CN114656513A - 用于细胞分析和调控的折叠dna三棱柱探针及其制备方法 - Google Patents

用于细胞分析和调控的折叠dna三棱柱探针及其制备方法 Download PDF

Info

Publication number
CN114656513A
CN114656513A CN202210242396.5A CN202210242396A CN114656513A CN 114656513 A CN114656513 A CN 114656513A CN 202210242396 A CN202210242396 A CN 202210242396A CN 114656513 A CN114656513 A CN 114656513A
Authority
CN
China
Prior art keywords
triangular prism
dna
folded
cell
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210242396.5A
Other languages
English (en)
Other versions
CN114656513B (zh
Inventor
徐晓文
张瑞雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202210242396.5A priority Critical patent/CN114656513B/zh
Publication of CN114656513A publication Critical patent/CN114656513A/zh
Application granted granted Critical
Publication of CN114656513B publication Critical patent/CN114656513B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/5748Immunoassay; Biospecific binding assay; Materials therefor for cancer involving oncogenic proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57492Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/82Translation products from oncogenes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Oncology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Genetics & Genomics (AREA)
  • Hospice & Palliative Care (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了用于细胞分析和调控的折叠DNA三棱柱探针及其制备方法,所述折叠DNA三棱柱同时对两种膜受体HER2和跨膜粘蛋白1癌蛋白(MUC1)作出反应。当这两个受体都在细胞膜上表达时,DNA三棱柱可以通过延伸臂序列以“和”的逻辑方式识别它们。识别后,两个三角形面同侧由双链DNA转变为单链DNA,单链DNA具有自互补序列域,从而转变为发夹结构。由于在两个三角形面上形成了发夹结构,DNA三棱柱发生折叠,从而诱导荧光供体和在反边缘标记的受体靠近。在细胞膜上可以观察到增强的荧光共振能量转移。此外,折叠的DNA三棱柱在HER2的作用下被内在化到细胞中,具有促进到达溶酶体和有效的调控作用。

Description

用于细胞分析和调控的折叠DNA三棱柱探针及其制备方法
技术领域
本发明属于材料技术领域,具体涉及一种用于细胞分析和调控的折叠DNA三棱柱探针及其制备方法。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
细胞识别是疾病诊断和治疗的关键。其中,基于DNA的方法因其识别能力强、生物相容性好、设计灵活、标记多样性好等特点,展现出越来越多的发展潜力。尽管DNA纳米结构已被证明在细胞识别及调控中是有效的,但仍有一些局限性值得考虑。DNA纳米结构有可能在细胞外或细胞内环境中被消化,这存在着假阳性信号的风险。此外,通常需要较长的时间才能达到调控效果,例如,细胞凋亡与受体降解有关。
发明内容
针对上述现有技术中存在的问题,本发明提供一种用于细胞分析和调控的折叠DNA三棱柱探针及其制备方法。
本发明设计了一个用于细胞分析和调控的折叠DNA三棱柱。DNA三棱柱同时对两种膜受体HER2和跨膜粘蛋白1癌蛋白(MUC1)作出反应。HER2和MUC1在癌细胞中的共同表达促进细胞生长和克隆生存,并使细胞产生耐药性。这两种受体的检测使细胞识别更加精确,并可能为细胞治疗提供新的见解。当这两个受体都在细胞膜上表达时,DNA三棱柱可以通过延伸臂序列以“和”的逻辑方式识别它们。识别后,两个三角形面同侧由双链DNA转变为单链DNA,单链DNA具有自互补序列域,从而转变为发夹结构。由于在两个三角形面上形成了发夹结构,DNA三棱柱发生折叠,从而诱导荧光供体和在反边缘标记的受体靠近。在细胞膜上可以观察到增强的荧光共振能量转移。此外,折叠的DNA三棱柱在HER2的作用下被内在化到细胞中,具有促进到达溶酶体和有效的调控作用。
为了实现以上技术效果,本申请提供以下技术方案:
本发明的第一方面,提供一种折叠DNA三棱柱探针,其包括三棱柱主结构和三棱柱底边;所述三棱柱主结构由R1、R2、R3、T1、T2和BH构成,所述三棱柱底边由M和BM构成;其中,R1、R2、R3、T1、T2、BH、M和BM均为等摩尔量。
进一步的,R1、R2、R3、T1、T2和BH的核苷酸序列分别如SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4、SEQ ID NO.5、SEQ ID NO.6所示。
进一步的,M和BM的核苷酸序列分别如SEQ ID NO.7、SEQ ID NO.8所示。
本发明的第二方面,提供一种折叠DNA三棱柱探针的制备方法,其包括如下步骤:
(1)在退火缓冲液中混合等摩尔量的R1、R2、R3、T1、T2和BH,通过退火步骤得到三棱柱主结构;
(2)用相同的方法退火等摩尔量的M和BM得到三棱柱底边;
(3)将三棱柱主体结构与三棱柱底边混合,37℃孵育2h,得到折叠DNA三棱柱探针。
进一步的,所述退火步骤为:混合物在95℃加热10分钟,然后慢慢冷却到室温。
进一步的,所述退火缓冲液由10-30mM Tris-Ac、10-15mM Mg(CH3COO)2、120-200mMCH3COONa组成;其pH为7-8。
进一步的,所述退火缓冲液的pH为7.4,退火缓冲液中,Tris-Ac浓度为20mM、Mg(CH3COO)2浓度为12.5mM、CH3COONa浓度为150mM。
进一步的,三棱柱主体结构与三棱柱底边的摩尔比为1:1。
本发明的第三方面,提供上述折叠DNA三棱柱探针在制备用于细胞分析和调控的产品中的应用。
进一步的,所述产品为试剂盒或药物。
本发明的第四方面,提供一种药物,所述药物包括上述折叠DNA三棱柱探针。
本发明的第五方面,提供一种试剂盒,其包括上述折叠DNA三棱柱探针。
本发明的有益效果:本发明制备得到的DNA三棱柱同时对两种膜受体HER2和跨膜粘蛋白1癌蛋白(MUC1)作出反应,可有效识别细胞和调控细胞。通过促进降解HER2,达到抑制细胞的侵袭和迁移,抑制细胞增殖和促进细胞凋亡的作用。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为折叠DNA三棱柱作用于膜受体用于细胞识别和调控示意图;
图2为DNA三棱柱合成及其折叠结果图;
图3为共聚焦荧光图像(A)和流式细胞术分析(B)。
图4为折叠DNA三棱柱(A)与对照DNA三棱柱(B)在细胞内随时间定位图;
图5为对照DNA三棱柱与折叠DNA三棱柱在细胞中的情况;
图6为对照DNA三棱柱的结构及其与HER2的结合示意图;
图7为对照DNA三棱柱和折叠DNA三棱柱的共聚焦荧光图像。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
1.1试剂和原料
DNA序列(表S1)由生工生物工程股份有限公司(上海,中国)合成和纯化。焦碳酸二乙酯(DEPC)处理的水,40%丙烯酰胺/双丙烯酰胺(19:1)溶液,过硫酸铵(APS),N,N,N',N'-四甲基乙二胺(TEMED),Tris,乙二胺四乙酸四钠(EDTA),购自生工生物工程股份有限公司(上海,中国)。SYBR Gold核酸凝胶染料购自赛默飞世尔科技公司。二甲基亚砜(DMSO),2′-(4-乙氧基苯基)-5-(4-甲基-1-哌嗪基)-2,5′-双-1H-苯并咪唑三盐酸盐(Hoechst 33342)和3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(MTT)购自Sigma-Aldrich公司(密苏里州,美国)。Annexin V-FITC凋亡检测试剂盒,Lyso-Tracker Green溶酶体染色剂购自碧云天(上海,中国)。胎牛血清(FBS),DMEM细胞培养基,磷酸盐缓冲盐水(PBS)缓冲液购自Biological Industries公司(以色列)。β-actin、HER2一抗、抗兔IgG、HRP抗体购自CellSignaling Technology(上海,CST-US中国子公司)。所有其他试剂均为分析纯,按原样使用。在整个实验过程中,使用了从UP水净化系统获得的超纯水(18.25MΩ·cm)。
TU-1901光谱仪(普析,中国)记录紫外可见吸收光谱。F-320荧光分光光度计(港东,天津)记录荧光发射光谱。染色的聚丙烯酰胺凝胶在GelDocTM XR+成像系统(Bio-RADLaboratories Inc.,美国)上成像。Western blot分析采用Amersham Imager 600成像系统(GE Healthcare,美国)。共焦荧光图像用油浸物镜(63x)记录在SP8共焦激光扫描显微镜(徕卡,德国)上。使用Axio Observer A1倒置荧光显微镜(Carl Zeiss,德国)获得明场图像。采用NovoCyte 3130流式细胞仪(安捷伦技术公司,美国)进行流式细胞分析。MTT吸光度测量是在多模酶标仪上进行的(Tecan,瑞士)上进行的。在纳米粒度电位仪(Malvern,英国)上进行了动态光散射(DLS)测量。样品的原子力显微镜(AFM)采用原子力显微镜(布鲁克,美国)进行表征。
表S1.本研究中使用的寡核苷酸序列
Figure BDA0003542975980000061
Figure BDA0003542975980000071
R1和R1’中加粗的碱基为HER2结合适配体序列;M中斜体标记的碱基为MUC1结合适配体序列。R1和T1中下划线标记的碱基表示发夹DNA的茎部。
1.2实验步骤
1.2.1DNA三棱柱探针的制备
分别对三棱柱主体结构和底边分别进行了退火处理。为形成三棱柱主结构,在pH为7.4的20mM Tris-Ac、12.5mM Mg(CH3COO)2,150mM CH3COONa的退火缓冲液中混合等摩尔量的R1、R2、R3、T1、T2和BH。混合物在95℃加热10分钟,然后慢慢冷却到室温。用相同的方法退火等摩尔量的M和BM得到底边。然后将三棱柱主体结构与底边混合,37℃孵育2h,合成的DNA三棱柱置于4℃保存。通过将等摩尔量的R1’、R2、R3、T1、T2和M’退火制备不能折叠的对照DNA三棱柱。
1.2.2聚丙烯酰胺凝胶电泳
将DNA样品与上样缓冲液混合,上样到8%聚丙烯酰胺凝胶中。通过混合5mL 40%的丙烯酰胺/双丙烯酰胺溶液(19:1),5mL的5×TAE-Mg2+缓冲液(40mM Tris-Ac,1mM EDTA,12.5mM Mg(CH3COO)2,pH 7.4),15mL的超纯水,180μL 0.1g/mL APS和18μL TEMED制备8%聚丙烯酰胺凝胶。凝胶在1×TAE-Mg2+缓冲液中,在4℃,100V条件下运行7h,用1×SYBR Gold染色40min后,用成像系统成像。
1.2.3动态光散射表征
在纳米粒度电位仪上进行了动态光散射表征。将50μL的100nM DNA三棱柱探针加入到50-μL的一次性比色皿(Sarstedt,德国)中进行测量。
1.2.4原子力显微镜表征
将新鲜云母放入含有20μL APTES的培养皿中孵育5min,然后用超纯水冲洗。将20μL的100nM未折叠或折叠的DNA三棱柱在云母上沉积10min,然后用超纯水冲洗云母,再加入20μL超纯水。用峰值力轻敲模式的原子力显微镜对样品进行了表征。
1.2.5荧光光谱测量
使用50nM DNA三棱柱为样品,在538nm的激发波长下,在550~750nm范围内记录荧光发射光谱。
1.2.6细胞培养
在补充有10%胎牛血清和100U/mL青霉素-链霉素的DMEM培养基中培养SK-BR-3、MDA-MB-231和MDA-MB-453细胞。MCF-10A细胞在乳腺上皮细胞培养基中生长。所有细胞均在含5%CO2的湿润环境中37℃培养。
1.2.7共聚焦荧光成像
为了测试DNA三棱柱探针对不同类型细胞的响应情况,将SK-BR-3细胞(或MDA-MB-231、MDA-MB-453、MCF-10A细胞)接种在共聚焦培养皿中过夜。除去培养液后,用PBS缓冲液洗涤细胞,用含250nM DNA三棱柱的新鲜培养液中37℃孵育1h后进行共聚焦成像。为探讨DNA三棱柱探针进入到溶酶体中,将SK-BR-3细胞接种在共聚焦培养皿上过夜,然后分别让折叠DNA三棱柱探针孵育1h或对照DNA三棱柱探针2h。用PBS缓冲液冲洗细胞后,加入新鲜的培养基孵育一段时间。在荧光成像前30min加入Lyso-tracker Green,成像前10min加入Hoechst 33342。
1.2.8流式细胞术
将四种类型的细胞分别以2×105细胞/孔的密度接种于24孔板中过夜。移走培养液后用500μL含250nM折叠DNA三棱柱的新鲜培养液于37℃孵育1h。弃去培养液后用PBS洗涤细胞,胰酶消化。1000rpm离心3min收集细胞并重悬于含2%胎牛血清的100μLPBS中进行流式细胞分析。
1.2.9细胞活力测定
将SK-BR-3细胞以每孔4000个细胞的密度,在37℃、5%CO2的条件下接种于96孔细胞培养板中。24h后,移去原培养基。用含有250nM DNA三棱柱的新鲜培养基处理细胞24h后加入20μL的5mg/mLMTT。37℃暗孵育4h后,小心丢弃MTT溶液,加入100μLDMSO溶解紫甲瓒。用酶标仪测定每孔490nm处的吸光度并计算细胞活力。
1.2.10细胞凋亡分析
SK-BR-3细胞以2×105细胞/孔的密度接种在24孔板上,孵育过夜。用250nM DNA三棱柱探针孵育细胞12h后用PBS缓冲液洗涤2次。将细胞转移到流式管中,依次加入195μLAnnexin V结合液、5μL Annexin V-TITC结合液和5μL PI结合液。室温避光孵育20min后,用流式细胞仪对细胞进行表征。
1.2.11细胞迁移实验
细胞以5×105细胞/孔的密度种在6孔板上。当细胞培养到100%融合时,用移液管的尖端刮擦细胞形成伤口。用PBS缓冲液仔细清洗细胞三次,并与新鲜培养基(含有2%胎牛血清)或含有250nM DNA三棱柱的新鲜培养基(含有2%胎牛血清)孵育。使用10×物镜的倒置显微镜,分别在0、24、48h的时刻拍照观察细胞迁移情况。
1.2.12免疫印迹分析
将6孔板上融合率达90%的细胞用250nM DNA三棱柱探针孵育0、4、8、12h,然后用含有蛋白酶和磷酸酶抑制剂的RIPA裂解缓冲液冰上裂解15min。将上述混合物转移至离心管中,4℃,12000rpm离心15min。将离心得到的上清液与蛋白上样缓冲液混合,100℃加热5min。总蛋白样品经8%SDS-PAGE电泳(Biosharp,中国),并转移到聚偏二氟乙烯(PVDF)膜上(Millipore Immobilon-P,0.45μm)。用5%脱脂奶溶解于TBST(10mM Tris,150mM NaCl,0.05%(v/v)Tween-20,pH 7.5)中封闭膜。在PVDF膜上加入一抗β-Actin和HER2(1:1000),4℃孵育过夜。用TBST洗涤三次后,与二抗(1:1000)在室温下孵育2小时。用TBST洗涤三次后,通过增强型化学发光检测系统进行成像。
结果与讨论
DNA三棱柱的设计如图1所示。三棱柱主体结构由五条长DNA链组成,其中三条DNA链(R1、R2、R3)构成三个矩形侧面,两条DNA链(T1、T2)支撑上下三角形面。R1含有HER2结合的适配体,该适配体从三棱柱结构延伸出来,被部分互补链(BH)封闭。R2和R3的内部碱基中分别标记有Cy3和Cy5的荧光基团。DNA纳米结构是通过退火上述DNA链形成的,两个荧光团位于两个相对的边缘的中间。含有MUC1结合适体的M链被部分互补链(BM)封闭,将该双链与制备的DNA纳米结构孵育,获得整个DNA三棱柱结构。Cy5的激发波长在Cy3的发射波长范围内,但由于距离较远,其荧光共振能量转移效率较低,因为上下边缘都是包含28个碱基(9.5nm)的双链序列。当MUC1存在时,由于MUC1适配体与MUC1结合,M链从DNA三棱柱中分离,同时导致BM链的释放。释放的BM链可以通过toehold介导的链置换进一步置换邻近的BH链,从而暴露HER2适配体的区域并与HER2结合。在与HER2结合后,两个三角形面的同侧边均变为单链DNA。这种单链DNA包含一个预先设计的自互补序列的结构域,可以形成具有14个碱基环和9个碱基茎的发夹结构。这驱动DNA三棱柱结构被折叠,从而荧光团彼此靠近并发生高效率的荧光共振能量转移。在HER2或MUC1存在的情况下,由于三角形面双链DNA的支持,DNA棱柱仍然保持其刚性,不能发生结构变化。
DNA三棱柱的制备通过天然聚丙烯酰胺凝胶电泳(图2A)进行验证。三棱柱的主要结构是由五条DNA链(R1,R2,R3,T1和T2)进行高产率退火得到的(泳道1)。BH的加入阻断了R1中HER2适配体的区域并阻碍了DNA纳米结构的迁移(泳道2)。当封闭的M链(M-BM部分杂交的双链)加入后,DNA组装条带清晰,迁移速度最慢(泳道3),表明整个DNA三棱柱的形成纯度较好。然后利用MUC1适配体和HER2适配体的互补序列检测DNA三棱柱的结构变化。在这些序列存在的情况下,MUC1适配体和HER2适配体分别从DNA棱柱中分离,同时DNA棱柱的迁移速率增加(泳道4),尽管由于加入了与HER2适配体互补的序列,它的分子量更大,但其迁移速率甚至比泳道1的棱柱主结构迁移更快。这表明DNA三棱柱转变成了折叠结构,从而更容易通过凝胶孔。为了证实这一点,进行了原子力显微镜测量来直接表征DNA纳米结构(图2B)。可以观察到制备的DNA三棱柱是扩张的,因为两个三角形的面是由双链DNA边构成。然而,当两个三角形面的同侧变为单链时,由于同侧形成发夹状DNA,DNA三棱柱确实会发生折叠。这证明了DNA三棱柱纳米结构的变化。同时,根据动态光散射的特征,DNA三棱柱在折叠后其水合粒径减小(图2C),这也验证了结构的转变。此外,DNA三棱柱在折叠后表现出高效的荧光共振能量转移,供体Cy3荧光降低,受体Cy5荧光增加(图2D)。这种依赖于折叠的荧光变化使其足以用于细胞识别。
人类乳腺癌细胞SK-BR-3细胞、MDA-MB-231细胞、MDA-MB-453细胞和正常人类乳腺细胞MCF-10A细胞等4种人类乳腺细胞被用作模型细胞。MUC1和HER2在SK-BR-3细胞的细胞膜上均有表达,而在MCF-10A细胞的细胞膜上均无表达26-27。MDA-MB-231细胞表达MUC1的膜受体28,而不表达HER229,MDA-MB-453细胞表达HER2的膜受体30,而不表达MUC131。DNA三棱柱与四种类型的细胞孵育1小时,并清洗细胞进行共聚焦成像。选择激光源激发Cy3,采集Cy5和Cy3通道的荧光图像。如图3A所示,Cy5通道的荧光图像,仅观察到SK-BR-3细胞细胞膜上的荧光,说明DNA三棱柱识别MUC1和HER2后发生折叠。因此,DNA三棱柱对靶细胞具有良好的特异性。荧光图像Cy3通道进一步解释了这一原因,提示DNA三棱柱仅存在于SK-BR-3细胞的细胞膜上。对于MDA-MB-231细胞,由于仅表达MUC1,DNA三棱柱不能通过与HER2结合附着到细胞膜上。对于MDA-MB-453细胞,由于它们只表达HER2,因此DNA三棱柱不能暴露HER2适配体结合HER2的区域。对于MCF-10A细胞,由于缺乏MUC1和HER2,DNA三棱柱与细胞膜的亲和力较弱。采用流式细胞术检测DNA三棱柱对大量细胞的反应。4×104细胞与DNA三棱柱孵育1小时,然后洗涤和表征Cy5荧光。如图3B所示,MCF-10A细胞、MDA-MB-231细胞和MDA-MB-453细胞的荧光处于较低的范围,而SK-BR-3细胞的荧光明显较高。定量数据显示,SK-BR-3细胞与其他乳腺细胞相比平均荧光增强20倍,且两组间信号差异有显著性差异(p<0.01),表明DNA三棱柱可以很好地识别靶细胞。DNA三棱柱识别膜受体仅需1小时,识别速度快,并且DNA三棱柱通过折叠产生共振能量转移发出信号可以避免培养基中因DNA纳米结构降解而产生假阳性信号。
由于折叠的DNA三棱柱结构与HER2结合在细胞膜上,它可以通过HER2介导的内吞作用进一步内化到细胞中。将DNA三棱柱与SK-BR-3细胞共孵育1h,使其粘附在细胞膜上,清洗细胞,换用新鲜培养基培养,观察折叠DNA三棱柱的内化情况。细胞溶酶体和细胞核分别用Lyso-Tracker Green和Hoechst染色,在共焦成像下显示绿色和蓝色荧光。可以观察到,从1h到2h,根据红色荧光从细胞膜向细胞质扩散,折叠的DNA三棱柱逐渐进入细胞(图4A)。直到4小时,折叠的DNA棱柱向细胞核靠近,其中一些进入溶酶体,红色和绿色荧光的重叠证明了这一点。当时间达到8h时,根据共定位后溶酶体显示出黄色荧光说明几乎所有的DNA折叠三棱柱都被溶酶体所容纳。因此,与HER2结合的折叠DNA三棱柱最终到达溶酶体。值得注意的是,与HER2介导的DNA四面体或无机纳米材料的内吞作用相比,折叠的DNA棱柱进入溶酶体的时间明显缩短其原因可能是由于细胞内的折叠结构有助于其迁移。为了进行比较,设计了一个可以与HER2结合但不能折叠的对照DNA三棱柱(图6)。两个三角形面上的同侧始终是双链的,以保持对照DNA三棱柱的刚性,受体Cy5直接被激发进行荧光成像。当对照DNA三棱柱与折叠DNA三棱柱在细胞膜上的附着量接近时(图7),更换新鲜培养基,采集随时间变化的共聚焦荧光图像。可以看出,在细胞内对照DNA三棱柱比折叠DNA三棱柱的移动速度要慢得多。在8h时仅有少量进入溶酶体,在16h时大量到达溶酶体(图4B)。有趣的是,最近的一项研究表明,DNA纳米结构也显示出一个结构依赖的细胞进入频率,带有角的结构更容易进入细胞32
最终与HER2结合的DNA三棱柱在溶酶体中定位,这意味着细胞膜上HER2的数量减少。然后研究了折叠DNA三棱柱结构对细胞行为的调节。首先,用折叠DNA三棱柱处理SK-BR-3细胞,检测细胞迁移能力的变化(图5A)。与未处理的对照组细胞相比,这些细胞表现出迟缓的迁移速率,因为它划痕处的运动减慢了。细胞迁移率由处理前和处理后不含细胞的区域与处理前不含细胞的区域之间的差值之比计算,与未处理的细胞相比,在48小时内减少了37%。这应该是由于HER2的减少抑制了其促进细胞迁移的下游信号通路所致33,折叠DNA三棱柱对细胞迁移的抑制作用明显优于对照DNA三棱柱。这可能是一种潜在的削弱癌细胞迁移和侵袭能力的方法。其次,检测折叠DNA三棱柱对细胞凋亡的诱导作用(图5B)。细胞凋亡的流式细胞术分析显示,使用折叠DNA三棱柱处理SK-BR-3细胞后,细胞凋亡早期和晚期的比例大大增加。特别是,与对照DNA三棱柱相比,折叠DNA三棱柱的凋亡晚期细胞数量要高得多,说明折叠DNA三棱柱可以更快地到达溶酶体,更早地发挥作用。MTT检测细胞活力的结果也表明,折叠DNA三棱柱对SK-BR-3细胞的增殖具有明显的抑制作用,其抑制效果优于对照DNA三棱柱(p<0.01)(图5C)。Western blot结果显示,SK-BR-3细胞经折叠DNA三棱柱处理后,HER2的表达水平随探针处理时间的增长而逐渐降低(图5D),同时未观察到对照蛋白β-actin表达水平的变化,证实了折叠DNA三棱柱对HER2的特异性作用,从而调控细胞。我们还观察到,对照DNA三棱柱由于进入溶酶体较慢,在同一时间内几乎不会改变HER2的表达,这是其调控效果较差的原因。考虑到HER2和MUC1的共同表达可以使SK-BR-3细胞产生耐药,折叠DNA三棱柱可能会作为抑制肿瘤的另一种途径被进一步开发。
综上所述,我们设计了一种折叠的DNA三棱柱用于特定细胞的识别。折叠的DNA三棱柱通过适配体结合和内部结构的链置换,同时响应两种类型的膜受体MUC1和HER2。识别后,由于三角形面同侧形成发夹状结构,使DNA三棱柱发生折叠,诱导反边缘上供体和受体荧光团的靠近并产生荧光共振能量转移。折叠的DNA三棱柱只在目标SK-BR-3细胞的细胞膜上被点亮,而不能被其他癌性或非癌性乳腺细胞点亮,因此显示出良好的识别能力。通过HER2介导的内吞作用,折叠的DNA三棱柱探针被细胞内吞,与未折叠的形态相比,探针进入溶酶体的时间缩短。它对细胞有有效的调节作用,可以降低细胞迁移速率和诱导细胞凋亡。折叠DNA三棱柱具有减少错误信号、快速检测和快速有效调控的优点,有望成为开发癌症诊断和治疗新策略的候选药物。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
SEQUENCE LISTING
<110> 山东大学
<120> 用于细胞分析和调控的折叠DNA三棱柱探针及其制备方法
<130> 1
<160> 12
<170> PatentIn version 3.5
<210> 1
<211> 119
<212> DNA
<213> 人工序列
<400> 1
gcagcggtgt gggggcagcg gtgtgggggc agcggtgtgg ggtaccgcat tttcgccgag 60
gggagaggtt gggatacccg tttttttttt ccagggtatc ccttaggtga ggagtctca 119
<210> 2
<211> 106
<212> DNA
<213> 人工序列
<400> 2
tacccagttc tattgtttta gaccgttcag cgcatttttg ctcgttgtcg tccaaccggt 60
atcggatctt tttgagactc ctcacctttt ttctcgaaca tccgcg 106
<210> 3
<211> 106
<212> DNA
<213> 人工序列
<400> 3
agcgaccaga gcgcgttttc ctctcccctc ggcgttttta gtgtaaattg tctcactcct 60
taatcgagtt tttgcgctga acggtctttt tggcaccacc atggat 106
<210> 4
<211> 96
<212> DNA
<213> 人工序列
<400> 4
ctcgattaag gagtgagaca atttacacta ttcctgcggt gcctcacact gctgccaccg 60
caggttgatc cgataccggt tggacgacaa cgagca 96
<210> 5
<211> 64
<212> DNA
<213> 人工序列
<400> 5
cgcgctctgg tcgctatcca tggtggtgcc ttttcaatag aactgggtac gcggatgttc 60
gaga 64
<210> 6
<211> 49
<212> DNA
<213> 人工序列
<400> 6
agactcgcag ttgatccttt ggataccctg gaaaaaagga atgggtatt 49
<210> 7
<211> 25
<212> DNA
<213> 人工序列
<400> 7
agacccgcag ttctcacacc gttgt 25
<210> 8
<211> 25
<212> DNA
<213> 人工序列
<400> 8
acaacggtgt ggcaactgcg ggtct 25
<210> 9
<211> 139
<212> DNA
<213> 人工序列
<400> 9
gcagcggtgt gggggcagcg gtgtgggggc agcggtgtgg ggtcggtggc agcagtgtga 60
ggcaccgcat tttcgccgag gggagaggtt gggatacccg tttttttttt ccagggtatc 120
ccttaggtga ggagtctca 139
<210> 10
<211> 28
<212> DNA
<213> 人工序列
<400> 10
gataccctgg aaaaaaaaaa cgggtatc 28
<210> 11
<211> 42
<212> DNA
<213> 人工序列
<400> 11
ccccacaccg ctgcccccac accgctgccc ccacaccgct gc 42
<210> 12
<211> 25
<212> DNA
<213> 人工序列
<400> 12
ccagggtatc caaaggatca actgc 25

Claims (10)

1.一种折叠DNA三棱柱探针,其特征在于,所述折叠DNA三棱柱探针包括三棱柱主结构和三棱柱底边;所述三棱柱主结构由R1、R2、R3、T1、T2和BH构成,所述三棱柱底边由M和BM构成;其中,R1、R2、R3、T1、T2、BH、M和BM均为等摩尔量;R1、R2、R3、T1、T2和BH的核苷酸序列分别如SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3、SEQ ID NO.4、SEQ ID NO.5、SEQ ID NO.6所示;M和BM的核苷酸序列分别如SEQ ID NO.7、SEQ ID NO.8所示。
2.一种折叠DNA三棱柱探针的制备方法,其特征在于,包括如下步骤:
(1)在退火缓冲液中混合等摩尔量的R1、R2、R3、T1、T2和BH,通过退火步骤得到三棱柱主结构;
(2)用相同的方法退火等摩尔量的M和BM得到三棱柱底边;
(3)将三棱柱主体结构与三棱柱底边混合,37℃孵育2h,得到折叠DNA三棱柱探针。
3.根据权利要求2所述制备方法,其特征在于,所述退火缓冲液由10-30mM Tris-Ac、10-15mM Mg(CH3COO)2、120-200mM CH3COONa组成;其pH为7-8。
4.根据权利要求3所述制备方法,其特征在于,所述退火缓冲液的pH为7.4,退火缓冲液中,Tris-Ac浓度为20mM、Mg(CH3COO)2浓度为12.5mM、CH3COONa浓度为150mM。
5.根据权利要求2所述制备方法,其特征在于,所述退火步骤为:混合物在95℃加热10分钟,然后慢慢冷却到室温。
6.根据权利要求2所述制备方法,其特征在于,三棱柱主体结构与三棱柱底边的摩尔比为1:1
7.根据权利要求1所述折叠DNA三棱柱探针在制备用于细胞分析和调控的产品中的应用。
8.根据权利要求7所述的应用,其特征在于,所述产品为试剂盒或药物。
9.一种药物,其特征在于,所述药物包括权利要求1所述折叠DNA三棱柱探针。
10.一种试剂盒,其特征在于,所述试剂盒包括权利要求1所述折叠DNA三棱柱探针。
CN202210242396.5A 2022-03-11 2022-03-11 用于细胞分析和调控的折叠dna三棱柱探针及其制备方法 Active CN114656513B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210242396.5A CN114656513B (zh) 2022-03-11 2022-03-11 用于细胞分析和调控的折叠dna三棱柱探针及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210242396.5A CN114656513B (zh) 2022-03-11 2022-03-11 用于细胞分析和调控的折叠dna三棱柱探针及其制备方法

Publications (2)

Publication Number Publication Date
CN114656513A true CN114656513A (zh) 2022-06-24
CN114656513B CN114656513B (zh) 2023-11-07

Family

ID=82029568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210242396.5A Active CN114656513B (zh) 2022-03-11 2022-03-11 用于细胞分析和调控的折叠dna三棱柱探针及其制备方法

Country Status (1)

Country Link
CN (1) CN114656513B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117110625A (zh) * 2023-08-25 2023-11-24 中国人民解放军陆军军医大学第二附属医院 一种dna逻辑门纳米器件在细胞表面蛋白染色中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708621A (zh) * 2021-01-08 2021-04-27 山东大学 一种顺序点亮多色dna四面体纳米探针slmn及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708621A (zh) * 2021-01-08 2021-04-27 山东大学 一种顺序点亮多色dna四面体纳米探针slmn及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUAN, KUN: "Extracellular milieu and membrane receptor dual-driven DNA nanorobot for accurate in vivo tumor imaging", CCS CHEMISTRY, vol. 4, no. 5, pages 1597 - 1609 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117110625A (zh) * 2023-08-25 2023-11-24 中国人民解放军陆军军医大学第二附属医院 一种dna逻辑门纳米器件在细胞表面蛋白染色中的应用
CN117110625B (zh) * 2023-08-25 2024-04-19 中国人民解放军陆军军医大学第二附属医院 一种dna逻辑门纳米器件在细胞表面蛋白染色中的应用

Also Published As

Publication number Publication date
CN114656513B (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
Chen et al. Imaging and intracellular tracking of cancer-derived exosomes using single-molecule localization-based super-resolution microscope
Chu et al. Labeling tumor cells with fluorescent nanocrystal–aptamer bioconjugates
Nakata et al. Preferential binding of a kinesin-1 motor to GTP-tubulin–rich microtubules underlies polarized vesicle transport
WO2021000598A1 (zh) 一种双特异性核酸适体、衍生物、制备方法及其应用
CN104293794B (zh) 一种与β‑淀粉样前体蛋白裂解酶1特异性结合的核酸适配子及其应用
Login et al. Aquaporins differentially regulate cell‐cell adhesion in MDCK cells
US20120064513A1 (en) Cell Sensor, And Monitoring Method Using Same For The Real-Time Monitoring Of Cell Capacitance
CN111593053A (zh) 识别人程序性死亡受体1的dna适配体及方法和应用
CN114656513B (zh) 用于细胞分析和调控的折叠dna三棱柱探针及其制备方法
CN105368853A (zh) 一种与非小细胞肺癌辅助诊断相关的标志物及其应用
Miranda et al. Aptamer-based approaches to detect nucleolin in prostate cancer
Li et al. In-vitro inhibitory effect of EGFL7-RNAi on endothelial angiogenesis in glioma
Xu et al. An artificial enzyme cascade amplification strategy for highly sensitive and specific detection of breast cancer-derived exosomes
CN103667441A (zh) 一种Hsa-miR-145-5p试剂盒及其成熟体模拟物的应用
CN106520992A (zh) 分子标志物stac2在口腔鳞状细胞癌中的应用
CN113930482A (zh) 三维dna步行器及其在肿瘤外泌体检测中的应用
Jiang et al. A near-infrared cationic fluorescent probe based on thieno [3, 2-b] thiophene for RNA imaging and long-term cellular tracing
CN105602951B (zh) 长链非编码rna loc284454的干扰制剂及其应用
CN116808218A (zh) 生物标志物在头颈鳞癌治疗中的应用
Huang et al. The phase separation of extracellular matrix protein matrilin‐3 from cancer‐associated fibroblasts contributes to gastric cancer invasion
CN112126649A (zh) 基于工程化细胞的N-cadherin核酸适配体的筛选及应用
WO2020102660A1 (en) Molecules and methods for improved immunodetection of small molecules, such as histamine
US20240302350A1 (en) Methods of screening inhibitors of biomolecular interactions using phase separation as in cellulo read-out
CN105506154A (zh) 原位杂交检测鼻咽癌组织中长链非编码rna loc284454试剂的应用
WO2014182972A2 (en) Diagnostic and monitoring system for huntington&#39;s disease

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant