CN113501725B - 一种覆铝陶瓷绝缘衬板的制备方法 - Google Patents

一种覆铝陶瓷绝缘衬板的制备方法 Download PDF

Info

Publication number
CN113501725B
CN113501725B CN202110822694.7A CN202110822694A CN113501725B CN 113501725 B CN113501725 B CN 113501725B CN 202110822694 A CN202110822694 A CN 202110822694A CN 113501725 B CN113501725 B CN 113501725B
Authority
CN
China
Prior art keywords
aluminum
ceramic insulating
layer
coated ceramic
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110822694.7A
Other languages
English (en)
Other versions
CN113501725A (zh
Inventor
欧阳鹏
贺贤汉
王斌
葛荘
张进
管鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Fulehua Semiconductor Technology Co ltd
Original Assignee
Jiangsu Fulehua Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Fulehua Semiconductor Technology Co ltd filed Critical Jiangsu Fulehua Semiconductor Technology Co ltd
Priority to CN202110822694.7A priority Critical patent/CN113501725B/zh
Publication of CN113501725A publication Critical patent/CN113501725A/zh
Application granted granted Critical
Publication of CN113501725B publication Critical patent/CN113501725B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/121Metallic interlayers based on aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/55Pre-treatments of a coated or not coated substrate other than oxidation treatment in order to form an active joining layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及覆铝陶瓷绝缘衬板的制备方法,包括:(1)陶瓷金属化层制备,在基板表面形成均匀铝金属化层;(2)表面镀,在高纯铝箔或陶瓷基板表面形成均匀微米级镀层;(3)瞬间液相扩散焊接,陶瓷基板双面贴合高纯铝箔,瞬间液相扩散焊接后得覆铝陶瓷绝缘衬板。本发明采用高温浸润性烧结制备铝金属化层,获得高纯度及高键合强度的铝金属化层;采用表面镀工艺,在铝面均匀形成微米级镀层,作为瞬间液相扩散焊接的中间层,同时消除了铝表面的氧化层;采用瞬间液相扩散焊接成型,中间层溶解、扩散至铝箔和金属化层中,避免了界面层产生金属间化合物,保持高纯铝面成分,可降低覆铝陶瓷绝缘衬板制造成本,工艺可控,且良率高,适宜进行批量生产。

Description

一种覆铝陶瓷绝缘衬板的制备方法
技术领域
本发明属于陶瓷绝缘衬板制备技术领域,具体涉及一种覆铝陶瓷绝缘衬板的制备方法。
背景技术
直接键合铜基板(Direct Bonding Copper,DBC)具有陶瓷的高导热、高电绝缘、高机械强度、低膨胀等特性,又兼具无氧铜的高导电性和优异焊接性能,且能像PCB线路板一样刻蚀出各种图形,是一种广泛应用于半导体模块电子电路板的陶瓷衬板。然而,在铜和陶瓷基板界面处,Cu2O的形成引起了大量的残余应力,导致DBC衬板界面出现裂纹。
为了克服该缺陷,直接结合铝(DBA)以铝(Al)代替铜(Cu)作为电路金属的新型材料,为大功率半导体器件封装用绝缘衬板提供了一种新的选择。由于Al具有比铜更好的塑性,使得DBA基板在热循环的工作环境中表现出比DBC基板具有更高的可靠性。采用Al代替铜制备覆铝陶瓷基板时,陶瓷主要以氮化铝陶瓷为主。
相对于直接键合铜,氮化铝覆铝陶瓷衬板的制备难点在于:铝与氮化铝陶瓷的润湿性很差,当温度低于700℃时,铝熔体与氮化铝陶瓷的润湿角大于90°基本不会对瓷片进行润湿,即无法有效键合;温度升高至900℃以上时,其浸润性明显增强,但此时温度高于铝的熔点,铝箔覆接成型困难。
为了解决该技术问题,现有技术中进行了诸多探索,如下:
US6183875 B1中提出采用一种特殊工装模具,将熔融的铝熔体倒入模具中,然后将瓷片浸入熔体,再通过特殊规格模具进行直接成型冷却。其熔体温度较高,可形成有效键合,但熔体纯度控制难,直接成型,铝面纯度难以达到高纯1A99级别。
CN102756515B中提出采用物理气相沉积的方法蒸镀铝膜再进行钎焊制备氮化铝覆铝陶瓷衬板。该方法设备投入大,且蒸镀层较薄,键合性能难以控制,成本高,效率低,难以形成量产;
CN103508745B中提出采用低熔点轧制金属复合板的工艺制备氮化铝覆铝陶瓷衬板,该方法采用金属复合板为合金板,其电导率较低。
CN109309065A中采用的是特殊模具进行渗铝,完成基板的制备,对熔体质量要求高。铸铝产生的气孔、氧化、夹杂等缺陷,直接影响基板的电导率等重要特征。
尽管上述技术能够实现陶瓷绝缘衬板直接覆铝,但工艺控制难,成本过高,难以大批量生产。
以氮化铝覆铝陶瓷绝缘衬板为例,其在电力电子器件中的应用适用场合为大功率高温半导体器件,工作温度可达200℃-400℃,且可靠性明显优于氮化铝陶瓷覆铜基板。随着第三代半导体SiC,GaN的发展,大功率高温半导体器件的在高铁、新能源车、航空航天等领域的应用将越来越普及,其对器件封装用绝缘衬板的要求越来越苛刻,亟待开发一种高效、低成本的覆铝陶瓷绝缘衬板。
发明内容
本发明依托上述研究进行,针对覆铝陶瓷绝缘衬板工艺控制难,成本过高的缺陷,对制备工艺进行改进,提供了一种覆铝陶瓷绝缘衬板的制备方法。
发明人前期已经提出两种改进工艺,本发明属于第三种改进方式,先在陶瓷基板表面形成一层高纯、高键合强度铝金属化层,然后在高纯铝箔或陶瓷基板表面形成均匀的微米级镀层,而后通过瞬间液相扩散焊接,将铝箔与陶瓷基板直接键合,制备覆铝陶瓷绝缘衬板。
本发明的改进原理如下:采用高温浸润性烧结,获得高纯、高键合强度的铝金属化层;在铝面引入微米级镀层,作为瞬间液相扩散焊接中间层,同时消除了铝面氧化层;利用瞬间液相扩散焊接技术,使得界面镀层金属原子,向铝箔及铝金属化层中充分溶解扩散,并且避免了界面产生金属间化合物,从而实现陶瓷与高纯铝箔的高强度键合。
为了实现上述目的,本发明所采用的技术方案如下:
本发明提供的覆铝陶瓷绝缘衬板的制备方法,包括如下步骤:
(1)陶瓷金属化层制备
制备铝浆料,将浆料涂覆在陶瓷基板上,高温浸润性烧结后,在陶瓷基板表面形成均匀铝金属化层;
(2)表面镀
采用化学浸镀或电镀工艺,在高纯铝箔或步骤(1)的陶瓷基板表面形成均匀的微米级镀层;
(3)瞬间液相扩散焊接
陶瓷基板双面贴合高纯铝箔,进行瞬间液相扩散焊接,制备得到覆铝陶瓷绝缘衬板。
优选的,步骤(1)中,铝浆料由铝含量大于99.9%的纯铝粉与有机载体复配而成,纯铝粉与有机载体的质量比为3~4:1。进行制备时,纯铝粉与有机载体混合,搅拌混匀10-15min后,经三辊研磨机将浆料充分研磨混合3-5遍,形成铝浆料。
进一步优选的,纯铝粉为球形铝粉,粒径为1-10μm;有机载体包括质量百分比为5.0%硬脂酸、6.0%乙基纤维素、3.8%邻苯二甲酸二异壬酯、6.8%十二碳醇酯成膜剂,其余为松油醇。
优选的,步骤(1)中,陶瓷基板为氮化铝、氧化铝或氮化硅基板,优选氮化铝基板,厚度为0.25-1.0mm,粗糙度Ra为0.15-0.6。
优选的,步骤(1)中,铝浆料通过丝网印刷工艺涂覆在陶瓷基板上,使用热风氮气进行烘干;进行高温浸润性烧结时,烧结温度为850-1200℃,烧结时间为10-120min;形成的铝金属化层的厚度为10-25μm。
优选的,步骤(2)中,高纯铝箔的厚度为0.2-0.8mm,铝含量≥99.99%;微米级镀层成分为Ni、Cu、Ag、Si、Zn、Sn、Au中的任意一种或几种,镀层厚度为1.0-2.5μm。
表面镀的具体工艺如下:所述高纯铝箔或表面形成有均匀铝金属化层的陶瓷基板通过碱洗、酸洗、浸锌、酸洗、二次浸锌,纯水洗工序后,浸入到镀液中,在表面均匀形成所述微米级镀层,纯水洗后,烘干,待用。
碱洗、酸洗、浸锌、酸洗、二次浸锌的工艺步骤如下:
碱洗时采用20-40g/L的氢氧化钠溶液碱洗1-2min;酸洗时采用200-400ml/L硝酸溶液酸洗1-2min;所述浸锌和二次浸锌处理时,按照10-40g/L氢氧化钠与50-100g/L氧化锌配置的浸锌液,浸泡20-40s,上述各步骤中,药液温度均控制为20-40℃。
优选的,步骤(3)中,瞬间液相扩散焊接的条件为:真空或保护气体气氛下,温度为580℃-650℃,保温时间为30min-240min,施加0.2-0.5N/cm2的压力进行瞬间液相扩散焊接。
通过实验测试,采用本发明的方法制备得到的覆铝陶瓷绝缘衬板,经图形蚀刻,制成剥离强度测试图样。采用90°剥离强度测试方法测试,样品剥离强度大于15N/mm,高于电力电子封装用绝缘衬板的10N/mm的实际使用要求。
表面观察,样品表面,保持铝面金属色,不存在气孔、氧化、夹杂等缺陷;采用SEM电镜进行截面观察,其界面平整,润湿性良好。
本发明的有益效果如下:
本发明通过陶瓷金属化层制备、表面镀、瞬间液相扩散焊接三道工序实现覆铝陶瓷绝缘衬板制备。采用高温浸润性烧结,获得高纯度及高键合强度的铝金属化层;采用表面镀工艺,在铝面引入微米级镀层,作为瞬间液相扩散焊接中间层,同时消除了铝面氧化层,促进镀层原子扩散;利用瞬间液相扩散焊接术,使得界面镀层金属原子,向铝箔及铝金属化层中充分扩散,同时中间层为微米级镀层,扩散后能充分溶解在铝基体中,避免了界面层产生金属间化合物,从而实现陶瓷与高纯铝箔的高强度键合。
本发明克服了铝箔与氮化铝陶瓷实现高强度键合的难题,同时保持高纯铝箔成分,满足了覆铝陶瓷绝缘衬板在电力电子器件中高标准使用要求。本发明可降低覆铝陶瓷绝缘衬板制造成本,工艺可控,且良率高,适宜进行批量生产。
附图说明
图1为本发明覆铝陶瓷绝缘衬板的制备方法的流程图;
图2是实施例1中制备金属化层后AlN陶瓷形貌图;
图3是实施例1中表面镀后AlN陶瓷形貌图;
图4是实施例1制备得到的覆铝氮化铝陶瓷绝缘衬板整体表观图;
图5是实施例1制备得到的覆铝氮化铝陶瓷绝缘衬板截面切片SEM形貌;
图6是根据对比试验例1制备得到的覆铝氮化铝陶瓷绝缘衬板截面切片SEM形貌;
图7是根据实施例1制备得到的覆铝氮化铝陶瓷绝缘衬板铝层蚀刻后间距图。
具体实施方式
下面结合本发明的附图和实施例对本发明的实施作详细说明,以下实施例是在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体操作过程,但本发明的保护范围不限于下述的实施例。
实施例1覆铝氮化铝陶瓷绝缘衬板的制备
根据图1,覆铝氮化铝陶瓷绝缘衬板的制备的具体工序如下:
1、陶瓷金属化层制备:制备铝浆料,将浆料涂覆在氮化铝陶瓷基板上,高温浸润性烧结,在陶瓷基板表面形成均匀铝金属化层。具体如下:
A)制备铝浆料;
称量铝含量为99.9%、粉末粒径为1-10μm高纯球形铝粉90.0g,加入28.4g有机载体混合,采用玻璃棒进行搅拌10-15min后,经三辊研磨机将浆料充分研磨混合3-5遍,形成铝浆料。该有机载体组成如下:质量百分比为5.0%硬脂酸、6.0%乙基纤维素、3.8%DINP(邻苯二甲酸二异壬酯)、6.8%十二碳醇酯成膜剂,其余为松油醇作为有机溶剂组成。
B)采用280#钢丝复合网将制备好的浆料,通过丝网印刷工艺,涂覆在氮化铝陶瓷上,烘干。
C)将样品置于真空钎焊炉中进行高温浸润性烧结,设置温度900℃,保温60min,随炉冷却取出,形成均匀铝金属化层,金属化层厚度约为15μm。
该处理工序后,AlN陶瓷形貌如图2所示,陶瓷表面接近透明。
2、表面镀,采用化学浸镀或电镀工艺,在高纯铝箔或陶瓷基板表面形成均匀的微米级镀层,具体如下:
将具有铝金属化层的氮化铝陶瓷基板通过碱洗、酸洗、浸锌、酸洗、二次浸锌,纯水洗等工序后,浸入到硫酸铜电镀液中,进行表面电镀铜,调整电镀电流0.4-1.0A/dm2,电镀时间10min,使得氮化铝陶瓷上的铝金属化层表面,上镀均匀铜镀层,水洗后烘干,待用,表面铜镀层厚度1.8μm。该处理工序后,AlN陶瓷形貌如图3所示。
选用牌号1A99,厚度0.5mm高纯铝箔经过机械抛刷、碱洗、酸洗、浸锌、酸洗、二次浸锌、纯水洗、烘干,即采用浸锌镀方式,消除表面氧化层,烘干待用。
碱洗、酸洗、浸锌、酸洗、二次浸锌的工艺步骤如下:
碱洗时采用20-40g/L的氢氧化钠溶液碱洗1-2min;酸洗时采用200-400ml/L硝酸溶液酸洗1-2min;所述浸锌和二次浸锌处理时,按照10-40g/L氢氧化钠与50-100g/L氧化锌配置的浸锌液,浸泡20-40s,上述各步骤中,药液温度均控制为20-40℃。
3、瞬间液相扩散焊接,陶瓷基板双面贴合高纯铝箔,进行瞬间液相扩散焊接,制备覆铝陶瓷绝缘衬板,具体如下:
将步骤(2)中高纯铝箔与步骤(2)中陶瓷基板进行双面覆高纯铝箔贴合,至于真空炉中进行瞬间液相扩散焊接,选择焊接温度620℃,加压0.2N/cm2保温时间60min后,随炉冷却,取出。该处理工序后,AlN陶瓷形貌如图4所示。
上述实施例中,以氮化铝陶瓷基板、硫酸铜电镀液为例对本发明方法进行详细说明。实际上,氧化铝以及氮化硅陶瓷基板,以及其他常用镀液组分如Ni、Cu、Ag、Si、Zn、Sn、Au等也完全能够实现本发明技术效果,进行相应操作时,对工艺参数进行调整即可。
铝粉与有机载体配比方面,不限于该比例,上下浮动0.5~1均可实现金属化层制备。
对比试验例1:
本对比试验例采用Al-Cu焊料代替Cu镀层进行焊接,取完成步骤一后氮化铝陶瓷基板,采用市售铝铜(铜含量30%)合金粉末制备浆料,采用400#丝网印刷工艺印刷钎料,双面覆铝,钎焊焊接,加压0.2N/cm2,焊接温度为620℃、保温60min后随炉冷却取出。具体如下:
A)制备浆料;
采用Al-Cu合金粉,球形粉末粒径为1-10μm,重量约90g,加入28.4g有机载体混合,采用玻璃棒进行搅拌10-15min后,采用三辊研磨机将浆料充分研磨混合3-5遍,形成浆料,有机载体组成同实施例1。
B)采用丝网印刷工艺将焊料涂覆在氮化铝陶瓷基板上,烘干,具体如下:
选用400目钢丝复合网,将铝合金浆料均匀的涂覆印刷在步骤一金属化层制备后的氮化铝陶瓷上,此时浆料膜厚约10-15μm再置于烘箱中,使用热风氮气进行烘干,设定烘干温度为100℃,时间为20min。
C)将陶瓷基板与高纯铝箔进行钎焊烧结,具体如下:
采用0.5mm厚度高纯铝箔贴合,形成Al/AlN/Al的三明治结构,置于高真空炉中进行钎焊,钎焊真空度为0.0033Pa,钎焊温度为620℃,保温60min后随炉冷却,取出。
性能测试对比:
实施例和对比例的氮化铝覆铝衬板经图形蚀刻后,制成剥离强度测试图样,采用90°剥离强度测试方法测试:实施例1的样品剥离强度大于15N/mm,高于电力电子封装材料衬板的10N/mm的实际使用要求;根据实施例1获得的覆铝陶瓷衬板,采用图形蚀刻后,对截面进行切片研磨,抛光,再采用SEM电镜进行截面观察,如图5所示,上半部分为Al层,下半部分AlN陶瓷,可见其界面平整,无脆性金属间化合物产生,润湿性良好。
对比试验例1的样品,表面变硬,界面生成大量脆性金属间化合物,如图6,样品剥离强度2.7N/mm,远低于实施例1产品。
外观方面,实施例1制备的氮化铝覆铝陶瓷衬板,样品表面,保持铝面金属色,不存在气孔、氧化、夹杂等缺陷。图7为图形蚀刻后局部放大图,刻蚀后铝箔层边缘平整,蚀刻后图形间距内氮化铝陶瓷表面干净,无蚀刻残留。
以上已对本发明创造的较佳实施例进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明创造精神的前提下还可作出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (9)

1.一种覆铝陶瓷绝缘衬板的制备方法,其特征在于,包括以下步骤:
(1)陶瓷金属化层制备
制备铝浆料,将浆料涂覆在陶瓷基板上,高温浸润性烧结后,在陶瓷基板表面形成均匀铝金属化层,该铝金属化层的厚度为10-25μm;
(2)表面镀
采用化学浸镀或电镀工艺,在高纯铝箔或步骤(1)的表面形成有均匀铝金属化层的陶瓷基板表面形成均匀的微米级镀层,所述微米级镀层成分为Ni、Cu、Ag、Si、Zn、Sn、Au中的任意一种或几种,镀层厚度为1.0-2.5μm;
(3)瞬间液相扩散焊接
将步骤(2)得到的陶瓷基板双面贴合高纯铝箔,或者将步骤(1)得到的陶瓷基板双面贴合步骤(2)得到的高纯铝箔,进行瞬间液相扩散焊接,制备得到所述覆铝陶瓷绝缘衬板。
2.根据权利要求1所述的覆铝陶瓷绝缘衬板的制备方法,其特征在于:
其中,步骤(1)中,铝浆料由铝含量大于99.9%的纯铝粉与有机载体复配而成,所述纯铝粉与所述有机载体的质量比为3~4:1,
所述纯铝粉与所述有机载体混合,搅拌混匀10-15min后,经三辊研磨机将浆料充分研磨混合3-5遍,形成所述铝浆料。
3.根据权利要求2所述的覆铝陶瓷绝缘衬板的制备方法,其特征在于:
其中,所述纯铝粉为球形铝粉,粒径为1-10μm;
所述有机载体包括质量百分比为5.0%硬脂酸、6.0%乙基纤维素、3.8%邻苯二甲酸二异壬酯、6.8%十二碳醇酯成膜剂,其余为松油醇。
4.根据权利要求1所述的覆铝陶瓷绝缘衬板的制备方法,其特征在于:
其中,步骤(1)中,所述陶瓷基板为氮化铝、氧化铝或氮化硅基板,厚度为0.25-1.0mm,粗糙度Ra为0.15-0.6。
5.根据权利要求1所述的覆铝陶瓷绝缘衬板的制备方法,其特征在于:
其中,步骤(1)中,所述铝浆料通过丝网印刷工艺涂覆在陶瓷基板上,使用热风氮气进行烘干;
进行高温浸润性烧结时,烧结温度为850-1200℃,烧结时间为10-120min。
6.根据权利要求1所述的覆铝陶瓷绝缘衬板的制备方法,其特征在于:
其中,步骤(2)中,高纯铝箔的厚度为0.2-0.8mm,铝含量≥99.99%。
7.根据权利要求1所述的覆铝陶瓷绝缘衬板的制备方法,其特征在于:
其中,步骤(2)中,表面镀的具体工艺如下:所述高纯铝箔或表面形成有均匀铝金属化层的陶瓷基板通过碱洗、酸洗、浸锌、酸洗、二次浸锌,纯水洗工序后,浸入到镀液中,采用电镀或化学浸镀工艺在表面均匀形成所述微米级镀层;纯水洗后,烘干待用。
8.根据权利要求7所述的覆铝陶瓷绝缘衬板的制备方法,其特征在于:
其中,碱洗、酸洗、浸锌、酸洗、二次浸锌的工艺步骤如下:
碱洗时采用20-40g/L的氢氧化钠溶液碱洗1-2min;酸洗时采用200-400ml/L硝酸溶液酸洗1-2min;所述浸锌和二次浸锌处理时,按照10-40g/L氢氧化钠与50-100g/L氧化锌配置的浸锌液,浸泡20-40s,
进行上述各步骤时,药液温度均控制在20-40℃。
9.根据权利要求1所述的覆铝陶瓷绝缘衬板的制备方法,其特征在于:
其中,步骤(3)中,瞬间液相扩散焊接的条件为:真空或保护气体气氛下,温度为580℃-650℃,保温时间为30min-240min,施加0.2-0.5N/cm2的压力进行瞬间液相扩散焊接。
CN202110822694.7A 2021-07-21 2021-07-21 一种覆铝陶瓷绝缘衬板的制备方法 Active CN113501725B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110822694.7A CN113501725B (zh) 2021-07-21 2021-07-21 一种覆铝陶瓷绝缘衬板的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110822694.7A CN113501725B (zh) 2021-07-21 2021-07-21 一种覆铝陶瓷绝缘衬板的制备方法

Publications (2)

Publication Number Publication Date
CN113501725A CN113501725A (zh) 2021-10-15
CN113501725B true CN113501725B (zh) 2022-11-08

Family

ID=78013438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110822694.7A Active CN113501725B (zh) 2021-07-21 2021-07-21 一种覆铝陶瓷绝缘衬板的制备方法

Country Status (1)

Country Link
CN (1) CN113501725B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114769774B (zh) * 2022-05-10 2024-03-08 哈尔滨工业大学 一种功率器件用陶瓷覆铝基板的制备方法
CN115410925B (zh) * 2022-09-22 2023-08-11 江苏富乐华半导体科技股份有限公司 一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法
CN117790326B (zh) * 2023-12-28 2024-06-04 江苏富乐华半导体科技股份有限公司 一种覆铝陶瓷衬板超声焊接的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000896A (zh) * 2010-11-10 2011-04-06 中国电子科技集团公司第十四研究所 Al合金Al-Cu瞬间液相扩散连接方法
CN105925948A (zh) * 2016-05-18 2016-09-07 哈尔滨工业大学(威海) 一种铝合金表面活化连接方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144987A (ja) * 1990-10-08 1992-05-19 Nippon Cement Co Ltd セラミックスのメタライズ方法
JPH05170552A (ja) * 1991-12-19 1993-07-09 Kawasaki Steel Corp メタライズ層を有する窒化アルミニウム基板とそのメタライズ方法
CH692296A5 (de) * 1997-07-11 2002-04-30 Empa Keramik-Metall- oder Metall-Keramik-Komposite.
JP4756200B2 (ja) * 2000-09-04 2011-08-24 Dowaメタルテック株式会社 金属セラミックス回路基板
AU2002218493A1 (en) * 2000-11-29 2002-06-11 Denki Kagaku Kogyo Kabushiki Kaisha Integral-type ceramic circuit board and method of producing same
JP4674999B2 (ja) * 2001-06-18 2011-04-20 電気化学工業株式会社 一体型セラミックス回路基板製造方法
JP4181063B2 (ja) * 2004-02-17 2008-11-12 日産自動車株式会社 異種金属薄板の液相拡散接合方法
JP4302095B2 (ja) * 2005-11-29 2009-07-22 Dowaホールディングス株式会社 金属−セラミックス接合基板の製造方法
CN103373860A (zh) * 2012-04-27 2013-10-30 比亚迪股份有限公司 陶瓷基体表面金属化涂层组合物、陶瓷基体表面金属化方法及其制备的涂层和陶瓷
JP7052374B2 (ja) * 2017-02-06 2022-04-12 三菱マテリアル株式会社 セラミックス/アルミニウム接合体の製造方法、絶縁回路基板の製造方法
CN108033810A (zh) * 2017-12-12 2018-05-15 北京科技大学 一种氮化铝陶瓷覆铜板的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000896A (zh) * 2010-11-10 2011-04-06 中国电子科技集团公司第十四研究所 Al合金Al-Cu瞬间液相扩散连接方法
CN105925948A (zh) * 2016-05-18 2016-09-07 哈尔滨工业大学(威海) 一种铝合金表面活化连接方法

Also Published As

Publication number Publication date
CN113501725A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
CN113501725B (zh) 一种覆铝陶瓷绝缘衬板的制备方法
CN113511915B (zh) 一种陶瓷覆铝衬板的制备方法
CN113213972B (zh) 一种氮化铝覆铝陶瓷衬板的制备方法
CN102206098B (zh) 一种陶瓷覆铜基板及其制备方法
CN108520855B (zh) 一种纳米银浆提高陶瓷覆铜板可靠性的方法
CN112157371B (zh) 一种亚微米Cu@Ag焊膏及其制备方法
US9831157B2 (en) Method of attaching an electronic part to a copper plate having a surface roughness
US6485816B2 (en) Laminated radiation member, power semiconductor apparatus, and method for producing the same
CN109608221A (zh) 一种氮化铝陶瓷覆铜基板的制备方法
CN109336646A (zh) 一种覆铜氮化铝陶瓷基板的制造方法
CN114478022B (zh) 一种高可靠性氮化铝覆铜陶瓷基板及其制备方法
CN109354512A (zh) 一种高导热氮化硅陶瓷表面化学镀铜的制备方法
CN113795091A (zh) 一种低温烧结制备陶瓷电路板方法
CN115626835A (zh) 一种陶瓷基覆铜板的制造方法及其产品
RU2196683C2 (ru) Подложка, способ ее получения (варианты) и металлическое соединенное изделие
CN109251054A (zh) 一种陶瓷覆铜基板及其制造方法
CN110843272B (zh) 陶瓷覆铜板及其制备工艺和应用
CN107809885B (zh) 一种高结合力的石墨膜金属复合材料的制备方法
JP5691901B2 (ja) パワーモジュールの製造方法
EP0833383B1 (en) Power module circuit board
RU2405229C2 (ru) Корпус полупроводникового прибора
EP3564988A1 (en) Heat-dissipating substrate, preparation method and application thereof, and electronic component
Zhang et al. A Process Improvement in Silver-indium Transient Liquid Phase Bonding Method for the High-Power Electronics and Photonics Packaging
Zhang et al. Effect of substrate preheating treatment on thermal reliability and micro-structure of Ag paste sintering on Au surface finish
US11938543B2 (en) Silver sintering preparation and the use thereof for the connecting of electronic components

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 224200 No. 18 Hongda Road, Chengdong New District, Dongtai City, Yancheng City, Jiangsu Province

Applicant after: Jiangsu fulehua Semiconductor Technology Co.,Ltd.

Address before: 224200 No. 18 Hongda Road, Chengdong New District, Dongtai City, Yancheng City, Jiangsu Province

Applicant before: JIANGSU FULEDE SEMICONDUCTOR TECHNOLOGY Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant