CN114702332B - 一种赤泥陶瓷球载氧体及其制备方法与应用 - Google Patents

一种赤泥陶瓷球载氧体及其制备方法与应用 Download PDF

Info

Publication number
CN114702332B
CN114702332B CN202210286087.8A CN202210286087A CN114702332B CN 114702332 B CN114702332 B CN 114702332B CN 202210286087 A CN202210286087 A CN 202210286087A CN 114702332 B CN114702332 B CN 114702332B
Authority
CN
China
Prior art keywords
red mud
oxygen carrier
ceramic ball
mixture
clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210286087.8A
Other languages
English (en)
Other versions
CN114702332A (zh
Inventor
王翠苹
梁文政
常国璋
张建
王凤印
岳光溪
吕天宝
翟洪轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN202210286087.8A priority Critical patent/CN114702332B/zh
Publication of CN114702332A publication Critical patent/CN114702332A/zh
Application granted granted Critical
Publication of CN114702332B publication Critical patent/CN114702332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1321Waste slurries, e.g. harbour sludge, industrial muds
    • C04B33/1322Red mud
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本申请公开了一种赤泥陶瓷球载氧体及其制备方法与应用,属于化学链载氧体制备技术领域。该赤泥陶瓷球载氧体,按重量份数计,包括:赤泥60~70份,黏土10~30份,造孔剂1~2份。制备得到的赤泥陶瓷球载氧体热稳定性好,机械强度高,反应活性良好,利于流态化,适合作为化学链载氧体。

Description

一种赤泥陶瓷球载氧体及其制备方法与应用
技术领域
本申请涉及一种赤泥陶瓷球载氧体及其制备方法与应用,属于化学链载氧体制备技术领域。
背景技术
“双碳目标”下,化学链燃烧(气化)作为一种新型燃烧技术,具备二氧化碳捕集、能量分级利用、低污染物产出等优良特性,具有巨大的应用潜力。载氧体作为其中传递晶格氧与热量的介质,是影响化学链燃烧(气化)效率和经济性的主要因素,因此开发具有机械强度高、反应活性好、材料廉价、制备工艺简单的载氧体是化学链燃烧技术实现批量化应用的重要一步。
赤泥是用铝土矿为原料生产氧化铝过程中所产生的固体废弃物,赤泥颗粒极细,且具有强碱性,主要成分是铁、铝氧化物以及氢氧化物。随着制铝行业产量逐年上升,赤泥的产量快速增加,目前我国每年大约产生1亿吨赤泥,其中山东产生的赤泥占比最大约为35%,大量堆积的赤泥既占用土地浪费资源,还存在污染环境和安全隐患的问题。由于近年来,环保要求逐年严苛,赤泥的资源化利用急需加强,目前赤泥固废的处置方法主要有:生产建材与陶瓷、回收高价值金属、做替代催化剂、废水处理、土壤修复等,但是这些技术多受限于能耗高以及二次污染物排放的可能,至今并未得到大规模的实践应用,据估计我国目前大约囤积有4.8~8.7亿吨尚未处理加工的赤泥。
专利202010908855.X公开了一种辅助燃烧载氧体组合物的制备方法,采用十二胺、正丁醇同铁、镍、铜的硝酸盐或者氯化盐制备三元类水滑石,连同改性赤泥作为活性组分,添加氧化铝、氯酸镁作为载体,所制备的载氧体显现出了良好的CO转化率。但是已有许多研究表明,含有氧化铁和氧化铝的载氧体容易产生铝酸铁等物质造成载氧体活性下降,并且载氧体高温煅烧过程中硝酸盐和氯化盐会分解产生有毒污染性气体,不利于环境保护。专利202010987910.9公开了一种化学链制氢的整体式载氧体的制备方法,将赤泥、炉渣与粘合剂、胶溶剂、助溶剂、扩孔剂和水混合均匀,经干燥焙烧后获得整体式载氧体,该载氧体制氢效果好,但主要应用于固定床反应器,不能应用在流化床反应器中。
因此,合理利用赤泥中丰富的铁、铝氧化物,研发制备性能优越、环境友好且利于流化的载氧体,既可以推动化学链燃烧(气化)技术的发展,也可以实现赤泥的资源化利用,具有重要的经济价值和环境效益。
发明内容
为了解决上述问题,提供了一种赤泥陶瓷球载氧体及其制备方法与应用,该赤泥陶瓷球载氧体由赤泥、黏土和造孔剂组成,制备得到的载氧体颗粒圆润、粒径均匀且利于流态化,在还原性气氛下显现出高活性。
根据本申请的一个方面,提供了一种赤泥陶瓷球载氧体,按重量份数计,包括:赤泥60~70份,黏土10~30份,造孔剂1~2份。
可选地,所述赤泥的粒径小于75μm,所述黏土的粒径小于75μm,所述造孔剂为淀粉。
可选地,所述载氧体的比表面积为1.4-1.8m2/g,所述载氧体的孔容为0.02-0.04m3/g,所述载氧体的平均孔径为65-80nm。
优选的,所述载氧体的比表面积为1.4-1.7m2/g,所述载氧体的孔容为0.03-0.04m3/g,所述载氧体的平均孔径为68-76nm。
根据本申请的又一个方面,提供了一种赤泥陶瓷球载氧体的制备方法,包括下述步骤:
(1)将赤泥依次进行粉碎、干燥和筛分处理,得到赤泥粉末,所述赤泥粉末的粒径小于75μm;
(2)将黏土依次进行粉碎和筛分处理,得到黏土粉末,所述黏土粉末的粒径小于75μm;
(3)将赤泥粉末、黏土粉末、造孔剂和水混合,得到混合物;
(4)将所述混合物进行成型处理,得到混合物球胚;
(5)将所述混合物球胚阴干,高温煅烧后得到所述赤泥陶瓷球载氧体。
可选地,所述赤泥的干燥温度为100~110℃,干燥时长为3~6h,干燥至恒重后进行粉碎。
所述赤泥为拜耳法所产生的赤泥。
可选地,所述混合步骤包括:将所述赤泥粉末、黏土粉末和造孔剂搅拌3-6h,使其充分混合均匀,之后边搅拌边加入水至所述混合物的含水率为10%-15%。
可选地,所述成型处理包括:将所述混合物放置于圆盘造粒机内进行造粒,喷入适量水,得到所述混合物球胚,所述混合物球胚的粒径为0.1-1mm。喷入适量水的目的则是为了便于成粒。
可选地,所述混合物球胚阴干包括:将所述混合物球胚放置在20-30℃下干燥24-48h。
可选地,所述高温煅烧包括:在室温下一次升温至300-400℃,保温2h-4h,之后二次升温至1000-1150℃,保温3h以上,最后自然降温至室温。
优选的,所述高温煅烧包括:在室温下一次升温至350℃,保温2h,之后二次升温至1100℃,保温4h,最后自然降温至室温。
可选地,所述一次升温的升温速率为5-10℃/min,二次升温的升温速率为5-10℃/min。
优选的,所述一次升温的升温速率为5℃/min,二次升温的升温速率为5℃/min。
根据本申请的又一个方面,提供了上述任一项赤泥陶瓷球载氧体或任一项制备方法制备得到的赤泥陶瓷球载氧体在化学链燃烧/气化系统中的应用。
将上述制备的赤泥陶瓷载氧体在流化床中进行了污泥化学链气化实验,该载氧体的多循环性能优越,尤其耐磨性,较复合铁铝载氧体具有明显的优势。
本申请的有益效果包括但不限于:
1.根据本申请的赤泥陶瓷球载氧体,该载氧体颗粒圆润、粒径均匀、利于流态化,在还原性气氛下显现出高活性。
2.根据本申请的赤泥陶瓷球载氧体,该载氧体强度高,耐磨性好,循环稳定程度高,且制作工艺相对简单,可以实现载氧体的大批量工业化生产
3.根据本申请的赤泥陶瓷球载氧体,为赤泥资源化利用增添了新领域,对赤泥堆放产生的资源浪费问题提供了新的解决方案。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本发明提供的实施例1的步骤流程图。
图2是本发明提供的实施例2的步骤流程图。
图3是本发明所用黏土原料的XRD图。
图4是本发明所用赤泥原料和实施例1,对比例1中赤泥陶瓷球载氧体的XRD图。
图5是本发明实施例1、实施例2和对比例1中赤泥陶瓷球载氧体反应活性测试TGA图。
图6是本发明实施例1,对比例2-4中赤泥陶瓷球载氧体氧化-还原循环稳定测试TGA图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买,如无特殊说明,本发明所使用的试剂或原料均按照本领域常规方式使用或者按照产品说明书使用。此外,任何与所记载内容相似均等的方法材料皆可用于本发明方法中。
以下实施例中所采用的赤泥均取自山东鲁北企业集团总公司,经过XRF测试后,主要化学成分及其含量如表1所示:
表1赤泥中主要化学成分
Figure GDA0003665854040000051
实施例1
请参阅图1,本发明提供了一种上述赤泥陶瓷球载氧体的制备方法,包括如下步骤:
(1)将含有大块颗粒的赤泥进行机械粉碎,然后在110℃下干燥3h,最后进行筛分处理,得到粒径小于75μm的赤泥粉末;
(2)将含有大块颗粒的黏土进行机械粉碎,之后进行筛分处理,得到粒径小于75μm的黏土粉末;
(3)利用悬臂式搅拌器,将500g的干燥赤泥粉末、100g的黏土粉末、5g的淀粉粉末进行机械搅拌4h,使各组分充分混合,边搅拌边喷洒60.5g水,得到含水率为10%的混合物;
(4)将混合物放入圆盘造粒机进行成型处理,喷入适量水,获得粒径为0.1~1mm的混合物球胚;
(5)将混合物球胚放置在23~25℃下背阴处36h,得到干燥的球胚,然后采用马弗炉设置两段升温程序,先从室温以5℃/min的升温速率升温至350℃,并保温2h,后从350℃以5℃/min的升温速率升温至1100℃,并保温4h,得到赤泥陶瓷球载氧体。
实施例2
请参阅图2,本发明提供了一种上述赤泥陶瓷球载氧体的制备方法,包括如下步骤:
(1)将含有大块颗粒的赤泥进行机械粉碎,然后在115℃下干燥3h,进行筛分处理,得到粒径小于75μm的赤泥粉末;
(2)将含有大块颗粒的黏土进行机械粉碎,然后进行筛分处理,得到粒径小于75μm的黏土粉末;
(3)利用悬臂式搅拌器,将500g的干燥赤泥粉末、150g的黏土粉末、5g的淀粉粉末进行机械搅拌4h,使各组分充分混合,边搅拌边喷洒75g水,得到含水率为11.5%的混合物;
(4)将混合物放入圆盘造粒机进行成型处理,喷入适量水,获得粒径为0.1~1mm的混合物球胚;
(5)将混合物球胚放置在23~28℃下背阴处48h,得到干燥的球胚,然后采用马弗炉设置两段升温程序,先从室温以5℃/min的升温速率升温至350℃,并保温2h,后从350℃以5℃/min的升温速率升温至1100℃,并保温4h,得到赤泥陶瓷球载氧体。
对比例1
将实施例1中黏土组分去除,利用悬臂式搅拌器,将500g的干燥赤泥粉末、5g的淀粉粉末进行机械搅拌4h,使各组分充分混合,边搅拌边喷洒50.5g水,得到含水率为10%的混合物料。
其余工序和实施条件与实施例1相同,制成不含黏土的赤泥小球载氧体。
对比例2
将实施例1中赤泥粉末和黏土粉末的筛分粒径从小于75μm变为100~150μm,将混合物料放入圆盘造粒机进行成型处理时,球胚粒径变为0.5~1.5mm。
其余工序和条件与实施例1相同。
对比例3
将实施例1中最终煅烧温度1100℃变更为900℃,其余工序和条件与实施例1相同。
对比例4
将对比例2中最终煅烧温度1100℃变更为900℃,其余工序和条件与对比例2相同。
测试例1:物相检测
取实施例1中所用黏土粉末进行XRD测试,物相检索结果如图3所示。取实施例1中所用干燥赤泥粉末,实施例1、对比例1中煅烧后的成品赤泥陶瓷球载氧体进行XRD测试,对比赤泥中化学成分的变化,物相检索结果如图4所示。
从图3的测试结果可以看出,所用黏土的主要成分是SiO2和铝硅酸盐,可以充当惰性载体组分。结合XRF测试结果表1与图4可以看出,未经处理的干燥赤泥粉末中主要含有Fe2O3、SiO2、Al2O3以及Al(OH)3等物质。而对比例1中不加黏土的赤泥小球载氧体中,不稳定的碱性氧化物分解消失,主要含有Fe2O3以及铝酸钙和铝硅酸盐,但铝酸钙和铝硅酸盐峰值较小,说明其相对含量较少,无法保证载氧体的整体强度。而实施例1中添加黏土的赤泥陶瓷球载氧体,不稳定的碱性氧化物消失的同时,铝酸钙和铝硅酸盐的峰值明显,是耐火材料、陶瓷中的常见物质,从而说明赤泥陶瓷载氧体煅烧成功。黏土中大量SiO2的可以与赤泥中的Al2O3、Al(OH)3等物质生成铝硅酸盐,避免了Fe2O3与Al2O3、Al(OH)3生成铝酸铁等物质,可以保持载氧体的反应活性同时提高载氧体的机械强度。以铝硅酸盐为主要成分的沸石类分子筛在常常在多相反应中用作催化剂或催化剂载体,而在本发明中,赤泥陶瓷球载氧体因为加入的黏土中含有大量的SiO2,煅烧后其峰值消失,故生成的铝硅酸盐才是真正稳定的载体形式,该铝硅酸盐主要起到保持反应活性和机械强度的作用,上述作用未被任何现有技术所公开。
测试例2:反应活性检测
为确定黏土的加入对载氧体反应活性的影响,取实施例1、实施例2和对比例1中的成品载氧体在热重分析仪中进行反应活性测试。测试采用流量100ml/min、5Vol%的H2还原性气体,温控程序设定为以10℃/min的升温速率,从40℃升温至900℃并保温25min。
测试结果曲线如图5所示,失重曲线(Mass)代表载氧体失去晶格氧的重量占比,可以反映出载氧体的供氧能力和反应活性。从图5中可以看出,对比例1载氧体最终失重-8.725%,实施例1载氧体最终失重-6.883%,实施例2载氧体最终失重-5.872%。这是由于黏土加入量升高,使得赤泥陶瓷球载氧体主要的活性组分Fe2O3占比减少,减少了可传递晶格氧的总量,使得总失重逐渐减小。
图5的失重曲线表明3种赤泥的陶瓷球都表现出了较高的反应活性,但实施例1和实施例2的掺入黏土的赤泥陶瓷球载氧体均在大约500~510℃开始失重,而对比例1的不掺入黏土的赤泥陶瓷球载氧体大约在593℃开始失重。在升温过程中,实施例1、实施例2和对比例1的最快失重速率均在-0.36%/min附近。
以上结果表明可以通过调控黏土占比实现调控赤泥陶瓷球载氧体的总氧传递量,载氧体制备灵活度高。此外,黏土的加入可以降低赤泥陶瓷球载氧体的活化温度,但不影响到赤泥陶瓷球载氧体的反应速率,从而提高了载氧体的反应活性。
测试例3:循环稳定性检测
取实施例1,对比例2、对比例3和对比例4的载氧体,在热重分析仪中对赤泥陶瓷球载氧体进行氧化-还原循环测试,测试不同原料粒径、不同煅烧温度下赤泥陶瓷球载氧体反应活性和循环稳定性。在反应活性测试温控程序的基础上,重复添加循环反应设置为:Ⅰ.保持900℃,通入100ml/min的空气10min;Ⅱ.保持900℃,通入100ml/min的N2 10min;Ⅲ.保持900℃,通入100ml/min、5Vol%的H2 25min,通入空气目的在于使载氧体再度氧化获得晶格氧,N2用于气氛切换的吹扫,使得赤泥陶瓷球载氧体完成3次氧化-还原循环反应,以测试其反应的稳定性,反应结果如图6所示。
图6中失重曲线(Mass)可以看出,相同煅烧温度下,不同原料粒径的失重曲线几乎重合,表明原料粒径对赤泥陶次球载氧体的活性以及稳定性影响较小。而900℃煅烧的赤泥陶球载氧体(对比例3和对比例4)相比1100℃煅烧的赤泥陶球载氧体(实施例1和对比例2),初始阶段活性温度较低,总失重更多,但随着恒温循环过程进行,其失重曲线轨迹逐渐靠近1100℃煅烧的赤泥陶瓷球载氧体,而后者几乎不变,表明900℃煅烧的赤泥陶球载氧体循环稳定性较差。
结合微商热重分析结果表明:载氧体的氧化过程相比还原过程要迅速,900℃下氧化过程增重速率最大可达7.86%/min,且在很短时间内便可以增重至接近初始状态,还原过程失重速率最大可达-1.93%/min,大约需要25min才会反应完毕。
以上结果表明该赤泥陶瓷球载氧体循环反应活性稳定性好,还原过程慢于氧化过程。载氧体热重测试反应特性结果汇总如下表:
表2载氧体热重测试反应特性结果
Figure GDA0003665854040000091
测试例4:比表面积检测
对实施例1、实施例2、对比例1、对比例2、对比例3和对比例4的赤泥陶瓷球载氧体进行比表面积测试,结果如表3所示:
表3赤泥陶瓷球比表面积测试结果
BET比表面积(m2/g) 孔容(cm3/g) 平均孔径大小(nm)
实施例1 1.4493 0.003184 75.1600
实施例2 1.6445 0.003224 68.5244
对比例1 1.2971 0.004060 25.6854
对比例2 1.1224 0.002955 78.2265
对比例3 5.0069 0.001227 36.4807
对比例4 4.2799 0.001159 40.5568
通过实施例1、实施例2和对比例1的对比可以发现,黏土的加入可以提高赤泥陶瓷球载氧体的平均孔容大小,主要是因为黏土含有的SiO2和铝硅酸盐可以作为良好的惰性载体,在高温煅烧过程中可以防止载氧体内部微孔结构被融化破坏。通过实施例1、对比例2、对比例3和对比例4的对比可以发现,相同煅烧温度但原料粒径不同时,较大颗粒的原料使得平均孔径有微弱扩大。通过实施例1、对比例2、对比例3和对比例4的对比可以发现,相同原料粒径,不同煅烧温度时,高温煅烧的赤泥陶瓷球载氧体平均孔容更大,BET比表面积较小,这表明1100℃煅烧的载氧体形成的微孔孔径更大,更有利于气体在内部的扩散,同时载氧体内部孔隙较少,因而整体具有更好的机械强度。在实际研磨测试中也体现出,1100℃煅烧的赤泥陶瓷球载氧体相比900℃煅烧的赤泥陶瓷球载氧体更难以破碎。
综合分析以上结果表明,黏土的加入有助于降低赤泥陶瓷球载氧体的反应活性,同时防止载氧体内部微孔结构在高温煅烧中被融化破坏;1100℃是较好的煅烧温度,可以为载氧体提供稳定的循环反应特性和良好的机械强度;煅烧温度相同的情况下,较大粒径的原料对赤泥陶瓷球载氧体性能提升较小,综合考虑应采用细颗粒的原料即可。
以上所述,仅为本申请的实施例而已,本申请的保护范围并不受这些具体实施例的限制,而是由本申请的权利要求书来确定。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的技术思想和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (8)

1.一种赤泥陶瓷球载氧体,其特征在于,按重量份数计,包括:赤泥60~70份,黏土10~30份,造孔剂1~2份;
所述赤泥的粒径小于75μm,所述黏土的粒径小于75μm,所述造孔剂为淀粉;
所述载氧体的比表面积为1.4-1.8m2/g,所述载氧体的平均孔径为65-80nm。
2.一种权利要求1所述的赤泥陶瓷球载氧体的制备方法,其特征在于,包括下述步骤:
(1)将赤泥依次进行粉碎、干燥和筛分处理,得到赤泥粉末,所述赤泥粉末的粒径小于75μm;
(2)将黏土依次进行粉碎和筛分处理,得到黏土粉末,所述黏土粉末的粒径小于75μm;
(3)将赤泥粉末、黏土粉末、造孔剂和水混合,得到混合物;
(4)将所述混合物进行成型处理,得到混合物球胚;
(5)将所述混合物球胚阴干,高温煅烧后得到所述赤泥陶瓷球载氧体。
3.根据权利要求2所述的赤泥陶瓷球载氧体的制备方法,其特征在于,所述混合步骤包括:将所述赤泥粉末、黏土粉末和造孔剂搅拌3-6h,使其充分混合均匀,之后边搅拌边加入水至所述混合物的含水率为10%-15%。
4.根据权利要求2所述的赤泥陶瓷球载氧体的制备方法,其特征在于,所述成型处理包括:将所述混合物放置于圆盘造粒机内进行造粒,喷入适量水,得到所述混合物球胚,所述混合物球胚的粒径为0.1-1mm。
5.根据权利要求2所述的赤泥陶瓷球载氧体的制备方法,其特征在于,所述混合物球胚阴干包括:将所述混合物球胚放置在20-30℃下干燥24-48h。
6.根据权利要求2所述的赤泥陶瓷球载氧体的制备方法,其特征在于,所述高温煅烧包括:在室温下一次升温至300-400℃,保温2h-4h,之后二次升温至1000-1150℃,保温3h以上,最后自然降温至室温。
7.根据权利要求6所述的赤泥陶瓷球载氧体的制备方法,其特征在于,所述一次升温的升温速率为5-10℃/min,二次升温的升温速率为5-10℃/min。
8.一种权利要求1所述的赤泥陶瓷球载氧体或权利要求2-7任一项所述的制备方法制备得到的赤泥陶瓷球载氧体在化学链燃烧/气化系统中的应用。
CN202210286087.8A 2022-03-23 2022-03-23 一种赤泥陶瓷球载氧体及其制备方法与应用 Active CN114702332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210286087.8A CN114702332B (zh) 2022-03-23 2022-03-23 一种赤泥陶瓷球载氧体及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210286087.8A CN114702332B (zh) 2022-03-23 2022-03-23 一种赤泥陶瓷球载氧体及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114702332A CN114702332A (zh) 2022-07-05
CN114702332B true CN114702332B (zh) 2023-05-23

Family

ID=82169554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210286087.8A Active CN114702332B (zh) 2022-03-23 2022-03-23 一种赤泥陶瓷球载氧体及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114702332B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118022855A (zh) * 2024-04-15 2024-05-14 昆明理工大学 一种高炉煤气化学链燃烧富集co2的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136896A (en) * 1980-03-31 1981-10-26 Masahisa Sugita Briquette and oval briquette with reduced emission of poisonous gas and preparation thereof
CN101538145A (zh) * 2009-04-10 2009-09-23 山东大学 一种用污泥和赤泥制备超轻陶粒的方法
CN102336579A (zh) * 2010-07-26 2012-02-01 贵州省建筑材料科学研究设计院 一种利用赤泥生产高性能陶粒的方法
CN102517122A (zh) * 2011-10-26 2012-06-27 昆明理工大学 一种利用赤泥制备化学链燃烧氧载体的方法
CN104961095A (zh) * 2015-06-16 2015-10-07 昆明理工大学 一种化学链制氢用赤泥基氧载体的制备方法
CN106116498A (zh) * 2016-06-28 2016-11-16 蒋文兰 赤泥轻质通孔陶粒
CN110982580A (zh) * 2019-12-12 2020-04-10 华中科技大学 一种结构紧密的复合材料氧载体的制备方法及产品
KR20200042246A (ko) * 2018-10-15 2020-04-23 이디즘하우징 주식회사 발포 세라믹 볼을 이용한 패널의 제조방법 및 그 발포 세라믹 볼을 이용한 패널
CN111998335A (zh) * 2020-09-02 2020-11-27 中国石油化工股份有限公司 一种辅助燃烧载氧体组合物及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070023187A1 (en) * 2005-07-29 2007-02-01 Carbo Ceramics Inc. Sintered spherical pellets useful for gas and oil well proppants
CN107539949B (zh) * 2016-06-23 2020-10-16 中国石油化工股份有限公司 一种化学链制氢的工艺装置和工艺方法
CN110054225B (zh) * 2019-05-09 2022-02-22 新奥科技发展有限公司 一种载氧体的制备方法
CN111138167B (zh) * 2019-12-31 2022-04-29 南京环福新材料科技有限公司 一种以赤泥废渣为载体的陶瓷催化剂及其制备方法和应用
CN112142491B (zh) * 2020-09-18 2022-02-22 西安交通大学 化学链制氢的整体式载氧体、制备方法、制氢系统和方法
CN113634222A (zh) * 2021-08-20 2021-11-12 中国人民大学 一种赤泥陶粒吸附剂及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136896A (en) * 1980-03-31 1981-10-26 Masahisa Sugita Briquette and oval briquette with reduced emission of poisonous gas and preparation thereof
CN101538145A (zh) * 2009-04-10 2009-09-23 山东大学 一种用污泥和赤泥制备超轻陶粒的方法
CN102336579A (zh) * 2010-07-26 2012-02-01 贵州省建筑材料科学研究设计院 一种利用赤泥生产高性能陶粒的方法
CN102517122A (zh) * 2011-10-26 2012-06-27 昆明理工大学 一种利用赤泥制备化学链燃烧氧载体的方法
CN104961095A (zh) * 2015-06-16 2015-10-07 昆明理工大学 一种化学链制氢用赤泥基氧载体的制备方法
CN106116498A (zh) * 2016-06-28 2016-11-16 蒋文兰 赤泥轻质通孔陶粒
KR20200042246A (ko) * 2018-10-15 2020-04-23 이디즘하우징 주식회사 발포 세라믹 볼을 이용한 패널의 제조방법 및 그 발포 세라믹 볼을 이용한 패널
CN110982580A (zh) * 2019-12-12 2020-04-10 华中科技大学 一种结构紧密的复合材料氧载体的制备方法及产品
CN111998335A (zh) * 2020-09-02 2020-11-27 中国石油化工股份有限公司 一种辅助燃烧载氧体组合物及其制备方法和应用

Also Published As

Publication number Publication date
CN114702332A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2019042158A1 (zh) 氧化钙基高温co 2吸附剂及其制备方法
CN114702332B (zh) 一种赤泥陶瓷球载氧体及其制备方法与应用
CN112619648B (zh) 一种用于有机硫水解脱除的铜钴基催化剂及其制备方法
CN109794248A (zh) 一种低成本烟气脱硝催化剂及其制备、使用方法
CN113600198A (zh) 一种生物质焦油重整催化剂及其制备方法
CN114917909B (zh) 一种生物质碳负载纳米金属催化剂的应用
CN110773186B (zh) 一种高浓度二氧化硫还原制备硫磺的原位催化剂及其制备方法
CN113976100B (zh) 一种低温羰基硫水解催化剂及其制备方法和应用
CN113694920B (zh) 一种堇青石基scr催化剂及制备方法和应用
CN113461345B (zh) 一种利用电石渣焙烧生产电石用石灰及成型的装置与方法
CN113101942A (zh) 一种用于臭氧催化氧化的分子筛复合催化材料及其制备方法
CN114160104A (zh) 一种窑炉烟气co2捕集与利用耦合材料及其应用
CN113828321A (zh) 一种新型复合载氧体及其制备方法
CN115608364B (zh) 一种甲烷化学链制氢载氧体材料及规模化制备方法
CN115093885B (zh) 一种适用于移动床工艺过程的合成气脱硫剂及其制备方法
CN116786135B (zh) 氧化锰矿烟气脱硫尾渣资源化制备低温脱硝催化剂的方法
TW201641431A (zh) 複合型載氧體及其製備方法
CN110681255A (zh) 一种用于烟气脱硫脱硝的反应剂及其制备方法
CN114261992B (zh) 甘油在制备化学链燃烧复合载氧体中的应用及制备方法
CN114477298B (zh) 一种复合氧化物及其制备方法和应用
CN114774165B (zh) 氧解耦载氧体、制备方法和应用
CN113105929A (zh) 一种ZrO2修饰芬顿铁泥基载氧体及其制备方法和应用
CN115350708B (zh) 复合型催化剂及其制备方法和用途
CN114477299B (zh) 一种载氧体及其制备方法和应用
KR100413379B1 (ko) 황화수소 제거용 재생 가능한 망간계 탈황제(엠에이) 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant