CN108597709B - 一种耐腐蚀烧结钕铁硼的制备方法 - Google Patents

一种耐腐蚀烧结钕铁硼的制备方法 Download PDF

Info

Publication number
CN108597709B
CN108597709B CN201810387248.6A CN201810387248A CN108597709B CN 108597709 B CN108597709 B CN 108597709B CN 201810387248 A CN201810387248 A CN 201810387248A CN 108597709 B CN108597709 B CN 108597709B
Authority
CN
China
Prior art keywords
powder
iron
polyurethane
alloy
hydroxymethyl cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810387248.6A
Other languages
English (en)
Other versions
CN108597709A (zh
Inventor
刘竞成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Hanhai New Material Co ltd
Original Assignee
Anhui Hanhai New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Hanhai New Material Co ltd filed Critical Anhui Hanhai New Material Co ltd
Priority to CN201810387248.6A priority Critical patent/CN108597709B/zh
Publication of CN108597709A publication Critical patent/CN108597709A/zh
Application granted granted Critical
Publication of CN108597709B publication Critical patent/CN108597709B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于磁体制备技术领域,具体涉及一种耐腐蚀烧结钕铁硼的制备方法,包括:(1)将铁或钢熔化后,依次加入硼、铝铁合金、镝铁合金熔化并充分混合后浇铸成甩片,将甩片破碎成粉料;(2)将铝铒合金粉末与步骤(1)中的粉料混合均匀,然后加入聚氨酯与羟甲基纤维素的混合溶液,在惰性气体的保护下拌和均匀,得混合物;(3)利用模具将步骤(2)中得到的混合物压制成毛坯,将毛坯预烧,接着降温进行后整形处理,再放入真空炉内烧结处理,降温即得所述的钕铁硼磁体;本发明通过将粉料浸没到聚氨酯与羟甲基纤维素的混合溶液中,提高了钕铁硼磁体工艺过程中的耐氧化性能,提高了钕铁硼磁体的耐腐蚀性能。

Description

一种耐腐蚀烧结钕铁硼的制备方法
技术领域
本发明属于磁体制备技术领域,具体涉及一种耐腐蚀烧结钕铁硼的制备方法。
背景技术
钕铁硼磁体作为第三代稀土永磁材料,广泛应用于能源、交通、机械、医疗、IT、家电等行业。通过粉末冶金工艺制备的烧结钕铁硼磁体具有优异的磁性能,烧结钕铁硼系永磁材料主要由主相(接近Nd2Fe14B相)和富稀土相构成,富稀土相一般分布在晶界处,构成了晶界相。富稀土相主要由稀土-铁的金属间化合物构成,其稀土原子百分含量往往高于75%。富稀土相在磁体中起到去磁交换耦合作用,有利于矫顽力的提高,同时由于其熔点低于主相,亦有利于磁体烧结的致密化。但是由于富稀土相的耐腐蚀性能较差,也使得烧结钕铁硼磁体的耐腐蚀性能大大降低,限制了其在恶劣环境中的应用。
针对烧结钕铁硼磁体的耐腐蚀性能差的技术问题,通常在其表面形成耐蚀性的保护膜。作为保护膜,根据用途的不同可以使用金属镀层或树脂等。但是,实践证明,仅仅只有良好的镀层并不能完全解决钕铁硼磁体在实际应用中的腐蚀问题,而只有磁体本身具有优异的耐蚀性,再配合良好的镀层才能解决此问题。
发明内容
针对现有技术中的问题,本发明的目的在于提供一种耐腐蚀烧结钕铁硼的制备方法,提高钕铁硼磁体的耐腐蚀性能。
为了实现上述目的,本发明采用以下技术方案予以实现:
一种耐腐蚀烧结钕铁硼的制备方法,包括以下步骤:
(1)将铁或钢熔化后,依次加入硼、铝铁合金、镝铁合金熔化并充分混合后浇铸成甩片,将甩片破碎成粉料;
(2)将铝铒合金粉末与步骤(1)中的粉料混合均匀,然后加入聚氨酯与羟甲基纤维素的混合溶液,在惰性气体的保护下拌和均匀,得混合物;
(3)利用模具将步骤(2)中得到的混合物压制成型,并在300~450Mpa的压力下压制成毛坯,将毛坯在400~500℃的真空条件下预烧1~2h,接着降温至180~200℃进行后整形处理,再放入真空炉内于1250~1300℃烧结处理3~5h,降温至环境温度即得所述的钕铁硼磁体。
本发明中,通过将构成钕铁硼磁体的粉料浸没到聚氨酯与羟甲基纤维素的混合溶液中,在粉料的表面包覆一层聚氨酯与羟甲基纤维素的混合物,从而保护粉料避免其在加工过程中出现氧化,避免磁性能变差的问题。
进一步的,在步骤(3)中,在预烧完成进行后整形处理前,将钕铁硼毛坯再次浸没到聚氨酯与羟甲基纤维素的混合溶液中,在钕铁硼的表面形成一层保护层,然后在放入真空炉内进行烧结处理;在钕铁硼毛坯表面浸渍形成保护层的工艺提高了钕铁硼毛坯在转炉过程中的耐氧化性能,防止钕铁硼磁体半成品的氧化,确保了钕铁硼磁体的磁性能。
在具体的制备工艺中,将铁或钢熔化后,依次加入硼、钕铁合金进行熔炼,并将熔炼完全的合金浇铸成甩片,然后将该甩片置于氢碎炉中进行氢碎得到合金粉料,所述合金粉料的粒径可以在较宽的范围内选择,为了确保钕铁硼磁体的综合性能,经氢碎后的合金粉料的平均粒径为1~5μm。
本发明中,粉末状的铝铒合金与步骤(1)中制备得到的合金粉料进行混合,所述的铝铒合金粉料粒径可以在较宽的范围内选择,为了确保制备得到的钕铁硼体具有较好的综合性能,所述的铝铒合金的平均粒径为1~2μm。
本发明中,通过在钕铁硼磁体中加入铝铒合金,改变了现有常规技术采用的元素复合替代的方式提高矫顽力,通过饵元素的加入,再通过与制备工艺的合理配置,使得添加的稀土分布于晶界,达到了充分利用的目的,在确保钕铁硼磁体综合性能的前提下,减少了稀土元素的添加量,从而降低了钕铁硼磁体的制造成本。
根据本发明,步骤(2)中,所述的聚氨酯与羟甲基纤维素的混合溶液中,羟甲基纤维素的含量为5~10%,上述百分比为羟甲基纤维素占聚氨酯总量的质量百分比;进一步的,所述的聚氨酯溶液的固含量为20~30%。
本发明对所述聚氨酯的种类不做特殊的限定,可以为所属领域技术人员所熟知的,一般为聚酯型聚氨酯、聚醚型聚氨酯和聚碳酸酯型聚氨酯中的一种或多种,所述聚酯型聚氨酯可为本领域常规的聚酯型聚氨酯,较佳地为聚酯型聚氨酯MP-285;所述聚醚型聚氨酯可为本领域常规的聚醚型聚氨酯,较佳地为聚醚型聚氨酯MP-65T;所述聚碳酸酯型聚氨酯可为本领域常规的聚碳酸酯型聚氨酯,较佳地为聚碳酸酯型聚氨酯MP-30R;所述聚酯型聚氨酯MP-285、所述聚醚型聚氨酯MP-65T和所述聚碳酸酯型聚氨酯MP-30R均购于烟台华大化学工业有限公司。
进一步的,步骤(2)中,聚氨酯与羟甲基纤维素混合溶液的总量为铝铒合金粉末与步骤(1)中粉料混合物的总量的1.2~1.5倍。为了方便压制成坯,对该浸没到聚氨酯与羟甲基纤维素的混合粉料进行低温真空烘干处理,具体的,将其放入真空度为0.01~0.30Mpa的真空干燥箱中,以70~90℃的温度烘烤2~5h即可。
本发明中,步骤(3)中,在粉料混合物压制成毛坯前,将粉料混合物在惰性气体的保护下放入成型压机模具中加磁场进行取向。
进一步的,根据本发明,步骤(3)中,在高温烧结处理后进行若干次回火操作,所述的回火操作包括保持高温烧结时的真空度,然后降低炉温300~400℃并保持炉温1~2h,然后再进行冷却得到烧结完成的钕铁硼磁体。通过该回火工艺的处理,铒元素均匀的分布于晶界相中,而晶界相中稀土元素含量的增加能大大的提高钕铁硼磁体的内禀矫顽力,同时钕铁硼内的Br降低较小,从而确保钕铁硼磁体的高性能,高温度系数。
进一步的,步骤(3)中,在高温烧结处理后进行两次回火操作,所述的回火操作包括保持高温烧结时的真空度,降低炉温至850~1000℃,回火时间为1~2h,接着继续降低炉温至450~700℃,回火时间为1~2h,接着进行冷却得到烧结完成的钕铁硼磁体。
本发明中,为了确保钕铁硼磁体的综合性能以及较高的产率,步骤(3)中,采用99.99%的氮气进行风冷处理至常温后出炉。
与现有技术相比,本发明具有以下技术效果:
1、本发明提供的烧结钕铁硼的制备方法,通过将粉料浸没到聚氨酯与羟甲基纤维素的混合溶液中,提高了钕铁硼磁体工艺过程中的耐氧化性能,提高了钕铁硼磁体的耐腐蚀性能;
2、本发明通过在钕铁硼磁体中加入铝铒合金,通过铒元素的加入以及与其相配合适应的制备工艺,使得添加的稀土分布于晶界相中,达到了充分利用的目的,在确保钕铁硼磁体综合性能的前提下,减少了稀土元素的添加量,从而降低了钕铁硼磁体的制造成本。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例,进一步阐明本发明。
实施例1
一种耐腐蚀烧结钕铁硼的制备方法,包括以下步骤:
(1)将铁或钢熔化后,依次加入硼、铝铁合金、镝铁合金熔化并充分混合后浇铸成甩片,将甩片置于氢碎炉中进行氢碎,制得平均粒径为3μm的合金粉料;
(2)将平均粒径为1μm的铝铒合金粉末与步骤(1)中的粉料混合均匀,然后加入1.3倍量的聚酯型聚氨酯MP-28与羟甲基纤维素的混合溶液,在氮气的保护下拌和均匀,然后将其放入真空度为0.10Mpa的真空干燥箱中,以80℃的温度烘烤3h得混合物;
所述羟甲基纤维素的含量为8%,上述百分比为羟甲基纤维素占聚氨酯总量的质量百分比。
(3)将粉料混合物在氮气的保护下放入成型压机模具中加磁场进行取向,然后利用模具将上述粉料混合物压制成型,并在400Mpa的压力下压制成毛坯,将毛坯在450℃的真空条件下预烧2h,接着降温至190℃,然后再次浸渍到聚酯型聚氨酯MP-28与羟甲基纤维素的混合溶液中,然后进行后整形处理,再放入真空炉内于1280℃烧结处理4h;
在高温烧结处理后进行两次回火操作,所述的回火操作包括保持高温烧结时的真空度,降低炉温至900℃,回火时间为2h,接着继续降低炉温至600℃,回火时间为2h,接着采用99.99%的氮气进行风冷处理至常温后出炉,得到烧结完成的钕铁硼磁体;
上述钕铁硼磁体包括:钕铁合金15%、镝铁合金3%、硼1.2%、铝铒合金15%,其余为铁和不可避免的杂质,所述的不可避免的杂质为非稀土元素,上述百分含量为质量百分数。
实施例2
一种耐腐蚀烧结钕铁硼的制备方法,包括以下步骤:
(1)将铁或钢熔化后,依次加入硼、铝铁合金、镝铁合金熔化并充分混合后浇铸成甩片,将甩片置于氢碎炉中进行氢碎,制得平均粒径为3μm的合金粉料;
(2)将平均粒径为1μm的铝铒合金粉末与步骤(1)中的粉料混合均匀,然后加入1.3倍量的聚酯型聚氨酯MP-28与羟甲基纤维素的混合溶液,在氮气的保护下拌和均匀,然后将其放入真空度为0.10Mpa的真空干燥箱中,以80℃的温度烘烤3h得混合物;
所述羟甲基纤维素的含量为8%,上述百分比为羟甲基纤维素占聚氨酯总量的质量百分比。
(3)将粉料混合物在氮气的保护下放入成型压机模具中加磁场进行取向,然后利用模具将上述粉料混合物压制成型,并在400Mpa的压力下压制成毛坯,将毛坯在450℃的真空条件下预烧2h,接着降温至190℃进行后整形处理,再放入真空炉内于1280℃烧结处理4h;
在高温烧结处理后进行两次回火操作,所述的回火操作包括保持高温烧结时的真空度,降低炉温至900℃,回火时间为2h,接着继续降低炉温至600℃,回火时间为2h,接着采用99.99%的氮气进行风冷处理至常温后出炉,得到烧结完成的钕铁硼磁体;
上述钕铁硼磁体包括:钕铁合金15%、镝铁合金3%、硼1.2%、铝铒合金15%,其余为铁和不可避免的杂质,所述的不可避免的杂质为非稀土元素,上述百分含量为质量百分数。
实施例3
一种耐腐蚀烧结钕铁硼的制备方法,包括以下步骤:
(1)将铁或钢熔化后,依次加入硼、铝铁合金、镝铁合金熔化并充分混合后浇铸成甩片,将甩片置于氢碎炉中进行氢碎,制得平均粒径为1μm的合金粉料;
(2)将平均粒径为1μm的铝铒合金粉末与步骤(1)中的粉料混合均匀,然后加入1.2倍量的聚酯型聚氨酯MP-28与羟甲基纤维素的混合溶液,在氮气的保护下拌和均匀,然后将其放入真空度为0.01Mpa的真空干燥箱中,以70℃的温度烘烤5h得混合物;
所述羟甲基纤维素的含量为5%,上述百分比为羟甲基纤维素占聚氨酯总量的质量百分比。
(3)将粉料混合物在氮气的保护下放入成型压机模具中加磁场进行取向,然后利用模具将上述粉料混合物压制成型,并在300Mpa的压力下压制成毛坯,将毛坯在400℃的真空条件下预烧1h,接着降温至180℃进行后整形处理,再放入真空炉内于1250℃烧结处理5h;
在高温烧结处理后进行两次回火操作,所述的回火操作包括保持高温烧结时的真空度,降低炉温至850℃,回火时间为1h,接着继续降低炉温至450℃,回火时间为1h,接着采用99.99%的氮气进行风冷处理至常温后出炉,得到烧结完成的钕铁硼磁体;
上述钕铁硼磁体包括:钕铁合金15%、镝铁合金3%、硼1.2%、铝铒合金15%,其余为铁和不可避免的杂质,所述的不可避免的杂质为非稀土元素,上述百分含量为质量百分数。
实施例4
一种耐腐蚀烧结钕铁硼的制备方法,包括以下步骤:
(1)将铁或钢熔化后,依次加入硼、铝铁合金、镝铁合金熔化并充分混合后浇铸成甩片,将甩片置于氢碎炉中进行氢碎,制得平均粒径为5μm的合金粉料;
(2)将平均粒径为2μm的铝铒合金粉末与步骤(1)中的粉料混合均匀,然后加入1.5倍量的聚酯型聚氨酯MP-28与羟甲基纤维素的混合溶液,在氮气的保护下拌和均匀,然后将其放入真空度为0.30Mpa的真空干燥箱中,以90℃的温度烘烤5h得混合物;
所述羟甲基纤维素的含量为10%,上述百分比为羟甲基纤维素占聚氨酯总量的质量百分比。
(3)将粉料混合物在氮气的保护下放入成型压机模具中加磁场进行取向,然后利用模具将上述粉料混合物压制成型,并在450Mpa的压力下压制成毛坯,将毛坯在500℃的真空条件下预烧2h,接着降温至200℃进行后整形处理,再放入真空炉内于1300℃烧结处理3h;
在高温烧结处理后进行两次回火操作,所述的回火操作包括保持高温烧结时的真空度,降低炉温至1000℃,回火时间为2h,接着继续降低炉温至700℃,回火时间为2h,接着采用99.99%的氮气进行风冷处理至常温后出炉,得到烧结完成的钕铁硼磁体;
上述钕铁硼磁体包括:钕铁合金15%、镝铁合金3%、硼1.2%、铝铒合金15%,其余为铁和不可避免的杂质,所述的不可避免的杂质为非稀土元素,上述百分含量为质量百分数。
对比例1
本实施例与实施例2的制备方法相同,不同的是,所述的步骤(2)中,取消加入聚酯型聚氨酯MP-28与羟甲基纤维素混合溶液的操作,其余不变,具体的:
一种耐腐蚀烧结钕铁硼的制备方法,包括以下步骤:
(1)将铁或钢熔化后,依次加入硼、铝铁合金、镝铁合金熔化并充分混合后浇铸成甩片,将甩片置于氢碎炉中进行氢碎,制得平均粒径为3μm的合金粉料;
(2)将平均粒径为1μm的铝铒合金粉末与步骤(1)中的粉料混合,在氮气的保护下拌和均匀,得粉料混合物;
(3)将粉料混合物在氮气的保护下放入成型压机模具中加磁场进行取向,然后利用模具将上述粉料混合物压制成型,并在400Mpa的压力下压制成毛坯,将毛坯在450℃的真空条件下预烧2h,接着降温至190℃进行后整形处理,再放入真空炉内于1280℃烧结处理4h;
在高温烧结处理后进行两次回火操作,所述的回火操作包括保持高温烧结时的真空度,降低炉温至900℃,回火时间为2h,接着继续降低炉温至600℃,回火时间为2h,接着采用99.99%的氮气进行风冷处理至常温后出炉,得到烧结完成的钕铁硼磁体;
上述钕铁硼磁体包括:钕铁合金15%、镝铁合金3%、硼1.2%、铝铒合金15%,其余为铁和不可避免的杂质,所述的不可避免的杂质为非稀土元素,上述百分含量为质量百分数。
对上述实施例中制备得到的钕铁硼磁体进行测试,记录其磁体性能数据至表1中:
表1:
Figure BDA0001642559770000081
对实施例提供的钕铁硼进行抗氧化平行试验,试验条件为:120℃,100%相对湿度(RH),2个大气压条件,240h;
将测试的失重数据记录到表2中。
表2:
Figure BDA0001642559770000082
以上显示和描述了本发明的基本原理、主要特征和本发明的特点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求保护的范围由所附的权利要求书及其等效物界定。

Claims (3)

1.一种耐腐蚀烧结钕铁硼的制备方法,其特征在于:包括以下步骤:
(1)将铁或钢熔化后,依次加入硼、铝铁合金、镝铁合金熔化并充分混合后浇铸成甩片,将甩片破碎成粉料;
(2)将铝铒合金粉末与步骤(1)中的粉料混合均匀,然后加入聚氨酯与羟甲基纤维素的混合溶液,在惰性气体的保护下拌和均匀,得混合物;
(3)利用模具将步骤(2)中得到的混合物压制成型,并在300~450Mpa的压力下压制成毛坯,将毛坯在400~500℃的真空条件下预烧1~2h,接着降温至180~200℃进行后整形处理,再放入真空炉内于1250~1300℃烧结处理3~5h,降温至环境温度即得所述的钕铁硼磁体;
步骤(2)中,所述的聚氨酯与羟甲基纤维素的混合溶液中,羟甲基纤维素的含量为5~10%,上述百分比为羟甲基纤维素占聚氨酯总量的质量百分比;
步骤(2)中,聚氨酯与羟甲基纤维素混合溶液的总量为铝铒合金粉末与步骤(1)中粉料混合物的总量的1.2~1.5倍;
步骤(3)中,在粉料混合物压制成毛坯前,将粉料混合物在惰性气体的保护下放入成型压机模具中加磁场进行取向;
步骤(3)中,采用99.99%的氮气进行风冷处理至常温后出炉。
2.根据权利要求1所述的耐腐蚀烧结钕铁硼的制备方法,其特征在于:步骤(1)中,将所述的甩片置于氢碎炉中进行氢碎,制得平均粒径为1~5μm的合金粉料。
3.根据权利要求1所述的耐腐蚀烧结钕铁硼的制备方法,其特征在于:步骤(2)中,所述的聚氨酯与羟甲基纤维素的混合溶液中,聚氨酯溶液的固含量为20~30%。
CN201810387248.6A 2018-04-26 2018-04-26 一种耐腐蚀烧结钕铁硼的制备方法 Active CN108597709B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810387248.6A CN108597709B (zh) 2018-04-26 2018-04-26 一种耐腐蚀烧结钕铁硼的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810387248.6A CN108597709B (zh) 2018-04-26 2018-04-26 一种耐腐蚀烧结钕铁硼的制备方法

Publications (2)

Publication Number Publication Date
CN108597709A CN108597709A (zh) 2018-09-28
CN108597709B true CN108597709B (zh) 2020-12-11

Family

ID=63609705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810387248.6A Active CN108597709B (zh) 2018-04-26 2018-04-26 一种耐腐蚀烧结钕铁硼的制备方法

Country Status (1)

Country Link
CN (1) CN108597709B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935463B (zh) * 2019-03-18 2021-06-18 浙江东阳东磁稀土有限公司 一种降低稀土钕铁硼氧含量的方法
CN111243846B (zh) * 2020-01-19 2021-12-24 北京工业大学 一种可同时提高NdFeB粉末和磁体的抗氧化腐蚀性的方法
CN114541687B (zh) * 2020-11-26 2023-10-13 和也健康科技有限公司 一种健康家居用竹地板结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1094184A (zh) * 1993-04-16 1994-10-26 同和矿业株式会社 耐氧化性能优良的永久磁铁合金
CN1655294A (zh) * 2004-02-10 2005-08-17 Tdk株式会社 稀土类烧结磁体与稀土类烧结磁体的机械强度以及耐蚀性的改善方法
CN101325109A (zh) * 2008-04-08 2008-12-17 浙江大学 晶界相重构的高强韧性烧结钕铁硼磁体及其制备方法
CN103081038A (zh) * 2011-06-24 2013-05-01 日东电工株式会社 稀土类永久磁铁及稀土类永久磁铁的制造方法
CN103875047A (zh) * 2011-10-14 2014-06-18 日东电工株式会社 稀土类永久磁铁和稀土类永久磁铁的制造方法
CN107195414A (zh) * 2017-05-27 2017-09-22 浙江大学 一种(Nd,Y)‑Fe‑B稀土永磁体及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1094184A (zh) * 1993-04-16 1994-10-26 同和矿业株式会社 耐氧化性能优良的永久磁铁合金
CN1655294A (zh) * 2004-02-10 2005-08-17 Tdk株式会社 稀土类烧结磁体与稀土类烧结磁体的机械强度以及耐蚀性的改善方法
CN101325109A (zh) * 2008-04-08 2008-12-17 浙江大学 晶界相重构的高强韧性烧结钕铁硼磁体及其制备方法
CN103081038A (zh) * 2011-06-24 2013-05-01 日东电工株式会社 稀土类永久磁铁及稀土类永久磁铁的制造方法
CN103875047A (zh) * 2011-10-14 2014-06-18 日东电工株式会社 稀土类永久磁铁和稀土类永久磁铁的制造方法
CN107195414A (zh) * 2017-05-27 2017-09-22 浙江大学 一种(Nd,Y)‑Fe‑B稀土永磁体及其制备方法

Also Published As

Publication number Publication date
CN108597709A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
CN102436889B (zh) 钛锆镓复合添加的低失重钕铁硼磁性材料及其制备方法
CN105321702B (zh) 一种提高烧结NdFeB磁体矫顽力的方法
CN106409497A (zh) 一种钕铁硼磁体晶界扩散的方法
CN108597709B (zh) 一种耐腐蚀烧结钕铁硼的制备方法
CN101834045B (zh) 含钇的钕铁硼永磁材料及制造方法
CN102280240A (zh) 一种低镝含量高性能烧结钕铁硼的制备方法
CN101562067A (zh) 一种耐腐蚀的钕铁硼稀土永磁体的制造方法
CN112863848B (zh) 高矫顽力烧结钕铁硼磁体的制备方法
CN102456458A (zh) 高耐蚀性烧结钕铁硼磁体及其制备方法
CN110911077B (zh) 一种高矫顽力钕铈铁硼磁体的制备方法
CN111968819A (zh) 一种低重稀土高性能烧结钕铁硼磁体及其制备方法
JP2022094920A (ja) 焼結磁性体の製造方法
CN110895985A (zh) 混合稀土烧结钕铁硼永磁体及其制备方法
CN111471909A (zh) 五组元磁性高熵合金及其制备方法
CN112582121B (zh) 超高性能烧结钐钴磁体的制备方法
CN113593800B (zh) 一种高性能烧结钕铁硼磁体及其制备方法
EP4152348B1 (en) Preparation method for heavy rare earth-free high-performance neodymium-iron-boron permanent magnet material
CN112582123B (zh) 低温度系数高使用温度烧结钐钴磁体的制备方法
CN107146672A (zh) 一种超高磁性能烧结钕铁硼永磁材料及制备方法
CN107424696B (zh) 一种钕铁硼永磁材料及其制备方法
CN107026002B (zh) 钕铁硼合金磁体的制备方法
CN109545491B (zh) 一种钕铁硼永磁材料及其制备方法
CN113838620B (zh) 一种稀土永磁材料及其制备方法
CN108806911B (zh) 一种钕铁硼磁体及其制备方法
CN108389710A (zh) 一种高性能钕铁硼磁体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant