CN114713247B - 一种富含硫空位的镍包裹硫锰镉等离子体光催化剂及其制备方法和应用 - Google Patents

一种富含硫空位的镍包裹硫锰镉等离子体光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN114713247B
CN114713247B CN202210331521.XA CN202210331521A CN114713247B CN 114713247 B CN114713247 B CN 114713247B CN 202210331521 A CN202210331521 A CN 202210331521A CN 114713247 B CN114713247 B CN 114713247B
Authority
CN
China
Prior art keywords
sulfur
rich
composite photocatalyst
manganese
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210331521.XA
Other languages
English (en)
Other versions
CN114713247A (zh
Inventor
黄彩进
程楚楚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202210331521.XA priority Critical patent/CN114713247B/zh
Publication of CN114713247A publication Critical patent/CN114713247A/zh
Application granted granted Critical
Publication of CN114713247B publication Critical patent/CN114713247B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种富含硫空位的镍包裹硫锰镉等离子体复合光催化剂的制备方法及应用。该复合光催化剂以富含硫空位的Mn0.3Cd0.7S纳米棒为载体,在乙醇溶液中,通过原位光沉积的方法,负载无定型的Ni纳米层,得到Ni/Mn0.3Cd0.7S等离子体复合光催化剂。本发明引入的Ni层具有表面等离子共振效应,能够扩大光吸收,为光催化产氢反应提供大量热电子。且硫空位的引入能够降低Ni与Mn0.3Cd0.7S的肖特基势垒,进一步促进光生电子的迁移。所得复合材料与单纯Mn0.3Cd0.7S相比,光催化分解水产氢性能显著提高,且能够在人工海水中抑制盐离子的腐蚀,在海水中表现出优于纯水的催化活性。

Description

一种富含硫空位的镍包裹硫锰镉等离子体光催化剂及其制备 方法和应用
技术领域
本发明属于光催化材料技术领域,具体涉及一种富含硫空位的镍包裹硫锰镉等离子体光催化剂及其制备方法和应用。
背景技术
光催化水分解产氢是解决当今能源、环境问题非常有潜力的技术手段。目前水分解技术的研究多数是在纯水中进行,然而淡水作为人类赖以生存的重要资源随着人口的增长和工业的发展变得越来越紧缺。因此,吸收源源不断的太阳光,在海水中直接分解水产氢,实现将太阳能转化为氢能对解决能源危机和治理环境污染具有重要意义。
局域表面等离子体共振效应能够通过调控光催化体系的光谱响应范围,增强光散射、热电子注入、诱导产生强烈的局域电场等方法来增强材料的光催化性能。将具有等离子体共振效应的金属与传统半导体光催化剂结合,能够显著提高传统光催化材料的太阳能转换效率,已经受到广泛关注。但是金属与半导体界面之间肖特基结的存在,限制了热电子的转移,因此有必要对催化剂改性,降低肖特基结的高度。半导体光催化剂的固有特性(如空位)以及构建半导体异质结可以调节其能带结构、进而调节肖特基结的高度,从而能够影响光催化活性。
发明内容
本发明的目的在于提供一种具有更高效镍包裹硫锰镉(Ni/Mn0.3Cd0.7S)等离子体复合光催化剂的制备方法及其可见光诱导催化分解水产氢中的应用。本发明引入的Ni层具有表面等离子共振效应,能够扩大光吸收,为光催化产氢反应提供大量热电子,且硫空位的引入能够降低Ni与Mn0.3Cd0.7S的肖特基势垒,进一步促进光生电子的迁移,使其光催化分解水产氢性能显著提高,且能够在人工海水中抑制盐离子的腐蚀,在海水中表现出优于纯水的催化活性。
为实现上述目的,本发明采用如下技术方案:
一种富含硫空位的镍包裹硫锰镉(Ni/Mn0.3Cd0.7S)等离子体复合光催化剂,该催化剂是由富含硫空位的Mn0.3Cd0.7S纳米棒作为载体,在其表面原位沉积无定型的Ni纳米层而构成。
所述Mn0.3Cd0.7S纳米棒的长度为150–700 nm,直径为50 nm;所述Ni纳米层的厚度为1–2 nm。
所述富含硫空位的镍包裹硫锰镉(Ni/Mn0.3Cd0.7S)等离子体复合光催化剂的制备方法,包括以下步骤:
(1)溶剂热法制备富含硫空位的Mn0.3Cd0.7S纳米棒:
将乙酸镉和乙酸锰溶解于乙二胺和去离子水的混合溶剂中,加入硫代乙酰胺继续搅拌混匀,然后将所得混合溶液转移到高压反应釜中,200 ℃恒温反应24 h,自然冷却至室温,所得沉淀依次用去离子水和乙醇各洗涤三次后于60 ℃真空干燥过夜,得到Mn0.3Cd0.7S纳米棒粉末;
(2)溶剂热法制备Ni/Mn0.3Cd0.7S等离子体复合光催化剂:
称取步骤(1)中所得的Mn0.3Cd0.7S纳米棒粉末50 mg分散于80 ml乙醇溶液中并搅拌10 min,加入0.1 mol/L 的Ni(NO3)2的乙醇溶液,继续搅拌10 min后向上述溶液中通氩气20 min;然后用300 W带有420截止片的氙灯光照10 min,所得沉淀用去离子水和乙醇各洗涤三次后于60 ℃真空干燥过夜,得到以富含硫空位的Mn0.3Cd0.7S纳米棒作为载体,在其表面原位沉积无定型的Ni纳米层的镍包裹硫锰镉(Ni/Mn0.3Cd0.7S)复合光催化剂。
步骤(1)中所用乙酸锰、乙酸镉和硫代乙酰胺的摩尔比为6:14:25;
步骤(2)中Ni(NO3)2与Mn0.3Cd0.7S纳米棒的质量比为0.75–4.5:100。
上述富含硫空位的镍包裹硫锰镉(Ni/Mn0.3Cd0.7S)等离子体复合光催化剂在光催化分解水产氢中的应用。
本发明的显著优点在于:
(1)本发明引入的Ni层具有表面等离子共振效应,能够扩大光吸收,为光催化产氢反应提供大量热电子,负载后的样品在光催化人工海水(3.5 wt% NaCl溶液)分解反应中平均速率可提高约68倍。
(2)本发明制备的富含硫空位的Ni/Mn0.3Cd0.7S肖特基结,由于硫空位的引入,降低了肖特基结的高度,能够促进大量的热电子从Ni迁移到Mn0.3Cd0.7S导带,进而提高产氢活性。与其他MnxCd1−xS基催化剂相比,展现出更高效的光催化活性,可以有效地将太阳能转化为化学能,在工业上具有很高的实际应用价值。
(3)本发明通过原位光沉积的方法,将Ni沉积于富含硫空位的Mn0.3Cd0.7S纳米棒表面形成均匀的纳米层,其广泛且紧密的接触有利于电子在界面快速的迁移。且镍纳米层的负载能够抑制海水中盐溶液对于催化剂的腐蚀,展现出优于纯水中的活性。该方法所需原料成本低、易于得到,操作步骤简单易重复,条件温和安全、易于操控,且无需使用贵金属,大大降低了生产成本,有利于工业化推广应用。
附图说明
图1为Ni及实施例1-4所得富含硫空位的Ni/Mn0.3Cd0.7S(Ni/MCS-s)复合光催化剂的X射线衍射图;
图2 为1.5 wt% Ni/MCS-s复合光催化剂的透射电镜图以及透射电镜选区元素分布图;
图3为硫空位缺乏的Mn0.3Cd0.7S (MCS-p)与富含硫空位Mn0.3Cd0.7S (MCS-s) 以及1.5 wt% Ni/MCS-s和1.5 wt% Ni/MCS-p的电子顺磁共振强度对比图;
图4(a)为不同Ni负载量的Ni/MCS-s的复合光催化剂在水中以及人工海水(3.5wt% NaCl)溶液中的产氢速率图;(b)不同NaCl浓度中MCS-s以及1.5 wt% Ni/MCS-s复合光催化剂的产氢速率;(c)不同盐溶液中1.5 wt% Ni/MCS-s复合光催化剂的产氢速率;(d)不同催化剂样品在可见光诱导下光催化分解水以及3.5 wt% NaCl中的产氢活性的对比图。
图5(a)1.5 wt% Ni/MCS-s不同波长下的量子效率以及其紫外可见光谱图;(b)1.5wt% Ni/MCS-s复合光催化剂的长时间产氢循环实验图。
图6为MCS-s(a)以及MCS-p(b)的Mott–Schottky谱图; MCS-s(c)以及MCS-p(d)的Tauc曲线。
图7为Ni/MCS-s与Ni/MCS-p复合光催化剂产氢反应机理图对比图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
(1)溶剂热法制备富含硫空位的Mn0.3Cd0.7S纳米棒
将14 mmol乙酸镉和6 mmol乙酸锰溶解于30 mL乙二胺和30 mL去离子水的混合溶剂中,搅拌20 min,再加入25 mmol硫代乙酰胺并继续搅拌30 min,然后将所得混合溶液转移到100 mL高压反应釜中,200℃恒温反应24 h,自然冷却至室温,所得沉淀依次用去离子水和乙醇各洗涤三次后于60℃真空干燥过夜,得到Mn0.3Cd0.7S纳米棒(MCS-s)粉末。
(2)溶剂热法制备Ni/Mn0.3Cd0.7S复合光催化剂
称取步骤(1)中所得的Mn0.3Cd0.7S纳米棒(MCS-s)粉末50 mg分散于80 ml乙醇溶液中并搅拌10 min,加入64 µL 0.1 mol/L 的Ni(NO3)2的乙醇溶液,继续搅拌10 min后向上述溶液中通氩气20 min。然后用300 W带有420截止片的氙灯光照10 min,所得沉淀用去离子水和乙醇各洗涤三次后于60 ℃真空干燥过夜,得到所述镍包裹硫锰镉(Ni/Mn0.3Cd0.7S)复合光催化剂其中Ni:MCS-s的质量比为0.75:100,即0.75 wt% Ni/MCS-s。
实施例2
(1)溶剂热法制备富含硫空位的Mn0.3Cd0.7S纳米棒
将14 mmol乙酸镉和6 mmol乙酸锰溶解于30 mL乙二胺和30 mL去离子水的混合溶剂中,搅拌20 min,再加入25 mmol硫代乙酰胺并继续搅拌30 min,然后将所得混合溶液转移到100 mL高压反应釜中,200 ℃恒温反应24 h,自然冷却至室温,所得沉淀依次用去离子水和乙醇各洗涤三次后于60 ℃真空干燥过夜,得到Mn0.3Cd0.7S纳米棒(MCS-s)粉末。
(2)溶剂热法制备Ni/Mn0.3Cd0.7S复合光催化剂
称取步骤(1)中所得的Mn0.3Cd0.7S纳米棒(MCS-s)粉末50 mg分散于80 ml乙醇溶液中并搅拌10 min,加入128 µL 0.1 mol/L 的Ni(NO3)2的乙醇溶液,继续搅拌10 min后向上述溶液中通氩气20 min。然后用300 W带有420截止片的氙灯光照10 min,所得沉淀用去离子水和乙醇各洗涤三次后于60 ℃真空干燥过夜,得到所述镍包裹硫锰镉(Ni/Mn0.3Cd0.7S)复合光催化剂其中Ni:MCS-s的质量比为1.5:100,即1.5 wt% Ni/MCS-s。
实施例3
(1)溶剂热法制备富含硫空位的Mn0.3Cd0.7S纳米棒
将14 mmol乙酸镉和6 mmol乙酸锰溶解于30 mL乙二胺和30 mL去离子水的混合溶剂中,搅拌20 min,再加入25 mmol硫代乙酰胺并继续搅拌30 min,然后将所得混合溶液转移到100 mL高压反应釜中,200 ℃恒温反应24 h,自然冷却至室温,所得沉淀依次用去离子水和乙醇各洗涤三次后于60 ℃真空干燥过夜,得到Mn0.3Cd0.7S纳米棒(MCS-s)粉末。
(2)溶剂热法制备Ni/Mn0.3Cd0.7S复合光催化剂
称取步骤(1)中所得的Mn0.3Cd0.7S纳米棒(MCS-s)粉末50 mg分散于80 ml乙醇溶液中并搅拌10 min,加入256 µL 0.1 mol/L 的Ni(NO3)2的乙醇溶液,继续搅拌10 min后向上述溶液中通氩气20 min。然后用300 W带有420截止片的氙灯光照10 min,所得沉淀用去离子水和乙醇各洗涤三次后于60 ℃真空干燥过夜,得到所述镍包裹硫锰镉(Ni/Mn0.3Cd0.7S)复合光催化剂,其中Ni:MCS-s的质量比为3.0:100,即3.0 wt% Ni/MCS-s。
实施例4
(1)溶剂热法制备富含硫空位的Mn0.3Cd0.7S纳米棒
将14 mmol乙酸镉和6 mmol乙酸锰溶解于30 mL乙二胺和30 mL去离子水的混合溶剂中,搅拌20 min,再加入25 mmol硫代乙酰胺并继续搅拌30 min,然后将所得混合溶液转移到100 mL高压反应釜中,200 ℃恒温反应24 h,自然冷却至室温,所得沉淀依次用去离子水和乙醇各洗涤三次后于60 ℃真空干燥过夜,得到Mn0.3Cd0.7S纳米棒(MCS-s)粉末。
(2)溶剂热法制备Ni/Mn0.3Cd0.7S复合光催化剂
称取步骤(1)中所得的Mn0.3Cd0.7S纳米棒(MCS-s)粉末50 mg分散于80 ml乙醇溶液中并搅拌10 min,加入384 µL 0.1 mol/L 的Ni(NO3)2的乙醇溶液,继续搅拌10 min后向上述溶液中通氩气20 min。然后用300 W带有420截止片的氙灯光照10 min,所得沉淀用去离子水和乙醇各洗涤三次后于60 ℃真空干燥过夜,得到所述镍包裹硫锰镉(Ni/Mn0.3Cd0.7S)复合光催化剂其中Ni:MCS-s的质量比为4.5:100,即4.5 wt% Ni/MCS-s。
图1为Ni及实施例1-4所得Ni/MCS-s复合光催化剂的X射线衍射图。由图1可知,负载后的Ni/MCS-s复合光催化剂其结构未发生改变。所负载的无定型Ni与Ni的标准卡片匹配,说明了Ni/Mn0.3Cd0.7S复合光催化剂的成功制备
图2 实施例1 1.5 wt% Ni/MCS-s复合光催化剂的透射电镜图以及透射电镜选区元素分布图。从图中可见,MCS-s具有光滑的纳米棒结构,其直径约为50nm,长度为150-700nm;Ni纳米层厚度约1–2 nm,成功包裹在MCS-s纳米棒表面上。0.34 nm的晶格条纹归因于Mn0.3Cd0.7S的(002)晶面,MCS-s纳米棒表面的无定型层证明了Ni纳米层的存在。透射电镜图进一步证明了Ni/MCS-s的成功制备。
图3硫空位缺乏的MCS-p与富含硫空位MCS-s以及1.5 wt% Ni/MCS-s和1.5 wt%Ni/MCS-p的电子顺磁共振强度对比图;可以证明硫空位存在于MCS-s结构中。MCS-p合成方法如下:将实施例步骤(1)中硫代乙酰胺的用量替换为20 mmol,其他步骤同实施例,得到缺少硫空位的Mn0.3Cd0.7S(S vacancies-poor Mn0.3Cd0.7S),并将其命名为MCS-p。
对比例
称取50 mg Mn0.3Cd0.7S纳米棒(MCS-s)粉末分散于60 ml 水和20 ml 乙醇的混合溶液中并搅拌10 min。然后加入133 µL 10 g/L的H2PtCl6·6H2O溶液,继续搅拌10 min后向上述溶液中通氩气20 min。然后用300 W带有420截止片的氙灯光照30 min,所得沉淀用去离子水和乙醇各洗涤三次后于60 ℃真空干燥过夜,得到重金属铂负载(1 wt% Pt/Mn0.3Cd0.7S)复合光催化剂。
应用例
将实施例1-4所得Ni/Mn0.3Cd0.7S(Ni/MCS-s)复合光催化剂分别用于可见光诱导催化分解水产氢。
具体步骤为:称取5 mg催化剂样品,加入到50 mL含有0.25 M Na2S和0.35 MNa2SO3的水溶液中,将该溶液置于光催化产氢系统中,由恒温循环冷凝水控制反应温度,待系统抽真空后,开启氙灯光源进行光催化分解水产氢,产生氢气的量通过气相色谱检测。
图4(a)为不同Ni负载量的Ni/MCS-s的复合光催化剂在纯水中以及3.5 wt% NaCl溶液(人工海水)中的产氢速率图,由图可见Ni的负载显著提高了光催化产氢活性。(b)为不同NaCl浓度中富含硫空位MCS-s以及1.5 wt% Ni/MCS-s复合光催化剂的产氢速率。由图可见本底MCS-s 在人工海水(3.5wt% NaCl)溶液中被盐溶液腐蚀,活性降低。而Ni负载后的样品在盐溶液中表现出高于纯水的活性。说明本发明的催化剂可以有效抑制盐腐蚀。(c)为不同盐溶液中1.5 wt% Ni/Mn0.3Cd0.7S复合光催化剂的产氢速率。由图可以看出本发明的Ni/MCS-s复合光催化剂在多种盐溶液中表现出优良的产氢活性。(d)不同催化剂样品在可见光诱导下光催化分解纯水以及3.5 wt% NaCl溶液(人工海水)中的产氢活性的对比图。由图可知,本发明的Ni/MCS-s复合光催化剂比重金属铂负载(1 wt% Pt/MCS-s)的催化剂相比,具有更高的活性。
图5(a)为1.5 wt% Ni/MCS-s不同波长下的量子效率。 其中可见光420 nm下量子效率超过60%,具有较好的太阳能利用率。(b)1.5 wt% Ni/MCS-s复合光催化剂的长时间产氢循环实验图。由图中可见,在四个光照反应循环(共16 h)后,复合催化剂的活性仅略有下降,表明该催化剂具有较好的稳定性。
图6为MCS-s(a)以及MCS-p(b)的Mott–Schottky谱图;由图可以得到MCS-s和MCS-p的导带位置分别为−0.55 eV和−0.65 eV。Tauc曲线可以得到(c)MCS-s和(d)MCS-p的带隙宽度分别为2.57 eV和2.44 eV。
图7为Ni/MCS-s和Ni/MCS-p复合光催化剂产氢反应机理图。由于硫空位的引入,降低了肖特基结的高度,能够促进大量的热电子从Ni迁移到MCS-s导带。
表1
表1为本发明与近期报道的相关光催化剂的活性对比,本发明的光催化剂具有明显较高的产氢活性。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (6)

1.一种富含硫空位的镍包裹硫锰镉等离子体复合光催化剂,其特征在于:所述复合光催化剂是由具有表面等离子共振效应的纳米Ni层包裹富含硫空位的Mn0.3Cd0.7S 纳米棒构成的复合材料;
其制备方法,包括以下步骤:
(1)溶剂热法制备富含硫空位的Mn0.3Cd0.7S纳米棒:
将乙酸镉和乙酸锰溶解于乙二胺和去离子水的混合溶剂中,加入硫代乙酰胺继续搅拌混匀,然后将所得混合溶液转移到高压反应釜中,200 ℃恒温反应24 h,自然冷却至室温,所得沉淀依次用去离子水和乙醇各洗涤三次后于60 ℃真空干燥过夜,得到Mn0.3Cd0.7S纳米棒粉末;
(2)溶剂热法制备Ni/Mn0.3Cd0.7S等离子体复合光催化剂:
将所得Mn0.3Cd0.7S纳米棒粉末分散于80 ml乙醇溶液中并搅拌10 min,加入Ni(NO3)2的乙醇溶液,继续搅拌10 min后向上述溶液中通氩气20 min,然后用300 W带有420截止片的氙灯光照,所得沉淀用去离子水和乙醇各洗涤三次后于60 ℃真空干燥过夜,得到以富含硫空位的Mn0.3Cd0.7S纳米棒作为载体,在其表面原位沉积无定型的Ni纳米层的镍包裹硫锰镉等离子体复合光催化剂。
2.根据权利要求1所述的一种富含硫空位的镍包裹硫锰镉等离子体复合光催化剂,其特征在于:步骤(1)中所用乙酸锰、乙酸镉和硫代乙酰胺的摩尔比为6:14:25。
3. 根据权利要求1所述的一种富含硫空位的镍包裹硫锰镉等离子体复合光催化剂,其特征在于:步骤(2)中所述Ni(NO3)2的乙醇溶液浓度为0.1 mol/L。
4.根据权利要求1所述的一种富含硫空位的镍包裹硫锰镉等离子体复合光催化剂,其特征在于:步骤(2)中Ni(NO3)2与Mn0.3Cd0.7S纳米棒的质量比为0.75–4.5:100。
5. 根据权利要求1所述的一种富含硫空位的镍包裹硫锰镉等离子体复合光催化剂,其特征在于:步骤(2)中氙灯的光照时间为10 min。
6.如权利要求1所述的富含硫空位的镍包裹硫锰镉等离子体复合光催化剂在光催化分解水的应用。
CN202210331521.XA 2022-03-31 2022-03-31 一种富含硫空位的镍包裹硫锰镉等离子体光催化剂及其制备方法和应用 Active CN114713247B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210331521.XA CN114713247B (zh) 2022-03-31 2022-03-31 一种富含硫空位的镍包裹硫锰镉等离子体光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210331521.XA CN114713247B (zh) 2022-03-31 2022-03-31 一种富含硫空位的镍包裹硫锰镉等离子体光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114713247A CN114713247A (zh) 2022-07-08
CN114713247B true CN114713247B (zh) 2023-08-04

Family

ID=82240651

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210331521.XA Active CN114713247B (zh) 2022-03-31 2022-03-31 一种富含硫空位的镍包裹硫锰镉等离子体光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114713247B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207081B1 (en) * 2008-11-08 2012-06-26 University Of Central Florida Research Foundation, Inc. Nanocomposite for photocatalytic Hydrogen production and method for its preparation
RU2603190C1 (ru) * 2015-11-05 2016-11-27 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Катализатор, способ его приготовления и способ фотокаталитического получения водорода
CN110756203A (zh) * 2019-10-25 2020-02-07 华南理工大学 一种Ni2P/Mn0.3Cd0.7S光催化分解水复合催化剂及其制备方法与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101157044B (zh) * 2007-10-16 2010-06-23 西安交通大学 Ni掺杂Cd0.1Zn0.9S微米球光催化剂及制备方法
CN112517029A (zh) * 2021-01-22 2021-03-19 福州大学 富含s空位的复合光催化剂及其制备方法和应用
CN113209989A (zh) * 2021-04-08 2021-08-06 武汉工程大学 硫化锌镉纳米棒与镍纳米棒异质结光催化剂、其制备方法、产氢体系及产氢方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207081B1 (en) * 2008-11-08 2012-06-26 University Of Central Florida Research Foundation, Inc. Nanocomposite for photocatalytic Hydrogen production and method for its preparation
RU2603190C1 (ru) * 2015-11-05 2016-11-27 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Катализатор, способ его приготовления и способ фотокаталитического получения водорода
CN110756203A (zh) * 2019-10-25 2020-02-07 华南理工大学 一种Ni2P/Mn0.3Cd0.7S光催化分解水复合催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN114713247A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
Dai et al. In-situ synthesis of CoP co-catalyst decorated Zn0. 5Cd0. 5S photocatalysts with enhanced photocatalytic hydrogen production activity under visible light irradiation
Kadi et al. Uniform dispersion of CuO nanoparticles on mesoporous TiO2 networks promotes visible light photocatalysis
Li et al. Synthesis of CuO micro-sphere combined with g-C3N4 using Cu2O as precursor for enhanced photocatalytic hydrogen evolution
CN113145138B (zh) 热响应型复合光催化剂及其制备方法和应用
Cheng et al. Visible light responsive CdS sensitized TiO2 nanorod array films for efficient photocatalytic reduction of gas phase CO2
CN107376944B (zh) 过渡金属硫化物负载Mn-Cd-S固溶体在光催化产氢方面的应用
CN110560105B (zh) 磷化镍负载硫铟锌纳米微球复合材料的制备及在光催化产氢中的应用
CN113058617B (zh) 一种光催化剂及其制备方法和应用
Sun et al. Uniform Pt quantum dots-decorated porous g-C3N4 nanosheets for efficient separation of electron-hole and enhanced solar-driven photocatalytic performance
Huang et al. Fabrication of CuS-modified inverse opal g-C3N4 photocatalyst with enhanced performance of photocatalytic reduction of CO2
CN114588888A (zh) 一种光催化剂及其制备方法与应用
CN110743575B (zh) 一种具有吸附-光催化协同效应的AgIn5S8/SnS2固溶体催化剂的制备方法
CN114054066B (zh) 一种掺杂g-C3N4纳米管光催化剂及制备方法与应用
Yao et al. A novel hierarchical CdS-DETA@ CoP composite as highly stable photocatalyst for efficient H2 evolution from water splitting under visible light irradiation
Lu et al. Microwave-assisted synthesis and characterization of BiOI/BiF 3 p–n heterojunctions and its enhanced photocatalytic properties
CN114602450A (zh) 一种Co/Zn-g-C3N4光催化材料及其制备和应用
CN110756199A (zh) 一例基于硫化镍量子点的复合光催化剂的制备方法及应用
CN111054414A (zh) 一种RhPx/g-C3N4复合光催化剂及其制备方法和应用
CN106925306B (zh) 二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂及其制备方法
CN114713247B (zh) 一种富含硫空位的镍包裹硫锰镉等离子体光催化剂及其制备方法和应用
Liu et al. Enhanced photocatalytic degradation performance of mono-disperse ZnS nano-flake on biocarbon sheets
Zhao et al. One-pot synthesis of Cu-modified HNb 3 O 8 nanobelts with enhanced photocatalytic hydrogen production
CN114100682B (zh) 一种羽状叶异质结光催化剂及其制备方法
CN114618526A (zh) 一种硫化镉/铂/钽酸钠纳米立方体复合光催化剂及其制备方法和应用
CN112517029A (zh) 富含s空位的复合光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant