CN114695511B - 一种横向扩散金属氧化物半导体器件及其制造方法 - Google Patents

一种横向扩散金属氧化物半导体器件及其制造方法 Download PDF

Info

Publication number
CN114695511B
CN114695511B CN202011630769.3A CN202011630769A CN114695511B CN 114695511 B CN114695511 B CN 114695511B CN 202011630769 A CN202011630769 A CN 202011630769A CN 114695511 B CN114695511 B CN 114695511B
Authority
CN
China
Prior art keywords
doped
doped polysilicon
conductivity type
conductive
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011630769.3A
Other languages
English (en)
Other versions
CN114695511A (zh
Inventor
赵景川
何乃龙
张森
张志丽
许杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CSMC Technologies Fab2 Co Ltd
Original Assignee
CSMC Technologies Fab2 Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSMC Technologies Fab2 Co Ltd filed Critical CSMC Technologies Fab2 Co Ltd
Priority to CN202011630769.3A priority Critical patent/CN114695511B/zh
Priority to PCT/CN2021/120733 priority patent/WO2022142532A1/zh
Publication of CN114695511A publication Critical patent/CN114695511A/zh
Application granted granted Critical
Publication of CN114695511B publication Critical patent/CN114695511B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7823Lateral DMOS transistors, i.e. LDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明涉及一种横向扩散金属氧化物半导体器件及其制造方法,所述器件包括:衬底;漂移区,设于衬底上;多层掺杂结构,设于漂移区中,每层掺杂结构包括至少一根沿导电沟道长度方向延伸的掺杂条;多根掺杂多晶硅柱,设于漂移区中,并从上至下贯穿至少一层掺杂结构的掺杂条;场氧化层,设于各掺杂多晶硅柱上,场氧化层的底部与各掺杂多晶硅柱的顶部接触;导电结构,设于场氧化层上;其中,场氧化层在各掺杂多晶硅柱的位置开设有多个通孔,各通孔内填充有导电材料,各掺杂多晶硅柱通过通孔内的导电材料电连接至导电结构。本发明将纵向分布的第二导电类型掺杂多晶硅柱以串联电容器方式电连接在一起,可以优化体内电场分布,进一步提升器件的反向耐压。

Description

一种横向扩散金属氧化物半导体器件及其制造方法
技术领域
本发明涉及半导体制造领域,特别是涉及一种横向扩散金属氧化物半导体器件,还涉及一种横向扩散金属氧化物半导体的制造方法。
背景技术
对于横向扩散金属氧化物半导体(LDMOS)器件,其击穿电压(BV)和导通电阻存在相互制约的关系,在保证其击穿电压的情况下,尽可能减少LDMOS的导通电阻成为设计者的追求目标。
发明内容
基于此,有必要提供一种能够提高击穿电压/降低导通电阻的横向扩散金属氧化物半导体器件及其制造方法。
一种横向扩散金属氧化物半导体器件,包括:衬底,具有第二导电类型;漂移区,设于所述衬底上,具有第一导电类型,第一导电类型和第二导电类型为相反的导电类型;多层掺杂结构,设于所述漂移区中,每层掺杂结构包括至少一根沿导电沟道长度方向延伸的掺杂条,各掺杂条为第一导电类型掺杂;多根掺杂多晶硅柱,设于所述漂移区中,并从上至下贯穿至少一层掺杂结构的掺杂条,各所述掺杂多晶硅柱为第二导电类型掺杂;场氧化层,设于各所述掺杂多晶硅柱上,所述场氧化层的底部与各所述掺杂多晶硅柱的顶部接触;导电结构,设于所述场氧化层上;其中,所述场氧化层在各所述掺杂多晶硅柱的位置开设有多个通孔,各所述通孔内填充有导电材料,各掺杂多晶硅柱通过通孔内的导电材料电连接至所述导电结构。
在其中一个实施例中,各所述掺杂多晶硅柱通过所述导电材料和导电结构串联形成电容器。
在其中一个实施例中,所述第一导电类型是N型,所述第二导电类型是P型,各所述掺杂条为N型掺杂,各所述掺杂多晶硅柱是P型掺杂。
在其中一个实施例中,各所述掺杂条的掺杂离子的浓度大于所述漂移区的掺杂离子的浓度。
在其中一个实施例中,还包括:源极区,具有第一导电类型;漏极区,具有第一导电类型;栅极,从所述场氧化层邻近所述源极区的位置向所述源极区延伸;衬底引出区,具有第二导电类型,设于所述源极区背离所述栅极的一侧。
在其中一个实施例中,所述衬底引出区与所述源极区接触。
在其中一个实施例中,各所述掺杂多晶硅柱从场氧化层下方向下贯穿各层掺杂条并停止于最下层的掺杂条中。
在其中一个实施例中,在各层掺杂结构的横截面上,形成有多条相互平行的所述掺杂条且各所述掺杂多晶硅柱呈矩阵分布。
在其中一个实施例中,所述导电结构在所述场氧化层的上表面蛇形分布。
在其中一个实施例中,每层掺杂结构的掺杂条在导电沟道的宽度方向上不连通。
一种横向扩散金属氧化物半导体器件的制造方法,包括:步骤A,获取形成有漂移区的衬底,所述漂移区具有第一导电类型并形成于第二导电类型的所述衬底上;第一导电类型和第二导电类型为相反的导电类型;步骤B,在所述漂移区刻蚀出多个注入孔;步骤C,向各所述注入孔的底部注入第一导电类型掺杂离子;步骤D,向各所述注入孔内填充掺杂多晶硅,所述掺杂多晶硅为第二导电类型掺杂;步骤E,向各所述注入孔中的掺杂多晶硅顶部位置的所述漂移区注入第一导电类型掺杂离子;重复执行步骤D和步骤E预设次数,之后通过所述掺杂多晶硅将所述注入孔填满,非同次注入的掺杂离子在所述漂移区中形成不同深度的掺杂区;步骤F,通过热处理使相同深度的掺杂区扩散后在导电沟道长度方向上连通,形成沿导电沟道长度方向延伸的掺杂条;步骤G,在各所述注入孔上方形成场氧化层;步骤H,在所述场氧化层开设多个与各所述注入孔的位置对应的通孔;步骤I,向各所述通孔内填充导电材料,并在所述场氧化层上形成导电结构,各所述注入孔中的掺杂多晶硅通过通孔内的导电材料电连接至所述导电结构。
在其中一个实施例中,所述步骤D还包括:刻蚀各所述注入孔内的掺杂多晶硅,刻蚀深度浅于前一次对注入孔的刻蚀,使得部分所述掺杂多晶硅保留在孔中。
在其中一个实施例中,所述步骤G之后、步骤H之前,还包括:形成栅极;形成第一导电类型的源极区、第一导电类型的漏极区及第二导电类型的衬底引出区。
上述横向扩散金属氧化物半导体器件及其制造方法,在漂移区内形成纵向掺杂多晶硅柱和横向掺杂条交叉设置的网状结构,纵向的第二导电类型掺杂多晶硅柱深入第一导电类型的漂移区体内,可以辅助耗尽周围的第一导电类型区域,优化体内电场分布,从而提升反向击穿电压(耐压);横向的第一导电类型掺杂条可以形成不同深度的导电通道,增加正向导通电流的能力,达到降低导通电阻的目的。另一方面,通过导电结构和各通孔内的导电材料,将纵向分布的第二导电类型掺杂多晶硅柱电连接在一起,可以优化体内电场分布,进一步提升器件的反向耐压。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1是示例性的在漂移区中形成有P型埋层的LDMOS结构示意图;
图2是一实施例中横向扩散金属氧化物半导体器件的结构示意图;
图3a、图3b各是一实施例中横向扩散金属氧化物半导体器件的制造方法的流程图;
图4是一实施例中注入孔的俯视图;
图5是一实施例中步骤S320完成后器件的剖面示意图;
图6是一实施例中步骤S330完成后器件的剖面示意图;
图7是一实施例步骤S340完成后器件的剖面示意图;
图8是一实施例步骤S350完成后器件的剖面示意图;
图9是在图8得到的结构基础上再重复执行了一次步骤S340和S350后得到的结构;
图10是一实施例步骤S360完成后器件的剖面示意图;
图11形成场氧化层的通孔前器件的剖面示意图;
图12是图11所示结构的另一角度的视图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的首选实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
应当明白,当元件或层被称为“在...上”、“与...相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在...上”、“与...直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本发明教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。
空间关系术语例如“在...下”、“在...下面”、“下面的”、“在...之下”、“在...之上”、“上面的”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在...下面”和“在...下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
这里参考作为本发明的理想实施例(和中间结构)的示意图的横截面图来描述发明的实施例。这样,可以预期由于例如制造技术和/或容差导致的从所示形状的变化。因此,本发明的实施例不应当局限于在此所示的区的特定形状,而是包括由于例如制造导致的形状偏差。例如,显示为矩形的注入区在其边缘通常具有圆的或弯曲特征和/或注入浓度梯度,而不是从注入区到非注入区的二元改变。同样,通过注入形成的埋藏区可导致该埋藏区和注入进行时所经过的表面之间的区中的一些注入。因此,图中显示的区实质上是示意性的,它们的形状并不意图显示器件的区的实际形状且并不意图限定本发明的范围。
本文所使用的半导体领域词汇为本领域技术人员常用的技术词汇,例如对于P型和N型杂质,为区分掺杂浓度,简易的将P+型代表重掺杂浓度的P型,P型代表中掺杂浓度的P型,P-型代表轻掺杂浓度的P型,N+型代表重掺杂浓度的N型,N型代表中掺杂浓度的N型,N-型代表轻掺杂浓度的N型。
图1是示例性的在漂移区中形成有P型埋层的LDMOS结构示意图,该结构中是直接通过离子注入的方式,向漂移区202(Nwell)中注入P型离子(如硼离子)形成P型埋层204(Pburied)。该结构在P型埋层204上方的漂移区202存在一个导电通道,在P型埋层204下方的漂移区202也存在一个导电通道(如图中的两个箭头所示)。LDMOS器件在关断反向耐压状态时,P型埋层204可以显著辅助漂移区202的N型杂质耗尽,使得漂移区N型杂质的浓度提升,导通电阻得到降低。
发明人认为,P型埋层204上方的N型导电通道是源极(source)到漏极(drain)之间的最短导电路径,其深度越深,LDMOS整体的导通电阻越小。然而,离子注入的机台因为注入能量限制等原因,对P型离子的注入深度是有限的,从而导致P型埋层204上方的N型导电通道区狭窄,导电能力弱,LDMOS导通电阻不能显著降低。
本申请提出一种新型的LDMOS的制造方法及其结构,该结构可以提升LDMOS的反向耐压并降低LDMOS导通电阻。图2是一实施例中横向扩散金属氧化物半导体器件的结构示意图,包括衬底101、漂移区102、场氧化层112、导电结构111、多根掺杂多晶硅柱106、以及多层掺杂结构。
各层掺杂结构设于漂移区102中,每层掺杂结构包括至少一根沿导电沟道长度方向(即图2中X方向)延伸的掺杂条105,各掺杂条105为第一导电类型掺杂。各掺杂多晶硅柱106设于漂移区102中,并从上至下贯穿至少一层掺杂结构的掺杂条105,在漂移区102内形成纵向掺杂的多晶硅柱106和横向(即导电沟道长度方向)的掺杂条105交叉设置的网状结构,各掺杂多晶硅柱106为第二导电类型掺杂。场氧化层112设于各掺杂多晶硅柱106上,场氧化层112的底部与各掺杂多晶硅柱106的顶部接触。并且,场氧化层112开设有与各掺杂多晶硅柱106对应的多个通孔,通孔内填充导电材料113,各掺杂多晶硅柱106通过通孔内的导电材料113电连接至导电结构111。在本申请的一个实施例中,掺杂多晶硅柱106与通孔一一对应。图2中为了示出各通孔的结构,将场氧化层112中部的填充线做了透明处理。图2中场氧化层112透明部分的省略号表示该位置的各结构未绘出。
在图2所示的实施例中,器件为NLDMOS,衬底101为P型衬底,漂移区102为设于衬底101上的N型漂移区(具体可以是N-漂移区),掺杂条105为N型掺杂,掺杂多晶硅柱106是P型掺杂。纵向的P型掺杂多晶硅柱106深入N型的漂移区102体内,可以辅助耗尽周围的N型区域,优化体内电场分布,从而提升反向击穿电压(耐压);横向的N型掺杂条可以形成不同深度的导电通道,增加正向导通电流的能力,达到降低导通电阻的目的。进一步地,掺杂条105的掺杂离子的浓度大于漂移区102的掺杂离子的浓度,这样N型掺杂条形成的导电通道的电阻较低。另一方面,通过导电结构111和各通孔内的导电材料113,将纵向分布的P型掺杂多晶硅柱106以串联电容器的方式连接起来,可以优化体内电场分布,进一步提升器件的反向耐压。
在图2所示的实施例中,横向扩散金属氧化物半导体器件还包括源极区104、漏极区110、栅极108及衬底引出区103。掺杂多晶硅柱106在横向(即导电沟道长度方向,图2中的X方向)上位于N型的源极区104和N型的漏极区110之间(图2所示实施例的源极区104和漏极区110均为N+区)。多晶硅材质的栅极108从场氧化层112邻近源极区104的位置向源极区104延伸。衬底引出区103为P型掺杂区(具体可以是P+掺杂区),设于源极区104背离栅极108的一侧,并与源极区104接触。
在图2所示的实施例中,横向扩散金属氧化物半导体器件还包括第二导电类型阱区107。第二导电类型阱区107为LDMOS器件的源端第二导电类型区域,源极区104和衬底引出区103设于第二导电类型阱区107中,第二导电类型阱区107的浓度将影响漂移区耗尽和阈值电压。在本申请的一个实施例中,第二导电类型阱区107的第二导电类型离子浓度小于衬底引出区103的第二导电类型离子浓度。
在图2所示的实施例中,横向扩散金属氧化物半导体器件还包括第一导电类型阱区109。第一导电类型阱区109为漏端周围N型区域,漏极区110设于第一导电类型阱区109中,起到优化正向导通电流的作用。
在图2所示的实施例中,掺杂多晶硅柱106从场氧化层112下方向下贯穿各层的掺杂条105并停止于最下层的掺杂条105中。进一步地,在各层掺杂结构的横截面上,形成有多条相互平行的掺杂条105,且各掺杂多晶硅柱106在横截面上呈矩阵分布。
在图2所示的实施例中,每层掺杂结构的掺杂条105在Y方向(即导电沟道宽度方向)上不连通。
在图2所示的实施例中,导电结构111在场氧化层112的上表面蛇形分布。在本申请的一个实施例中,导电结构111为金属或合金材质;进一步地,导电结构111可以为铝线。在本申请的一个实施例中,导电材料113为金属或合金;进一步地,导电材料113可以为铝。
在一个实施例中,衬底101为半导体衬底,其材料可以采用未掺杂的单晶硅、掺杂有杂质的单晶硅、绝缘体上硅(SOI)、绝缘体上层叠硅(SSOI)、绝缘体上层叠锗化硅(S-SiGeOI)、绝缘体上锗化硅(SiGeOI)以及绝缘体上锗(GeOI)等。在图2所示的实施例中,衬底101的构成材料选用单晶硅。
在图2所示的实施例中,栅极108为多晶硅材料,在其他实施例中也可使用金属、金属氮化物、金属硅化物或类似化合物作为栅极108的材料。
在一个实施例中,场氧化层112的材质为二氧化硅。
本申请相应提供一种横向扩散金属氧化物半导体器件的制造方法,可以用于制造以上任一实施例所述的横向扩散金属氧化物半导体器件。图3a是一实施例中横向扩散金属氧化物半导体器件的制造方法的流程图,包括:
S310,获取形成有漂移区的衬底。
第一导电类型的漂移区形成在第二导电类型的衬底上。在本实施例中,横向扩散金属氧化物半导体器件为NLDMOS器件,第一导电类型为N型、第二导电类型为P型;在其他的实施例中,也可以是第一导电类型为P型、第二导电类型为N型。
S320,在漂移区刻蚀出多个注入孔。
在本实施例中,是光刻后在漂移区的局部刻蚀出注入孔。在本申请的一个实施例中,注入孔的深度是根据最下层的掺杂条所要达到的深度进行设置。图4是一实施例中注入孔的俯视图,这些注入孔306呈矩阵排列。在本申请的一个实施例中,步骤S310之后、步骤S320之前还包括在衬底上形成第二导电类型阱区107的步骤,图5是一实施例中步骤S320完成后器件的剖面示意图。第二导电类型阱区107作为器件的沟道形成区域,其浓度也将影响漂移区耗尽和阈值电压。
S330,向各注入孔的底部注入第一导电类型掺杂离子。
在本申请的一个实施例中,是在保留步骤S320光刻形成的光刻胶图案的情况下进行离子注入,从而在注入孔306的底部形成掺杂区105a。图6是一实施例中步骤S330完成后器件的剖面示意图。
S340,向各注入孔内填充掺杂多晶硅。
填充一定厚度的掺杂多晶硅,掺杂多晶硅为第二导电类型掺杂。参见图3b,在本申请的一个实施例中,步骤S340是通过物理汽相淀积(PVD)或者化学气相淀积(CVD)淀积式填充N型或P型多晶硅,之后再于步骤S342中用CMP(化学机械抛光)等工艺将晶圆(wafer)表面的多晶硅去除后,再次对注入孔306内填充的掺杂多晶硅106进行一定深度的刻蚀,刻蚀深度浅于前一次对注入孔306的刻蚀,使得部分掺杂多晶硅106保留在孔中。图7是一实施例步骤S340完成后器件的剖面示意图。
S350,向各注入孔中的掺杂多晶硅顶部位置的漂移区注入第一导电类型掺杂离子。
参见图8,离子注入后,在前一次刻蚀形成的新的注入孔306底部形成掺杂区105a,本次注入形成的掺杂区105a的结深与前一次注入不同。
之后多次重复步骤S340和S350,直到形成了预设层数的掺杂区105a。可以理解的,非同次注入的掺杂离子在漂移区102中形成不同深度的掺杂区105a。图9是在图8得到的结构基础上再重复执行了一次步骤S340和S350后得到的结构。
S360,通过掺杂多晶硅将注入孔填满。
填充的掺杂多晶硅与步骤S340相同。图10是一实施例步骤S360完成后器件的剖面示意图。在本申请的一个实施例中,通过物理汽相淀积(PVD)或者化学气相淀积(CVD)淀积式填充N型或P型多晶硅,之后再用CMP(化学机械抛光)等工艺将晶圆(wafer)表面的多晶硅去除。
S370,通过热处理使相同深度的掺杂区扩散后在导电沟道长度方向上连通。
对完成步骤S360后的器件结构进行热处理(热扩散),各掺杂区105a扩散后在导电沟道长度方向上连通,形成沿导电沟道长度方向延伸的掺杂条105。在本申请的一个实施例中,每层的掺杂条105在平面上导电沟道宽度方向上不连通。
S380,在各注入孔上方形成场氧化层。
可以通过化学气相淀积或热氧化等本领域习知的工艺形成场氧化层112。
S390,在场氧化层开设多个与各注入孔的位置对应的通孔。
在本申请的一个实施例中,通孔与注入孔一一对应,通孔的底部即为注入孔的顶部。可以通过光刻并刻蚀的工艺
S392,向各通孔内填充导电材料,并在场氧化层上形成导电结构,各注入孔中的掺杂多晶硅通过通孔内的导电材料电连接至导电结构。
上述横向扩散金属氧化物半导体器件的制造方法,由于形成了注入孔,因此离子注入不受深度的约束,并且可以在漂移区体内形成多重RESURF结构/多个导电通道。通过上述横向扩散金属氧化物半导体器件的制造方法制得的LDMOS,各掺杂条105的实际结深与期望的结深比较吻合。制造得到的横向扩散金属氧化物半导体器件在漂移区内形成纵向掺杂多晶硅柱和横向掺杂条交叉设置的网状结构,纵向的第二导电类型掺杂多晶硅柱深入第一导电类型的漂移区体内,可以辅助耗尽周围的第一导电类型区域,优化体内电场分布,从而提升反向击穿电压(耐压);横向的第一导电类型掺杂条可以形成不同深度的导电通道,增加正向导通电流的能力,达到降低导通电阻的目的。并且,通过导电结构和各通孔内的导电材料,将纵向分布的第二导电类型掺杂多晶硅柱电连接在一起,可以优化体内电场分布,进一步提升器件的反向耐压。
在本申请的一个实施例中,步骤S370之后、步骤S380之前还包括形成第一导电类型阱区109的步骤。第一导电类型阱区109作为漏端的漂移区缓冲层,能够提高LDMOS在正向工作时的开态击穿电压,起到优化正向导通电流的作用。在本实施例中,第一导电类型阱区109为N阱、第二导电类型阱区107为P阱。
在本申请的一个实施例中,步骤S380之后、步骤S390之前,还包括以下步骤:
形成栅极108。在本实施例中,栅极108为多晶硅材质,从场氧化层112的边缘延伸出场氧化层112搭在第二导电类型阱区107上。
形成源极区104、漏极区110及衬底引出区103。通过离子注入工艺,在第二导电类型阱区107中形成源极区104和衬底引出区103,在第一导电类型阱区109中形成漏极区110。在本实施例中,源极区104和漏极区110为N+掺杂区,衬底引出区103为P+掺杂区,参见图11和图12。图12中为了示出掺杂多晶硅柱106的位置,因此没有绘出场氧化层112在Y方向上的结构。图12中的省略号表示多个掺杂多晶硅柱106未绘出。
在本说明书的描述中,参考术语“有些实施例”、“其他实施例”、“理想实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特征包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施例或示例。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

1.一种横向扩散金属氧化物半导体器件,其特征在于,包括:
衬底,具有第二导电类型;
漂移区,设于所述衬底上,具有第一导电类型;第一导电类型和第二导电类型为相反的导电类型;
多层掺杂结构,设于所述漂移区中,每层掺杂结构包括至少一根沿导电沟道长度方向延伸的掺杂条,各掺杂条为第一导电类型掺杂;
多根掺杂多晶硅柱,设于所述漂移区中,各所述掺杂多晶硅柱为第二导电类型掺杂,纵向的第二导电类型掺杂多晶硅柱深入第一导电类型的所述漂移区体内,以辅助耗尽周围的第一导电类型区域;
场氧化层,设于各所述掺杂多晶硅柱上,所述场氧化层的底部与各所述掺杂多晶硅柱的顶部接触,各所述掺杂多晶硅柱从场氧化层下方向下贯穿各层掺杂条,并停止于最下层的掺杂条中,各所述掺杂多晶硅柱在各层掺杂结构横截面上呈矩阵分布;
导电结构,设于所述场氧化层上;
其中,所述场氧化层在各所述掺杂多晶硅柱的位置开设有多个通孔,各所述通孔内填充有导电材料,各掺杂多晶硅柱通过通孔内的导电材料电连接至所述导电结构,所述导电结构将所述矩阵中不同行且不同列的掺杂多晶硅柱电连接在一起。
2.根据权利要求1所述的横向扩散金属氧化物半导体器件,其特征在于,各所述掺杂多晶硅柱通过所述导电材料和导电结构串联形成电容器。
3.根据权利要求1所述的横向扩散金属氧化物半导体器件,其特征在于,各所述掺杂条的掺杂离子的浓度大于所述漂移区的掺杂离子的浓度。
4.根据权利要求1所述的横向扩散金属氧化物半导体器件,其特征在于,还包括:
源极区,具有第一导电类型;
漏极区,具有第一导电类型;
栅极,从所述场氧化层邻近所述源极区的位置向所述源极区延伸;
衬底引出区,具有第二导电类型,设于所述源极区背离所述栅极的一侧。
5.根据权利要求1所述的横向扩散金属氧化物半导体器件,其特征在于,在所述各层掺杂结构的横截面上,形成有多条相互平行的所述掺杂条。
6.根据权利要求5所述的横向扩散金属氧化物半导体器件,其特征在于,所述导电结构在所述场氧化层的上表面蛇形分布。
7.一种横向扩散金属氧化物半导体器件的制造方法,包括:
步骤A,获取形成有漂移区的衬底,所述漂移区具有第一导电类型并形成于第二导电类型的所述衬底上;第一导电类型和第二导电类型为相反的导电类型;
步骤B,在所述漂移区刻蚀出多个呈矩阵排列的注入孔;
步骤C,向各所述注入孔的底部注入第一导电类型掺杂离子;
步骤D,向各所述注入孔内填充掺杂多晶硅,所述掺杂多晶硅为第二导电类型掺杂;
步骤E,向各所述注入孔中的掺杂多晶硅顶部位置的所述漂移区注入第一导电类型掺杂离子;
重复执行步骤D和步骤E预设次数,之后通过所述掺杂多晶硅将所述注入孔填满,形成掺杂多晶硅柱,非同次注入的掺杂离子在所述漂移区中形成不同深度的掺杂区;
步骤F,通过热处理使相同深度的掺杂区扩散后在导电沟道长度方向上连通,形成沿导电沟道长度方向延伸的掺杂条;
步骤G,在各所述注入孔上方形成场氧化层;
步骤H,在所述场氧化层开设多个与各所述注入孔的位置对应的通孔;
步骤I,向各所述通孔内填充导电材料,并在所述场氧化层上形成导电结构,各所述注入孔中的掺杂多晶硅通过通孔内的导电材料电连接至所述导电结构,各所述掺杂多晶硅柱从场氧化层下方向下贯穿各层掺杂条,并停止于最下层的掺杂条中,各所述掺杂多晶硅柱在各层掺杂结构横截面上呈矩阵分布,纵向的第二导电类型掺杂多晶硅柱深入第一导电类型的所述漂移区体内,以辅助耗尽周围的第一导电类型区域。
8.根据权利要求7所述的横向扩散金属氧化物半导体器件的制造方法,其特征在于,所述步骤D还包括:刻蚀各所述注入孔内的掺杂多晶硅,刻蚀深度浅于前一次对注入孔的刻蚀,使得部分所述掺杂多晶硅保留在孔中。
9.根据权利要求7所述的横向扩散金属氧化物半导体器件的制造方法,其特征在于,所述步骤G之后、步骤H之前,还包括:
形成栅极;
形成第一导电类型的源极区、第一导电类型的漏极区及第二导电类型的衬底引出区。
CN202011630769.3A 2020-12-30 2020-12-30 一种横向扩散金属氧化物半导体器件及其制造方法 Active CN114695511B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011630769.3A CN114695511B (zh) 2020-12-30 2020-12-30 一种横向扩散金属氧化物半导体器件及其制造方法
PCT/CN2021/120733 WO2022142532A1 (zh) 2020-12-30 2021-09-26 一种横向扩散金属氧化物半导体器件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011630769.3A CN114695511B (zh) 2020-12-30 2020-12-30 一种横向扩散金属氧化物半导体器件及其制造方法

Publications (2)

Publication Number Publication Date
CN114695511A CN114695511A (zh) 2022-07-01
CN114695511B true CN114695511B (zh) 2023-11-24

Family

ID=82134709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011630769.3A Active CN114695511B (zh) 2020-12-30 2020-12-30 一种横向扩散金属氧化物半导体器件及其制造方法

Country Status (2)

Country Link
CN (1) CN114695511B (zh)
WO (1) WO2022142532A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104112769A (zh) * 2013-04-16 2014-10-22 美格纳半导体有限公司 半导体功率器件
CN104716178A (zh) * 2013-12-11 2015-06-17 上海华虹宏力半导体制造有限公司 具有深孔的ldmos器件及其制造方法
CN108198853A (zh) * 2018-03-02 2018-06-22 成都信息工程大学 一种双通道变掺杂ldmos器件及其制造方法
CN110459599A (zh) * 2019-08-31 2019-11-15 电子科技大学 具有深埋层的纵向浮空场板器件及制造方法
CN110518056A (zh) * 2019-08-02 2019-11-29 无锡华润上华科技有限公司 横向扩散金属氧化物半导体器件及其制造方法
CN110534514A (zh) * 2019-09-05 2019-12-03 电子科技大学 一种横向高压功率半导体器件的槽型终端结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100393201B1 (ko) * 2001-04-16 2003-07-31 페어차일드코리아반도체 주식회사 낮은 온 저항과 높은 브레이크다운 전압을 갖는 고전압수평형 디모스 트랜지스터
US7629631B2 (en) * 2005-06-21 2009-12-08 Hamza Yilmaz High voltage semiconductor devices with JFET regions containing dielectrically isolated junctions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104112769A (zh) * 2013-04-16 2014-10-22 美格纳半导体有限公司 半导体功率器件
CN104716178A (zh) * 2013-12-11 2015-06-17 上海华虹宏力半导体制造有限公司 具有深孔的ldmos器件及其制造方法
CN108198853A (zh) * 2018-03-02 2018-06-22 成都信息工程大学 一种双通道变掺杂ldmos器件及其制造方法
CN110518056A (zh) * 2019-08-02 2019-11-29 无锡华润上华科技有限公司 横向扩散金属氧化物半导体器件及其制造方法
CN110459599A (zh) * 2019-08-31 2019-11-15 电子科技大学 具有深埋层的纵向浮空场板器件及制造方法
CN110534514A (zh) * 2019-09-05 2019-12-03 电子科技大学 一种横向高压功率半导体器件的槽型终端结构

Also Published As

Publication number Publication date
WO2022142532A1 (zh) 2022-07-07
CN114695511A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN107546268B (zh) 半导体器件及制造其的方法
CN110518056B (zh) 横向扩散金属氧化物半导体器件及其制造方法
CN102804386B (zh) 半导体器件
CN102420249B (zh) 功率半导体装置
JP7099369B2 (ja) 半導体装置およびその製造方法
US8035158B2 (en) Semiconductor device
CN110718546B (zh) 绝缘栅极半导体器件及其制造方法
CN113745116B (zh) 超级结器件及其制造方法
CN104380471A (zh) 碳化硅半导体装置及其制造方法
JP2001168327A (ja) 半導体装置とそれを用いたパワースイッチング駆動システム
JP2006278826A (ja) 半導体素子及びその製造方法
US9013005B2 (en) Semiconductor device and method for manufacturing same
JP2006210392A (ja) 半導体装置およびその製造方法
JP5201307B2 (ja) 半導体装置
JP4550182B2 (ja) 高密度mos技術パワーデバイス構造
CN116741828A (zh) 沟渠式栅极晶体管组件
CN114695511B (zh) 一种横向扩散金属氧化物半导体器件及其制造方法
CN113937167B (zh) Vdmos器件及其制造方法
TWI462294B (zh) Semiconductor element and manufacturing method thereof
CN113130632B (zh) 横向扩散金属氧化物半导体器件及其制备方法
KR102554248B1 (ko) 수퍼 정션 반도체 장치 및 이의 제조 방법
KR102159418B1 (ko) 슈퍼 정션 mosfet 및 그 제조 방법
CN112599600A (zh) 垂直双扩散晶体管及其制造方法
CN114695510A (zh) 横向扩散金属氧化物半导体器件及其制造方法
CN112531026B (zh) 横向扩散金属氧化物半导体器件及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant