CN114668745B - 一种葡萄糖和h2o2双重响应的双层交联聚合物纳米递药系统及其制备方法和应用 - Google Patents

一种葡萄糖和h2o2双重响应的双层交联聚合物纳米递药系统及其制备方法和应用 Download PDF

Info

Publication number
CN114668745B
CN114668745B CN202210413803.4A CN202210413803A CN114668745B CN 114668745 B CN114668745 B CN 114668745B CN 202210413803 A CN202210413803 A CN 202210413803A CN 114668745 B CN114668745 B CN 114668745B
Authority
CN
China
Prior art keywords
double
glucose
polymer
gox
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210413803.4A
Other languages
English (en)
Other versions
CN114668745A (zh
Inventor
钱红亮
冯婕
杨静如
陈维
钟伊南
黄德春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Pharmaceutical University
Original Assignee
China Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Pharmaceutical University filed Critical China Pharmaceutical University
Priority to CN202210413803.4A priority Critical patent/CN114668745B/zh
Publication of CN114668745A publication Critical patent/CN114668745A/zh
Application granted granted Critical
Publication of CN114668745B publication Critical patent/CN114668745B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/44Oxidoreductases (1)
    • A61K38/443Oxidoreductases (1) acting on CH-OH groups as donors, e.g. glucose oxidase, lactate dehydrogenase (1.1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/183Block or graft polymers containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/305General preparatory processes using carbonates and alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/42Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • C12Y101/03004Glucose oxidase (1.1.3.4)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Diabetes (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Endocrinology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Emergency Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了葡萄糖和H2O2双重响应的双层交联聚合物纳米递药系统及其制备方法和应用,由聚乙二醇,功能化的碳酸酯类和含巯基的羧酸依次通过开环聚合反应形成两亲性三嵌段聚合物骨架,经过苯硼酸衍生物修饰形成两亲性聚合物;含双键的羧酸、邻二醇类物质依次修饰GOx,再与两亲性聚合物混合。首次将GOx作为氧化葡萄糖机制、糖分子与无环二醇之间的竞争机制和凝胶紫外光交联有机结合起来,设计和合成新型生物可降解聚合物辅料。GOx与苯硼酸酯共同作用,增强葡萄糖敏感性和H2O2敏感性;苯硼酸衍生物与邻二醇类化合物形成苯硼酸酯和聚合物纳米粒紫外光交联形成双层交联结构,增加稳定性,实现胰岛素在体内的长效循环。

Description

一种葡萄糖和H2O2双重响应的双层交联聚合物纳米递药系统 及其制备方法和应用
技术领域
本发明涉及高分子材料学和药剂及其制备方法和应用,特别涉及一种葡萄糖和H2O2双重响应的双层交联聚合物纳米递药系统及其制备方法和应用。
背景技术
外源性胰岛素是治疗糖尿病最为直接的药物。然而直接注射胰岛素存在一些问题,若注射剂量不够会导致降糖不佳,诱发出现一系列并发症;若注射剂量过度,则降糖过快,很容易导致低血糖症状,不能达到预期的治疗效果。利用葡萄糖响应原理制备的纳米载体可以完成智能血糖调控系统,在一定程度上可以解决传统胰岛素注射的剂量难以控制、注射次数多等缺点和局限,并且在正常血糖条件下表现出一致且缓慢的基础胰岛素释放,实时加速胰岛素释放以应对高血糖,可以提供有效的血糖调节,降低低血糖的风险。
构建化学合成的葡萄糖响应型胰岛素递送系统的葡萄糖响应材料主要为葡萄糖氧化酶(GOx)、刀豆球蛋白A(ConA)和苯硼酸(PBA)及其衍生物。GOx对葡萄糖具有高度的选择性,主要用于葡萄糖传感系统。含PBA或其衍生物的聚合物,在生理环境中具有高稳定性和耐久性,可以与含有双羟基基团结构的物质(葡萄糖等)结合,利用过程中PBA电荷状态的变化以及亲水性和疏水性的转换或者与含二醇化合物的竞争实现胰岛素的释放,为开发用于长效循环的葡萄糖响应材料提供了良好的选择。另外,为了增强PBA系统的葡萄糖响应性,有研究将GOx和PBA结合使用。GOx氧化葡萄糖时产生的H2O2会加速苯硼酸酯(PBE)在体内降解,此外GOx的引入也会增强系统的葡萄糖敏感性。在基于PBA和GOx的葡萄糖响应和H2O2响应系统中,GOx通常被包载于纳米载体中,如Tong等通过将PBA与PBAE修饰于三嵌段共聚物,设计出葡萄糖和H2O2响应性聚合物囊泡(Applied Materials&Interfaces,2018,10:20014-20024)。相较于游离的GOx,通过化学键结合的固定化GOx具有更加迅速的葡萄糖响应性和酶稳定性,如张建军等(CN113599507A)基于接有苯硼酸的透明质酸-氨基苯硼酸衍生物HA-g-PBA以及修饰有葡萄糖氧化酶的聚乙烯醇生物PVA-g-GOx反应构建出一种新型注射型、可塑性强、粘附性强及生物降解时间可控的水凝胶材料,具有葡萄糖诱导的活性氧响应降解特性。
然而,上述胰岛素给药系统常存在载药量低、响应性慢、制备工艺复杂、多次循环释放的载体不稳定等问题,减弱了长效循环的效果,由此导致的大量胰岛素突释可能会造成严重低血糖等不良后果。
发明内容
发明目的:本发明目的是提供一种葡萄糖和H2O2双重响应的双层交联聚合物纳米递药系统
本发明另一目的是提供所述葡萄糖和H2O2双重响应的双层交联聚合物纳米递药系统的制备方法和应用。
技术方案:所述的葡萄糖和H2O2双重响应的双层交联聚合物纳米递药系统,由聚乙二醇,功能化的碳酸酯类和含巯基的羧酸依次通过开环聚合反应形成两亲性三嵌段聚合物骨架,然后经过苯硼酸衍生物修饰形成两亲性聚合物;含双键的羧酸、邻二醇类物质依次修饰葡萄糖氧化酶(GOx)形成聚合物载体,最后再与两亲性聚合物混合、自组装,形成所述葡萄糖和H2O2双重响应的双层交联聚合物纳米递药系统。
所述基于苯硼酸衍生物与GOx作为载体共同建立的纳米递药系统,其中环硼酸盐可与葡萄糖反应,导致其分解并形成亲水性苯基硼酸酯-葡萄糖复合物,GOx氧化葡萄糖时产生的H2O2进一步将环硼酸盐氧化为苯酚并破坏碳-硼键。此外,在GOx催化葡萄糖向葡萄糖酸的转化过程中,局部pH降低,苯基硼酸酯键进一步分解,这三种破坏作用增强系统的葡萄糖敏感性和H2O2敏感性,导致纳米粒触发药物释放行为。所得递药系统和由其制成的药物性质稳定,能够有效避免药物突释。
所述葡萄糖和H2O2双重响应的双层交联聚合物纳米递药系统的制备方法,包括以下步骤:
(1)两亲性三嵌段聚合物骨架的制备:
碳酸酯类与聚乙二醇溶在二氯甲烷中,加入催化剂,在无水无氧氮气保护的环境中反应一段时间后沉淀干燥得中间产物,再将其溶解在N,N-二甲基甲酰胺中,加入含巯基的羧酸和适量三乙胺(Et3N),反应一段时间得到两亲性三嵌段聚合物骨架;
(2)邻二醇物质修饰聚合物的制备:
在含双键的羧酸溶液中加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC·HCl)、N-羟基琥珀酰亚胺(NHS)和GOx得到中间产物,将其溶解并加入含邻二醇结构的分子,再加入三乙胺,在氮气保护下反应得到邻二醇结构修饰的聚合物。
(3)苯硼酸衍生物分子修饰聚合物的制备:
将步骤(1)中制备的聚合物溶于N,N-二甲基甲酰胺中,加入苯硼酸衍生物,通过酰胺反应修饰苯硼酸衍生物,得到苯硼酸衍生物修饰的聚合物;
(4)聚合物纳米粒制备:
将步骤(2)和(3)得到的聚合物,通过反相纳米沉淀法制备混合聚合物纳米粒,加入光引发剂,紫外照射得到光交联的聚合物纳米粒溶液。
进一步地、所述骨架材料聚乙二醇的分子量在5000-10000Da范围内。
进一步地、所述功能化的碳酸酯类可选自丙烯酰碳酸酯、双(2-甲基烯丙基)碳酸酯、亚乙烯基碳酸酯、甲基碳酸烯丙酯和烯丙基琥珀酰亚胺基碳酸酯等。
进一步地、所述含巯基的羧酸选自巯基丙酸、巯基乙酸等;所述含双键的羧酸可选自丙烯酸、α-甲基丙烯酸、2-甲基-2-丙烯酸等。
进一步地、所述邻二醇物质修饰,是由含邻二醇结构的小分子通过巯基-烯点击化学反应修饰GOx形成共载体,而不是将其作为药物包载在纳米系统中,这种基于苯硼酸衍生物与GOx作为载体共同建立的纳米递药系统更具有敏感的葡萄糖响应和H2O2响应,更能实时充分地影响血糖变化,实现胰岛素的控释。所述邻二醇物质选自1-硫代甘油、环二醇、乙二醇等。
进一步地、所述苯硼酸衍生物选自对氨基苯硼酸、间氨基苯硼酸或邻氨基苯硼酸。
进一步地、所述步骤(1)中碳酸酯类与聚乙二醇按照物质的量比为(25-30)∶1∶催化剂为双(双三甲基硅基)胺锌(Zn[N(SiMe3)i]2);巯基与双键的物质的量比为0.5-0.9;所属步骤(3)中苯硼酸衍生物与含巯基的羧酸类的物质的比为3∶1。
本发明最后提供了所述葡萄糖和H2O2双重响应的双层交联聚合物纳米递药系统在制备治疗糖尿病药物中的应用。
有益效果:本发明相对于现有技术,具有如下优势:
(1)本发明首次将GOx作为氧化葡萄糖机制、糖分子与无环二醇之间的竞争机制和凝胶紫外光交联有机结合起来,通过设计和合成新型生物可降解聚合物辅料,形成葡萄糖和H2O2双重响应的双层交联聚合物纳米递送胰岛素系统,当葡萄糖浓度升高时,环硼酸盐可与葡萄糖反应,导致其分解并形成亲水性苯基硼酸酯-葡萄糖复合物。GOx氧化葡萄糖时产生的H2O2进一步将环硼酸盐氧化为苯酚并破坏碳-硼键。此外,在GOx催化葡萄糖向葡萄糖酸的转化过程中,局部pH降低,苯基硼酸酯键进一步分解,这三种破坏作用实现胰岛素的控释。
(2)本发明将GOx作为载体建立纳米递药系统,通过化学键作用将其与载体主链结合,而不是将其作为药物包载在纳米系统中,更具有敏感的葡萄糖响应和H2O2响应,实时充分地影响血糖变化,实现胰岛素的控释。
(3)本发明通过修饰苯硼酸衍生物和邻二醇结构得到苯硼酸酯交联结构,利用功能化的碳酸酯类上双键实现紫外光交联固化,形成双层交联结构。当高血糖引起葡萄糖浓度增大时,竞争性破坏交联结构,释放内部胰岛素降低高血糖,光交联固化确保每次胰岛素释放时载体稳定,避免因载体不稳定导致突释过量的胰岛素,引起低血糖风险。附图说明
图1为实施例1中PEG-b-PAC的氢核磁图谱;
图2为实施例2中PEG-b-P(AC-co-MPA)的氢核磁图谱;
图3为实施例2中PEG-b-P(AC-co-MAPBA)的氢核磁图谱;
图4为实施例3中GOx-MAA-MPD的氢核磁图谱;
图5为实施例4(1)中光交联混合纳米粒的核磁氢谱图;
图6为实施例4(2)中载药混合纳米粒的粒径图,不包载与包载21%胰岛素未光交联(A)与光交联(B)的粒径图;
图7为载胰岛素聚合物纳米粒体外胰岛素累积释放图,包括葡萄糖响应性释放(A和B)及H2O2响应性释放(C);
图8为体外“on-off”葡萄糖响应性释放实验(A)及响应梯度实验(B);
图9为光交联聚合物纳米粒和未光交联聚合物纳米粒进行RAW 264.7小鼠单核巨噬细胞的细胞毒性实验;
图10为载药纳米粒的体内降糖实验。
具体实施方式
实施例1
PEG-b-PAC及PEG-b-P(AC-co-MPA)的合成,合成路线及过程如下:
在氮气保护的干燥手套箱中,于密封反应瓶中分别加入0.67g聚乙二醇(PEG,8000Da,0.084mmol)和0.5g丙烯酰碳酸酯(AC,2.5mmol),加入4mL二氯甲烷溶解后,迅速加入50mg双(双三甲基硅基)胺锌(Zn[N(SiMe3)i]2)(0.13mmol)。将反应容器密封置于油浴中,在45℃下搅拌72h,聚合反应结束后,将溶液滴入冰乙醚中沉淀,真空干燥,得到0.97g白色固体粉末PEG-b-PAC,产率83%。取1.18gPEG-b-PAC(0.1mmol)、0.148mg巯基丙酸(MPA,1.4mmol)、100μL Et3N(0.72mmol)溶解在10mL DMF中,以碳碳双键和硫醇摩尔比为4∶3在室温下反应过夜,在冰乙醚中沉淀得到白色固体PEG-P(AC-co-MPA),真空干燥。
PEG-b-PAC的氢核磁表征见附图1,1H NMR(400MHz,CDCl3)δ1.06(s,3H),3.64(s,39H),4.10(d,6H),5.86(dd,1H),6.11(dd,1H),6.41(dd,1H)。
PEG-b-P(AC-co-MPA)的氢核磁表征见附图2,1H NMR(400MHz,CDCl3)δ1.05(m,5H),2.88(d,3H),2.96(s,3H),3.64(s,36H),4.11(s,9H),5.87(d,1H),6.13(ddd,1H),6.41(d,1H),8.02(s,1H)。
实施例2
PEG-b-P(AC-co-MAPBA)的合成,合成路线及过程如下:
精确称量0.876gPEG-b-P(AC-co-MPA)(0.067mmol)溶解在10mLN,N-二甲基甲酰胺(DMF)中,加入0.46gEDC·HCl(2.4mmol)和0.276gNHS(2.4mmol)活化,搅拌反应30min,后加入0.50g间氨基苯硼酸(APBA,3.2mmol)继续反应过夜。用截留分子量(MWCO)3500Da的透析袋在甲醇中透析12h。经真空旋转蒸发除去甲醇。溶液在水中透析,真空干燥,得到产物PEG-b-P(AC-co-MAPBA)。
PEG-b-P(AC-co-MAPBA)的氢核磁表征见附图3,1H NMR(400MHz,MeOD)δ1.05(s,3H),2.39-3.14(m,3H),2.83-3.09(m,4H),3.63(s,52H),3.95-4.35(m,6H),5.56-6.71(m,1H),7.13-8.05(m,3H)。
实施例3
GOx-MAA-MPD的合成,合成路线及过程如下:
取8μL α-甲基丙烯酸(MAA)加入到400μL DMF中,然后依次加入EDC·HCl和NHS。半小时后,加入3mL含有12mg GOx的PB(pH 7.4,5mmol)。在去离子水中用MWCO 3500Da透析袋将混合物透析24h以去除未反应的MAA。真空干燥得到固体GOx-MAA。随后,GOx-MAA在氮气保护下与1-硫代甘油(MPD)和三乙胺(Et3N)反应12h。将溶液透析24h并在真空下干燥。
GOx-MAA-MPD的氢核磁表征见附图4,1H NMR(400MHz,D2O)δ1.08(t,1H),1.29(t,3H),2.37-2.49(m,1H),2.65(s,1H),2.87(s,2H),3.07-3.28(m,4H),3.71(s,1H)。
实施例4
(1)混合纳米粒的制备
将PEG-b-P(AC-co-MAPBA)和GOx-MAA-MPD分别溶解在高纯水中,得到聚合物浓度分别为5mg/mL和2mg/mL的均相溶液。各自吸取一定量的溶液混合,在搅拌的条件下缓慢逐滴(6mL/h)加入到15.0mL丙酮中,加入光引发剂(2-羟基-4′-(2-羟基乙氧基)-2-甲基丙烯基苯甲酮,IR 2959),在紫外光照射10min后,加入适量高纯水,旋蒸除去丙酮。透析去除过量的丙酮,得到光交联的聚合物纳米粒。相同的方法制备未光交联的聚合物纳米粒作为对照。
光交联纳米粒核磁表征见附图5,1H NMR(400MHz,MeOD)δ1.05(s,1H),2.80(s,6H),3.65(s,22H),3.87-3.94(m,1H),4.09(s,1H),4.10-4.18(m,2H),7.05-8.27(m,3H)。结果显示位移在5.56-6.71(m,1H)处,碳碳双键特征峰消失,表明光交联制备成功。
(2)聚合物纳米粒对胰岛素的包裹
将PEG-b-P(AC-co-MAPBA)和GOx-MAA-MPD分别溶解在高纯水中,得到聚合物浓度分别为5mg/mL和2mg/mL的均相溶液。各自吸取一定量的溶液混合后加入一定比例的胰岛素,在搅拌的条件下缓慢逐滴加入到15.0mL丙酮中。加入适量高纯水,旋蒸除去丙酮。透析去除过量的丙酮和剩余的胰岛素。分别考察加和不加光引发剂两种情况,加光引发剂的样品在紫外光照射10min。分别获得粒径均匀的光交联载胰岛素纳米粒溶液和未光交联载胰岛素聚合物纳米粒溶液。
附图6为聚合物纳米粒包载21%胰岛素和不包载胰岛素在光交联与未光交联时的粒径图。不包载胰岛素时,光交联聚合物纳米粒平均粒径在223nm左右,PDI为12.89%;未光交联聚合物纳米粒平均粒径在208.24nm左右,PDI为23.3%;包载21%胰岛素时,光交联聚合物纳米粒平均粒径在264.71nm左右,PDI为21.89%;未光交联聚合物纳米粒平均粒径在259.04nm左右,PDI为25.19%。
(3)载胰岛素纳米粒的包封率和载药量测定
包封率和载药量通常用来表示聚合物纳米粒的载药能力。本文采用BCA蛋白定量检测试剂盒测定其载药量,用酶标仪在波长562nm处测定未包载的胰岛素的吸光度值。其中载药量是包载在纳米粒的药量和总质量(载体和包载的药量)的百分数,包封率是指包载在纳米粒的药量和投药量的质量百分数,计算公式分别如下:
如表1,在理论载药量(即胰岛素/载药聚合物质量比例)为20、25、30、35、40wt%时,光交联聚合物纳米粒对胰岛素的包封率约为46-73%。
表1光交联的载胰岛素聚合物纳米粒的表征
(4)模拟体外葡萄糖和H2O2响应释放试验
在37℃下,将含有胰岛素纳米粒的透析袋浸泡在不同浓度葡萄糖的磷酸盐缓冲液(PBS,pH 7.4)中,进行葡萄糖和H2O2响应的胰岛素释放。将1mL胰岛素载药纳米粒(DC-NPs@insulin,SC-NPs@insulin)注入分子截留量为12kDa的透析袋中,分别在含有0、100、400mg/dL葡萄糖或0、0.1、0.5mM H2O2的3mLPBS中浸泡,放入摇床中轻摇。在一定时间间隔内,取50μL缓冲液测定胰岛素浓度,并加入等体积新鲜的PBS。每份实验数据设置三个平行对照。为实现“on-off”控释,将含有胰岛素纳米粒的透析袋交替浸入含400mg/dL或100mg/dL葡萄糖(0.1或0.5mM H2O2)的PBS中,在37℃下放置1h。同样,以同样的方法测定了DC-NPs@insulin和SC-NPs@insulin在葡萄糖浓度梯度变化(0、100、200、400mg/mL)时释放的胰岛素含量。胰岛素释放的含量采用Bradford蛋白检测试剂盒测定。
累积释放结果见附图7,为载胰岛素聚合物纳米粒体外释放。由A图和B图可知,随葡萄糖浓度增加,胰岛素的释放量呈明显增加。未光交联组(SC-NPs@insulin)在4h时释放了约一半的胰岛素含量,而光交联组(DC-NPs@insulin)显著地延长了胰岛素的释放时间,达到了超过8h的胰岛素释放。C图表征了纳米粒对的H2O2响应性,结果显示随H2O2浓度增加,胰岛素的释放量明显增加,当H2O2浓度增加到0.5mM时光交联载胰岛素聚合物纳米粒胰岛素的释放量接近50%,明显地较未光交联的聚合物纳米粒释放量小,证实了光交联的聚合物纳米粒能有效延长胰岛素的缓慢释放。
附图8为体外“on-off”葡萄糖响应性释放及响应性梯度释放实验。A图的“开-关”实验证实了纳米粒具有稳定的载体结构,表现出对葡萄糖浓度的响应性。B图的浓度梯度实验再次证实了光交联对于纳米载体的缓释作用。
(5)聚合物纳米粒的细胞毒性实验(MTT实验)
用3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(MTT)法测定聚合物纳米粒对RAW264.7小鼠单核巨噬细胞的生物相容性。在37℃含5%CO2的环境中,将细胞培养在DMEM培养基上,并以每孔10000个细胞的密度接种到96孔板中,培养24h。分别以5、10、50、100、500μg/mL浓度的纳米粒孵育细胞24h。每孔加入5mg/mL MTT(10μL),继续培养4h。之后加入二甲基亚砜(DMSO)完全溶解甲瓒晶体。振荡10min,用酶标仪在490nm处测定吸光度,每个浓度记录3个平行数据。细胞活力百分比(细胞活力%)表示如下:
结果见附图9,随着聚合物纳米粒浓度的增加,与空白细胞培养液中细胞活性相比,加入聚合物纳米粒的细胞培养液中细胞活性没有明显降低,并且存活率在80%以上,因此,证明该聚合物纳米粒对生物细胞毒性较小。
(6)体内降糖实验
对链脲佐菌素(STZ)诱导的I型糖尿病小鼠皮下注射各纳米粒子,以评估其治疗I型糖尿病的体内表现。将高血糖模型小鼠随机分为五组,每组3只老鼠,分别应用DC-NPs@insulin、SC-NPs@insulin、DC-NPs@insulin(W/OGOx)、Blank MNs及Insulin(其中游离胰岛素剂量为5IU/kg,载药纳米粒中胰岛素的剂量为40IU/kg)。以健康小鼠为对照,进行体内实验。通过尾静脉采集血样(~3μL),用血糖仪连续监测血糖变化并记录。血糖变化曲线见附图10所示。皮下注射Insulin组在1h内血糖迅速下降到最低,维持约3h的降糖时间,但存在低血糖风险。而实验组可维持更长的正常血糖时间(ΔBGL%≤70),DC-NPs@insulin组在20min内迅速响应以降低血糖,并维持长达8h的降糖时间,显示了修饰的GOx及光交联在体内降糖方面的优势,能够有效避免注射游离胰岛素带来的低血糖风险,以及多次注射导致了伤口感染、患者依从性差等问题。

Claims (6)

1.一种葡萄糖和H2O2双重响应的双层交联聚合物纳米递药系统,其特征在于,所述双层交联为苯硼酸酯交联及紫外光交联,由聚乙二醇,丙烯酰碳酸酯和3-巯基丙酸依次通过开环聚合反应形成两亲性三嵌段聚合物骨架,然后经过3-氨基苯硼酸修饰形成两亲性聚合物;α-甲基丙烯酸、1-硫代甘油依次修饰葡萄糖氧化酶(GOx),最后再与两亲性聚合物混合、自组装,即可。
2.根据权利要求1所述的葡萄糖和H2O2双重响应的双层交联聚合物纳米递药系统,其特征在于,所述聚乙二醇的分子量在5000-10000 Da范围内。
3.根据权利要求1所述的葡萄糖和H2O2双重响应的双层交联聚合物纳米递药系统,其特征在于,1-硫代甘油的修饰,是由1-硫代甘油通过巯基-烯点击化学反应修饰GOx形成共载体,不是将其作为药物包载在纳米系统中。
4.权利要求1-3任一项所述的葡萄糖和H2O2双重响应的双层交联聚合物纳米递药系统的制备方法,其特征在于,包括以下步骤:
(1)两亲性三嵌段聚合物骨架的制备:
丙烯酰碳酸酯与聚乙二醇溶在二氯甲烷中,加入催化剂,在无水无氧氮气保护的环境中反应一段时间后沉淀干燥得中间产物,再将其溶解在N,N-二甲基甲酰胺(DMF)中,加入3-巯基丙酸和适量三乙胺(Et3N),反应一段时间得到两亲性三嵌段聚合物骨架;
(2)1-硫代甘油修饰聚合物的制备:
在α-甲基丙烯酸溶液中加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC·HCl)、N-羟基琥珀酰亚胺(NHS)和GOx得到中间产物,将其溶解并加入1-硫代甘油,再加入三乙胺,在氮气保护下反应得到1-硫代甘油修饰的聚合物;
(3)3-氨基苯硼酸分子修饰聚合物的制备:
将步骤(1)中制备的聚合物溶于DMF中,加入3-氨基苯硼酸,通过酰胺反应修饰3-氨基苯硼酸,得到3-氨基苯硼酸修饰的聚合物;
(4)聚合物纳米粒制备:
将步骤(2)和(3)得到的聚合物,通过反相纳米沉淀法制备混合聚合物纳米粒,加入光引发剂,紫外照射得到光交联的聚合物纳米粒溶液。
5.根据权利要求4所述的葡萄糖和H2O2双重响应的双层交联聚合物纳米递药系统的制备方法,其特征在于,所述步骤(1)中丙烯酰碳酸酯与聚乙二醇按照物质的量比为(25-30):1;催化剂为双(双三甲基硅基)胺锌(Zn[N(SiMe3)2]2);巯基与双键的物质的量比为0.5-0.9;所属步骤(3)中3-氨基苯硼酸与3-巯基丙酸的物质的比为3:1。
6.权利要求1-3任一项所述的葡萄糖和H2O2双重响应的双层交联聚合物纳米递药系统在制备治疗糖尿病的药物中应用。
CN202210413803.4A 2022-04-19 2022-04-19 一种葡萄糖和h2o2双重响应的双层交联聚合物纳米递药系统及其制备方法和应用 Active CN114668745B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210413803.4A CN114668745B (zh) 2022-04-19 2022-04-19 一种葡萄糖和h2o2双重响应的双层交联聚合物纳米递药系统及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210413803.4A CN114668745B (zh) 2022-04-19 2022-04-19 一种葡萄糖和h2o2双重响应的双层交联聚合物纳米递药系统及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114668745A CN114668745A (zh) 2022-06-28
CN114668745B true CN114668745B (zh) 2023-11-17

Family

ID=82077167

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210413803.4A Active CN114668745B (zh) 2022-04-19 2022-04-19 一种葡萄糖和h2o2双重响应的双层交联聚合物纳米递药系统及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114668745B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115737535B (zh) * 2022-08-19 2023-09-01 西北工业大学 一种可控降解纳米复合凝胶及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105726463A (zh) * 2015-12-09 2016-07-06 宁波大学 一种用于胰岛素精控释放的双响应双交联可注射水凝胶的制备方法及应用
CN111658783A (zh) * 2020-07-09 2020-09-15 中国药科大学 开关式葡萄糖响应性双层交联聚合物胶束递药系统及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105726463A (zh) * 2015-12-09 2016-07-06 宁波大学 一种用于胰岛素精控释放的双响应双交联可注射水凝胶的制备方法及应用
CN111658783A (zh) * 2020-07-09 2020-09-15 中国药科大学 开关式葡萄糖响应性双层交联聚合物胶束递药系统及其制备方法和应用

Also Published As

Publication number Publication date
CN114668745A (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
CN102911368B (zh) 具有酸敏感性的两亲性三嵌段共聚物、其制备方法及应用
JP6246421B2 (ja) 側鎖にジチオ五員環官能基を有するカーボネートポリマー及びその応用
Chai et al. Development of glucose oxidase-immobilized alginate nanoparticles for enhanced glucose-triggered insulin delivery in diabetic mice
CN103554508B (zh) 酸敏感两亲性星状嵌段共聚物、其制备方法及应用
CN107596380B (zh) 基于聚乙二醇-聚碳酸酯的还原敏感性喜树碱前药及其制备方法和应用
CN114668745B (zh) 一种葡萄糖和h2o2双重响应的双层交联聚合物纳米递药系统及其制备方法和应用
Shen et al. Glucose-responsive hydrogel-based microneedles containing phenylborate ester bonds and N-isopropylacrylamide moieties and their transdermal drug delivery properties
CN114767655B (zh) 一种两性离子功能化的生物可降解口服纳米载药系统及应用
KR20180097707A (ko) 생분해성 양친매성 폴리머, 그것에 의해 제조되는 폴리머 베시클, 및 폐암표적 치료제의 제조에 있어서의 사용
CN105440229A (zh) 一种pH/温度双重敏感的两亲性共聚物及其制备与应用
CN111658783B (zh) 开关式葡萄糖响应性双层交联聚合物胶束递药系统及其制备方法和应用
CN107353399B (zh) 酸敏感型紫杉醇前药、其制备方法及前药纳米胶束
US20190298659A1 (en) H2o2-responsive nanoparticles and uses thereof
CN109337098B (zh) 一种酶响应型结肠靶向载药凝胶的制备方法
CN104173282B (zh) 基于聚磷酸酯的叶酸靶向酸敏感核交联载药胶束及其制备方法
Singha et al. Applications of alginate-based bionanocomposites in drug delivery
CN102807657A (zh) 具有pH响应性和生物可降解性的双亲水性嵌段共聚物药物载体及其制备
CN114652743A (zh) 一种基于海藻酸钠的一氧化氮供体及其合成方法和应用
KR20190054919A (ko) 활성산소 민감성 페로센 나노입자 및 이의 제조방법
CN115120552A (zh) 一种微环境响应释药的多肽载药微针贴片、制备及应用
CN114569706B (zh) 双重响应双层交联的胰岛素可控输送微针及其制备方法
CN1680362A (zh) 5-烯丙氧基-三亚甲基碳酸酯及其制备方法和用途
CN115531309B (zh) 一种肝靶向聚合物胶束递药系统及其制备方法和应用
CN110859966A (zh) 一种氧化还原响应性超支化聚前药纳米胶束及其制备方法和应用
CN113402661B (zh) 一种两性离子聚合物基一氧化氮驱动纳米马达及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant