CN114744935A - 外转子永磁同步电机无位置传感器控制系统及控制方法 - Google Patents

外转子永磁同步电机无位置传感器控制系统及控制方法 Download PDF

Info

Publication number
CN114744935A
CN114744935A CN202210324968.4A CN202210324968A CN114744935A CN 114744935 A CN114744935 A CN 114744935A CN 202210324968 A CN202210324968 A CN 202210324968A CN 114744935 A CN114744935 A CN 114744935A
Authority
CN
China
Prior art keywords
observer
permanent magnet
locked loop
output
extended state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210324968.4A
Other languages
English (en)
Inventor
金石
顾家伟
张岳
王皓
孙鹏
张兆宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Shenyang University of Technology
Original Assignee
Shandong University
Shenyang University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University, Shenyang University of Technology filed Critical Shandong University
Priority to CN202210324968.4A priority Critical patent/CN114744935A/zh
Publication of CN114744935A publication Critical patent/CN114744935A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0007Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using sliding mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明属于外转子永磁同步电机无位置传感器控制系统及控制方法,基于两相静止αβ坐标系下的电压方程中的扩展反电动势分量中的永磁体磁链在两相静止αβ坐标系下的分量‑ψfsinθe及ψfcosθe作为滑模观测器的重构分量,并将估计的永磁体磁链分量后续送入带补偿机制的双线性扩张状态观测器锁相环中,并将估计的扰动送入带补偿机制的变观测器系数双线性扩张状态观测器锁相环,带补偿机制的变观测器系数双线性扩张状态观测器锁相环负责估计转子位置、估计转速的输出。本发明可运行在包括零低速范围内的全运行范围内,并有良好的动态性能及抗扰动能力,在斜坡扰动作用下也能提供准确的转子位置信息。

Description

外转子永磁同步电机无位置传感器控制系统及控制方法
技术领域
本发明属于永磁同步电机无位置传感器领域,尤其涉及一种适用于外转子永磁同步电机全运行范围无位置传感器控制系统及控制方法,以及应用无位置传感器控制系统及控制方法的最大转矩电流比控制系统。
背景技术
外转子永磁同步电机因其高效节能、结构简单、起动转矩大等特点而被广泛用于矿用传输带、新能源汽车、球磨机等领域中,由于上述领域工作环境恶劣,传感器故障率较高,传感器的故障将导致整个控制系统的失控,导致成本的增加与鲁棒性的降低,为解决上述问题,无位置传感器控制算法被提出,其中,滑模观测器因其结构简单、对系统参数变化不敏感、抗外部扰动能力强等优点被广泛应用于永磁同步电机的无位置传感控制中,传统的滑模观测器采用反电动势作为重构量,反电动势同电机电角速度成正比,当电机运行于额定转速或中高速运行阶段时,反电动势较大,传统的滑模观测器能获得较好的观测性能,然而当电机运行于零低速阶段时,由于反电动势较小,反电动势信号信噪比较低,难以提取出准确的转子位置信息,针对上述问题,学术界和工业界进行了大量研究,现有的解决方案主要包括下述几种:
1、电机起动阶段采用开环控制,当电机转速上升到中高速阶段时,切换为闭环控制,此时电机反电动势较大,滑模观测器能获得较好的观测性能。
2、在零低速阶段采用高频信号注入法,在中高速阶段切换至滑模观测器。
然而,上述两种方法存在着一些难以克服的缺点:开环控制性能较差,对于对控制精度要求较高的场合难以符合其要求,而高频信号注入法存在不可避免的噪声问题,与此同时,切换过程中,不可避免地出现转速、转矩的波动,某些情况下甚至会导致切换失败,某些控制精度要求较高的场合下同样无法符合要求。
终上所述,传统滑模观测器在低速阶段观测性能差的问题本身并没有被改善,而切换控制方案又引入了新的难题,如何让滑模观测器能有效运行于电机低速亟待解决。
与此同时,传统滑模观测器存在抖振现象,学术界和工业界对抑制抖振问题进行了大量研究,现有的解决方案主要包括下述几种:
1、边界层法:传统滑模观测器采用符号函数作为切换函数,导致滑模观测器重构量中包含高频成分,需要通过低通滤波器滤除重构量中的高频成分,然而低通滤波器的使用导致重构量幅值衰减、相位延迟,使输出转子位置、转速信息误差增大,为避免低通滤波器的使用同时抑制抖振,现有研究多采用sigmoid函数、tanh函数、sat函数代替符号函数,有效的抑制了抖振。
2、滤波器法:采用二阶广义积分器、复系数滤波器、陷波滤波器等滤波器对α轴反电动势eα、β轴反电动势eβ进行滤波,保留反电动势中的基波成分而滤除反电动势中的高频信号成分。
3、非线性滑模面法:采用包括超螺旋滑模面、积分滑模面、终端滑模面、分数阶滑模面、非奇异终端滑快速滑模面等高阶滑模面代替传统滑模面,高阶滑模面一般包含积分环节,既能缩小稳态误差又能有效的抑制了抖振。
终上所述,上述方法第一种方案和第三种方案具有普遍性,能有效的抑制抖振,但是第一种方案替换了sign函数后鲁棒性降低,抗扰动能力下降,与此同时第二种方案中需要用到电机电角速度的频率,在低速下,基于反电动势的滑模观测器估计电角速度准确性较差,滤波器滤波效果较差,仅在电机运行于中高速阶段滤波效果较好。然而,值得一提的是,抖振大小同滑模增益k密切相关,减小满足稳定性要求的k的取值范围才能从根本上抑制抖振现象。
此外,锁相环通常因为其结构简单、性能优异的特点而被广泛应用于基于反电动势的滑模观测器中,然而该结构存在电机反转时存在180°估计误差、动态性能差、系统带宽随永磁体磁链、电机电角速度变化而变化、抗扰动能力差等问题。
由上可知,滑模观测器零低速范围内无法使用、反转时存在180°估计误差、抖振现象严重、抗扰动能力差、动态性能差等是基于反电动势的滑模观测器存在的主要问题,亟需提出一套可行的解决方案。
发明内容
发明目的:
本发明提供一种外转子永磁同步电机全运行范围无位置传感器控制系统及控制方法,其目的就是解决基于反电动势的滑模观测器在零低速下观测器失效、抖振现象严重、动态性能差、抗扰动能力差、反转存在180°估计误差等问题,实现全运行范围范围内的无位置传感器算法。
技术方案:
一种外转子永磁同步电机无位置传感器控制系统,该无位置传感器控制系统包括闭环连接的永磁体磁链分量的滑模观测器和带补偿机制的双线性扩张状态观测器锁相环,带补偿机制的双线性扩张状态观测器锁相环由定观测器系数扩张状态观测器锁相环和变观测器系数扩张状态观测器锁相环组成,永磁体磁链分量的滑模观测器的输出端分别与定观测器系数扩张状态观测器锁相环和变观测器系数扩张状态观测器锁相环的输入端连接,定观测器系数扩张状态观测器锁相环的输出端与变观测器扩张状态系数观测器锁相环的输入端连接,变观测器系数扩张状态观测器锁相环的输出端分别与永磁体磁链分量的滑模观测器、Park电流坐标变换模块和转速PI控制器连接。
一种外转子永磁同步电机无位置传感器控制系统的控制方法,将直轴电流id、交轴电流iq、α轴电压uα、β轴电压uβ、α轴电流iα、β轴电流iβ、带补偿机制的双线性扩张状态观测器锁相环输出的估计电角速度
Figure BDA0003573047420000021
估计电角度
Figure BDA0003573047420000022
均输入至永磁体磁链分量的滑模观测器,经过永磁体磁链分量的滑模观测器内部的运算输出重构变量-ψfsinθe和ψfcosθe,重构变量-ψfsinθe和ψfcosθe输入至带补偿机制的双线性扩张状态观测器锁相环,带补偿机制的双线性扩张状态观测器锁相环输出的估计电机电角速度
Figure BDA0003573047420000031
除以外转子永磁同步电机的极对数得到估计机械角速度ωm
进一步的,永磁体磁链分量的滑模观测器内部的运算为:
tsinθe重构过程Clark电压坐标变换模块输出的α轴电压uα减去基于永磁体磁链分量的滑模观测器的输出量与变观测器系数扩张状态观测器锁相环输出的估计电角速度
Figure BDA0003573047420000032
的绝对值的乘积,做差后乘以直轴电感的倒数1/Ld得到
Figure BDA0003573047420000033
同包含跟踪微分器的
Figure BDA0003573047420000034
第一物理量重构估计部分相加,相加后得到
Figure BDA0003573047420000035
之后将
Figure BDA0003573047420000036
减去变观测器系数扩张状态观测器锁相环输出的估计电角速度
Figure BDA0003573047420000037
与Clark电流坐标变换模块输出的β轴电流iβ的乘积后乘直轴电感和交轴电感做差后除以直轴电感的值(Ld-Lq)/Ld,得到
Figure BDA0003573047420000038
将其同定子电阻同直轴电感的商的倒数-Rs/Ld和α轴估计电流
Figure BDA0003573047420000039
的乘积想加得到
Figure BDA00035730474200000310
Figure BDA00035730474200000311
之后对其进行积分得到α轴估计电流
Figure BDA00035730474200000312
将得到的
Figure BDA00035730474200000313
同Clark电流坐标变换模块输出的α轴电流iα做差得到
Figure BDA00035730474200000314
Figure BDA00035730474200000315
通过sigmoid函数后乘以滑模增益k得到估计的永磁体磁链分量-ψfsinθe
ψfcosθe重构过程,Clark电压坐标变换模块输出的β轴电压uβ减去基于永磁体磁链分量的滑模观测器的输出量与变观测器观测器锁相环输出的估计电角速度
Figure BDA00035730474200000316
的绝对值的乘积,做差后乘以直轴电感的倒数1/Ld得到
Figure BDA00035730474200000317
同包含跟踪微分器的
Figure BDA00035730474200000318
第二物理量重构估计部分相减,相减后得到
Figure BDA00035730474200000319
Figure BDA00035730474200000320
之后将
Figure BDA00035730474200000321
加上变观测器扩张状态观测器锁相环输出的估计电角速度
Figure BDA00035730474200000322
与Clark电流坐标变换模块输出的α轴电流iα的乘积后乘直轴电感和交轴电感做差后除以直轴电感的值(Ld-Lq)/Ld,得到
Figure BDA00035730474200000323
Figure BDA00035730474200000324
将其同定子电阻同直轴电感的商的倒数-Rs/Ld
Figure BDA00035730474200000325
的乘积想加得到
Figure BDA00035730474200000326
之后对其进行积分得到β轴估计电流
Figure BDA00035730474200000327
将得到的
Figure BDA00035730474200000328
同Clark电流坐标变换模块输出的β轴电流iβ做差得到
Figure BDA00035730474200000339
Figure BDA00035730474200000329
通过sigmoid函数后乘以滑模增益k得到估计的永磁体磁链分量ψfcosθe
进一步的,滑模增益k取值为永磁体磁链ψf数值的1.5倍至2倍。
进一步的,定观测器系数扩张状态观测器锁相环内部运算为:将基于永磁体磁链分量的滑模观测器输出的重构变量-ψfsinθe
Figure BDA00035730474200000330
的cos运算即
Figure BDA00035730474200000331
相乘得到
Figure BDA00035730474200000332
将基于永磁体磁链分量的滑模观测器输出的重构变量ψfcosθe
Figure BDA00035730474200000333
的sin运算即
Figure BDA00035730474200000334
相乘得到
Figure BDA00035730474200000335
Figure BDA00035730474200000336
Figure BDA00035730474200000337
分别取反后相加得到
Figure BDA00035730474200000338
将其送至双四阶线性扩张状态观测器锁相环的补偿机制switch中,将补偿机制switch的输出除以永磁体磁链ψf后送至四阶线性扩张状态观测器中,四阶线性扩张状态观测器观测器系数β01、β02、β03、β04分别设置为4ωo、6ωo 2、4ωo 3、ωo 4,其中ωo为固定常数,定观测器系数扩张状态观测器锁相环输出最终估计的扰动至变观测器系数扩张状态观测器锁相环输入侧;
变观测器系数扩张状态观测器锁相环内部运算为:将基于永磁体磁链分量的滑模观测器输出的重构变量-ψfsinθe
Figure BDA0003573047420000041
的cos运算即
Figure BDA0003573047420000042
相乘得到
Figure BDA0003573047420000043
将基于永磁体磁链分量的滑模观测器输出的重构变量ψfcosθe
Figure BDA0003573047420000044
的sin运算即
Figure BDA0003573047420000045
相乘得到
Figure BDA0003573047420000046
Figure BDA0003573047420000047
Figure BDA0003573047420000048
分别取反后相加得到
Figure BDA0003573047420000049
将其送至双四阶线性扩张状态观测器锁相环的补偿机制switch中,变观测器系数扩张状态观测器锁相环的补偿机制switch的输出除以永磁体磁链ψf后送至四阶线性扩张状态观测器中,四阶线性扩张状态观测器的观测器系数β05、β06、β07、β08分别为4(a|ωm|+b)、6(a|ωm|+b)2、4(a|ωm|+b)3、(a|ωm|+b)4,其中,a、b均为大于零的常数,最终,变观测器系数扩张状态观测器锁相环(17)输出估计电角速度
Figure BDA00035730474200000410
估计机械角速度ωm、估计转子位置
Figure BDA00035730474200000411
进一步的,补偿机制switch进行转子角度估计误差的补偿方法为:在输入量
Figure BDA00035730474200000412
Figure BDA00035730474200000413
条件下,补偿机制switch输出
Figure BDA00035730474200000414
在输入量
Figure BDA00035730474200000415
Figure BDA00035730474200000416
条件下,补偿机制switch输出
Figure BDA00035730474200000417
在输入量
Figure BDA00035730474200000418
条件下,补偿机制switch输出
Figure BDA00035730474200000419
一种使用外转子永磁同步电机无位置传感器控制系统的控制方法的最大转矩电流比控制系统,参考转速发生器的输出端与无位置传感器控制系统输出端均与转速PI控制器的输入端连接,转速PI控制器输出端与最大转矩电流比控制器的输入端连接,最大转矩电流比控制器的输出端与Park电流坐标变换模块的输出端均与q轴电流PI控制器和d轴电流PI控制器的输入端连接,q轴电流PI控制器和d轴电流PI控制器的输出端与反Park电压坐标变换模块的输入端连接,反Park电压坐标变换模块的输出端与空间矢量脉宽调制SVPWM模块的输入端连接,空间矢量脉宽调制SVPWM模块的输出端与逆变器的输入端连接,逆变器的输出端与电压/电流传感器输入端连接,电压/电流传感器的输出端分别与Clark电流坐标变换模块、Clark电压坐标变换模块和外转子永磁电机的输入端连接,Clark电流坐标变换模块的输出端分别与Park电流坐标变换模块和无位置传感器控制系统的输入端连接,Clark电压坐标变换模块的输出端与无位置传感器控制系统的输入端连接,Park电流坐标变换模块与无位置传感器控制系统闭环连接。
本发明的有益效果是:
1.针对基于反电动势的滑模观测器配合锁相环的无位置传感器控制算法在零低速运行范围内估算精度差、抖振严重、抗扰动能力差、反转时存在180°估计误差、动态性能差、系统带宽随永磁体磁链和电机电角速度变化而变化等一系列问题,基于永磁体磁链的滑模观测器由于采用永磁体磁链分量在αβ坐标系的分量作为重构量,在包括零低速范围内的全运行范围内,重构量相对稳定,在全速范围内均能准确的转子位置信息,克服了零低速运行范围内估算精度差的问题。
2.采用永磁体磁链分量作为重构量时,滑模增益k缩小为基于反电动势的滑模观测器的1/ωe倍,从根本上有效的抑制了抖振,能提供较为光滑的永磁体磁链分量波形,且避免了低通滤波器的使用,保持了较强的鲁棒性。
3.双四阶线性扩张状态观测器锁相环中的补偿机制switch,用于克服外转子永磁电机反转时传统锁相环存在180°角度估计误差的问题,补偿机制switch原理为:对存在180°估计误差的区间进行角度补偿,对估计误差为零区间不进行补偿操作,以克服传统锁相环电机反转存在180°估计误差的问题。
4.带补偿机制的双四阶线性扩张状态观测器锁相环用于提取永磁体磁链分量中的转子位置信息和转速信息,带补偿机制的双四阶线性扩张状态观测器锁相环包括两部分:定观测器系数观测器锁相环、变观测器系数观测器锁相环。定观测器系数观测器锁相环估计主要扰动,并将估计的主要扰动输出至变观测器系数观测器锁相环中,变观测器系数观测器锁相环负责最终的估计转速及估计转子位置的输出。
5.本发明不采用切换控制策略,在包括零低速范围在内的全运行范围内均采用基于永磁体磁链的滑模观测器,避免了现有方法切换过程中导致的转速、负载转矩波动问题;
附图说明
图1为本发明的外转子永磁同步电机无位置传感器控制结构示意图;
图2为本发明基于永磁体磁链分量的外转子永磁同步电机滑模观测器原理示意图;
图3为本发明带补偿机制双四阶线性扩张状态观测器锁相环原理示意图;
图4为本发明补偿机制switch的原理图;
图5为采用本发明的无位置传感器控制算法的外转子永磁同步电机转速跟踪对比图;
图6为采用本发明的无位置传感器控制算法的外转子永磁同步电机转速跟踪误差图;
图7为采用本发明的无位置传感器控制算法的外转子永磁同步电机位置跟踪对比图;
图8为采用本发明的无位置传感器控制算法的外转子永磁同步电机位置跟踪误差图;
附图标记说明:
1.参考转速发生器;2.转速PI控制器;3.最大转矩电流比控制器;4.q轴电流PI控制器;5.d轴电流PI控制器;6.反Park电压坐标变换模块;7.空间矢量脉宽调制SVPWM模块;8.逆变器;9.电压/电流传感器;10.外转子永磁同步电机;11.Clark电流坐标变换模块;12.Clark电压坐标变换模块;13.Park;14.无位置传感器控制系统;15.基于永磁体磁链分量的滑模观测器;16.定观测器系数扩张状态观测器锁相环;17.变观测器系数扩张状态观测器锁相环;18.带补偿机制的双线性扩张状态观测器锁相环;19.第一物理量重构估计部分;20.第二物理量重构估计部分;21.补偿机制switch。
具体实施方式
以下结合说明书附图更详细的说明本发明。
本控制方法主要包括基于两相静止αβ坐标系下的扩展反电动势中的永磁体磁链分量中的滑模观测器15及带补偿机制的双线性扩张状态观测器锁相环18组成,利用扩展反电动势中的永磁体磁链在全运行范围内相对稳定的特点,通过滑模控制算法重构永磁体磁链在两相静止αβ坐标系下的分量-ψfsinθe及ψfcosθe,并将重构后获得的永磁体磁链分量送入带补偿机制的双四阶线性扩张状态观测器18中,双四阶线性扩张状态观测器18包含两个部分:定观测器系数四阶扩张状态观测器16和变观测器系数四阶扩张状态观测器17,其中定观测器系数四阶扩张状态观测器16负责主要扰动的估计,并将估计的主要扰动送入变观测器系数四阶扩张状态观测器17中,变观测器系数四阶状态观测器17负责最终外转子永磁同步电机10估计转速、转子位置信息的输出,其观测器系数中包含同电机电角速度成一次函数关系的量,在零低速阶段扩张状态观测器观测器系数较小,能有效的抑制抖振,在中高速阶段观测器系数较大,提供更好的动态性能及抗扰动性能。其中,锁相环补偿机制switch21对存在180°估计误差的区间进行角度误差的补偿,以克服电机反转时存在180°估计误差的问题。通过上述控制策略避免了现有的两套无位置传感器算法的切换问题,实现包括零低速范围在内的全运行运行范围内的无位置传感器控制算法。
本发明中各字母含义为:id为直轴电流,iq为交轴电流,uα为α轴电压,iα为α轴电流,uβ为β轴电压,iβ为β轴电流,ψf为永磁体磁链,ωm为估计机械角速度,
Figure BDA0003573047420000061
为估计电角速度,
Figure BDA0003573047420000062
为估计电角度,-ψfsinθe为α轴重构变量,ψfcosθe为β轴重构变量,Ld为直轴电感,Lq为交轴电感,
Figure BDA0003573047420000063
为α轴估计电流,
Figure BDA0003573047420000064
为β轴估计电流,θe为电角度,ωe为电角速度,ωm*为参考转速,iN *为总参考电流,id *为d轴参考电流,iq *为q轴参考电流,ud *为d轴参考电压,uq *为q轴参考电压,uabc为三相电压,iabc为三相电流,k为滑模增益,
Figure BDA0003573047420000065
为第一物理量重构估计部分,
Figure BDA0003573047420000066
为第二物理量重构估计部分,β01、β02、β03、β04为定观测器系数扩张状态观测器锁相环系数,β05、β06、β07、β08为变观测器系数扩张状态观测器锁相环系数。
本发明提出了一种基于永磁体磁链分量的全运行范围无位置传感器控制系统,其结构示意图如图1中14所示,无位置传感器控制系统14包括闭环连接的永磁体磁链分量的滑模观测器15和带补偿机制的双线性扩张状态观测器锁相环18,带补偿机制的双线性扩张状态观测器锁相环18由定观测器系数观测器锁相环16和变观测器系数观测器锁相环17组成,永磁体磁链分量的滑模观测器15的输出端分别与定观测器系数观测器锁相环16和变观测器系数观测器锁相环17的输入端连接,定观测器系数观测器锁相环16的输出端与变观测器系数观测器锁相环17的输入端连接,变观测器系数观测器锁相环17的输出端分别与永磁体磁链分量的滑模观测器15、Park电流坐标变换模块13和转速PI控制器2连接。
一种外转子永磁同步电机全运行范围无位置传感器控制系统的控制方法,将直轴电流id、交轴电流iq、α轴电压uα、β轴电压uβ、α轴电流iα、β轴电流iβ、带补偿机制的双线性扩张状态观测器锁相环18输出的估计电角速度
Figure BDA0003573047420000067
估计电角度
Figure BDA0003573047420000068
均输入至永磁体磁链分量的滑模观测器(5,经过永磁体磁链分量的滑模观测器15内部的运算输出重构变量-ψfsinθe和ψfcosθe,重构变量-ψfsinθe和ψfcosθe输入至带补偿机制的双线性扩张状态观测器锁相环18,带补偿机制的双线性扩张状态观测器锁相环18输出的估计电机电角速度
Figure BDA0003573047420000069
与参考转速发生器1输出端生成的给定转速做差,差值输入至转速PI控制器2。
图2为本发明外转子永磁同步电机10基于永磁体磁链分量的滑模观测器15原理示意图,其中,输入变量分别为:Park电流坐标变换模块13输出的直轴电流id、Park电流坐标变换模块13输出的交轴电流iq、Clark电压坐标变换模块12输出的α轴电压uα、Clark电压坐标变换模块12输出的β轴电压uβ、Clark电流坐标变换模块11输出的α轴电流iα、Clark电流坐标变换模块11输出的β轴电流iβ、变观测器系数四阶线性扩张状态观测器17输出的估计电角速度
Figure BDA0003573047420000071
变观测器系数四阶线性扩张状态观测器17输出的电机估计电角度
Figure BDA0003573047420000072
基于永磁体磁链分量的滑模观测器15输出变量分别为:-ψfsinθe和ψfcosθe。其中,基于永磁体磁链的滑模观测器15选择扩展反电动势
Figure BDA0003573047420000073
作为重构分量,分别重构扩展反电动势在α轴、β轴扩展反电动势分量
Figure BDA0003573047420000074
Figure BDA0003573047420000075
中的-ψfsinθe及ψfcosθe分量,并将通过基于永磁体磁链分量的滑模观测器15估计出的-ψfsinθe及ψfcosθe分量送入带补偿机制的双四阶线性扩张状态观测器锁相环18中。
基于永磁体磁链分量的滑模观测器15具体实现方式为:
永磁体磁链分量的滑模观测器15内部的运算为:采用扩展反电动势
Figure BDA0003573047420000076
Figure BDA0003573047420000077
中的-ψfsinθe及ψtcosθe分量作为重构变量,并在
Figure BDA0003573047420000078
Figure BDA0003573047420000079
的重构过程中,采用跟踪微分器TD实施
Figure BDA00035730474200000710
的重构,变量重构中所需的转子位置信息及转速信息通过下一环节的变观测器系数观测器锁相环17反馈获得,根据Lyapunov稳定判断可知满足稳定性要求的滑模增益k的取值大于永磁体磁链ψf的数值,一般为永磁体磁链ψf的1.5~2倍,较小的滑模增益k有利于抑制抖振,较大的滑模增益k有利于提升动态性能,边界层函数设置为sigomoid函数。
fsinθe重构过程,Clark电压坐标变换模块12输出的α轴电压uα减去基于永磁体磁链分量的滑模观测器15的输出量与变观测器系数四阶线性扩张状态观测器17输出的估计电角速度
Figure BDA00035730474200000711
的绝对值的乘积,做差后乘以1/Ld得到
Figure BDA00035730474200000712
同包含跟踪微分器的
Figure BDA00035730474200000713
第一物理量重构估计部分19相加,相加后得到
Figure BDA00035730474200000714
之后将
Figure BDA00035730474200000715
减去变观测器系数四阶线性扩张状态观测器17输出的估计电角速度
Figure BDA00035730474200000716
与Clark电流坐标变换模块11输出的β轴电流iβ的乘积后乘(Ld-Lq)/Ld,得到
Figure BDA00035730474200000717
将其同-Rs/Ld
Figure BDA00035730474200000718
的乘积想加得到
Figure BDA00035730474200000719
之后对其进行积分得到
Figure BDA00035730474200000720
将得到的
Figure BDA00035730474200000721
同Clark电流坐标变换模块11输出的α轴电流iα做差得到
Figure BDA00035730474200000722
Figure BDA00035730474200000723
通过sigmoid函数后乘以滑模增益k得到估计的永磁体磁链分量-ψfsinθe
ψfcosθe重构过程,Clark电压坐标变换模块12输出的β轴电压uβ减去基于永磁体磁链分量的滑模观测器15的输出量与变观测器系数四阶线性扩张状态观测器17输出的估计电角速度
Figure BDA00035730474200000724
的绝对值的乘积,做差后乘以1/Ld得到
Figure BDA00035730474200000725
同包含跟踪微分器的
Figure BDA00035730474200000726
第二物理量重构估计部分20相减,相减后得到
Figure BDA00035730474200000727
之后将
Figure BDA00035730474200000728
加上变观测器系数四阶线性扩张状态观测器17输出的估计电角速度
Figure BDA0003573047420000081
与Clark电流坐标变换模块11输出的α轴电流iα的乘积后乘(Ld-Lq)/Ld,得到
Figure BDA0003573047420000082
将其同-Rs/Ld
Figure BDA0003573047420000083
的乘积想加得到
Figure BDA0003573047420000084
之后对其进行积分得到
Figure BDA0003573047420000085
将得到的
Figure BDA0003573047420000086
同Clark电流坐标变换模块11输出的β轴电流iβ做差得到
Figure BDA0003573047420000087
Figure BDA0003573047420000088
通过sigmoid函数后乘以滑模增益k得到估计的永磁体磁链分量ψfcosθe
带补偿机制的双线性扩张状态观测器锁相环18包括定观测器系数四阶线性扩张状态观测器16和带补偿机制的变观测器系数四阶扩张状态观测器锁相环17,基于永磁体磁链分量的滑模观测器15的输出-ψfsinθe及ψfcosθe被送至定观测器系数观测器锁相环16及带补偿机制的变观测器系数四阶扩张状态观测器锁相环17中进行并行运算,定观测器系数四阶线性扩张状态观测器16负责主要扰动、电机参数变化、负载转矩、未建模误差等扰动的估计,并将估计的扰动送至带补偿机制的变观测器系数四阶扩张状态观测器锁相环17中,带补偿机制的变观测器系数四阶扩张状态观测器锁相环17负责最终的估计转速及估计转子位置信息的输出,其具有良好的动态性能及抗扰动能力,在斜坡形式扰动及斜坡给定转速下均能提供准确的转子位置信息及转速信息。通过上述三个主要模块:基于永磁体磁链分量的滑模观测器15、定观测器系数观测器锁相环16、带补偿机制的变观测器系数四阶线性状态观测器锁相环17,实现包括零低速范围在内的全运行范围的无位置传感器控制算法。
图3为本发明带补偿机制双四阶线性扩张状态观测器锁相环18原理示意图,其中,输入变量分别为:Park电流坐标变换模块13输出的直轴电流id、Park电流坐标变换模块13输出的交轴电流iq、基于永磁体磁链分量的滑模观测器15输出的重构变量:-ψfsinθe和ψfcosθe
带补偿机制的双四阶线性扩张状态观测器锁相环18具体实现方式为:
带补偿机制的双四阶线性扩张状态观测器锁相环18主要包含两部分,首先对第一部分的实现方式定观测器系数观测器锁相环16实现方式进行阐述,定观测器系数四阶线性扩张状态观测器锁相环16输入侧变量包括:Park电流坐标变换模块13输出的直轴电流id、Park电流坐标变换模块13输出的交轴电流iq、基于永磁体磁链分量的滑模观测器15输出的重构变量:-ψfsinθe和ψfcosθe。首先,将基于永磁体磁链分量的滑模观测器15输出的重构变量-ψfsinθe
Figure BDA0003573047420000089
的cos运算即
Figure BDA00035730474200000810
相乘得到
Figure BDA00035730474200000811
将基于永磁体磁链分量的滑模观测器15输出的重构变量ψfcosθe
Figure BDA00035730474200000812
的cos运算即
Figure BDA00035730474200000813
相乘得到
Figure BDA00035730474200000814
Figure BDA00035730474200000815
Figure BDA00035730474200000816
分别取反后相加得到
Figure BDA00035730474200000817
将其送至双四阶线性扩张状态观测器锁相环的补偿机制switch21中(图4),在补偿机制switch21的输入量满足
Figure BDA00035730474200000818
条件下,补偿机制switch21输出
Figure BDA00035730474200000819
在补偿机制switch21的输入量满足
Figure BDA00035730474200000820
条件下,补偿机制switch21输出
Figure BDA00035730474200000821
在补偿机制switch21的输入量满足
Figure BDA00035730474200000822
条件下,补偿机制switch21输出
Figure BDA00035730474200000823
将定观测器系数四阶线性扩张状态观测器锁相环16的补偿机制switch21的输出除以永磁体磁链ψf后送至四阶线性扩张状态观测器中,四阶线性扩张状态观测器观测器系数β01、β02、β03、β04分别设置为4ωo、6ωo 2、4ωo 3、ωo 4,其中ωo为固定常数,定观测器系数观测器锁相环16输出最终估计的扰动至变观测器系数四阶线性扩张状态观测器17输入侧。
带补偿机制的双四阶线性扩张状态观测器锁相环18的第二部分实现方式如下,变观测器系数四阶线性扩张状态观测器17输入侧变量包括:Park电流坐标变换模块13输出的直轴电流id、Park电流坐标变换模块13输出的交轴电流iq、基于永磁体磁链分量的滑模观测器15输出的重构变量:-ψfsinθe和ψfcosθe、定观测器系数观测器锁相环16输出的估计扰动。首先,将基于永磁体磁链分量的滑模观测器15输出的重构变量-ψfsinθe
Figure BDA0003573047420000091
的cos运算即
Figure BDA0003573047420000092
相乘得到
Figure BDA0003573047420000093
将基于永磁体磁链分量的滑模观测器15输出的重构变量ψfcosθe
Figure BDA0003573047420000094
的cos运算即
Figure BDA0003573047420000095
相乘得到
Figure BDA0003573047420000096
Figure BDA0003573047420000097
Figure BDA0003573047420000098
分别取反后相加得到
Figure BDA0003573047420000099
将其送至双四阶线性扩张状态观测器锁相环的补偿机制switch21(图4)中,在补偿机制switch21的输入量满足
Figure BDA00035730474200000910
条件下,补偿机制switch21输出
Figure BDA00035730474200000911
在补偿机制switch21的输入量满足
Figure BDA00035730474200000912
条件下,补偿机制switch21输出
Figure BDA00035730474200000913
在补偿机制switch21的输入量满足
Figure BDA00035730474200000914
条件下,补偿机制switch21输出
Figure BDA00035730474200000915
变观测器系数四阶线性扩张状态观测器17的补偿机制switch21的输出除以永磁体磁链ψf后送至四阶线性扩张状态观测器中,四阶线性扩张状态观测器的观测器系数β05、β06、β07、β08分别为4(a|ωm|+b)、6(a|ωm|+b)2、4(a|ωm|+b)3、(a|ωm|+b)4,其中,a、b均为大于零的常数,最终,变观测器系数四阶线性扩张状态观测器17输出估计转速
Figure BDA00035730474200000916
估计机械角速度ωm和估计转子位置
Figure BDA00035730474200000917
如图1所示,一种使用本发明无位置传感器控制方法的最大转矩电流比控制系统,参考转速发生器1的输出端与无位置传感器控制系统14输出端均与转速PI控制器2的输入端连接,转速PI控制器2输出端与最大转矩电流比控制器3的输入端连接,最大转矩电流比控制器3的输出端与Park电流坐标变换模块13的输出端均与q轴电流PI控制器4和d轴电流PI控制器5的输入端连接,q轴电流PI控制器4和d轴电流PI控制器5的输出端与反Park电压坐标变换模块6的输入端连接,反Park电压坐标变换模块6的输出端与空间矢量脉宽调制SVPWM模块7的输入端连接,空间矢量脉宽调制SVPWM模块7的输出端与逆变器8的输入端连接,逆变器8的输出端与电压/电流传感器9输入端连接,电压/电流传感器9的输出端分别与Clark电流坐标变换模块11、Clark电压坐标变换模块12和外转子永磁电机10的输入端连接,Clark电流坐标变换模块11的输出端分别与Park电流坐标变换模块13和无位置传感器控制系统14的输入端连接,Clark电压坐标变换模块12的输出端与无位置传感器控制系统14的输入端连接,Park电流坐标变换模块13与无位置传感器控制系统14闭环连接。
外转子永磁同步电机最大转矩电流比控制系统的控制方法为,参考转速发生器1输出的参考转速ωm *同无位置传感器控制算法14输出的估计转速ωm进行做差,做差后被输入至转速PI控制器2中,转速PI控制器2输出总参考电流iN *,iN *输入至最大转矩电流比控制器3中,最大转矩电流比控制器3输出包含两部分d轴参考电流id *和q轴参考电流iq *,d轴参考电流id *同Park电流坐标变换模块13输出的d轴实际电流id相减并输入至d轴电流PI控制器5中,q轴参考电流iq *同Park电流坐标变换模块13输出的q轴实际电流iq相减并输入至q轴电流PI控制器4中,d轴电流PI控制器5、q轴电流PI控制器4分别输出ud *、uq *至反Park电压坐标变换模块6中,配合无位置传感器控制算法14输出的θe进行反Park坐标变换,反Park电压坐标变换模块6输出uα、uβ至空间矢量脉宽调制SVPWM模块7中,空间矢量脉宽调制SVPWM模块7输出值输出至逆变器8中,逆变器8输出值输出至电压/电流传感器9中;电压/电流传感器9输出iabc至Clark电流坐标变换模块11中,Clark电流坐标变换模块11输出iα、iβ分别输出至Park电流坐标变换模块13和无位置传感器控制算法14中,Park电流坐标变换模块13配合无位置传感器控制算法14输出的θe输出d轴实际电流id、q轴实际电流iq,并同最大转矩电流比控制器3输出的id *、iq *分别做差。电压/电流传感器9输出uabc至Clark电压坐标变换模块12中,Clark电压坐标变换模块12输出的uα、uβ配合Park电流坐标变换模块13输出的id、iq和Clark电流坐标变换模块输出的iα、iβ输入至无位置传感器控制算法14,进行运算;电压/电流传感器9的输出值输出至外转子永磁电机10中。
本发明提供的外转子永磁电机无位置传感器控制算法具有较宽的运行范围,其中基于永磁体磁链分量的滑模观测器所需的滑模增益通常远小于传统基于反电动势的滑模观测器,从底层有效抑制了抖振,在不使用低通滤波器的前提下也具有较光滑的波形。同时,本发明提出的双线性扩张状态观测器具有更宽的运行范围和抗扰动能力,定观测器系数四阶线性扩张状态观测器锁相环进行了主要扰动等部分的估计,并将估计的主要扰动送至变观测器系数四阶线性扩张状态观测器锁相环中,上述措施减小了变观测器系数观测器锁相环的观测量负担,在较小的观测器系数下也能提供较为准确的转子位置信息和转速信息,同时,变观测器系数的设置使在额定转速附近具有较好的动态性能和抗干扰能力,而在零低速附近有效地抑制了抖振,适量降低动态性能以实现抖振的抑制,保证估计转速不出现同实际转速符号相反的现象,以实现低速内的良好观测性能,显著扩宽了该无位置传感器控制算法的运行范围,在全运行范围内均有较好的跟踪性能。
根据本发明提出的外转子永磁同步电机无位置传感器控制系统及控制算法,在Matlab/Simulink软件下进行了仿真,外转子永磁同步电机所带负载转矩为30000N·m,规定外转子永磁同步电机正转时转速为正数,反转时转速为负数,0s时给定参考转速为+75r/min,1.5s开始给定参考转速以25r/min的变化趋势逐渐减小,当给定参考转速达到-75r/min,给定参考转速不再发生变化。图5为采用本发明的无位置传感器控制算法的外转子永磁同步电机转速跟踪对比图,由图5可知本发明提出的无位置传感器控制算法在全运行范围内有较好的转速跟踪能力。图6为采用本发明的无位置传感器控制算法的外转子永磁同步电机转速跟踪误差图,由图6可知,在外转子永磁同步电机起动阶段,转速估计误差保持在-0.5r/min~0.6r/min范围内,起动完成后转速估计误差保持在-0.2r/min~0.2r/min范围内;图7为采用本发明的无位置传感器控制算法的外转子永磁同步电机位置跟踪对比图,由图7可知,本发明提出的无位置传感器控制算法在全运行范围内有较好的位置跟踪能力;图8为采用本发明的无位置传感器控制算法的外转子永磁同步电机位置跟踪误差图,由图8可知,起动阶段,位置估计误差保持在-0.01rad~0.06rad范围内,起动完成后,位置估计误差0.025rad~0.0425rad范围内,具有较好的位置跟踪性能。

Claims (7)

1.一种外转子永磁同步电机无位置传感器控制系统,其特征在于:该无位置传感器控制系统(14)包括闭环连接的永磁体磁链分量的滑模观测器(15)和带补偿机制的双线性扩张状态观测器锁相环(18),带补偿机制的双线性扩张状态观测器锁相环(18)由定观测器系数扩张状态观测器锁相环(16)和变观测器系数扩张状态观测器锁相环(17)组成,永磁体磁链分量的滑模观测器(15)的输出端分别与定观测器系数扩张状态观测器锁相环(16)和变观测器系数扩张状态观测器锁相环(17)的输入端连接,定观测器系数扩张状态观测器锁相环(16)的输出端与变观测器扩张状态系数观测器锁相环(17)的输入端连接,变观测器系数扩张状态观测器锁相环(17)的输出端分别与永磁体磁链分量的滑模观测器(15)、Park电流坐标变换模块(13)和转速PI控制器(2)连接。
2.一种如权利要求1所述的外转子永磁同步电机无位置传感器控制系统的控制方法,其特征在于:将直轴电流id、交轴电流iq、α轴电压uα、β轴电压uβ、α轴电流iα、β轴电流iβ、带补偿机制的双线性扩张状态观测器锁相环(18)输出的估计电角速度
Figure FDA0003573047410000011
估计电角度
Figure FDA0003573047410000012
均输入至永磁体磁链分量的滑模观测器(15),经过永磁体磁链分量的滑模观测器(15)内部的运算输出重构变量-ψfsinθe和ψfcosθe,重构变量-ψfsinθe和ψfcosθe输入至带补偿机制的双线性扩张状态观测器锁相环(18),带补偿机制的双线性扩张状态观测器锁相环(18)输出的估计电机电角速度
Figure FDA00035730474100000121
除以外转子永磁同步电机的极对数得到估计机械角速度ωm
3.根据权利要求2所述的一种外转子永磁同步电机无位置传感器控制方法,其特征在于:永磁体磁链分量的滑模观测器(15)内部的运算为:
fsinθe重构过程Clark电压坐标变换模块(12)输出的α轴电压uα减去基于永磁体磁链分量的滑模观测器(15)的输出量与变观测器系数扩张状态观测器锁相环(17)输出的估计电角速度
Figure FDA0003573047410000013
的绝对值的乘积,做差后乘以直轴电感的倒数1/Ld得到
Figure FDA0003573047410000014
Figure FDA0003573047410000015
同包含跟踪微分器的
Figure FDA0003573047410000016
第一物理量重构估计部分(19)相加,相加后得到
Figure FDA0003573047410000017
之后将
Figure FDA0003573047410000018
减去变观测器系数扩张状态观测器锁相环(17)输出的估计电角速度
Figure FDA0003573047410000019
与Clark电流坐标变换模块(11)输出的β轴电流iβ的乘积后乘直轴电感和交轴电感做差后除以直轴电感的值(Ld-Lq)/Ld,得到
Figure FDA00035730474100000110
Figure FDA00035730474100000111
将其同定子电阻同直轴电感的商的倒数-Rs/Ld和α轴估计电流
Figure FDA00035730474100000112
的乘积想加得到
Figure FDA00035730474100000113
之后对其进行积分得到α轴估计电流
Figure FDA00035730474100000114
将得到的
Figure FDA00035730474100000115
同Clark电流坐标变换模块(11)输出的α轴电流iα做差得到
Figure FDA00035730474100000116
Figure FDA00035730474100000117
通过sigmoid函数后乘以滑模增益k得到估计的永磁体磁链分量-ψfsinθe
ψfcosθe重构过程,Clark电压坐标变换模块(12)输出的β轴电压uβ减去基于永磁体磁链分量的滑模观测器(15)的输出量与变观测器观测器锁相环(17)输出的估计电角速度
Figure FDA00035730474100000118
的绝对值的乘积,做差后乘以直轴电感的倒数1/Ld得到
Figure FDA00035730474100000119
同包含跟踪微分器的
Figure FDA00035730474100000120
第二物理量重构估计部分(20)相减,相减后得到
Figure FDA0003573047410000021
之后将
Figure FDA0003573047410000022
加上变观测器扩张状态观测器锁相环(17)输出的估计电角速度
Figure FDA0003573047410000023
与Clark电流坐标变换模块(11)输出的α轴电流iα的乘积后乘直轴电感和交轴电感做差后除以直轴电感的值(Ld-Lq)/Ld,得到
Figure FDA0003573047410000024
将其同定子电阻同直轴电感的商的倒数-Rs/Ld
Figure FDA0003573047410000025
的乘积想加得到
Figure FDA0003573047410000026
之后对其进行积分得到β轴估计电流
Figure FDA0003573047410000027
将得到的
Figure FDA0003573047410000028
同Clark电流坐标变换模块(11)输出的β轴电流iβ做差得到
Figure FDA0003573047410000029
Figure FDA00035730474100000210
通过sigmoid函数后乘以滑模增益k得到估计的永磁体磁链分量ψfcosθe
4.根据权利要求2所述的一种外转子永磁同步电机无位置传感器控制方法,其特征在于:滑模增益k取值为永磁体磁链ψf数值的1.5倍至2倍。
5.根据权利要求2所述的一种外转子永磁同步电机无位置传感器控制方法,其特征在于:
定观测器系数扩张状态观测器锁相环(16)内部运算为:将基于永磁体磁链分量的滑模观测器(15)输出的重构变量-ψfsinθe
Figure FDA00035730474100000211
的cos运算即
Figure FDA00035730474100000212
相乘得到-ψfsinθe
Figure FDA00035730474100000213
将基于永磁体磁链分量的滑模观测器(15)输出的重构变量ψfcosθe
Figure FDA00035730474100000214
的sin运算即
Figure FDA00035730474100000215
相乘得到
Figure FDA00035730474100000216
cosθe,将-ψfsinθe
Figure FDA00035730474100000217
Figure FDA00035730474100000218
cosθe分别取反后相加得到ψfsinθe
Figure FDA00035730474100000219
cosθe,将其送至双四阶线性扩张状态观测器锁相环的补偿机制switch(21)中,将补偿机制switch(21)的输出除以永磁体磁链ψf后送至四阶线性扩张状态观测器中,四阶线性扩张状态观测器观测器系数β01、β02、β03、β04分别设置为4ωo、6ωo 2、4ωo 3、ωo 4,其中ωo为固定常数,定观测器系数扩张状态观测器锁相环(16)输出最终估计的扰动至变观测器系数扩张状态观测器锁相环(17)输入侧;
变观测器系数扩张状态观测器锁相环(17)内部运算为:将基于永磁体磁链分量的滑模观测器(15)输出的重构变量-ψfsinθe
Figure FDA00035730474100000220
的cos运算即
Figure FDA00035730474100000221
相乘得到-ψfsinθe
Figure FDA00035730474100000222
将基于永磁体磁链分量的滑模观测器(15)输出的重构变量ψfcosθe
Figure FDA00035730474100000223
的sin运算即
Figure FDA00035730474100000224
相乘得到ψf
Figure FDA00035730474100000225
cosθe,将-ψfsinθe
Figure FDA00035730474100000226
和ψf
Figure FDA00035730474100000227
cosθe分别取反后相加得到ψfsinθe
Figure FDA00035730474100000228
f
Figure FDA00035730474100000229
cosθe,将其送至双四阶线性扩张状态观测器锁相环的补偿机制switch(21)中,变观测器系数扩张状态观测器锁相环(17)的补偿机制switch(21)的输出除以永磁体磁链ψf后送至四阶线性扩张状态观测器中,四阶线性扩张状态观测器的观测器系数β05、β06、β07、β08分别为4(a|ωm|+b)、6(a|ωm|+b)2、4(a|ωm|+b)3、(a|ωm|+b)4,其中,a、b均为大于零的常数,最终,变观测器系数扩张状态观测器锁相环(17)输出估计电角速度
Figure FDA00035730474100000230
估计机械角速度ωm、估计转子位置
Figure FDA00035730474100000231
6.根据权利要求5所述的一种外转子永磁同步电机无位置传感器控制方法,其特征在于:补偿机制switch(21)进行转子角度估计误差的补偿方法为:在输入量
Figure FDA00035730474100000232
条件下,补偿机制switch(21)输出
Figure FDA00035730474100000233
在输入量
Figure FDA00035730474100000234
条件下,补偿机制switch(21)输出
Figure FDA00035730474100000235
在输入量
Figure FDA00035730474100000236
条件下,补偿机制switch(21)输出
Figure FDA00035730474100000237
7.一种使用权利要求2所述的外转子永磁同步电机无位置传感器控制系统的控制方法的最大转矩电流比控制系统,其特征在于:参考转速发生器(1)的输出端与无位置传感器控制系统14输出端均与转速PI控制器(2)的输入端连接,转速PI控制器(2)输出端与最大转矩电流比控制器(3)的输入端连接,最大转矩电流比控制器(3)的输出端与Park电流坐标变换模块(13)的输出端均与q轴电流PI控制器(4)和d轴电流PI控制器(5)的输入端连接,q轴电流PI控制器(4)和d轴电流PI控制器(5)的输出端与反Park电压坐标变换模块(6)的输入端连接,反Park电压坐标变换模块(6)的输出端与空间矢量脉宽调制SVPWM模块(7)的输入端连接,空间矢量脉宽调制SVPWM模块(7)的输出端与逆变器(8)的输入端连接,逆变器(8)的输出端与电压/电流传感器(9)输入端连接,电压/电流传感器(9)的输出端分别与Clark电流坐标变换模块(11)、Clark电压坐标变换模块(12)和外转子永磁电机(10)的输入端连接,Clark电流坐标变换模块(11)的输出端分别与Park电流坐标变换模块(13)和无位置传感器控制系统(14)的输入端连接,Clark电压坐标变换模块(12)的输出端与无位置传感器控制系统(14)的输入端连接,Park电流坐标变换模块(13)与无位置传感器控制系统(14)闭环连接。
CN202210324968.4A 2022-03-30 2022-03-30 外转子永磁同步电机无位置传感器控制系统及控制方法 Pending CN114744935A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210324968.4A CN114744935A (zh) 2022-03-30 2022-03-30 外转子永磁同步电机无位置传感器控制系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210324968.4A CN114744935A (zh) 2022-03-30 2022-03-30 外转子永磁同步电机无位置传感器控制系统及控制方法

Publications (1)

Publication Number Publication Date
CN114744935A true CN114744935A (zh) 2022-07-12

Family

ID=82278996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210324968.4A Pending CN114744935A (zh) 2022-03-30 2022-03-30 外转子永磁同步电机无位置传感器控制系统及控制方法

Country Status (1)

Country Link
CN (1) CN114744935A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117410953A (zh) * 2023-10-27 2024-01-16 陕西理工大学 双极性直流微电网电压平衡器的控制器设计方法
CN117595737A (zh) * 2024-01-18 2024-02-23 浙江大学 基于二阶复系数观测器的永磁同步电机控制方法及系统
CN117639581A (zh) * 2023-11-08 2024-03-01 北方工业大学 一种永磁同步电机无位置传感器控制方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117410953A (zh) * 2023-10-27 2024-01-16 陕西理工大学 双极性直流微电网电压平衡器的控制器设计方法
CN117410953B (zh) * 2023-10-27 2024-05-10 陕西理工大学 双极性直流微电网电压平衡器的控制器设计方法
CN117639581A (zh) * 2023-11-08 2024-03-01 北方工业大学 一种永磁同步电机无位置传感器控制方法
CN117595737A (zh) * 2024-01-18 2024-02-23 浙江大学 基于二阶复系数观测器的永磁同步电机控制方法及系统
CN117595737B (zh) * 2024-01-18 2024-04-12 浙江大学 基于二阶复系数观测器的永磁同步电机控制方法及系统

Similar Documents

Publication Publication Date Title
Wang et al. An improved position-sensorless control method at low speed for PMSM based on high-frequency signal injection into a rotating reference frame
CN110429886B (zh) 一种永磁同步电机低速域转子位置辨识方法
CN114744935A (zh) 外转子永磁同步电机无位置传感器控制系统及控制方法
CN110350835A (zh) 一种永磁同步电机无位置传感器控制方法
CN110022106B (zh) 一种基于高频信号注入的永磁同步电机无位置传感器控制方法
CN110022107B (zh) 无位置传感器驱动系统电流传感器容错方法
CN110971163B (zh) 同步磁阻电机低转矩脉动无传感器控制方法
CN112003526B (zh) 一种基于低抖振滑模观测器的高速永磁同步电机无感控制系统及方法
CN109495047B (zh) 一种基于高频信号注入的永磁同步电机无传感器控制方法
CN112217428B (zh) 水下机器人推进系统无位置传感器控制方法
CN113114078B (zh) 一种多相永磁同步电机的无位置传感器控制方法
CN113659904B (zh) 一种基于非奇异快速终端滑模观测器的spmsm无传感器矢量控制方法
CN110112978B (zh) 一种永磁同步电机负载转矩补偿的全速无位置传感器控制方法
CN114598206B (zh) 永磁同步电机宽速域转子位置观测器设计方法
CN112910329A (zh) 一种基于移动均值滤波器的pmsm无位置传感器控制方法
CN112117943B (zh) 一种新型ipmsm高频方波注入无位置传感器控制
CN110620537A (zh) 一种基于adrc与高频方波注入的pmsm无传感器控制策略
CN111987961A (zh) 一种永磁同步电机无位置传感器直接转矩控制方法
CN112821813B (zh) 五桥臂逆变器双永磁电机无位置传感器控制装置和方法
CN114189181A (zh) 一种满足电动汽车多变工况的五相永磁电机无位置传感器驱动方法及装置
CN109560741A (zh) 一种基于测量误差补偿器的永磁同步电机系统及补偿方法
CN109617487B (zh) 基于高频电压信号注入的永磁同步电机转子位置观测方法
CN113783494B (zh) 无位置传感器内置式永磁同步电机的最大转矩电流比控制
CN113037166B (zh) 基于幅值观测器的高频响应电流幅值提取方法
CN109379012B (zh) 一种无高频信号注入的永磁同步电机低速位置估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination