
2、本发明中所制备的纳米多孔无机微球由于其本身具有多孔结构,使得其具有较好的抗静电性能。再者,在纳米多孔无机微球表面沉积一层金银金属薄膜,也使得纳米多孔无机微球具有更好的抗菌性能。所制备的高效抗静电剂的使用不仅能有效地改善锂离子隔膜热复合保护膜的抗静电性能,也在一定程度上提高了其抗菌性能,有效地延长了其使用寿命。另外,本发明所制备的高效抗静电剂表面的金属金银膜层及其本身具有的多孔结构之间的协同配合,进一步地改善了锂离子隔膜热复合保护膜的抗紫外老化性能,在一定程度上延长了其使用寿命。所述锂离子隔膜热复合保护膜用于锂电池的封装用隔膜领域。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
一种锂离子隔膜热复合保护膜,包括上表层、芯层及下表层;上表层所用原料按重量百分比计由91.5%的均聚聚丙烯、1.4%纳米二氧化钛及余量的纳米级碳酸钙组成;
芯层所用原料按重量百分比计由95.2%的均聚聚丙烯、1.3%高效抗静电剂及余量的油酸酰胺组成;
下表层所用所用原料重量百分比计由92.3%的三元共聚聚丙烯(三元共聚聚丙烯为乙烯-丙烯-1-丁烯三元共聚物)、1.0%纳米二氧化硅及余量的纳米级碳酸钙组成。
上表层厚度为0.9μm、芯层厚度为11μm、下表层厚度为1.2μm。
高效抗静电剂的制备方法包括以下步骤:
I、按0.01g/mL的固液比将抗静电剂基材投入适量的质量浓度为4%的硫酸溶液中,然后在800r/min的速率下搅拌反应40min;待反应完毕,经过滤及去离子水洗涤3次后,将所得固体物料保存备用;
II、向反应釜中注入适量浓度为0.04mol/L的稀硫酸溶液,然后向其中投入适量的重铬酸钾,使重铬酸钾摩尔浓度与稀硫酸溶液相等,并在1000r/min的速率下边搅拌边向所得混合液中依次加入与重铬酸钾等摩尔量的硫杂环戊二烯及质量为重铬酸钾1.3倍的固体物料,并在20℃、1000r/min的条件下搅拌反应50min;
III、待反应完毕后,对步骤II中所得的生成物组分进行离心分离,然后先后用去离子水及无水乙醇各对其洗涤3次,最后在30℃的温度下对其真空干燥处理,所得即为高效抗静电剂成品。
抗静电剂基材的制备方法为:
在8℃的恒温水浴环境下,依次向8mmol/L的氯金酸水溶液中加入与之等浓度且体积为其8倍的硝酸银水溶液及体积为氯金酸水溶液20%、浓度为0.2μg/L的改性纳米多孔无机微球水相分散液,然后快速向其中加入体积为氯金酸水溶液0.8倍、浓度为10mmol/L的4-(2-氨基乙基)-1,2-苯二酚水溶液;混合搅拌20min,然后用去离子水离心洗涤后再用去离子水重新悬浮,最终制得抗静电剂基材。
改性纳米多孔无机微球的制备方法为:
按0.4g/mL的固液比将纳米多孔无机微球超声分散在适量的去离子水中,然后向其中加入体积为去离子水0.8倍、浓度为3%的氯化亚锡的盐酸溶液中,并以500r/min的速率磁力搅拌20min;待搅拌完毕后,用去离子水对其离心清洗干净;然后对所得的纳米多孔无机微球进行镀金处理5h;镀金完毕后,用去离子水对纳米多孔无机微球进行离心清洗及干燥处理,所得即为改性纳米多孔无机微球成品。
镀金处理的工序为:按1.0g/mL的固液比将适量的纳米多孔无机微球投入适量的去离子水中,然后向其中加入质量为纳米多孔无机微球1倍的羟基氯化铵及体积为去离子水0.4%、浓度为0.45mol/L的氯金酸溶液,并以500r/min的速率磁力搅拌2h,最后用去离子水对其进行离心清洗及干燥处理,即完成镀金工序。
纳米多孔无机微球的制备方法为:
i、按1∶4的质量比将模数为3的水玻璃与适量的蒸馏水混合均匀,然后分别向所得的混合组分中加入质量为水玻璃0.4倍、浓度为30%的盐酸及质量为去离子水1倍的辛烷,经混合搅拌均匀,向所得的混合液中加入质量为其1.5%的Span80,并在350r/min的速率下快速搅拌,使之成为乳液;
ii、向所得乳液中加入质量为水玻璃0.5倍的十六烷基三甲氧基硅烷,并于30℃的温度下搅拌反应1h;待反应结束后,所得生成物组分经静置及过滤处理,所得固体微粉用己烷洗涤3次,然后在80℃的气氛下对固体微粉进行干燥处理,所得即为纳米多孔无机微球成品。
一种锂离子隔膜热复合保护膜的生产工艺,包括以下步骤:
步骤一、将上表层、芯层及下表层所用的各原料分别混合搅拌均匀,并分别将之输送至干燥塔内进行干燥处理;然后将各层所用原料投入相匹配的双螺旋挤出机中,并在245℃的温度下对将各层原料进行下熔融挤出;
步骤二、将步骤一中挤出的各熔融物料经平膜口缝隙挤出,并分别将之迅速贴附在激冷辊的表面使之形成固体铸片;其中,口模缝隙为2.5mm,激冷辊的水温为32℃,水槽的水温为32℃;
步骤三、对步骤二中所得的固体铸片依次进行预热、纵向拉伸及热定型处理;其中,预热温度为110℃,拉伸温度为90℃,拉伸比为5倍,定型温度为95℃;
步骤四、对纵向拉伸处理后的固体铸片进行预热、横向拉伸及热定型处理,然后在30℃的温度下对其进行冷却处理;其中,预热温度为160℃,拉伸温度为150℃,拉伸比6倍,定型温度130℃;
步骤五、对经过上述工序处理后所得的薄膜进行在线测厚处理后,并对上表层及下表层进行电晕处理,使薄膜润湿张力≥37达因,然后对其进行收卷,所得为锂离子隔膜热复合保护膜半成品;
步骤六、将所得的锂离子隔膜热复合保护膜半成品在温度为28℃、相对湿度为65%RH的环境中进行时效处理2天,然后按要求将其分切成小卷,所得即为锂离子隔膜热复合保护膜成品。
所述锂离子隔膜热复合保护膜用于锂电池的封装用隔膜。
实施例2
本实施例所提供的锂离子隔膜热复合保护膜的生产工艺和实施例1大致相同,其主要区别在于,所用原料的具体配比不同,具体为:
上表层所用原料按重量百分比计由92.0%的均聚聚丙烯、1.6%纳米二氧化钛及余量的纳米级滑石粉组成;
芯层所用原料按重量百分比计由96.0%的均聚聚丙烯、1.5%高效抗静电剂及余量的芥酸酰胺组成;
下表层所用所用原料重量百分比计由92.8%的三元共聚聚丙烯、1.3%纳米二氧化硅及余量的纳米级滑石粉组成。
实施例3
本实施例所提供的锂离子隔膜热复合保护膜的生产工艺和实施例1大致相同,其主要区别在于,所用原料的具体配比不同,具体为:
上表层所用原料按重量百分比计由92.8%的均聚聚丙烯、2.0%纳米二氧化钛及余量的纳米级碳酸钙组成;
芯层所用原料按重量百分比计由96.6%的均聚聚丙烯、1.8%高效抗静电剂及余量的油酸酰胺组成;
下表层所用所用原料重量百分比计由93.5%的三元共聚聚丙烯、1.5%纳米二氧化硅及余量的纳米级碳酸钙组成。
对比例1:本实施例所提供的锂离子隔膜热复合保护膜的制备方法和实施例1大致相同,其主要区别在于:本实施例中采用等量的十八烷基二乙醇胺代替高效抗静电剂;
对比例2:本实施例所提供的锂离子隔膜热复合保护膜的制备方法和实施例1大致相同,其主要区别在于:本实施例中采用等量的聚醚嵌段聚酰胺代替高效抗静电剂;
性能测试
分别将通过本发明中实施例1~3生产的锂离子隔膜热复合保护膜记作实验例1~3;通过对比例1~2生产的锂离子隔膜热复合保护膜记作对比例1~2;然后分别对实施例1~3及对比例1~2提供的锂离子隔膜热复合保护膜试样进行如下性能测试:
1、拉伸强度测定:采用英国LLOYD公司生产的型号为LRX01/2005的拉伸试验机对各组锂离子隔膜热复合保护膜试样的拉伸强度进行测定。
2、摩擦系数测定:采用日本Toyoseiki公司生产的型号为AN的摩擦系数测试仪对各组锂离子隔膜热复合保护膜试样的摩擦系数进行测定。
3、雾度测定:采用日本Nippon Denshouk公司生产的型号为NDH2000的雾度计对各组锂离子隔膜热复合保护膜试样的雾度进行测定。
4、光泽度测定:采用日本Nippon Denshouk公司生产的型号VG2000的光泽度计对各组锂离子隔膜热复合保护膜试样的光泽度进行测定。
5、抗紫外老化性能测定:按ASTM-D4329-2005标准,采用Lambda950型紫外-可见光分光测试,在23℃及65%RH的条件下对各组锂离子隔膜热复合保护膜的紫外透过率进行测定。
6、抗菌性能测定:按JIS2801:2006抗菌塑料抗菌性能试验方法及抗菌效果的测试标准分别对各组锂离子隔膜热复合保护膜的抗菌性能进行测定;其中,检测用菌为大肠杆菌ATCC 25922及金黄葡萄球菌ATCC 6538。
表1:各组锂离子隔膜热复合保护膜的物理性能检测数据;
注:表中的检验数据为时效3天后所测量得数据。
表2:各组锂离子隔膜热复合保护膜的抗静电、抗菌及抗紫外老化性能检测数据;
注:表中的检验数据为时效3天后所测量得数据。
通过对比及分析表1及表2中的相关数据可知,本发明所生产的锂离子隔膜热复合保护膜不仅具有优良的抗静电性能及抗菌性能,还具有一定的抗紫外老化性能;有效地保证了聚丙烯薄膜品质的同时也延长了其使用寿命。由此,表明本发明生产的锂离子隔膜热复合保护膜具有更广阔的市场前景,更适宜推广。
在本说明书的描述中,参考术语″一个实施例″、″示例″、″具体示例″等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (5)

1.一种锂离子隔膜热复合保护膜,包括上表层、芯层及下表层;其特征在于:所述上表层所用原料按重量百分比计由91.5~92.8%的均聚聚丙烯、1.4~2.0%纳米二氧化钛及余量的无机抗粘连剂组成;所述上表层厚度为0.9~1.0μm、芯层厚度为11~13μm、下表层厚度为1.2~1.6μm;
所述芯层所用原料按重量百分比计由95.2~96.6%的均聚聚丙烯、1.3~1.8%高效抗静电剂及余量的爽滑剂组成;
所述下表层所用原料重量百分比计由92.3~93.5%的三元共聚聚丙烯、1.0~1.5%纳米二氧化硅及余量的无机抗粘连剂组成;
所述高效抗静电剂的制备方法包括以下步骤:
I、按0.01~0.15g/mL的固液比将抗静电剂基材投入适量的质量浓度为4~7%的硫酸溶液中,然后在800~1000r/min的速率下搅拌反应40~60min;待反应完毕,经过滤及去离子水洗涤3~5次后,将所得固体物料保存备用;
II、向反应釜中注入适量浓度为0.04~0.08mol/L的稀硫酸溶液,然后向其中投入适量的重铬酸钾,使重铬酸钾摩尔浓度与稀硫酸溶液相等,并在1000~1400r/min的速率下边搅拌边向所得混合液中依次加入与重铬酸钾等摩尔量的硫杂环戊二烯及质量为重铬酸钾1.3~1.7倍的固体物料,并在20~35℃、1000~1300r/min的条件下搅拌反应50~80min;
III、待反应完毕后,对步骤II中所得的生成物组分进行离心分离,然后先后用去离子水及无水乙醇各对其洗涤3~5次,最后在30~45℃的温度下对其真空干燥处理,所得即为高效抗静电剂成品;
所述抗静电剂基材的制备方法为:
在8~12℃的恒温水浴环境下,依次向8~12mmol/L的氯金酸水溶液中加入与之等浓度且体积为其8~15倍的硝酸银水溶液及体积为氯金酸水溶液20~35%、浓度为0.2~0.32μg/L的改性纳米多孔无机微球水相分散液,然后快速向其中加入体积为氯金酸水溶液0.8~1.2倍、浓度为10~12mmol/L的4-(2-氨基乙基)-1,2-苯二酚水溶液;混合搅拌20~30min,然后用去离子水离心洗涤后再用去离子水重新悬浮,最终制得抗静电剂基材;
所述改性纳米多孔无机微球的制备方法为:
按0.4~0.5g/mL的固液比将纳米多孔无机微球超声分散在适量的去离子水中,然后向其中加入体积为去离子水0.8~1.2倍、浓度为3~4.5%的氯化亚锡的盐酸溶液中,并以500~600r/min的速率磁力搅拌20~30min;待搅拌完毕后,用去离子水对其离心清洗干净;然后对所得的纳米多孔无机微球进行镀金处理5~10h;镀金完毕后,用去离子水对纳米多孔无机微球进行离心清洗及干燥处理,所得即为改性纳米多孔无机微球成品;
所述镀金处理的工序为:
按1.0~1.5g/mL的固液比将适量的纳米多孔无机微球投入适量的去离子水中,然后向其中加入质量为纳米多孔无机微球1~1.5倍的羟基氯化铵及体积为去离子水0.4~0.6%、浓度为0.45~0.55mol/L的氯金酸溶液,并以500~600r/min的速率磁力搅拌2~4h,最后用去离子水对其进行离心清洗及干燥处理,即完成镀金工序;
所述纳米多孔无机微球的制备方法为:
i、按1∶4~8的质量比将模数为3的水玻璃与适量的蒸馏水混合均匀,然后分别向所得的混合组分中加入质量为水玻璃0.4~0.6倍、浓度为30~40%的盐酸及质量为去离子水1~1.3倍的辛烷,经混合搅拌均匀,向所得的混合液中加入质量为其1.5~2.0%的Span80,并在350~450r/min的速率下快速搅拌,使之成为乳液;
ii、向所得乳液中加入质量为水玻璃0.5~1.6倍的十六烷基三甲氧基硅烷,并于30~50℃的温度下搅拌反应1~3h;待反应结束后,所得生成物组分经静置及过滤处理,所得固体微粉用己烷洗涤3~5次,然后在80~90℃的气氛下对固体微粉进行干燥处理,所得即为纳米多孔无机微球成品。
2.根据权利要求1所述的一种锂离子隔膜热复合保护膜,其特征在于:所述无机抗粘连剂选用纳米级碳酸钙、纳米级滑石粉中的任意一种。
3.根据权利要求1所述的一种锂离子隔膜热复合保护膜,其特征在于:所述爽滑剂选用油酸酰胺、芥酸酰胺中的任意一种。
4.根据权利要求1~3中任一项所述的一种锂离子隔膜热复合保护膜的生产工艺,其特征在于,包括以下步骤:
步骤一、将上表层、芯层及下表层所用的各原料分别混合搅拌均匀,并分别将之输送至干燥塔内进行干燥处理;然后将各层所用原料投入相匹配的双螺旋挤出机中,并在245~260℃的温度下对将各层原料进行下熔融挤出;
步骤二、将步骤一中挤出的各熔融物料经平膜口缝隙挤出,并分别将之迅速贴附在激冷辊的表面使之形成固体铸片;其中,口模缝隙为2.5~2.8mm,激冷辊的水温为32~36℃,水槽的水温为32~36℃;
步骤三、对步骤二中所得的固体铸片依次进行预热、纵向拉伸及热定型处理;其中,预热温度为110~125℃,拉伸温度为90~110℃,拉伸比为5~8倍,定型温度为95~115℃;
步骤四、对纵向拉伸处理后的固体铸片进行预热、横向拉伸及热定型处理,然后在30~40℃的温度下对其进行冷却处理;其中,预热温度为160~170℃,拉伸温度为150~165℃,拉伸比6~10倍,定型温度130~140℃;
步骤五、对经过上述工序处理后所得的薄膜进行在线测厚处理后,并对上表层及下表层进行电晕处理,使薄膜润湿张力≥37达因,然后对其进行收卷,所得为锂离子隔膜热复合保护膜半成品;
步骤六、将所得的锂离子隔膜热复合保护膜半成品在温度为28~36℃、相对湿度为65~75%RH的环境中进行时效处理2~3天,然后按要求将其分切成小卷,所得即为锂离子隔膜热复合保护膜成品。
5.根据权利要求1~4任一项所述锂离子隔膜热复合保护膜的应用,其特征在于:用于锂电池的封装用隔膜。
CN202210289752.9A 2022-03-23 2022-03-23 一种锂离子隔膜热复合保护膜、生产工艺及其应用 Active CN114750493B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210289752.9A CN114750493B (zh) 2022-03-23 2022-03-23 一种锂离子隔膜热复合保护膜、生产工艺及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210289752.9A CN114750493B (zh) 2022-03-23 2022-03-23 一种锂离子隔膜热复合保护膜、生产工艺及其应用

Publications (2)

Publication Number Publication Date
CN114750493A CN114750493A (zh) 2022-07-15
CN114750493B true CN114750493B (zh) 2023-12-01

Family

ID=82327701

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210289752.9A Active CN114750493B (zh) 2022-03-23 2022-03-23 一种锂离子隔膜热复合保护膜、生产工艺及其应用

Country Status (1)

Country Link
CN (1) CN114750493B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104556057A (zh) * 2015-01-14 2015-04-29 泉州三欣新材料科技有限公司 一种纳米多孔轻质二氧化硅微球的制备方法
CN104553218A (zh) * 2015-01-13 2015-04-29 浙江凯利新材料股份有限公司 超低温热封双向拉伸聚丙烯薄膜及其制造方法
JP2016013668A (ja) * 2014-07-03 2016-01-28 信越ポリマー株式会社 帯電防止性離型フィルムの製造方法
CN112029128A (zh) * 2020-08-28 2020-12-04 合肥乐凯科技产业有限公司 一种抗静电聚酯薄膜及其制备方法
KR20220033233A (ko) * 2020-09-09 2022-03-16 포항공과대학교 산학협력단 리튬 금속 음극 보호막용 조성물 및 이를 이용한 리튬금속전지

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913825B2 (en) * 2001-09-20 2005-07-05 University Of Notre Dame Du Lac Process for making mesoporous silicate nanoparticle coatings and hollow mesoporous silica nano-shells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013668A (ja) * 2014-07-03 2016-01-28 信越ポリマー株式会社 帯電防止性離型フィルムの製造方法
CN104553218A (zh) * 2015-01-13 2015-04-29 浙江凯利新材料股份有限公司 超低温热封双向拉伸聚丙烯薄膜及其制造方法
CN104556057A (zh) * 2015-01-14 2015-04-29 泉州三欣新材料科技有限公司 一种纳米多孔轻质二氧化硅微球的制备方法
CN112029128A (zh) * 2020-08-28 2020-12-04 合肥乐凯科技产业有限公司 一种抗静电聚酯薄膜及其制备方法
KR20220033233A (ko) * 2020-09-09 2022-03-16 포항공과대학교 산학협력단 리튬 금속 음극 보호막용 조성물 및 이를 이용한 리튬금속전지

Also Published As

Publication number Publication date
CN114750493A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
CN111703159B (zh) 一种低温镭射模压用高镀铝牢度bopp基膜及其制备方法
CN112864528B (zh) 一种锂离子电池用双向拉伸涂覆微孔隔膜及其制备方法
CN109094159B (zh) 一种防雾抗菌bopp薄膜及其制备方法
CN111674134B (zh) 一种聚酰胺薄膜及其制备方法
WO2012062137A1 (zh) 一种多功能bopp烟用包装膜及其制造方法
CN112318891B (zh) 一种高阻隔抗菌尼龙复合薄膜及其制备方法
CN103707603B (zh) 双面热封双面防雾型bopp膜及其制备方法
CN112480659A (zh) 一种增韧型双向拉伸聚酰胺薄膜及其制备方法
CN104228250B (zh) 一种低表面能双向拉伸聚酯薄膜及其制备方法
CN114750493B (zh) 一种锂离子隔膜热复合保护膜、生产工艺及其应用
CN109134894A (zh) 一面疏水导电一面亲水绝缘的双层薄膜的制备方法
CN113071181A (zh) 一种耐霉菌改性沥青防水卷材及其制备方法
CN109278389B (zh) 一种免涂布双向拉伸聚丙烯冷封基膜及其制备方法
CN113650386A (zh) 阻氧膜及其制备方法及包含该阻氧膜的沥青防水卷材
CN116728928A (zh) 一种带消光功能的珠光膜及其制备方法
CN117604774A (zh) 一种疏水性聚酯胎基布、制备方法及防水卷材
CN106626642B (zh) 爽滑不粘eva复合薄膜
CN102971366B (zh) 袋用尼龙膜
CN106550800A (zh) 聚烯烃大棚膜及其制备方法
CN109825076A (zh) 一种低吸水率、高消光的聚酰胺薄膜及其制备方法
CN115536892A (zh) 一种高阻氧bopet膜及其制备方法
CN112549719A (zh) 一种高阻隔双向拉伸聚酰胺改色膜及其制备方法
CN109438888B (zh) 一种不同立构含量的聚乙烯醇系膜及其制备方法
CN106252564A (zh) 一种高穿刺强度锂离子电池隔膜的制备方法
JP2000239522A (ja) フィルム用ポリアミド樹脂組成物、その製造方法及び2軸延伸フィルム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 350300 East side of Fuju Road, Puwei Village, Yinxi Street, Fuqing City, Fuzhou City, Fujian Province

Applicant after: Furong New Materials Co.,Ltd.

Address before: 350300 Zhushan village, Xilou village, Yinxi street, Fuqing City, Fuzhou City, Fujian Province

Applicant before: Fujian Furong New Material Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant