CN114729450A - 利用表面保护物质的薄膜形成方法 - Google Patents

利用表面保护物质的薄膜形成方法 Download PDF

Info

Publication number
CN114729450A
CN114729450A CN202080079543.0A CN202080079543A CN114729450A CN 114729450 A CN114729450 A CN 114729450A CN 202080079543 A CN202080079543 A CN 202080079543A CN 114729450 A CN114729450 A CN 114729450A
Authority
CN
China
Prior art keywords
carbon atoms
chemical formula
thin film
surface protective
metal precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080079543.0A
Other languages
English (en)
Inventor
李根守
金才玟
金荷娜
崔雄辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGTM Co Ltd
Original Assignee
EGTM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EGTM Co Ltd filed Critical EGTM Co Ltd
Publication of CN114729450A publication Critical patent/CN114729450A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N97/00Electric solid-state thin-film or thick-film devices, not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

根据本发明的一实施例,利用表面保护物质的薄膜形成方法,包括:表面保护层形成步骤,向放置基板的腔体内部供给表面保护物质,以在上述基板表面形成表面保护层;对上述腔体内部进行一次净化的步骤;金属前驱体供给步骤,向所述腔体内部供给金属前驱体;对上述腔体内部进行二次净化的步骤;及薄膜形成步骤,向上述腔体内部供给反应物质以与所述金属前驱体反应形成薄膜。

Description

利用表面保护物质的薄膜形成方法
技术领域
本发明涉及薄膜形成方法,更详细地,该薄膜形成方法形成很薄厚度的薄膜,从而薄膜厚度及台阶覆盖率控制容易。
背景技术
DRAM器件通过革新技术的开发持续微细化,已达到10nm时代。与此相随,为了改善性能及可靠性,即使电容尺寸变小也需要充分维持高静电容量和低漏电特性,还要求击穿电压(breakdown voltage)也高。
以往,在把单一氧化锆膜用作MIM电容的介电膜时,虽然等价氧化膜厚度特性(Toxeq)良好,但漏电特性脆弱。为了克服这些问题,广泛使用ZrO2/Al2O3/ZrO2等复合高介电膜(combined high dielectric layer)。
但是,这些介电膜的厚度比ZrO2介电膜厚,所以Toxeq特性不好。另外,ZAZ结构的Al2O3作为阻止电容漏电的结构,当厚度过大时,静电容量变小;厚度过小时,漏电增加,所以需要适当控制厚度。
因此,为了维持一定的电容及漏电特性,不仅需要开发符合特性的物质,还需要使得电容介电膜超薄膜化。
发明内容
所要解决的课题
本发明的目的在于,提供一种能够形成很薄厚度薄膜的薄膜形成方法。
本发明的其它目的在于,提供一种能够形成台阶覆盖率良好的薄膜的薄膜形成方法。
本发明的其它目的将通过下面的详细说明会变得更加清楚。
课题解决方案
根据本发明的一实施例,利用具有多个醚基的表面保护物质的薄膜形成方法,其特征在于,包括:金属前驱体供给步骤,向放置基板的腔体内部供给金属前驱体,将所述金属前驱体吸附于基板;净化所述腔体内部的步骤;及薄膜形成步骤,向所述腔体内部供给反应物质以与被吸附的所述金属前驱体反应并形成薄膜;该方法在所述薄膜形成步骤之前还包括:表面保护物质供给步骤,供给所述表面保护物质以吸附到所述基板上;以及净化所述腔体内部的步骤。
所述表面保护物质可以用下述<化学式1>表示。
<化学式1>
Figure BDA0003646017260000021
所述<化学式1>中,n是0~5的整数,R1、R2从碳原子数1~10的烷基、碳原子数1~10的环烷基、碳原子数6~12的芳基中选择。
所述表面保护物质可以用下述<化学式2>表示。
<化学式2>
Figure BDA0003646017260000022
所述<化学式2>中,n是0~5的整数,m是1~5的整数,R从包括碳原子数1~10的烷基、碳原子数1~10的环烷基、碳原子数6~12的芳基的多个醚基中选择。
所述表面保护物质可以用下述<化学式3>表示。
<化学式3>
Figure BDA0003646017260000031
所述<化学式3>中,n1、n2为0~5的整数,m1、m2为1~5的整数,R从包括碳原子数1~10的烷基、碳原子数1~10的环烷基、碳原子数6~12的芳基的多个醚基中选择。
所述反应物质可以是O3、O2、H2O中的某一个。
所述金属前驱体可以是包括以下金属中一个以上的化合物:包括Al的三价金属,包括Zr及Hf的四价金属,包括Nb及Ta的五价金属。
所述金属前驱体可以用下述<化学式4>表示。
<化学式4>
Figure BDA0003646017260000032
所述<化学式4>中,R1、R2及R3相互不同、且各自独立从碳原子数1~6的烷基、碳原子数1~6的二烷基胺或碳原子数1~6的环状胺基中选择。
发明效果
根据本发明的一实施例,能够形成比可通过现有ALD工艺获得的一个单层厚度更薄且无杂质高纯度的薄膜。由于其薄膜生长速度非常慢,能够容易调节薄膜厚度,能够控制台阶覆盖率,同时能够提高器件的电特性及可靠性。
附图说明
图1是简要地表示根据本发明的实施例的薄膜形成方法的流程图。
图2是简要地表示根据本发明的实施例的供给周期的图表。
图3是根据本发明的比较例1的按工序温度表示氧化铝膜的GPC的图表。
图4是表示根据本发明的比较例1的用于分析氧化铝膜表面的二次离子质谱(SIMS:Secondary Ion Mass Spectroscopy)的图表。
图5是根据本发明的比较例1、2及实施例1的按工序温度表示氧化铝膜的GPC的图表。
图6是表示根据本发明的实施例1的用于分析氧化铝膜表面的二次离子质谱(SIMS:Secondary Ion Mass Spectroscopy)的图表。
图7是根据本发明的比较例1、2及实施例1、2的按工序温度表示氧化铝膜的GPC的图表。
具体实施方式
下面,参考附图1至7更详细地说明本发明的优选实施例。本发明的实施例可以变形为各种形态,本发明的范围不应解释为限定于下面说明的实施例。本实施例是为了向当前发明所属的技术领域中的普通技术人员更详细地说明本发明而提供的。因此,为了强调更清楚的说明,附图中出现的各要素的形状可能夸张显示。
现有的前驱体单独工序,由于在高纵横比(例如40:1以上)的沟槽结构中,上部(或入口侧)的薄膜增厚、且下部(或内部侧)的薄膜变薄等薄膜不均匀情形,存在台阶覆盖率不良的问题。
但是,下面说明的表面保护物质具有与金属前驱体相同的作为,在沟槽的上部以比下部高的密度吸附的状态下,妨碍后续工序的金属前驱体被吸附,由此能在沟槽内形成均匀厚度的薄膜。
图1是简要地表示根据本发明的实施例的薄膜形成方法的流程图,图2是简要地表示根据本发明的实施例的供给周期的图表。基板装载到工序腔的内部,调节下面的原子层沉积工序(ALD)条件。原子层沉积工序条件可包括基板或工序腔的温度、腔体压力、气体流动率,温度为50~600℃。
基板暴露于供给到腔体内部的表面保护物质中,表面保护物质吸附于基板的表面。在工序进行过程中,表面保护物质具有与金属前驱体类似的作为,在高纵横比(例如,40:1以上)的沟槽结构中,在上部(或入口侧)以高密度被吸附,在下部(或内部侧)以低密度被吸附,在后续工序中妨碍金属前驱体被吸附。
表面保护物质具由多个醚基(ether group),可以用下述<化学式1>表示。
<化学式1>
Figure BDA0003646017260000051
所述<化学式1>中,n是0~5的整数,R1,R2从碳原子数1~10的烷基、碳原子数1~10的环烷基、碳原子数6~12的芳基中选择。
另外,所述表面保护物质可用下述<化学式2>表示。
<化学式2>
Figure BDA0003646017260000052
所述<化学式2>中,n是0~5的整数,m是1~5的整数,R从包括碳原子数1~10的烷基、碳原子数1~10的环烷基、碳原子数6~12的芳基的多个醚基中选择。
另外,上述表面保护物质可以用下述<化学式3>表示。
<化学式3>
Figure BDA0003646017260000053
在上述<化学式3>,n1、n2为0~5的整数,m1、m2为1~5的整数,R从包括碳原子数1~10的烷基、碳原子数1~10的环烷基、碳原子数6~12的芳基的多个醚基中选择。
之后,向腔体内部供给净化气体(例如,诸如Ar的惰性气体),以除去或净化未吸附表面保护物质或副产物。
之后,基板暴露于供给到腔体内部的金属前驱体中,在基板表面吸附金属前驱体。金属前驱体可包括诸如Al的Ⅲ族元素,或包括诸如Zr、Hf的Ⅳ族元素,或包括诸如Nb、Ta的Ⅴ族元素。
另外,更具体地,上述金属前驱体可以用下述<化学式4>表示。
<化学式4>
Figure BDA0003646017260000061
在上述<化学式4>,R1、R2及R3相互不同、且各自独立从碳原子数1~6的烷基、碳原子数1~6的二烷基胺或碳原子数1~6的环状胺基中选择。
若举例说明,前面说明的表面保护物质在沟槽的上部比下部更致密地被吸附,金属前驱体不能吸附到已吸附有表面保护物质的位置。即,过去,金属前驱体在沟槽的上部比下部更致密地被吸附而表现出高密度,但是如本实施例,表面保护物质在沟槽的上部被致密地吸附而妨碍金属前驱体的吸附,因此金属前驱体不会过度吸附于沟槽的上部,而是在沟槽的上部/下部均匀地吸附,可以改善后述的薄膜的台阶覆盖率。
接着,在腔体内部供给净化气体(例如,诸如Ar的惰性气体),去除或净化未吸附金属前驱体或副产物。
然后,基板暴露于供给到腔体内部的反应物质中,在基板的表面形成薄膜。反应物质与金属前驱体层反应而形成薄膜,反应物质可以是O3、O2、H2O气体,通过反应物质,可以形成金属氧化膜。这时,反应物质氧化所吸附的保护物质,从基板的表面分离去除。
然后,向腔体内部供给净化气体(例如,诸如Ar的惰性气体),去除或净化未吸附表面保护物质/未反应物质或副产物。
另外,前面说明了在金属前驱体之前供给表面保护物质,但是不同于此,可以在金属前驱体之后供给表面保护物质,或者是在表面保护物质之前及之后全部供给金属前驱体。
——比较例1
不使用前面说明的表面保护物质,在硅基板上形成了氧化铝膜。通过原子层沉积工序形成了氧化铝膜,原子层沉积工序温度为250~350℃,反应物质使用了O3气体。
利用原子层沉积工序的氧化铝膜形成过程如下。将下面的过程作为一周期进行。
1)将Ar作为载体气体,在常温下向反应腔供给铝前驱体(Trimethylaluminium),在基板吸附铝前驱体。
2)向反应腔内供给Ar气,去除未吸附铝前驱体或副产物。
3)将O3气体供给到反应腔,形成单层。
4)向反应腔内供给Ar气,去除未反应物质或副产物。
对通过如上过程得到的氧化铝膜的厚度进行测量的结果,ALD工序的每一周期获得的氧化铝膜地厚度在300~350℃下大约为
Figure BDA0003646017260000071
/1周期。
图3是根据本发明的比较例1的按工序温度表示氧化铝膜的GPC(周期生长率(Growth Per Cycle))的图表。如图3所示,在基板温度250~350℃范围内,表现出几乎没有随基板温度上升的GPC变化的理想的ALD作为。
图4表示根据本发明的比较例1的用于分析氧化铝膜表面的二次离子质谱(SIMS:Secondary Ion Mass Spectroscopy)的图表。如图4所示,确认了在氧化膜内未残留源自铝前驱体TMA的杂质(例如,碳原子)。
——比较例2
将具有一个醚基的物质用作表面保护物质,在硅基板上形成了铝氧化物膜。通过原子层沉积工序形成氧化铝膜,原子层沉积工序温度使用了250~350℃,反应物质使用了O3气体。
基于原子层沉积工序的氧化铝膜形成过程如下。将下列过程作为一周期进行(参考图1及图2)。
1)向反应腔内供给表面保护物质吸附于基板。
2)向反应腔内供给Ar气体,去除未吸附表面保护物质或副产物。
3)将Ar作为载体气体,在常温下将铝前驱体TMA(Trimethylaluminium)供给到反应腔,在基板吸附铝前驱体。
4)向反应腔内供给Ar气体,去除未吸附铝前驱体或副产物。
5)向反应腔供给O3气体,形成单层。
6)向反应腔内供给Ar气体,去除未反应物质或副产物。
把具有一个醚基的物质用作表面保护物质的结果,GPC减小率在320℃和350℃下分别为10.42%、13.81%,结果,把具有一个醚基的物质用作表面保护物质的情况下,表现出了10~13%程度的低GPC减小率。
——实施例1
除了将表面保护物质从具有一个醚基的物质变更为具有多个醚基的MTHP(Methoxy Tetrahydropyran)之外,以与比较例2相同的方法形成了氧化铝膜。
图5是根据本发明的比较例1、2及实施例1的按工序温度表示氧化铝膜的GPC的图表。表面保护物质使用MTHP的结果,GPC减小率在300℃和350℃下分别为33.19%、34.78%,结果,当将具有多个醚基的物质用作表面保护物质时,表现出了33~34%程度的高GPC减小率。这被认为是具有多个醚基的表面保护物质的情况下,与具有一个醚基的表面保护物质相比,对基板的吸附力增加(或密度增加),从而表现出高GPC减小效果。
图6是表示根据本发明的实施例1的用于分析氧化铝膜表面的二次离子质谱(SIMS:Secondary Ion Mass Spectroscopy)的图表。如图6所示,确认了在氧化膜内不存在源自铝前驱体TMA及表面保护物质的杂质(例如,碳原子等)。
-实施例2
除了表面保护物质由MTHP变为MMTHF(Methoxymethyl Tetrahydrofuran)之外,以与比较例2相同的方法形成了氧化铝膜。
图7是根据本发明的比较例1、2及实施例1、2的按工序温度表示氧化铝膜的GPC的图表。把MMTHF用作表面保护物质的结果,GPC减小率在300℃和350℃下分别为35.35%、29.86%,结果,把MMTHF用作表面保护物质时,表现出了29~35%程度的高GPC减小率。
作为结论,表面保护物质通过高吸附性能表现出了高GPC减小效果,由此能够形成比可通过现有ALD工艺获得的一个单层厚度更薄且无杂质高纯度的薄膜。由于其薄膜生长速度非常慢,能够容易调节薄膜厚度,能够控制台阶覆盖率,同时能够提高器件的电特性及可靠性。
以上通过实施例详细地说明了本发明,但是与此不同形态的实施例也是可以的。因此,下面记载的权利要求的技术思想和范围不限于实施例。
工业实用性
本发明能够应用于多种形态的半导体制造方法中。

Claims (7)

1.一种利用表面保护物质的薄膜形成方法,所述表面保护物质具有多个醚基,其特征在于,包括:
金属前驱体供给步骤,向放置基板的腔体内部供给金属前驱体,将所述金属前驱体吸附于基板;
净化所述腔体内部的步骤;及
薄膜形成步骤,向所述腔体内部供给反应物质以与被吸附的所述金属前驱体反应并形成薄膜;
该方法在所述薄膜形成步骤之前还包括:
表面保护物质供给步骤,供给所述表面保护物质以吸附到上述基板上;以及
净化所述腔体内部的步骤。
2.如权利要求1所述的利用表面保护物质的薄膜形成方法,其特征在于,
所述表面保护物质用下述<化学式1>表示:
<化学式1>
Figure FDA0003646017250000011
所述<化学式1>中,n是0~5的整数,R1、R2从碳原子数1~10的烷基、碳原子数1~10的环烷基、碳原子数6~12的芳基中选择。
3.如权利要求1所述的利用表面保护物质的薄膜形成方法,其特征在于,
所述表面保护物质用下述<化学式2>表示:
<化学式2>
Figure FDA0003646017250000012
所述<化学式2>中,n是0~5的整数,m是1~5的整数,R从包括碳原子数1~10的烷基、碳原子数1~10的环烷基、碳原子数6~12的芳基的多个醚基中选择。
4.如权利要求1所述的利用表面保护物质的薄膜形成方法,其特征在于,
所述表面保护物质用下述<化学式3>表示:
<化学式3>
Figure FDA0003646017250000021
在上述<化学式3>,n1、n2为0~5的整数,m1、m2为1~5的整数,R从包括碳原子数1~10的烷基、碳原子数1~10的环烷基、碳原子数6~12的芳基的多个醚基中选择。
5.如权利要求1所述的利用表面保护物质的薄膜形成方法,其特征在于,
所述反应物质为O3、O2、H2O中的某一个。
6.如权利要求1所述的利用表面保护物质的薄膜形成方法,其特征在于,
所述金属前驱体为包括以下金属中一个以上的化合物:包括Al的三价金属,包括Zr及Hf的四价金属,包括Nb及Ta的五价金属。
7.如权利要求1所述的利用表面保护物质的薄膜形成方法,其特征在于,
所述金属前驱体用下述<化学式4>表示:
<化学式4>
Figure FDA0003646017250000022
在上述<化学式4>,R1、R2及R3相互不同、且各自独立从碳原子数1~6的烷基、碳原子数1~6的二烷基胺或碳原子数1~6的环状胺基中选择。
CN202080079543.0A 2019-11-15 2020-11-16 利用表面保护物质的薄膜形成方法 Pending CN114729450A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020190146643A KR102333599B1 (ko) 2019-11-15 2019-11-15 표면 보호 물질을 이용한 박막 형성 방법
KR10-2019-0146643 2019-11-15
PCT/KR2020/016102 WO2021096326A1 (ko) 2019-11-15 2020-11-16 표면 보호 물질을 이용한 박막 형성 방법

Publications (1)

Publication Number Publication Date
CN114729450A true CN114729450A (zh) 2022-07-08

Family

ID=75913125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080079543.0A Pending CN114729450A (zh) 2019-11-15 2020-11-16 利用表面保护物质的薄膜形成方法

Country Status (5)

Country Link
US (1) US20220403521A1 (zh)
JP (1) JP7496634B2 (zh)
KR (1) KR102333599B1 (zh)
CN (1) CN114729450A (zh)
WO (1) WO2021096326A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153647A1 (ko) * 2022-02-10 2023-08-17 솔브레인 주식회사 산화막 반응면제어제, 이를 이용한 산화막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2023191360A1 (ko) * 2022-03-28 2023-10-05 솔브레인 주식회사 계단율 개선제, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2023195657A1 (ko) * 2022-04-05 2023-10-12 솔브레인 주식회사 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2023195656A1 (ko) * 2022-04-05 2023-10-12 솔브레인 주식회사 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2023195654A1 (ko) * 2022-04-05 2023-10-12 솔브레인 주식회사 박막 개질 조성물, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자
WO2023195655A1 (ko) * 2022-04-05 2023-10-12 솔브레인 주식회사 박막 차폐제, 이를 이용한 박막 형성 방법, 이로부터 제조된 반도체 기판 및 반도체 소자

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170040172A1 (en) * 2015-08-04 2017-02-09 Samsung Electronics Co., Ltd. Methods of forming material layer
US20190304770A1 (en) * 2018-04-02 2019-10-03 Samsung Electronics Co., Ltd. Method of fabricating semiconductor device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231738A (ja) * 2002-02-08 2003-08-19 Matsushita Electric Ind Co Ltd 導電性有機薄膜とその製造方法
US7229405B2 (en) 2002-11-15 2007-06-12 Paracor Medical, Inc. Cardiac harness delivery device and method of use
KR100576739B1 (ko) * 2004-02-12 2006-05-03 학교법인 포항공과대학교 원자층 화학 증착법에 의한 금속 실리 알루미네이트박막의 제조방법
JP2009545135A (ja) * 2006-07-20 2009-12-17 リンデ・インコーポレーテッド 改良された原子層堆積法
US8871617B2 (en) * 2011-04-22 2014-10-28 Asm Ip Holding B.V. Deposition and reduction of mixed metal oxide thin films
KR101895398B1 (ko) * 2011-04-28 2018-10-25 삼성전자 주식회사 산화물 층의 형성 방법 및 이를 포함하는 반도체 소자의 제조 방법
KR20170058820A (ko) * 2015-11-19 2017-05-29 주식회사 유진테크 머티리얼즈 유기 4족 화합물을 포함하는 전구체 조성물 및 이를 이용한 박막 형성 방법
JP6573575B2 (ja) * 2016-05-02 2019-09-11 東京エレクトロン株式会社 凹部の埋め込み方法
KR102095710B1 (ko) * 2019-11-05 2020-04-01 주식회사 유진테크 머티리얼즈 표면 보호 물질을 이용한 박막 형성 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170040172A1 (en) * 2015-08-04 2017-02-09 Samsung Electronics Co., Ltd. Methods of forming material layer
US20190304770A1 (en) * 2018-04-02 2019-10-03 Samsung Electronics Co., Ltd. Method of fabricating semiconductor device

Also Published As

Publication number Publication date
JP7496634B2 (ja) 2024-06-07
WO2021096326A1 (ko) 2021-05-20
KR102333599B1 (ko) 2021-11-30
JP2023501702A (ja) 2023-01-18
US20220403521A1 (en) 2022-12-22
KR20210059332A (ko) 2021-05-25

Similar Documents

Publication Publication Date Title
CN114729450A (zh) 利用表面保护物质的薄膜形成方法
US12080548B2 (en) Selective deposition using hydrophobic precursors
CN112779520B (zh) 利用表面保护物质的薄膜形成方法
KR100385947B1 (ko) 원자층 증착 방법에 의한 박막 형성 방법
US20080176375A1 (en) Method for forming a dielectric layer
US9139906B2 (en) Doping with ALD technology
US8637377B2 (en) Capacitors and methods with praseodymium oxide insulators
US11769664B2 (en) Methods for depositing a hafnium lanthanum oxide film on a substrate by a cyclical deposition process in a reaction chamber
CN116829761A (zh) 利用核生长阻滞的区域选择性薄膜形成方法
JP7551183B2 (ja) 選択性付与剤を用いた領域選択的薄膜形成方法
US20050012089A1 (en) Metal organic chemical vapor deposition and atomic layer deposition of metal oxynitride and metal silicon oxynitride
US20100036144A1 (en) Methods for atomic layer deposition
CN114929936A (zh) 利用表面保护物质的薄膜形成方法
CN114293175B (zh) 利用了表面保护物质的薄膜形成方法
KR102614175B1 (ko) 선택성 부여제를 이용한 영역 선택적 박막 형성 방법
US20210024550A1 (en) SiC PRECURSOR COMPOUND AND THIN FILM FORMING METHOD USING THE SAME
CN117026206A (zh) 沉积薄膜的方法及存储装置的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination