CN114685178A - 一种基于pvd沉积方法的陶瓷板和金属薄膜连接方法 - Google Patents

一种基于pvd沉积方法的陶瓷板和金属薄膜连接方法 Download PDF

Info

Publication number
CN114685178A
CN114685178A CN202210512479.1A CN202210512479A CN114685178A CN 114685178 A CN114685178 A CN 114685178A CN 202210512479 A CN202210512479 A CN 202210512479A CN 114685178 A CN114685178 A CN 114685178A
Authority
CN
China
Prior art keywords
metal
ceramic plate
aluminum nitride
nitride ceramic
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210512479.1A
Other languages
English (en)
Inventor
王志博
周睿
宋忠孝
张恩永
杨添皓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202210512479.1A priority Critical patent/CN114685178A/zh
Publication of CN114685178A publication Critical patent/CN114685178A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/52Pre-treatment of the joining surfaces, e.g. cleaning, machining

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种基于PVD沉积方法的AlN陶瓷板和金属薄膜的连接方法,所述的方法是:首先在氮化铝陶瓷板表面通过PVD沉积方法形成一层钛膜,然后再沉积一定厚度的银锡层,接着用夹持模具将氮化铝陶瓷板镀膜面和镀有铜膜的金属板(块)贴合并施加一定的压力,最后放入真空退火炉中加热并保温,即可实现氮化铝陶瓷板和金属薄膜的高强度连接。本发明在获得氮化铝陶瓷板与金属高焊接强度的同时,简化了传统陶瓷金属连接方法工艺,避免了直接覆铜法中靠氧化物结合而导致的结合面气密性的问题,而且还提高了基板的抗菌性能。

Description

一种基于PVD沉积方法的陶瓷板和金属薄膜连接方法
技术领域
本发明属于陶瓷金属化领域,特别涉及一种基于PVD沉积方法的AlN陶瓷板和金属薄膜的连接方法。
背景技术
高功率、高密度和高集成电子器件的散热问题严重影响器件的使用效率和寿命,是制约器件发展的主要问题。氮化铝(AlN)陶瓷具有很好的导热性能(导热系数可达150~300W/m·K),以及较高的机械强度和无毒性等优良性能,是新一代医疗器械表面等电子器件封装理想的基板材料。
但是氮化铝陶瓷因其很强的共价键,很难与电子芯片或者金属铜热沉实现有效连接,从而限制了氮化铝陶瓷作为封装基板的使用。目前通用的技术都是利用直接覆铜法(DBC法)将氮化铝陶瓷和金属薄膜的连接。直接覆铜法依靠将铜表面氧化的氧化亚铜(Cu2O)和氮化铝表面氧化的氧化铝(Al2O3)在一定温度下生成CuAlO2中间产物而实现氮化铝陶瓷和铜的连接。但陶瓷基板与金属反应能力低,润湿性差导致连接强度不高,且CuAlO2中间产物导热率极低严重降低了整体的导热性能,同时还因为大量氧的引入,还降低了器件封装的气密性。
还有一种传统技术通过引入氧化物中间层的方法解决氮化铝陶瓷和铜的结合。但是氧化物中间层的热导率很低,大大降低了氮化铝陶瓷基板的性能。还有通过将固相反应合成所得到的含有活泼金属的非氧化物共晶合金粉末置于氮化铝陶瓷和铜之间,然后经过高温处理实现氮化铝陶瓷和铜的直接结合。这种方法的过程较为繁琐,且须经过高温处理。还有提供了一种使用磁控溅射沉积NiCr结合过渡层然后在NiCr结合过渡层上利用脉冲磁控溅射铜层,得到氮化铝陶瓷覆铜板的方法,指出NiCr与氮化铝陶瓷的反应区只有一两个原子层厚,且氧也在结合中起到重要作用,所以这种方法仅对连接较薄的铜层有效,且也会降低氮化铝陶瓷板的导热性能。
发明内容
本发明的目的在于提供一种基于PVD沉积方法的AlN陶瓷板和金属薄膜的连接方法,以解决上述问题。
为实现上述目的,本发明采用以下技术方案:
一种基于PVD沉积方法的AlN陶瓷板和金属的连接方法,包括以下步骤:
步骤1,对待使用的氮化铝陶瓷基板进行清洗;
步骤2,在氮化铝陶瓷板上利用磁控溅射沉积一层钛过渡层;
步骤3,在镀好的钛过渡层上再沉积一定厚度的银锡焊料层;
步骤4,将氮化铝陶瓷板与镀有铜膜的金属贴合,在真空退火炉中加热并保温,完成氮化铝陶瓷板和金属的连接。
进一步的,步骤2中,进行钛过渡层沉积时,磁控溅射腔室的本底真空度为1×10-
4Pa~3×10-4Pa,溅射气体为纯度为99.999%的氩气,气压为0.3Pa~0.5Pa,钛靶采用直流电源功率150W,先对纯度为99.999%的钛靶溅射20min~25min,然后加基底负偏压为﹣50V~﹣100V,基底加温100℃~400℃,沉积80nm~120nm后完成钛过渡层的沉积制备。
进一步的,步骤3中,磁控溅射沉积银锡膜焊料层时,通入纯度为99.999%的氩气,气流20sccm~40sccm,气压为0.3Pa~0.5Pa,银锡靶采用直流电源功率130W~160W,基底负偏压为﹣60V~﹣100V,沉积80min~100min完成银锡焊料层的制备。
进一步的,步骤4中,通过夹持模具将氮化铝陶瓷板与镀有铜膜的金属贴合,氮化铝陶瓷板与金属贴合时夹持模具施加的压力为1MPa~3MPa,加热前真空退火炉腔室的气压在5×10-4Pa以下,加热温度为380℃~400℃,保温时间10min~15min,待腔室温度低于30℃后取出并卸去加载力,完成氮化铝陶瓷板和金属的连接。
进一步的,步骤1中氮化铝陶瓷板的清洗为:在无水乙醇中浸泡后,依次在丙酮和无水乙醇中超声10min~15min,烘干后在磁控溅射腔室中利用射频等离子体清洗30min~45min。
进一步的,步骤3中,步骤3中,焊料层为能够润湿金属的锡-银系无铅焊料。
进一步的,步骤4中,金属基板表面用PVD沉积铜膜。
与现有技术相比,本发明有以下技术效果:
本发明克服了目前氮化铝陶瓷板与金属连接强度普遍较低,导热性能严重降低,工艺过程复杂,需要高温处理耗能大等缺点。主要体现在:
一.采用物理气相沉积钛膜、银锡膜,在普通的真空退火炉加热连接,这些步骤都是设备通用、工艺成熟、控制条件简单、工艺兼容性强、全过程无污染,可以在目前通用的磁控溅射镀膜设备和真空退火炉上实现同样的效果。
二.采用钛层做过渡层,并在沉积时进行基底低温加热,无需后续热处理即可实现一定的钛膜和氮化铝陶瓷板的冶金结合,提高了结合强度,因为没有引入氧,不仅没有降低氮化铝陶瓷板导热性能,而且还使得经金属化后陶瓷板的导热性能有所提高。同时通过引入钛过渡层和银锡焊料层降低了氮化铝与铜热膨胀失配的程度,减少了因热应力而开裂的情况。
三.由于将银锡焊料以磁控溅射的方式沉积在金属化后的氮化铝陶瓷基板表面,连接的尺寸精度高,用料可控,焊接后焊料溢流现象少。此外,还可以连接除铜以外可以被银锡润湿的其他金属材料。
四.金属表面镀铜,可以连接的金属种类多,无需因改变金属而更换焊料,工艺适应性高。
附图说明
图1为本发明基于PVD沉积方法的AlN陶瓷板和金属连接的方法工艺流程图。
图2为本发明氮化铝陶瓷板和金属连接后的结构示意图:
图中:氮化铝陶瓷板1、钛镀层2、银锡镀层3、铜层4、金属板5。
具体实施方式
以下结合附图对本发明进一步说明:
请参阅图1,基于PVD沉积方法的AlN陶瓷板和金属连接的方法,包括以下步骤:
步骤1,对待使用的氮化铝陶瓷基板进行清洗;
步骤2,在氮化铝陶瓷板上利拥磁控溅射沉积一层钛过渡层;
步骤3,在镀好的钛层上再沉积一定厚度的银锡焊料层;
步骤4,利用夹持模具将氮化铝陶瓷板与镀有铜膜的金属贴合,在真空退火炉中加热并保温,完成氮化铝陶瓷板和金属的连接。
步骤1中氮化铝陶瓷板的清洗为:在无水乙醇中浸泡后,依次在丙酮和无水乙醇中超声10min~15min,烘干后在磁控溅射腔室中利用射频等离子体清洗30min~45min;
步骤2中进行钛膜制备时,磁控溅射腔室的本底真空度为1×10-4~3×10-4Pa,溅射气体为纯度为99.999%的氩气,气流20sccm~40sccm,气压0.3Pa~0.5Pa,钛靶采用直流电源功率120W~150W,先对纯度为99.999%的钛靶溅射20min~25min,然后加基底负偏压-50V~-100V,基底加温100℃~400℃,沉积80nm~120nm后完成钛过渡层的制备;
步骤3中进行银锡镀层的沉积时,溅射气体为纯度为99.999%的氩气,气流20~40sccm,气压0.3~0.5Pa,银锡靶采用直流电源功率130~160W,先对银锡靶溅射10min,然后加基底负偏压﹣60~-100V,沉积80~100min完成银锡膜层的的制备。
步骤4中进行氮化铝陶瓷板和金属连接时,首先将机加工后的铜表面进行打磨后抛光至表面粗糙度小于2.00μm,接着在其表面利用PVD沉积10μm的Cu膜,然后将氮化铝陶瓷板镀膜面和金属镀铜面贴合放入夹持模具中,施加1~2MPa的压力,将夹持模具放入真空退火炉中,待炉腔的真空度小于5×10-4Pa时,开始加热至380℃~400℃,保温时间10~15min,待炉温度低于40℃后取出并卸去加载力,完成氮化铝陶瓷板和金属的连接。
实施例1:
如图1所示,基于PVD沉积方法的AlN陶瓷板和金属连接的方法,包括以下步骤:
步骤1,对氮化铝陶瓷板进行清洗:在无水乙醇中浸泡后,依次在丙酮和无水乙醇中超声10~15min,烘干后在磁控溅射腔室中利用射频等离子体清洗30~45min;
步骤2,用腔室样品挡板将氮化铝陶瓷基板遮挡,通入纯度为99.999%的氩气,气流20sccm,调节腔室内气压为0.3Pa,采用直流电源功率130W对纯度为99.999%的钛靶表面进行等离子体清洗,清洗15min,然后加基底负偏压﹣50V,接着打开钛靶挡板样品挡板,开始溅射沉积,沉积80nm后关闭样品挡板和钛靶挡板,完成钛过渡层的制备。
步骤3,腔室气压依然保持在0.3Pa,采用直流电源功率150W对银锡靶表面进行等离子清洗,清洗10min,然后加基底负偏压﹣70V,接着打开钛靶挡板样品挡板,开始溅射沉积,银锡为低熔点共晶材料不能长时间溅射,每溅射20min后,溅射暂停20min然后接着溅射,沉积80min后关闭样品挡板和钛靶挡板,待腔室温度降至室温后将样品取出,氮化铝表面镀膜过程完成。
步骤4,将切割好的金属在丙酮溶液中以50Hz超声波清洗10min,接着在无水乙醇中以50Hz超声波清洗10min,然后用吹风机吹干,接着在砂纸上打磨后抛光至表面粗糙度小于2μm,接着在其表面利用PVD沉积10μm的Cu膜,将氮化铝陶瓷板镀膜面与金属镀铜面贴合放入夹持模具中,对模具施加1MPa的压力,然后放入真空退火炉中,待炉腔内的气压小于5×10-4Pa后开始加热,升温至380℃后保温10min,待炉腔温度低于30℃后破真空取出样品,并卸去加载力,完成氮化铝陶瓷板和金属的连接。
实施例2:
如图1所示,基于PVD沉积方法的AlN陶瓷板和金属连接的方法,包括以下步骤:
步骤1,对氮化铝陶瓷板进行清洗:在无水乙醇中浸泡后,依次在丙酮和无水乙醇中超声10~15min,烘干后在磁控溅射腔室中利用射频等离子体清洗30~45min;
步骤2,用腔室样品挡板将氮化铝陶瓷基板遮挡,通入纯度为99.999%的氩气,气流30sccm,调节腔室内气压为0.3Pa,采用直流电源功率150W对纯度为99.999%的钛靶表面进行等离子体清洗,清洗30min,然后加基底负偏压﹣70V,接着打开钛靶挡板样品挡板,开始溅射沉积,沉积100nm后关闭样品挡板和钛靶挡板,完成钛过渡层的制备。
步骤3,腔室气压依然保持在0.3Pa,采用直流电源功率150W对银锡靶表面进行等离子清洗,清洗10min,然后加基底负偏压﹣80V,接着打开钛靶挡板样品挡板,开始溅射沉积,银锡为低熔点共晶材料不能长时间溅射,每溅射20min后,溅射暂停20min然后接着溅射,沉积90min后关闭样品挡板和钛靶挡板,待腔室温度降至室温后将样品取出,氮化铝表面镀膜过程完成。
步骤4,将切割好的金属在丙酮溶液中以50Hz超声波清洗10min,接着在无水乙醇中以50Hz超声波清洗10min,然后用吹风机吹干,接着在砂纸上打磨后进行抛光至表面粗糙度小于2μm,接着在其表面利用PVD沉积10μm的Cu膜,将氮化铝陶瓷板镀膜面与金属镀铜面贴合放入夹持模具中,对模具施加2MPa的压力,然后放入真空退火炉中,待炉腔内的气压小于5×10-4Pa后开始加热,升温至380℃后保温10min,待炉腔温度低于40℃后破真空取出样品,并卸去加载力,完成氮化铝陶瓷板和金属的连接。
实施例3:
如图1所示,基于PVD沉积方法的AlN陶瓷板和金属连接的方法,包括以下步骤:
步骤1,对氮化铝陶瓷板进行清洗在无水乙醇中浸泡后,依次在丙酮和无水乙醇中超声10~15min,烘干后在磁控溅射腔室中利用射频等离子体清洗20~30min;
步骤2,用腔室样品挡板将氮化铝陶瓷基板遮挡,通入纯度为99.999%的氩气,气流30sccm,调节腔室内气压为0.3Pa,采用直流电源功率150W对纯度为99.999%的钛靶表面进行等离子体清洗,清洗25min,然后加基底负偏压﹣100V,接着打开钛靶挡板样品挡板,开始溅射沉积,沉积120nm后关闭样品挡板和钛靶挡板,完成钛过渡层的制备。
步骤3,腔室气压依然保持在0.3Pa,采用直流电源功率160W对银锡靶表面进行等离子清洗,清洗10min,然后加基底负偏压﹣80V,接着打开钛靶挡板样品挡板,开始溅射沉积,银锡为低熔点共晶材料不能长时间溅射,每溅射20min后,溅射暂停20min然后接着溅射,沉积100min后关闭样品挡板和钛靶挡板,待腔室温度降至室温后将样品取出,氮化铝表面镀膜过程完成。
步骤4,将切割好的金属在丙酮溶液中以50Hz超声波清洗10min,接着在无水乙醇中以50Hz超声波清洗10min,然后用吹风机吹干,接着在砂纸上打磨后进行抛光至表面粗糙度小于2μm,接着在其表面利用PVD沉积10μm的Cu膜,将氮化铝陶瓷板镀膜面与金属镀铜面贴合放入夹持模具中,对模具施加2MPa的压力,然后放入真空退火炉中,待炉腔内的气压小于5×10-4Pa后开始加热,升温至400℃后保温15min,待炉腔温度低于30℃后破真空取出样品,并卸去加载力,完成氮化铝陶瓷板和金属的连接。
纯度为99.99%的氩气为99.999vol%Ar2,0.0005vol%N2,0.0002vol%O2,0.0002vol%H2O,0.0001vol%H2的混合气体;纯度为99.99%的钛靶为含有0.0017wt%C,0.0011wt%Fe,0.0008wt%Cu,0.0006wt%Ni,99.9958wt%Ti的钛靶。

Claims (6)

1.一种基于PVD沉积方法的AlN陶瓷板和金属的连接方法,其特征在于,包括以下步骤:
步骤1,对待使用的氮化铝陶瓷基板进行清洗;
步骤2,在氮化铝陶瓷板上利用磁控溅射沉积一层钛过渡层;
步骤3,在镀好的钛过渡层上再沉积4~6μm银锡焊料层;
步骤4,镀有钛过渡层和银锡焊料层的一侧与镀有铜膜的金属贴合,在真空退火炉中加热并保温,完成氮化铝陶瓷板和金属的连接;步骤2中,进行钛过渡层沉积时,磁控溅射腔室的本底真空度为1×10-4Pa~3×10-4Pa,溅射气体为纯度为99.999%的氩气,气压为0.3Pa~0.5Pa,钛靶采用直流电源功率150W,先对纯度为99.999%的钛靶溅射20~25min,然后加基底负偏压为﹣50~﹣100V,基底加温150~400℃,沉积80~120nm后完成钛过渡层的沉积制备。
2.根据权利要求1所述的一种基于PVD沉积方法的AlN陶瓷板和金属的连接方法,其特征在于,步骤3中,磁控溅射沉积银锡膜焊料层时,通入纯度为99.999%的氩气,气流20sccm~40sccm,气压为0.3Pa~0.5Pa,银锡靶采用直流电源功率130~160W,基底负偏压为﹣60~﹣100V,沉积80~100min完成银锡焊料层的制备。
3.根据权利要求1所述的一种基于PVD沉积方法的AlN陶瓷板和金属的连接方法,其特征在于,步骤4中,通过夹持模具将氮化铝陶瓷板与镀有铜膜的金属贴合,氮化铝陶瓷板与金属贴合时夹持模具施加的压力为1MPa~3MPa,加热前真空退火炉腔室的气压在5×10-4Pa以下,加热温度为380℃~400℃,保温时间10min~15min,待腔室温度低于30℃后取出并卸去加载力,完成氮化铝陶瓷板和金属的连接。
4.根据权利要求1所述的一种基于PVD沉积方法的AlN陶瓷板和金属的连接方法,其特征在于,步骤1中氮化铝陶瓷板的清洗为:在无水乙醇中浸泡后,依次在丙酮和无水乙醇中超声10min~15min,烘干后在磁控溅射腔室中利用射频等离子体清洗30min~45min。
5.根据权利要求1所述的一种基于PVD沉积方法的AlN陶瓷板和金属的连接方法,其特征在于,步骤3中,焊料层为能够润湿金属的锡-银系无铅焊料。
6.根据权利要求1所述的一种基于PVD沉积方法的AlN陶瓷板和金属的连接方法,其特征在于,步骤4中,金属基板表面用PVD沉积铜膜。
CN202210512479.1A 2022-05-12 2022-05-12 一种基于pvd沉积方法的陶瓷板和金属薄膜连接方法 Pending CN114685178A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210512479.1A CN114685178A (zh) 2022-05-12 2022-05-12 一种基于pvd沉积方法的陶瓷板和金属薄膜连接方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210512479.1A CN114685178A (zh) 2022-05-12 2022-05-12 一种基于pvd沉积方法的陶瓷板和金属薄膜连接方法

Publications (1)

Publication Number Publication Date
CN114685178A true CN114685178A (zh) 2022-07-01

Family

ID=82143992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210512479.1A Pending CN114685178A (zh) 2022-05-12 2022-05-12 一种基于pvd沉积方法的陶瓷板和金属薄膜连接方法

Country Status (1)

Country Link
CN (1) CN114685178A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116986926A (zh) * 2023-09-25 2023-11-03 苏州博志金钻科技有限责任公司 一种氮化铝陶瓷表面金属化方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116986926A (zh) * 2023-09-25 2023-11-03 苏州博志金钻科技有限责任公司 一种氮化铝陶瓷表面金属化方法
CN116986926B (zh) * 2023-09-25 2023-12-15 苏州博志金钻科技有限责任公司 一种氮化铝陶瓷表面金属化方法

Similar Documents

Publication Publication Date Title
CN109136848B (zh) 一种基于pvd沉积方法的氮化铝陶瓷板和金属的连接方法
CN109930125B (zh) 一种金刚石-铝复合材料的磁控溅射镀膜方法
CN110438444B (zh) 一种镀钨金刚石颗粒、镀钨方法、其作为铜基增强相的应用及得到的金刚石/铜复合材料
CN108520855B (zh) 一种纳米银浆提高陶瓷覆铜板可靠性的方法
CN108033810A (zh) 一种氮化铝陶瓷覆铜板的制备方法
CN102339758A (zh) 低温键合制备铜-陶瓷基板方法
CN114309596B (zh) 一种高导热表面金属化金刚石/铜复合基板制备方法
CN102409299B (zh) 一种氧化物陶瓷溅射靶的制备方法
CN106944698A (zh) 基于热氧化表面改性的SiC陶瓷及SiC陶瓷增强铝基复合材料超声低温直接钎焊方法
CN114478022B (zh) 一种高可靠性氮化铝覆铜陶瓷基板及其制备方法
CN113501725B (zh) 一种覆铝陶瓷绝缘衬板的制备方法
CN114685178A (zh) 一种基于pvd沉积方法的陶瓷板和金属薄膜连接方法
CN115626835A (zh) 一种陶瓷基覆铜板的制造方法及其产品
CN115466131A (zh) 一种氮化铝陶瓷表面金属化的方法
CN106958009A (zh) 一种氮化铝陶瓷覆铜板及其制备方法
CN112981164A (zh) 一种高可靠性高导热金刚石增强金属基复合材料的制备方法
CN106181000A (zh) 一种钨合金与钼合金的连接方法
CN113174575A (zh) 一种AlN陶瓷基板金属化、热沉一体化制备方法
CN102409300A (zh) 氧化物陶瓷溅射靶及其制备方法和所用的钎焊合金
CN112975032B (zh) 一种碳化硅陶瓷的钎焊方法
CN113463054B (zh) 介质滤波器全磁控溅射多层复合金属化方法
CN105506624A (zh) 一种氮化铝陶瓷基板的镀膜方法
CN114318234A (zh) 一种以单晶碳化硅为基底的Ti-Cu-Ni多层膜及其制备方法
CN110527964B (zh) 一种类金刚石复合薄膜及其制备方法和应用以及一种igbt模块散热基板
CN110335798B (zh) 一种金刚石输能窗及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220701

WD01 Invention patent application deemed withdrawn after publication