CN114653401A - 一种高负载型碳基贵金属催化剂的制备方法 - Google Patents

一种高负载型碳基贵金属催化剂的制备方法 Download PDF

Info

Publication number
CN114653401A
CN114653401A CN202210292329.4A CN202210292329A CN114653401A CN 114653401 A CN114653401 A CN 114653401A CN 202210292329 A CN202210292329 A CN 202210292329A CN 114653401 A CN114653401 A CN 114653401A
Authority
CN
China
Prior art keywords
carbon
noble metal
metal catalyst
preparation
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210292329.4A
Other languages
English (en)
Inventor
董安钢
夏衍
杨东
倪冉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202210292329.4A priority Critical patent/CN114653401A/zh
Publication of CN114653401A publication Critical patent/CN114653401A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/18Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/828Platinum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提出一种高负载型碳基贵金属催化剂的制备方法,包括以下步骤:本发明首先将碳材料分散至有机溶剂中,然后向其中加入配体包覆的胶体纳米晶溶液,通过溶液相自组装的方法使纳米晶负载至碳材料的表面,最后经过离心、再分散等过程除去游离的纳米颗粒,完成高负载型碳基贵金属催化剂的制备。本发明以极性不同的有机溶剂为负载的溶液体系,使得各种碳材料在溶液中的呈现的更大的表面能,进而通过溶液相自组装的策略可以使纳米颗粒负载在碳材料的表面。该过负载过程不受材料的种类、尺寸和维度的影响,可用于制备不同功能和适用多种领域的贵金属催化剂。

Description

一种高负载型碳基贵金属催化剂的制备方法
技术领域
本发明属于材料制备和纳米科技领域,具体涉及一种高负载型碳基贵金属催化剂的制备方法。
背景技术
碳材料来源广泛,具有优良的导电、导热、耐腐蚀性和化学稳定性,广泛应用于诸多领域。在催化领域,为追求更加优越的催化性能和拓宽材料的应用范围,往往需要在碳材料的表面负载贵金属催化剂。
截至目前,以铂(Pt)为代表的贵金属催化剂主要采用原位生长和后负载的方法使催化剂固定至碳材料表面。相比于原位生长,后负载方法中的超声策略不仅具有简便、易于操作等特点,同时可以目的性控制纳米颗粒的尺寸和单分散性等。但是,现阶段广泛研究的碳材料仅仅局限于科琴黑、碳纳米管等少数几种,不仅难以实现在不同维度、尺寸的碳材料的表面负载贵金属催化剂,更重要的是,表面贵金属催化的负载量仍然处于较低的水平。
因此,发展一种简便、高效和具有普适性的负载方法,构筑成分、负载量可控的高负载型碳基贵金属催化剂很有必要。
发明内容
本发明的目的在于提供一种高负载型碳基贵金属催化剂的制备方法。本发明方法为:将碳材料和胶体纳米晶溶液分散在有机溶剂中并进行混合,然后通过超声的方式使贵金属纳米晶高载量的负载至碳材料的表面构筑多种碳基贵金属催化剂。
本发明提出的一种高负载型碳基贵金属催化剂的制备方法。具体步骤如下:
(1)将5 mg-50 mg碳材料分散至15 mL溶剂中,通过超声分散,得到含碳材料的分散体系;
(2)向步骤(1)含有碳材料的分散体系中加入0.1-1 mL 10 mg/mL配体包覆的金属纳米颗粒溶液,并超声15分钟-1小时;
(3)通过离心、溶剂再分散的方式,除去游离的金属纳米颗粒,即可获得高负载型贵金属催化剂。
本发明中,步骤(1)中所述的溶剂为正己烷或甲苯中的一种或两种。
本发明中,步骤(2)中所述配体为油酸、油胺或三正辛基膦中的一种或几种。
本发明中,步骤(2)中所述的碳材料为碳纳米管、石墨烯、碳布或石墨中的一种或几种。
本发明的有益效果在于:本发明根据碳材料的种类优选出合适的有机溶剂,使纳米颗粒在超声的过程中轻易地、高载量地负载至碳材料的表面,这种负载方法几乎不受颗粒和碳材料的尺寸、种类的限制。
附图说明
图1是本发明实施例1油胺修饰的直径为5 nm的Au纳米颗粒负载碳纳米管的透射电镜图。
图2是本发明实施例2油胺修饰的直径为8 nm的Au纳米颗粒负载碳纳米管的透射电镜图。
图3是本发明实施例3油酸/油胺共同修饰的直径为9 nm的Pt纳米颗粒负载碳纳米管的透射电镜图。
图4是本发明实施例4油酸/油胺共同修饰的直径为4.5 nm的Pt纳米颗粒负载石墨烯的透射电镜图。
图5是本发明实施例5油胺修饰的直径为8 nm的Au纳米颗粒负载石墨的扫描电镜图。
图6是本发明实施例6油胺修饰的直径为8 nm的Au纳米颗粒负载碳布的扫描电镜图。
图7是本发明实施例7油胺/三正辛基膦共同修饰的直径为4 nm的Pd纳米颗粒负载石墨烯的透射电镜图。
具体实施方式
下面通过实施例进一步说明本发明。
实施例1:
(1)将10 mg碳管分散至15 mL正己烷中,超声30分钟使其分散均匀;
(2)向步骤(1)含有碳材料的分散体系中加入0.1 10 mg/mL油胺包覆的直径为5nm的Au纳米颗粒溶液,并超声15分钟;
(3)通过离心、溶剂再分散的方式除去游离的Au纳米颗粒,获得碳纳米管表面均匀负载Au纳米颗粒的复合材料。
图1是本发明实施例1油胺修饰的直径为5 nm的Au纳米颗粒负载碳纳米管的透射电镜图,可以看出:Au纳米颗粒均匀的分布在碳纳米管的表面,且粒子间并无堆积现象,表明颗粒呈现单层负载。
实施例2:
(1)将5 mg碳管分散至15 mL正己烷中,超声30分钟使其分散均匀;
(2)向步骤(1)含有碳材料的分散体系中加入0.2 mL 10 mg/mL油胺包覆的直径为8 nm的Au纳米颗粒溶液,并超声30分钟;
(3)通过离心、溶剂再分散的方式除去游离的Au纳米颗粒,获得碳纳米管表面均匀负载Au纳米颗粒的复合材料。
图2是本发明实施例2油胺修饰的直径为8 nm的Au纳米颗粒负载碳纳米管的透射电镜图,可以看出:Au纳米颗粒均匀的分布在碳纳米管的表面,且粒子间并无堆积现象,表明颗粒呈现单层负载。
实施例3:
(1)将5 mg碳管分散至15 mL正己烷中,超声30分钟使其分散均匀;
(2)向步骤(1)含有碳材料的分散体系中加入0.2 mL 10 mg/mL油酸/油胺共同包覆的直径为9 nm的Pt纳米颗粒溶液,并超声30分钟;
(3)通过离心、溶剂再分散的方式除去游离的Pt纳米颗粒,获得碳纳米管表面均匀负载Pt纳米颗粒的复合材料。
图3是本发明实施例3油酸/油胺共同包覆的直径为9 nm的Pt纳米颗粒负载碳纳米管的透射电镜图,可以看出:Pt纳米颗粒均匀的分布在碳纳米管的表面。
实施例4:
(1)将5 mg石墨烯分散至15 mL甲苯中,超声30分钟使其分散均匀;
(2)向步骤(1)含有石墨烯的分散体系中加入0.1 mL 10 mg/mL油酸/油胺共同包覆的直径为4.5 nm的Pt纳米颗粒溶液,并超声60分钟;
(3)通过离心、溶剂再分散的方式除去游离的Pt纳米颗粒,获得石墨烯表面均匀负载Pt纳米颗粒的复合材料。
图4是本发明实施例4油酸/油胺共同包覆的直径为4.5 nm的Pt纳米颗粒负载石墨烯的透射电镜图,可以看出:Pt纳米颗粒均匀的分布在石墨烯的表面,粒子间并无堆积现象,表明颗粒在石墨烯表面呈现单层负载的状态。
实施例5:
(1)将50 mg石墨分散至15 mL甲苯中,超声30分钟使其分散均匀;
(2)向步骤(1)含有石墨的分散体系中加入0.5 mL 10 mg/mL油胺包覆的直径为8nm的Au纳米颗粒溶液,并超声15分钟;
(3)通过离心、溶剂再分散的方式除去游离的Au纳米颗粒,获得石墨表面均匀负载Au纳米颗粒的复合材料。
图5是本发明实施例5油胺包覆的直径为8 nm的Au纳米颗粒负载石墨的扫描电镜图,可以看出:Au纳米颗粒均匀的分布在石墨的表面,粒子间并无堆积现象,表明颗粒在石墨表面呈现单层负载的状态。
实施例6:
(1)将20 mg 碳布至于15 mL正己烷中,超声一段时间使正己烷充分的浸润碳布的内层;
(2)向步骤(1)含有碳布的体系中加入0.1 mL 10 mg/mL油胺包覆的直径为8 nm的Au纳米颗粒溶液,并超声45分钟;
(3)通过沉降、溶剂洗涤的方式除去游离的Au纳米颗粒,获得碳布表面均匀负载Au纳米颗粒的复合材料。
图6是本发明实施例6油胺包覆的直径为8 nm的Au纳米颗粒负载碳布的扫描电镜图,可以看出:Au纳米颗粒均匀的分布在碳布的表面,粒子间并无堆积现象,表明颗粒在石墨表面呈现单层负载的状态。
实施例7:
(1)将5 mg石墨烯分散至15 mL正己烷中,超声30分钟使其分散均匀;
(2)向步骤(1)含有石墨烯的分散体系中加入1 mL 10 mg/mL油胺/三正辛基膦共同包覆的直径为4 nm的Pd纳米颗粒溶液,并超声15分钟;
(3)通过离心、溶剂再分散的方式除去游离的Pd纳米颗粒,获得石墨烯表面均匀负载Pd纳米颗粒的复合材料。
图7是本发明实施例7油胺/三正辛基膦共同包覆的直径为4 nm的Pd纳米颗粒负载石墨烯的透射电镜图,可以看出:Pd纳米颗粒均匀的分布在石墨烯的表面,粒子间并无堆积现象,表明颗粒在石墨表面呈现单层负载的状态。

Claims (4)

1.一种高负载型碳基贵金属催化剂的制备方法,其特征在于,具体步骤如下:
(1) 将5 mg-50 mg碳材料分散至15 mL溶剂中,通过超声分散;
(2) 向步骤(1)含有碳材料的分散体系中加入0.1-1 mL 10 mg/mL配体包覆的金属纳米颗粒溶液,并超声15分钟至1小时;
(3) 通过离心、溶剂再分散的方式除去游离的纳米颗粒,即可获得高负载型贵金属催化剂。
2.根据权利要求 1 所述的一种高负载型碳基贵金属催化剂的制备方法,其特征在于,步骤(1)中所述的溶剂为正己烷或甲苯中的一种或两种。
3.根据权利要求 1 所述的一种高负载型碳基贵金属催化剂的制备方法,其特征在于,步骤(2)中所述配体为油酸、油胺或三正辛基膦中的一种或几种。
4.根据权利要求 1 所述的一种高负载型碳基贵金属催化剂的制备方法,其特征在于,步骤(2)中所述的碳材料为碳纳米管、石墨烯、碳布或石墨中的一种或几种。
CN202210292329.4A 2022-03-24 2022-03-24 一种高负载型碳基贵金属催化剂的制备方法 Pending CN114653401A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210292329.4A CN114653401A (zh) 2022-03-24 2022-03-24 一种高负载型碳基贵金属催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210292329.4A CN114653401A (zh) 2022-03-24 2022-03-24 一种高负载型碳基贵金属催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN114653401A true CN114653401A (zh) 2022-06-24

Family

ID=82031584

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210292329.4A Pending CN114653401A (zh) 2022-03-24 2022-03-24 一种高负载型碳基贵金属催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN114653401A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101992302A (zh) * 2009-08-21 2011-03-30 中国科学院大连化学物理研究所 一种高分散贵金属及其合金纳米颗粒的制备方法
CN104307512A (zh) * 2014-10-14 2015-01-28 武汉大学苏州研究院 一种负载型钯催化剂及其制备方法和应用
CN106040263A (zh) * 2016-05-23 2016-10-26 中南大学 一种贵金属纳米晶负载CuSbS2纳米晶的制备方法
CN107876796A (zh) * 2016-12-06 2018-04-06 西南石油大学 一种氨分解制氢钌基催化剂及其制备方法
CN112892528A (zh) * 2019-11-18 2021-06-04 国家纳米科学中心 一种贵金属/碳纳米复合催化剂、其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101992302A (zh) * 2009-08-21 2011-03-30 中国科学院大连化学物理研究所 一种高分散贵金属及其合金纳米颗粒的制备方法
CN104307512A (zh) * 2014-10-14 2015-01-28 武汉大学苏州研究院 一种负载型钯催化剂及其制备方法和应用
CN106040263A (zh) * 2016-05-23 2016-10-26 中南大学 一种贵金属纳米晶负载CuSbS2纳米晶的制备方法
CN107876796A (zh) * 2016-12-06 2018-04-06 西南石油大学 一种氨分解制氢钌基催化剂及其制备方法
CN112892528A (zh) * 2019-11-18 2021-06-04 国家纳米科学中心 一种贵金属/碳纳米复合催化剂、其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KYUNGWON LEE ET AL.,: "One-Pot Synthesis of Monodisperse 5 nm Pd−Ni Nanoalloys for Electrocatalytic Ethanol Oxidation", APPL. MATER. INTERFACES *

Similar Documents

Publication Publication Date Title
Li et al. Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly
Yang et al. Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: Non–Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution
Yin et al. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction
Lin et al. Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes
Xu et al. Formation, characterization, and magnetic properties of Fe3O4 nanowires encapsulated in carbon microtubes
TWI448423B (zh) 碳化物/奈米碳管複合物及金屬催化劑的製備方法
JP2009525841A (ja) 固体表面上にナノ粒子の組成物を産生させる方法
Tian et al. Carbon nanotubes supported oxygen reduction reaction catalysts: role of inner tubes
JP2008274502A (ja) 再分散用微細炭素繊維集合塊およびその製造方法
CN109879278B (zh) 一种零维-二维杂化叠层超结构纳米材料的制备方法
Huang et al. Well-dispersive Pt nanoparticles grown on 3D nitrogen-and sulfur-codoped graphene nanoribbon architectures: highly active electrocatalysts for methanol oxidation
JPWO2016208170A1 (ja) ナノ炭素複合材料およびその製造方法
JP2010522133A (ja) 炭素表面にナノ粒子を製造させる方法およびそれからの生成物
CN114068927B (zh) 石墨烯碳纳米管复合材料及其制备方法
CN101683978A (zh) 一种制备银纳米颗粒修饰的碳纳米管的方法
CN109604629B (zh) 一种复合材料及其制备方法和用途
Ekrami-Kakhki et al. Electrocatalytic activity of Pt nanoparticles supported on novel functionalized reduced graphene oxide-chitosan for methanol electrooxidation
CN109395719B (zh) 一种在多壁碳纳米管表面可控负载贵金属纳米材料的方法
KR100961914B1 (ko) 은나노입자로 장식된 탄소나노튜브 나노복합체의 제조방법
Daoush et al. Syntheses and characterizations of multiwalled carbon nanotubes-supported palladium nanocomposites
Chen et al. Nanostructured coral-like carbon as Pt support for fuel cells
Ravindran et al. Self-assembly of ZnO nanoparticles to electrostatic coordination sites of functionalized carbon nanotubes
CN107913668B (zh) 一种具有吸附和催化降解功能的纳米复合材料及其制备方法和应用
CN114653401A (zh) 一种高负载型碳基贵金属催化剂的制备方法
US20070027029A1 (en) Catalyst support, gas storage body and method for producing these

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220624