CN114628102A - 一种熔体快淬钕铁硼微晶薄片及其制备方法 - Google Patents

一种熔体快淬钕铁硼微晶薄片及其制备方法 Download PDF

Info

Publication number
CN114628102A
CN114628102A CN202210308118.5A CN202210308118A CN114628102A CN 114628102 A CN114628102 A CN 114628102A CN 202210308118 A CN202210308118 A CN 202210308118A CN 114628102 A CN114628102 A CN 114628102A
Authority
CN
China
Prior art keywords
neodymium
boron
sintering
iron boron
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210308118.5A
Other languages
English (en)
Inventor
金明华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Xincigu Material Technology Co ltd
Original Assignee
Zhejiang Xincigu Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Xincigu Material Technology Co ltd filed Critical Zhejiang Xincigu Material Technology Co ltd
Priority to CN202210308118.5A priority Critical patent/CN114628102A/zh
Publication of CN114628102A publication Critical patent/CN114628102A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0286Trimming

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明属于钕铁硼技术领域,尤其是一种熔体快淬钕铁硼微晶薄片及其制备方法,包括如下选取的材料,如稀土金属钕、金属元素铁、非金属元素硼以及添加钐、铌、铝、铜、镍和铬。该熔体快淬钕铁硼微晶薄片及其制备方法,通过添加的钐、镍和铬进行取代镨、镝和铽,从而使本发明中的钕铁硼剩磁高可达1.35T、温度系数低;温度系数为‑0.02%/℃,而使用温度可达680℃;具有高磁能积,在工作温度180℃,其磁能积及温度稳定性和化学稳定性会大于钕铁硼磁性材料;有着优良的塑形与延展性,还能做成半硬磁合金,并且有着比其他磁材更好的特点,更加耐高温,在400℃温度下使用能保持磁性不衰退。

Description

一种熔体快淬钕铁硼微晶薄片及其制备方法
技术领域
本发明涉及钕铁硼技术领域,尤其涉及一种熔体快淬钕铁硼微晶薄片及其制备方法。
背景技术
钕磁铁也称为钕铁硼磁铁,是由钕、铁、硼(Nd2Fe14B)形成的四方晶系晶体。于1982年,住友特殊金属的佐川真人发现钕磁铁。这种磁铁的磁能积大于钐钴磁铁,是当时全世界磁能积最大的物质。后来,住友特殊金属成功发展粉末冶金法,通用汽车公司成功发展旋喷熔炼法,能够制备钕铁硼磁铁。这种磁铁是现今磁性仅次于绝对零度钬磁铁的永久磁铁,也是最常使用的稀土磁铁。钕铁硼磁铁被广泛地应用于电子产品,例如硬盘、手机、耳机以及用电池供电的工具等。
现有的钕铁硼在生产中使用的原料大多数为稀有金属镨、镝和铽,其这些稀有金属生产的钕铁硼温度系数高、且塑性差,不耐高温易碎易裂,导致后期加工难度大易损耗报废,所以需要一种熔体快淬钕铁硼微晶薄片及其制备方法。
发明内容
基于现有的技术问题,本发明提出了一种熔体快淬钕铁硼微晶薄片及其制备方法。
本发明提出的一种熔体快淬钕铁硼微晶薄片及其制备方法,包括如下选取的材料,如稀土金属钕、金属元素铁、非金属元素硼以及添加钐、铌、铝、铜、镍和铬。
优选地,各组分的质量百分比含量分别为稀土金属钕28%-31%、金属元素铁62%-66%、非金属元素硼1.1%-1.2%以及添加钐0.5%-1.1%、铌0.4%-0.6%、铝0.3%-0.5%、铜0.05%-0.15%、镍0.2%-0.3%和铬0.2%-0.3%元素。
优选地,步骤一、配料;
步骤二、熔炼;
步骤三、氢碎;
步骤四、气流磨;
步骤五、成型;
步骤六、静压,陆续向物体释放均压力将产品的密度逐渐变小达到预定要求;
步骤七、剥油,是将静压过的产品包装拆掉做好等待烧结的准备工作;
步骤八、将产品放入特定的烧结炉进行一系列烧结,小步骤可分:为进炉、烧结、出炉、退磁、反烧、方可得到毛坯产品;
步骤九、将烧结好的毛坯材料按要求:上磨床、线切割、切片、打孔、电镀、最后充磁包装发货。
优选地,所述步骤二中将经过预处理后的原材料按照比例配料,加入真空熔炼炉中,在氩气保护下高温熔炼后进行甩带;使得产品成分均匀,结晶取向度高, 组织一致性好,并且避免a-Fe的生成。
优选地,所述步骤三中利用稀士金属间化合物的吸氢特性,将钕铁硼合金置于氢气环境下,氢气沿富钕相薄层进入合金,使之膨胀爆裂而破碎。
优选地,所述步骤四中在气流室中采用物料自身的高速碰撞来粉碎,对磨室内壁无磨损,可以快速制备粉末。
优选地,所述步骤五中将磁粉与粘接剂混合,经加热混炼、早粒、干燥、然后螺旋式导杆送到加热室加热,注射到模腔成型,冷却后即得成品;一般使用尼龙6、聚酰胺、聚酯和pvc等加入量为20%~30%(体积分数),配合上形状复杂的刚性粘接永磁体。
优选地,所述步骤八中烧结工艺分烧结和时效两段工艺,烧结温度,甩带氢碎料大约在1040℃~1070℃之间,铸锭氢碎大约在1080℃~1200℃之间,铸锭料在1090℃~1140℃之间,时效分二段时效机制880℃~910℃和510℃~620℃二段,从烧结和时效到出炉整个工艺过程下来要22~40小时。
优选地,所述步骤九中采用切片机进行切割,对精度更高或有CPK要求的还需双面磨床进行加工。
本发明中的有益效果为:
通过添加的钐、镍和铬进行取代镨、镝和铽,从而使本发明中的钕铁硼剩磁高可达1.35T、温度系数低;温度系数为-0.02%/℃,而使用温度可达680℃;具有高磁能积,在工作温度180℃,其磁能积及温度稳定性和化学稳定性会大于钕铁硼磁性材料;有着优良的塑形与延展性,还能做成半硬磁合金,并且有着比其他磁材更好的特点,更加耐高温,在400℃温度下使用能保持磁性不衰退。机械加工性能好,不管是打孔、切割、刨磨、冲压等或做成较薄的一些异性磁铁都能满足避免其他磁铁磁性材料较脆,易碎、易裂的效果。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
一种熔体快淬钕铁硼微晶薄片及其制备方法,步骤一、配料;包括如下选取的材料,如稀土金属钕、金属元素铁、非金属元素硼以及添加钐、铌、铝、铜、镍和铬;各组分的质量百分比含量分别为稀土金属钕28%-31%、金属元素铁62%-66%、非金属元素硼1.1%-1.2%以及添加钐0.5%-1.1%、铌0.4%-0.6%、铝0.3%-0.5%、铜0.05%-0.15%、镍0.2%-0.3%和铬0.2%-0.3%元素;
步骤二、熔炼;步骤二中将经过预处理后的原材料按照比例配料,加入真空熔炼炉中,在氩气保护下高温熔炼后进行甩带;使得产品成分均匀,结晶取向度高,组织一致性好,并且避免a-Fe的生成;
步骤三、氢碎;步骤三中利用稀士金属间化合物的吸氢特性,将钕铁硼合金置于氢气环境下,氢气沿富钕相薄层进入合金,使之膨胀爆裂而破碎,沿富钕相层处开裂,保证了主相晶粒及富钕晶粒间界相的完整;HDI艺使得钕铁硼的甩片变得非常疏松,提高了气流磨的制粉效率,降低了生产成本;
步骤四、气流磨;步骤四中在气流室中采用物料自身的高速碰撞来粉碎,对磨室内壁无磨损,可以快速制备粉末;
步骤五、成型;步骤五中将磁粉与粘接剂混合,经加热混炼、早粒、干燥、然后螺旋式导杆送到加热室加热,注射到模腔成型,冷却后即得成品;一般使用尼龙6、聚酰胺、聚酯和pvc等加入量为20%~30%(体积分数),配合上形状复杂的刚性粘接永磁体;
步骤六、静压,陆续向物体释放均压力将产品的密度逐渐变小达到预定要求;
步骤七、剥油,是将静压过的产品包装拆掉做好等待烧结的准备工作;
步骤八、将产品放入特定的烧结炉进行一系列烧结,小步骤可分:为进炉、烧结、出炉、退磁、反烧、方可得到毛坯产品;步骤八中烧结工艺分烧结和时效两段工艺,烧结温度,甩带氢碎料大约在1040℃~1070℃之间,铸锭氢碎大约在1080℃~1200℃之间,铸锭料在1090℃~1140℃之间,时效分二段时效机制 880℃~910℃和510℃~620℃二段,从烧结和时效到出炉整个工艺过程下来要 22~40小时;
步骤九、将烧结好的毛坯材料按要求:上磨床、线切割、切片、打孔、电镀、最后充磁包装发货;步骤九中采用切片机进行切割,对精度更高或有CPK要求的还需双面磨床进行加工。
通过添加的钐、镍和铬进行取代镨、镝和铽,从而使本发明中的钕铁硼剩磁高可达1.35T、温度系数低;温度系数为-0.02%/℃,而使用温度可达680℃;具有高磁能积,在工作温度180℃,其磁能积及温度稳定性和化学稳定性会大于钕铁硼磁性材料;有着优良的塑形与延展性,还能做成半硬磁合金,并且有着比其他磁材更好的特点,更加耐高温,在400℃温度下使用能保持磁性不衰退。机械加工性能好,不管是打孔、切割、刨磨、冲压等或做成较薄的一些异性磁铁都能满足避免其他磁铁磁性材料较脆,易碎、易裂的效果。
实施例一
一种熔体快淬钕铁硼微晶薄片及其制备方法,步骤一、配料;包括如下选取的材料,如稀土金属钕、金属元素铁、非金属元素硼以及添加钐、铌、铝、铜、镍和铬;各组分的质量百分比含量分别为稀土金属钕28%、金属元素铁62%、非金属元素硼1.1%以及添加钐0.5%、铌0.4%、铝0.3%、铜0.05%、镍0.2%和铬0.2%元素;
步骤二、熔炼;步骤二中将经过预处理后的原材料按照比例配料,加入真空熔炼炉中,在氩气保护下高温熔炼后进行甩带;使得产品成分均匀,结晶取向度高,组织一致性好,并且避免a-Fe的生成;
步骤三、氢碎;步骤三中利用稀士金属间化合物的吸氢特性,将钕铁硼合金置于氢气环境下,氢气沿富钕相薄层进入合金,使之膨胀爆裂而破碎,沿富钕相层处开裂,保证了主相晶粒及富钕晶粒间界相的完整;HDI艺使得钕铁硼的甩片变得非常疏松,提高了气流磨的制粉效率,降低了生产成本;
步骤四、气流磨;步骤四中在气流室中采用物料自身的高速碰撞来粉碎,对磨室内壁无磨损,可以快速制备粉末;
步骤五、成型;步骤五中将磁粉与粘接剂混合,经加热混炼、早粒、干燥、然后螺旋式导杆送到加热室加热,注射到模腔成型,冷却后即得成品;一般使用尼龙6、聚酰胺、聚酯和pvc等加入量为20%体积分数,配合上形状复杂的刚性粘接永磁体;
步骤六、静压,陆续向物体释放均压力将产品的密度逐渐变小达到预定要求;
步骤七、剥油,是将静压过的产品包装拆掉做好等待烧结的准备工作;
步骤八、将产品放入特定的烧结炉进行一系列烧结,小步骤可分:为进炉、烧结、出炉、退磁、反烧、方可得到毛坯产品;步骤八中烧结工艺分烧结和时效两段工艺,烧结温度,甩带氢碎料大约在1040℃之间,铸锭氢碎大约在1080℃之间,铸锭料在1090℃之间,时效分二段时效机制880℃和510℃二段,从烧结和时效到出炉整个工艺过程下来要22小时;
步骤九、将烧结好的毛坯材料按要求:上磨床、线切割、切片、打孔、电镀、最后充磁包装发货;步骤九中采用切片机进行切割,对精度更高或有CPK要求的还需双面磨床进行加工。
通过添加的钐、镍和铬进行取代镨、镝和铽,从而使本发明中的钕铁硼剩磁高可达1.35T、温度系数低;温度系数为-0.02%/℃,而使用温度可达680℃;具有高磁能积,在工作温度180℃,其磁能积及温度稳定性和化学稳定性会大于钕铁硼磁性材料;有着优良的塑形与延展性,还能做成半硬磁合金,并且有着比其他磁材更好的特点,更加耐高温,在400℃温度下使用能保持磁性不衰退。机械加工性能好,不管是打孔、切割、刨磨、冲压等或做成较薄的一些异性磁铁都能满足避免其他磁铁磁性材料较脆,易碎、易裂的效果。
实施例二
一种熔体快淬钕铁硼微晶薄片及其制备方法,步骤一、配料;包括如下选取的材料,如稀土金属钕、金属元素铁、非金属元素硼以及添加钐、铌、铝、铜、镍和铬;各组分的质量百分比含量分别为稀土金属钕29.5%、金属元素铁64%、非金属元素硼1.15%以及添加钐0.85%、铌0.5%、铝0.4%、铜0.1%、镍 0.1%和铬0.1%元素;
步骤二、熔炼;步骤二中将经过预处理后的原材料按照比例配料,加入真空熔炼炉中,在氩气保护下高温熔炼后进行甩带;使得产品成分均匀,结晶取向度高,组织一致性好,并且避免a-Fe的生成;
步骤三、氢碎;步骤三中利用稀士金属间化合物的吸氢特性,将钕铁硼合金置于氢气环境下,氢气沿富钕相薄层进入合金,使之膨胀爆裂而破碎,沿富钕相层处开裂,保证了主相晶粒及富钕晶粒间界相的完整;HDI艺使得钕铁硼的甩片变得非常疏松,提高了气流磨的制粉效率,降低了生产成本;
步骤四、气流磨;步骤四中在气流室中采用物料自身的高速碰撞来粉碎,对磨室内壁无磨损,可以快速制备粉末;
步骤五、成型;步骤五中将磁粉与粘接剂混合,经加热混炼、早粒、干燥、然后螺旋式导杆送到加热室加热,注射到模腔成型,冷却后即得成品;一般使用尼龙6、聚酰胺、聚酯和pvc等加入量为25%体积分数,配合上形状复杂的刚性粘接永磁体;
步骤六、静压,陆续向物体释放均压力将产品的密度逐渐变小达到预定要求;
步骤七、剥油,是将静压过的产品包装拆掉做好等待烧结的准备工作;
步骤八、将产品放入特定的烧结炉进行一系列烧结,小步骤可分:为进炉、烧结、出炉、退磁、反烧、方可得到毛坯产品;步骤八中烧结工艺分烧结和时效两段工艺,烧结温度,甩带氢碎料大约在1050℃之间,铸锭氢碎大约在1090℃之间,铸锭料在1120℃之间,时效分二段时效机制895℃和565℃二段,从烧结和时效到出炉整个工艺过程下来要30小时;
步骤九、将烧结好的毛坯材料按要求:上磨床、线切割、切片、打孔、电镀、最后充磁包装发货;步骤九中采用切片机进行切割,对精度更高或有CPK要求的还需双面磨床进行加工。
通过添加的钐、镍和铬进行取代镨、镝和铽,从而使本发明中的钕铁硼剩磁高可达1.35T、温度系数低;温度系数为-0.02%/℃,而使用温度可达680℃;具有高磁能积,在工作温度180℃,其磁能积及温度稳定性和化学稳定性会大于钕铁硼磁性材料;有着优良的塑形与延展性,还能做成半硬磁合金,并且有着比其他磁材更好的特点,更加耐高温,在400℃温度下使用能保持磁性不衰退。机械加工性能好,不管是打孔、切割、刨磨、冲压等或做成较薄的一些异性磁铁都能满足避免其他磁铁磁性材料较脆,易碎、易裂的效果。
实施例三
一种熔体快淬钕铁硼微晶薄片及其制备方法,步骤一、配料;包括如下选取的材料,如稀土金属钕、金属元素铁、非金属元素硼以及添加钐、铌、铝、铜、镍和铬;各组分的质量百分比含量分别为稀土金属钕31%、金属元素铁66%、非金属元素硼1.2%以及添加钐1.1%、铌0.6%、铝0.5%、铜0.15%、镍0.3%和铬0.3%元素;
步骤二、熔炼;步骤二中将经过预处理后的原材料按照比例配料,加入真空熔炼炉中,在氩气保护下高温熔炼后进行甩带;使得产品成分均匀,结晶取向度高,组织一致性好,并且避免a-Fe的生成;
步骤三、氢碎;步骤三中利用稀士金属间化合物的吸氢特性,将钕铁硼合金置于氢气环境下,氢气沿富钕相薄层进入合金,使之膨胀爆裂而破碎,沿富钕相层处开裂,保证了主相晶粒及富钕晶粒间界相的完整;HDI艺使得钕铁硼的甩片变得非常疏松,提高了气流磨的制粉效率,降低了生产成本;
步骤四、气流磨;步骤四中在气流室中采用物料自身的高速碰撞来粉碎,对磨室内壁无磨损,可以快速制备粉末;
步骤五、成型;步骤五中将磁粉与粘接剂混合,经加热混炼、早粒、干燥、然后螺旋式导杆送到加热室加热,注射到模腔成型,冷却后即得成品;一般使用尼龙6、聚酰胺、聚酯和pvc等加入量为30%体积分数,配合上形状复杂的刚性粘接永磁体;
步骤六、静压,陆续向物体释放均压力将产品的密度逐渐变小达到预定要求;
步骤七、剥油,是将静压过的产品包装拆掉做好等待烧结的准备工作;
步骤八、将产品放入特定的烧结炉进行一系列烧结,小步骤可分:为进炉、烧结、出炉、退磁、反烧、方可得到毛坯产品;步骤八中烧结工艺分烧结和时效两段工艺,烧结温度,甩带氢碎料大约在1070℃之间,铸锭氢碎大约在1200℃之间,铸锭料在1140℃之间,时效分二段时效机制910℃和620℃二段,从烧结和时效到出炉整个工艺过程下来要40小时;
步骤九、将烧结好的毛坯材料按要求:上磨床、线切割、切片、打孔、电镀、最后充磁包装发货;步骤九中采用切片机进行切割,对精度更高或有CPK要求的还需双面磨床进行加工。
通过添加的钐、镍和铬进行取代镨、镝和铽,从而使本发明中的钕铁硼剩磁高可达1.35T、温度系数低;温度系数为-0.02%/℃,而使用温度可达680℃;具有高磁能积,在工作温度180℃,其磁能积及温度稳定性和化学稳定性会大于钕铁硼磁性材料;有着优良的塑形与延展性,还能做成半硬磁合金,并且有着比其他磁材更好的特点,更加耐高温,在400℃温度下使用能保持磁性不衰退。机械加工性能好,不管是打孔、切割、刨磨、冲压等或做成较薄的一些异性磁铁都能满足避免其他磁铁磁性材料较脆,易碎、易裂的效果。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (9)

1.一种熔体快淬钕铁硼微晶薄片,其特征在于:包括如下选取的材料,如稀土金属钕、金属元素铁、非金属元素硼以及添加钐、铌、铝、铜、镍和铬。
2.根据权利要求1所述的一种熔体快淬钕铁硼微晶薄片,其特征在于:各组分的质量百分比含量分别为稀土金属钕28%-31%、金属元素铁62%-66%、非金属元素硼1.1%-1.2%以及添加钐0.5%-1.1%、铌0.4%-0.6%、铝0.3%-0.5%、铜0.05%-0.15%、镍0.2%-0.3%和铬0.2%-0.3%元素。
3.根据权利要求2所述的一种熔体快淬钕铁硼微晶薄片的制备方法,其制备方法:步骤一、配料;
步骤二、熔炼;
步骤三、氢碎;
步骤四、气流磨;
步骤五、成型;
步骤六、静压,陆续向物体释放均压力将产品的密度逐渐变小达到预定要求;
步骤七、剥油,是将静压过的产品包装拆掉做好等待烧结的准备工作;
步骤八、将产品放入特定的烧结炉进行一系列烧结,小步骤可分:为进炉、烧结、出炉、退磁、反烧、方可得到毛坯产品;
步骤九、将烧结好的毛坯材料按要求:上磨床、线切割、切片、打孔、电镀、最后充磁包装发货。
4.根据权利要求3所述的一种熔体快淬钕铁硼微晶薄片的制备方法,其特征在于:所述步骤二中将经过预处理后的原材料按照比例配料,加入真空熔炼炉中,在氩气保护下高温熔炼后进行甩带;使得产品成分均匀,结晶取向度高,组织一致性好,并且避免a-Fe的生成。
5.根据权利要求3所述的一种熔体快淬钕铁硼微晶薄片的制备方法,其特征在于:所述步骤三中利用稀士金属间化合物的吸氢特性,将钕铁硼合金置于氢气环境下,氢气沿富钕相薄层进入合金,使之膨胀爆裂而破碎,沿富钕相层处开裂,保证了主相晶粒及富钕晶粒间界相的完整;HDI艺使得钕铁硼的甩片变得非常疏松,提高了气流磨的制粉效率,降低了生产成本。
6.根据权利要求3所述的一种熔体快淬钕铁硼微晶薄片的制备方法,其特征在于:所述步骤四中在气流室中采用物料自身的高速碰撞来粉碎,对磨室内壁无磨损,快速制备粉末。
7.根据权利要求3所述的一种熔体快淬钕铁硼微晶薄片的制备方法,其特征在于:所述步骤五中将磁粉与粘接剂混合,经加热混炼、早粒、干燥、然后螺旋式导杆送到加热室加热,注射到模腔成型,冷却后即得成品;一般使用尼龙6、聚酰胺、聚酯和pvc加入量为20%~30%(体积分数),配合上形状复杂的刚性粘接永磁体。
8.根据权利要求3所述的一种熔体快淬钕铁硼微晶薄片的制备方法,其特征在于:所述步骤八中烧结工艺分烧结和时效两段工艺,烧结温度,甩带氢碎料在1040℃~1070℃之间,铸锭氢碎在1080℃~1200℃之间,铸锭料在1090℃~1140℃之间,时效分二段时效机制880℃~910℃和510℃~620℃二段,从烧结和时效到出炉整个工艺过程下来要22~40小时。
9.根据权利要求3所述的一种熔体快淬钕铁硼微晶薄片的制备方法,其特征在于:所述步骤九中采用切片机进行切割,对精度更高或有CPK要求的还需双面磨床进行加工。
CN202210308118.5A 2022-03-26 2022-03-26 一种熔体快淬钕铁硼微晶薄片及其制备方法 Pending CN114628102A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210308118.5A CN114628102A (zh) 2022-03-26 2022-03-26 一种熔体快淬钕铁硼微晶薄片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210308118.5A CN114628102A (zh) 2022-03-26 2022-03-26 一种熔体快淬钕铁硼微晶薄片及其制备方法

Publications (1)

Publication Number Publication Date
CN114628102A true CN114628102A (zh) 2022-06-14

Family

ID=81903179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210308118.5A Pending CN114628102A (zh) 2022-03-26 2022-03-26 一种熔体快淬钕铁硼微晶薄片及其制备方法

Country Status (1)

Country Link
CN (1) CN114628102A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117198672A (zh) * 2023-10-07 2023-12-08 东莞市众旺永磁科技有限公司 一种注射成型钕铁硼磁铁的制造工艺方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117198672A (zh) * 2023-10-07 2023-12-08 东莞市众旺永磁科技有限公司 一种注射成型钕铁硼磁铁的制造工艺方法
CN117198672B (zh) * 2023-10-07 2024-05-28 东莞市众旺永磁科技有限公司 一种注射成型钕铁硼磁铁的制造工艺方法

Similar Documents

Publication Publication Date Title
CN101158024B (zh) 制备稀土永磁体材料的方法
CN102768898B (zh) 稀土永磁体及其制备方法
CN103231059B (zh) 一种钕铁硼稀土永磁器件的制造方法
CN104681268B (zh) 一种提高烧结钕铁硼磁体矫顽力的处理方法
CN1898757A (zh) 稀土永磁材料的制备方法
EP3355319B1 (en) Corrosion-resistant sintered neodymium-iron-boron magnet rich in lanthanum and cerium, and manufacturing method
CN102610347A (zh) 稀土永磁合金材料及其制备工艺
CN102436889A (zh) 钛锆镓复合添加的低失重钕铁硼磁性材料及其制备方法
CN106158339B (zh) 烧结钕铁硼回收废料经扩渗处理制备高性能永磁体的方法
CN1460270A (zh) 稀土类磁体及其制造方法
CN104821218A (zh) 一种锌铝钛钴复合添加的烧结钕铁硼磁体及其制备方法
CN114628102A (zh) 一种熔体快淬钕铁硼微晶薄片及其制备方法
CN103617855A (zh) 一种具有优良磁体性能的钕铁硼磁性材料
CN106920612B (zh) 一种钕铁硼永磁材料的制备方法
CN103567446B (zh) 一种增韧型稀土永磁材料及其制备方法
CN108597709B (zh) 一种耐腐蚀烧结钕铁硼的制备方法
CN113593800A (zh) 一种高性能烧结钕铁硼磁体及其制备方法
EP4152348B1 (en) Preparation method for heavy rare earth-free high-performance neodymium-iron-boron permanent magnet material
CN109509628B (zh) 一种烧结钕铁硼复合粉料的制备方法
CN103971919A (zh) 一种钕铁硼磁体的烧结方法
CN107442550A (zh) 电镀后的钕铁硼废料的回收再利用方法
CN110739113A (zh) 一种高性能烧结Nd-Fe-B材料及其制备方法
CN116190090A (zh) 一种矫顽力高的钕铁硼稀土永磁材料的制备工艺及其应用
CN110241348A (zh) 一种无磁金属陶瓷及其制备方法和应用
CN113380527B (zh) 增韧脱模剂的制备方法及其在制备烧结钕铁硼中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination