CN114606209A - 一种热稳定性高的突变体Cblac-Mut8漆酶 - Google Patents

一种热稳定性高的突变体Cblac-Mut8漆酶 Download PDF

Info

Publication number
CN114606209A
CN114606209A CN202011399467.XA CN202011399467A CN114606209A CN 114606209 A CN114606209 A CN 114606209A CN 202011399467 A CN202011399467 A CN 202011399467A CN 114606209 A CN114606209 A CN 114606209A
Authority
CN
China
Prior art keywords
cblac
laccase
mut8
mutant
ile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011399467.XA
Other languages
English (en)
Other versions
CN114606209B (zh
Inventor
毛国涛
宋安东
王方园
王杰
王风芹
谢慧
张宏森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Agricultural University
Original Assignee
Henan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Agricultural University filed Critical Henan Agricultural University
Priority to CN202011399467.XA priority Critical patent/CN114606209B/zh
Publication of CN114606209A publication Critical patent/CN114606209A/zh
Application granted granted Critical
Publication of CN114606209B publication Critical patent/CN114606209B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0055Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
    • C12N9/0057Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
    • C12N9/0061Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/342Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the enzymes used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y110/00Oxidoreductases acting on diphenols and related substances as donors (1.10)
    • C12Y110/03Oxidoreductases acting on diphenols and related substances as donors (1.10) with an oxygen as acceptor (1.10.3)
    • C12Y110/03002Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Abstract

本申请属于酶工程技术领域,具体涉及一种热稳定性高的突变体Cblac‑Mut8漆酶。本发明通过设计得到一种热稳定性强的突变体Cblac‑Mut8漆酶;经酶学性质研究,该酶最适温度为60℃,最适pH=4.0。在50℃时,Cblac‑Mut8酶活半衰期达到48h以上;在60℃时,Cblac‑Mut8酶活半衰期也可达到26.6h。而且,与Cblac漆酶(WT)相比,50℃时突变体Cblac‑Mut8的催化活性(kcat/Km)比WT提高了9.5倍,对于温度的耐受性更强,催化活性更高。本发明的技术效果与现有技术相比,所得突变体Cblac‑Mut8对孔雀石绿的降解能力强于大多数已报到漆酶,是一种具有很高工业应用前景的漆酶。

Description

一种热稳定性高的突变体Cblac-Mut8漆酶
技术领域
本申请属于酶工程技术领域,具体涉及一种热稳定性高的突变体Cblac-Mut8漆酶。
背景技术
漆酶是一类广泛存在的酶,它能氧化多种酚类和非酚类芳香底物,同时还能还原为水,具有广泛的底物特异性和生态友好性(以空气中的分子氧为最终电子受体,仅以副产品的形式释放水),被认为是一种具有广阔应用前景的生物绿色工具。漆酶有单聚体、二聚体或四聚体糖基蛋白。主要来源是真菌漆酶和细菌漆酶,真菌漆酶一般为60-70 kDa,具有严重的糖基化修饰,最适反应温度一般为30℃-60℃, pH耐受范围在 3.5-7.0之间。而细菌漆酶具有底物谱宽,不需要糖基化修饰,热稳定性好,pH耐受性范围宽、耐碱性强等显著优点而被广泛关注。
漆酶作为一种绿色生物催化剂,在处理耐污染的环境污染物和染料废水方面具有诱人的优势,由于漆酶可以催化大量酚类和非酚类化合物的氧化,同时把分子中的氧分解成水,能够加速水中有机污染物的降解和无害化。
本发明所涉及的Cblac蛋白来源发现于德国一处热泉中的Caldicellulosiruptor bescii,该菌是一种厌氧细菌,已报道其生长最适条件为最适生长温度 70-80℃,最高可耐受90℃高温,该菌株能够降解结晶纤维素、木聚糖,以及未处理的植物生物质,包括杨树和柳枝稷等潜在的生物能源植物。发明人以隶属DUF152家族的Cblac漆酶为对象以期提供一种热稳定性高,并能有效处理有机染料的漆酶突变体。
发明内容
本申请的技术目的是提供一种热稳定性高的突变体Cblac-Mut8漆酶,从而改善野生型Cblac漆酶的热稳定性和可溶性表达。基于一个总的发明构思,本发明还包括编码该突变体漆酶的基因、该突变体的制备方法及其应用。
一种热稳定性高的突变体Cblac-Mut8漆酶,其氨基酸序列如SEQ NO.3所示。
编码突变体Cblac-Mut8漆酶的基因序列,具体如SEQ NO.4所示。
含有上述基因序列的重组表达载体或重组菌。
一种获得上述热稳定性高的突变体Cblac-Mut8漆酶的方法,具体包括以下步骤:
1)蛋白序列预测:将Cblac漆酶的氨基酸序列利用SWISS-MODEL进行结构模拟,将建模结果提交至PROSS软件进行突变位点预测,得到如SEQ NO.3所示的突变体蛋白序列;
2)重组载体构建:根据编码原则合成该蛋白的基因序列,将该基因序列与表达载体进行重组,获得重组载体;
3)蛋白表达与纯化:重组载体在细菌受态细胞中过量表达后收集、破碎,40~60℃孵育10~60 min,离心收集沉淀,用亲和层析柱纯化,即得突变体Cblac-Mut8漆酶。
优选的,Cblac漆酶的氨基酸序列如SEQ NO.2所示。
进一步优选的,编码Cblac漆酶的基因序列如SEQ NO.1所示。
优选的,步骤2)中的表达载体为pET-28a质粒;步骤3)中的细菌受态细胞为大肠杆菌BL21(DE3)。
基于一个总的发明构思,本发明还包括上述突变体Cblac-Mut8漆酶在降解有机染料中的应用。
本发明通过设计得到一种热稳定性强的突变体Cblac-Mut8漆酶;经酶学性质研究,该酶最适温度为60℃,最适pH=4.0。在50℃时,Cblac-Mut8酶活半衰期达到48h以上;在60℃时,Cblac-Mut8酶活半衰期也可达到26.6h。而且,与Cblac漆酶(WT)相比,50℃时突变体Cblac-Mut8的催化活性(kcat/ Km)比WT提高了9.5倍,对于温度的耐受性更强,催化活性更高。
用突变体Cblac-Mut8对有机染料进行脱色。结果显示,在60℃条件下利用Cblac-Mut8对100mg/L孔雀石绿溶液处理4h,孔雀石绿的降解率可达98%以上。利用突变体Cblac-Mut8脱色后的处理液进行生物培养,结果表明,脱色后处理液对细菌生长无影响,证明该突变体Cblac-Mut8对有机染料具有优异的脱毒作用,可以实现对有机染料的生物无害化处理。本发明的技术效果与现有技术相比,所得突变体Cblac-Mut8对孔雀石绿的降解能力强于大多数已报到漆酶,是一种具有很高工业应用前景的漆酶。
附图说明
图1 纯化Cblac漆酶(WT)及突变体Cblac-Mut8漆酶的SDS-PAGE电泳图;
图2 不同温度条件下的酶活测定;
图3 不同pH条件下的酶活测定;
图4 pH稳定性测定;
图5 热稳定性测定;
图6不同温度条件下的Cblac和Cblac-Mut8漆酶酶动力学曲线;
图7 Cblac漆酶对孔雀石绿的脱色效果;
图8 Cblac漆酶处理不同时间的孔雀石绿降解率对比;
图9 Cblac漆酶处理液培养大肠埃希菌的生长曲线;
图10 Cblac漆酶(WT)和Cblac-Mut8(突变体)氨基酸序列比对;
图11 60℃孵育30min Cblac(WT)与突变体Cblac-Mut8酶活对比;
图12 突变体Cblac-Mut8漆酶对孔雀石绿的脱色效果;
图13 突变体Cblac-Mut8漆酶处理不同时间的孔雀石绿降解率对比;
图14突变体Cblac-Mut8处理液培养枯草芽孢杆菌的生长曲线。
具体实施方式
以下结合具体实施例对本发明作进一步的详细描述。
本发明所用大肠埃希菌(Escherichia coil)购自中国微生物保藏中心,保藏号CICC 10305;所用枯草芽孢杆菌(Bacillus subtilis)购自中国微生物保藏中心,保藏号CICC 10275;PET28a质粒、DH5a大肠杆菌感受态细胞、BL21(DE3)大肠杆菌感受态细胞为普通市售,现保存于河南农业大学实验室中;酵母粉、胰蛋白胨均购自法国OXOID;磷酸氢二钠、磷酸二氢钠、氯化钠均购自天津大茂;孔雀石绿购自上海源叶生物有限公司。
实施例1 Cblac漆酶的优化表达
首先根据Cblac漆酶的基因序列(参考NCBI基因序列数据库,基因序列登录号:CP001393.1)进行密码子优化,优化后的基因序列如SEQ NO.1所示。优化前的基因序列属厌氧细菌表达体系,经密码子优化后,基因序列SEQ NO.1适用好氧细菌表达体系。
以上述基因序列(南京金瑞斯生物科技有限公司合成)为模板,利用PCR试剂盒进行基因扩增,所用引物对具体为:
Cblac-NdeI-F: GTGGTGGTATCGAAGGTAGGCATATGGGCTTTGTTAAAGAAAAC
Cblac-XhoI-R: ACAAGCTTGAATTCGGATCCCTCGAGCTAACGACGAACCATACGCAG
PCR条件为:98 ℃,5 min;98 ℃,20 s;56 ℃,30 s;72 ℃,2 min30 s;72 ℃,10min;4℃,99 min;进行22个循环;
扩增完成后,将克隆序列通过限制内切酶链接到pET-28a 质粒的NcoI与XhoI间,制备重组质粒PET28a-Cblac,并将重组质粒在大肠杆菌BL21(DE3)中过量表达;感受态细胞经5000 rpm,5min离心收集,于PBS (pH=7.4)高压1000 bar破碎后经50℃孵育30min,18000g,30min离心收集,然后利用Ni离子亲和柱纯化,得到Cblac漆酶。纯化Cblac蛋白的SDS-PAGE电泳图如图1所示(WT);从图中可以看出,在30KDa位置出现电泳条带,说明获得了纯化的Cblac蛋白。经蛋白测序,Cblac漆酶的氨基酸序列如SEQ NO.2所示。
实施例2 Cblac酶活及酶活性质测定
以2,2′-azino-bis(3-ethylbenzthiazoline)-6-sulfonate (ABTS, ε420 = 38,000 M-1 cm-1) 为底物,在20mM 醋酸-醋酸钠反应缓冲液体系中进行Cblac酶性质及酶活测定;测定结果见图2~图5。结果显示Cblac漆酶在60℃的酶活最高,最适pH值为pH4.0;酶活在50℃的半衰期预测10h左右。
测定50℃条件下Cblac的酶促动力学:在1 mM CuSO4溶液中加入Cblac漆酶10U/L,反应体系200μl,反应时间20min;通过测定420nm波长处的吸光值来确定反应速率,所得酶促动力学曲线见图6;可以看出,Cblac漆酶的Km =2.31,kcat=5.2 min-1kcat/ Km=2.25。
以2,2′-azino-bis(3-ethylbenzthiazoline)-6-sulfonate (ABTS, ε420 = 38,000 M-1 cm-1) 为底物,在20mM 醋酸-醋酸钠反应缓冲液体系中添加不同的金属离子,添加浓度10mM;不同金属离子存在时,Cblac漆酶酶活对比见表1;
表1 不同金属离子对酶活的影响
Figure 854962DEST_PATH_IMAGE002
从上表可以看出,Mn离子和Zn离子对实施例1所得Cblac漆酶活性有一定促进作用,且Cblac漆酶对Cl离子的耐受性较高,当Cl离子浓度达到1000mM时仍能保持28%的酶活性。
实施例3 Cblac漆酶对孔雀石绿降解效果的考察
配制孔雀石绿母液500mg/L;将母液加入20mM 醋酸-醋酸钠缓冲体系,使缓冲体系中孔雀石绿浓度为50mg/L;调节pH值4.0,加入Cblac漆酶40U/l,于50℃处理24h,考察Cblac漆酶对孔雀石绿染料的降解效果。Cblac漆酶对孔雀石绿的脱色效果见图7,从图中可以看出,经Cblac漆酶在pH4.0,50℃处理后,处理液在618nm处最大吸收峰明显下降,表明孔雀石绿被降解。不同处理时间缓冲液中孔雀石绿的降解率对比结果如图8所示,可以看出孔雀石绿在12h已基本被降解完全。
将上述利用Cblac漆酶降解孔雀石绿后的处理液用以培养细菌。按照体积比1:1将处理液加入液体LB培养基中,接入大肠埃希菌,测定一定时间内菌体生长曲线(图9);上述试验以仅用LB培养基培养为对照组(control),每个条件设置三个平行。从图9可以看出用稀释的处理液培养大肠埃希菌,菌体生长曲线与对照组相似。而加入50mg/L孔雀石绿的样品组,菌体生长受到严重抑制;上述结果证明,经Cblac漆酶处理孔雀石绿后,并不产生抑制细菌生长的物质,因而能够实现对孔雀石绿的生物无害化处理。
实施例4 Cblac的酶学改造及突变体Cblac-Mut8的制备
实施例1~3结果表明,利用Cblac漆酶能够实现对孔雀石绿的生物无害化处理,且Cblac漆酶的使用量小,处理效果高。
但是根据对Cblac漆酶的研究发现,Cblac漆酶的表达大部分为包涵体,酶活性较低,热稳定性较差,为了提高Cblac漆酶热稳定性和可溶性表达,利用SWISS-MODEL结构模拟(PDB)结构提交至PROSS软件对Cblac漆酶氨基酸序列进行突变位点预测,得到突变体Cblac-Mut8漆酶序列,具体氨基酸序列如SEQ NO.3所示。预测的突变体Cblac-Mut8氨基酸序列与Cblac漆酶(WT)比对如图10,图中—代表a螺旋,→代表β折叠片,可以看出,突变体与野生型相比其突变位点共17个。
根据突变体氨基酸序列得到Cblac-Mut8漆酶的基因序列,具体如SEQ NO.4所示。以该基因序列(南京金瑞斯生物科技有限公司合成)为模板,并通过限制内切酶链接到pET-28a 质粒的NcoI与XhoI间,得到重组质粒PET28a-Cblac-Mut8;在实验室将重组质粒导入大肠杆菌DH5a中,37℃,12h后提质粒测序(北京擎科生物科技有限公司);将质粒在大肠杆菌BL21(DE3)中过量表达,细胞经5000 rpm,5min离心收集,在PBS (pH=7.4)高压1000 bar条件下破碎后经50℃孵育30min,18000g,30min离心,用Co+亲和柱纯化,得到Cblac-Mut8纯酶。所得纯化突变体Cblac-Mut8的SDS-PAGE电泳图见图1。
实施例5 突变体Cblac-Mut8与Cblac(WT)酶活测定与对比
以2,2′-azino-bis(3-ethylbenzthiazoline)-6-sulfonate (ABTS, ε420 = 38,000 M-1 cm-1) 为底物,在20mM 醋酸-醋酸钠反应缓冲液体系中进行突变体Cblac-Mut8的酶活及酶性质测定。60℃孵育30min后,Cblac(WT)与突变体Cblac-Mut8两种粗酶活性对比见图11。可以看出60℃孵育30min,WT酶活显著降低,而突变体Cblac-Mut8活性基本无损失。
两种酶的最适温度、pH值和稳定性测定见图2~图6。从图2可以看出,两种酶均在60℃时酶活最高,但是其他温度条件下,突变体Cblac-Mut8的酶活更高。从图3可以看出,两种酶的最适pH值均为4.0。从图4和图5可以看出,与野生型WT相比,突变体Cblac-Mut8的pH稳定性更高,且对于温度的耐受力更强。
分别测定50℃和60℃条件下突变体Cblac-Mut8酶动力学:用终浓度酶10 U/L,在1mM CuSO4、不同浓度 ABTS条件下反应20min,测定酶促反应速率,用Graphpad prism 8拟合酶动力学曲线。上述酶促动力学曲线与50℃时Cblac漆酶(WT)动力学曲线为对照(图6)。可以看出,50℃时Cblac漆酶的Km =2.31,kcat=5.2 min-1;同为50 oC 时,突变体Cblac-Mut8的K m =1.46 mM,k cat = 31.2 min-1。当60 oC时Cblac-Mut8的K m =1.56 mM,k cat = 204.1min-1。经计算可得50℃条件下突变体Cblac-Mut8的催化活性(kcat/ Km)较WT提高了9.46倍。
实施例6 突变体Cblac-Mut8对孔雀石绿的降解效果
配制孔雀石绿母液500 mg/L;将母液加入20 mM 醋酸-醋酸钠缓冲体系,使缓冲体系中孔雀石绿浓度为分别为50 mg/L和100 mg/L;调节pH值4.0;加入Cblac-Mut8漆酶,添加量为40 U/l,于60℃处理4h,考察Cblac-Mut8对孔雀石绿染料的降解效果;Cblac-Mut8对孔雀石绿的脱色效果见图12。
从图中可以看出,经Cblac-Mut8在pH4.0、60 ℃处理后,618 nm处最大吸收峰明显下降,证明孔雀石绿被降解。不同处理时间的缓冲液中孔雀石绿的降解率对比见图13。可以看出,当孔雀石绿浓度为100mg/L时,Cblac-Mut8处理4 h即可对孔雀石绿的降解率达98%以上。
实施例7 突变体Cblac-Mut8降解孔雀石绿的处理液对微生物生长的影响
利用突变体Cblac-Mut8降解孔雀石绿后的处理液进行生物培养,考察处理液的无害化效果。
按照1:1将处理液加入液体LB培养基中,分别接种枯草芽孢杆菌,测定一定时间内菌体生长曲线(图14);以不添加处理液的培养为空白组,以添加100 mg/L孔雀石绿的培养为对照组;
可以看出,添加Cblac-Mut8的处理液培养枯草芽孢杆菌,菌体生长曲线与空白组相似;而加入100mg/L 孔雀石绿的对照组菌体生长受到严重抑制。说明经Cblac-Mut8降解孔雀石绿后,并不产生抑制细菌生长的物质,证明该突变体对有机染料具有优异的脱毒作用,能够实现对孔雀石绿的生物无害化处理。
结论与分析
为了进一步揭示本发明所得突变体Cblac-Mut8对孔雀石绿的降解效果,将本申请的脱色效果与现有已知漆酶的脱色效果进行比对。已知漆酶的数据参照下列文献,具体对比结果见表2;
表2突变体Cblac-Mut8与现有已知漆酶对孔雀石绿染料降解效果对比
Figure 568840DEST_PATH_IMAGE004
从上表可以看出,所得突变体Cblac-Mut8对孔雀石绿的降解能力强于大多数已报到漆酶。而且,该酶的最适温度为60℃,对热稳定性高:与Cblac漆酶(WT)相比,60℃时酶活半衰期提高至26.6h,是一种具有很高工业应用前景的漆酶。
参考文献:
1.Characterization of a Highly Thermostable and Organic Solvent-Tolerant Copper-Containing Polyphenol Oxidase with Dye-Decolorizing Abilityfrom Kurthia huakuii LAM0618 T
2. Functional expression enhancement of Bacillus pumilus CotA-laccasemutant WLF through site-directed mutagenesis, Enzyme and microbial technology109 (2018) 11-19.
3.High-level expression of a bacterial laccase, CueO from Escherichiacoli K12 in Pichia pastoris GS115 and its application on the decolorizationof synthetic dyes, Enzyme and microbial technology 103 (2017) 34-41
4.Cloning and functional analysis of a new laccase gene from Trametessp. 48424 which had the high yield of laccase and strong ability fordecolorizing different dyes, Bioresour Technol 102(3) (2011) 3126-37.
5.Malachite green decolourization and detoxification by the laccasefrom a newly isolated strain of Trametes sp, 63(5) (2009) 600-606.
6.Biodegradation, Enhanced biodegradation and detoxification ofmalachite green by Trichoderma asperellum laccase: Degradation pathway andproduct analysis. (2017) 258-268.
SEQUENCE LISTING
<110> 河南农业大学
<120> 一种热稳定性高的突变体Cblac-Mut8漆酶
<130> NONE
<160> 4
<170> PatentIn version 3.5
<210> 1
<211> 800
<212> DNA
<213> 人工合成
<400> 1
ccatgggctt tgttaaagaa aacatcaacg gtattgagat tttccggatt agcgaatttg 60
aagactatgg tattgagggg ttttttacga cgcggaaggg gtgtgggcac gacagcttta 120
atttaagcta taagtggacc gcacagaaag atgaagttga taaaaacttt cgtatcctgt 180
ttgaagcact gaagattgat catcgcaaca ttttttatgc caaacaggtt cataagaacg 240
atatcattat cgttgaaaga ggttttgatt tcttcgaata taaccaggaa gttgaagccg 300
atggtctggt gaccaatgtt catggtattg cactgattac catgcatgca gattgttttc 360
ctgtgtacat tgttgataca aaaacccgtg tgattagcct gattcatagt ggatggcgtg 420
gtactctgca gcacattacc gaaaatgcac ttcagatttt aaagaaaaag ttcctgtcta 480
gcgccgagga tctgctggtg gcaattggtc cgggtatttg caaacggcat tttgaagttg 540
gtaaagatgt ttatgagatg tttctgcgtg aatttggtga tgaagtgtgt ctggaatcaa 600
aagaaagctt ttttatcgat ctgaagaagg caattatgat tgatttaaag aagaacggga 660
tcgaaagttg tcagattatt tcttgtgata tgtgtaccta tgaggatgca gatctgttct 720
tttcatatcg ccgcgatctg aatcggcctg agaagctggg ttctatggtt gcaattctgc 780
gtatggttcg tcgtctcgag 800
<210> 2
<211> 272
<212> PRT
<213> 人工合成
<400> 2
Met Gly Phe Val Lys Glu Asn Ile Asn Gly Ile Glu Ile Phe Arg Ile
1 5 10 15
Ser Glu Phe Glu Asp Tyr Gly Ile Glu Gly Phe Phe Thr Thr Arg Lys
20 25 30
Gly Cys Gly His Asp Ser Phe Asn Leu Ser Tyr Lys Trp Thr Ala Gln
35 40 45
Lys Asp Glu Val Asp Lys Asn Phe Arg Ile Leu Phe Glu Ala Leu Lys
50 55 60
Ile Asp His Arg Asn Ile Phe Tyr Ala Lys Gln Val His Lys Asn Asp
65 70 75 80
Ile Ile Ile Val Glu Arg Gly Phe Asp Phe Phe Glu Tyr Asn Gln Glu
85 90 95
Val Glu Ala Asp Gly Leu Val Thr Asn Val His Gly Ile Ala Leu Ile
100 105 110
Thr Met His Ala Asp Cys Phe Pro Val Tyr Ile Val Asp Thr Lys Thr
115 120 125
Arg Val Ile Ser Leu Ile His Ser Gly Trp Arg Gly Thr Leu Gln His
130 135 140
Ile Thr Glu Asn Ala Leu Gln Ile Leu Lys Lys Lys Phe Leu Ser Ser
145 150 155 160
Ala Glu Asp Leu Leu Val Ala Ile Gly Pro Gly Ile Cys Lys Arg His
165 170 175
Phe Glu Val Gly Lys Asp Val Tyr Glu Met Phe Leu Arg Glu Phe Gly
180 185 190
Asp Glu Val Cys Leu Glu Ser Lys Glu Ser Phe Phe Ile Asp Leu Lys
195 200 205
Lys Ala Ile Met Ile Asp Leu Lys Lys Asn Gly Ile Glu Ser Cys Gln
210 215 220
Ile Ile Ser Cys Asp Met Cys Thr Tyr Glu Asp Ala Asp Leu Phe Phe
225 230 235 240
Ser Tyr Arg Arg Asp Leu Asn Arg Pro Glu Lys Leu Gly Ser Met Val
245 250 255
Ala Ile Leu Arg Met Val Arg Arg Leu Glu His His His His His His
260 265 270
<210> 3
<211> 272
<212> PRT
<213> 人工合成
<400> 3
Met Gly Phe Val Lys Glu Asn Ile Asn Gly Ile Glu Ile Phe Arg Ile
1 5 10 15
Ser Glu Phe Glu Asp Tyr Gly Ile Glu Gly Phe Phe Thr Thr Arg Lys
20 25 30
Gly Cys Gly His Asp Asp Phe Asn Leu Ser Tyr Lys Trp Thr Ala Arg
35 40 45
Lys Asp Glu Val Asp Lys Asn Phe Arg Ile Leu Phe Glu Ala Leu Lys
50 55 60
Ile Asp His Arg Asn Ile Phe Tyr Ala Lys Gln Val His Lys Asn Asp
65 70 75 80
Ile Ile Ile Val Glu Arg Gly Phe Asp Phe Phe Glu Tyr Asn Gln Glu
85 90 95
Val Glu Ala Asp Gly Leu Val Thr Asn Val Pro Gly Ile Ala Leu Ile
100 105 110
Thr Met His Ala Asp Cys Phe Pro Val Tyr Ile Val Asp Thr Lys Asn
115 120 125
Arg Val Ile Ser Leu Ile His Ser Gly Trp Arg Gly Thr Leu Gln His
130 135 140
Ile Val Glu Asn Ala Leu Gln Ile Leu Lys Lys Lys Phe Asn Ser Ser
145 150 155 160
Ala Glu Asp Leu Leu Val Ala Ile Gly Pro Gly Ile Cys Lys Arg His
165 170 175
Phe Glu Val Gly Lys Asp Val Tyr Glu Met Phe Leu Arg Glu Phe Gly
180 185 190
Asp Glu Val Cys Leu Lys Ser Gly Gly Ser Phe Phe Ile Asp Leu Lys
195 200 205
Lys Ala Ile Glu Tyr Leu Leu Lys Lys Asn Gly Ile Lys Pro Glu Gln
210 215 220
Ile Ile Ser Cys Asp Met Cys Thr Tyr Glu Asp Glu Asp Leu Phe Phe
225 230 235 240
Ser Tyr Arg Arg Asp His Asn Arg Pro Glu Lys Leu Gly Ser Met Val
245 250 255
Ala Ile Leu Arg Met Val Arg Arg Leu Glu His His His His His His
260 265 270
<210> 4
<211> 798
<212> DNA
<213> 人工合成
<400> 4
atgggctttg taaaagaaaa tataaacggg atcgaaattt ttcgtatctc tgagttcgag 60
gactacggca tcgagggctt tttcaccacg cgtaagggtt gcggtcatga tgatttcaat 120
ctgtcctaca aatggaccgc gcgtaaggac gaagtcgata aaaatttccg catcttgttt 180
gaggcgctta agatcgacca ccgtaatatt ttttatgcga agcaggttca caaaaacgac 240
attattatcg tggagcgcgg tttcgacttc ttcgaatata accaggaggt ggaggctgac 300
ggcctggtca ccaatgttcc gggtattgcg ctgattacga tgcatgcaga ctgttttccg 360
gtttacatcg tggataccaa aaaccgtgtt atttccctga tccacagcgg ttggcgtggc 420
accctgcagc atattgtgga gaacgctttg caaattctga aaaagaagtt caacagcagc 480
gcagaagatt tgctggttgc gatcggccca ggcatctgta aacgtcactt tgaggtgggt 540
aaagatgttt atgaaatgtt tctgcgtgaa tttggcgatg aagtgtgcct gaaaagcggt 600
ggtagcttct tcatcgacct aaagaaggcc atcgagtacc tgctgaagaa gaacggtatc 660
aaaccggaac aaatcatttc gtgcgatatg tgcacttatg aggacgagga cttgttcttt 720
agctaccgca gagatcacaa ccgtccggaa aaactgggct ctatggtggc cattctccgc 780
atggttcgtc gcctcgag 798

Claims (8)

1.一种热稳定性高的突变体Cblac-Mut8漆酶,其特征在于:所述氨基酸序列如SEQNO.3所示。
2.编码权利要求1所述突变体Cblac-Mut8漆酶的基因序列,其特征在于:所述基因序列如SEQ NO.4所示。
3.含有权利要求2所述基因序列的重组表达载体或重组菌。
4.一种获得权利要求1所述突变体Cblac-Mut8漆酶的方法,其特征在于,具体包括以下步骤:
1)蛋白序列预测:将Cblac漆酶的氨基酸序列利用SWISS-MODEL进行结构模拟,将建模结果提交至PROSS软件进行突变位点预测,得到如SEQ NO.3的突变体蛋白序列;
2)重组载体构建:根据编码原则合成该蛋白的基因序列,将该基因序列与表达载体进行重组,获得重组载体;
3)蛋白表达与纯化:将重组载体在细菌感受态细胞中过量表达后收集、破碎,40~60℃孵育10~60 min,离心收集沉淀,用亲和层析柱纯化即得突变体Cblac-Mut8漆酶。
5.如权利要求4所述获得突变体Cblac-Mut8漆酶的方法,其特征在于:Cblac漆酶的氨基酸序列如SEQ NO.2所示。
6.如权利要求5所述获得突变体Cblac-Mut8漆酶的方法,其特征在于:编码Cblac漆酶的基因序列如SEQ NO.1所示。
7.如权利要求4所述获得突变体Cblac-Mut8漆酶的方法,其特征在于:步骤2)中的表达载体为pET-28a质粒;步骤3)的细菌感受态细胞为大肠杆菌BL21(DE3)。
8.权利要求1所述突变体Cblac-Mut8漆酶在降解有机染料中的应用。
CN202011399467.XA 2020-12-04 2020-12-04 一种Cblac-Mut8漆酶突变体 Active CN114606209B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011399467.XA CN114606209B (zh) 2020-12-04 2020-12-04 一种Cblac-Mut8漆酶突变体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011399467.XA CN114606209B (zh) 2020-12-04 2020-12-04 一种Cblac-Mut8漆酶突变体

Publications (2)

Publication Number Publication Date
CN114606209A true CN114606209A (zh) 2022-06-10
CN114606209B CN114606209B (zh) 2023-09-29

Family

ID=81855957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011399467.XA Active CN114606209B (zh) 2020-12-04 2020-12-04 一种Cblac-Mut8漆酶突变体

Country Status (1)

Country Link
CN (1) CN114606209B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994524A (zh) * 2012-11-16 2013-03-27 南京农业大学 一种漆酶基因及其编码的蛋白和应用
CN105671011A (zh) * 2016-03-25 2016-06-15 中国农业科学院农业资源与农业区划研究所 细菌类漆酶laclK的基因和蛋白及应用
CN109439635A (zh) * 2018-10-23 2019-03-08 江南大学 一种催化效率提高的CotA漆酶及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994524A (zh) * 2012-11-16 2013-03-27 南京农业大学 一种漆酶基因及其编码的蛋白和应用
CN105671011A (zh) * 2016-03-25 2016-06-15 中国农业科学院农业资源与农业区划研究所 细菌类漆酶laclK的基因和蛋白及应用
CN109439635A (zh) * 2018-10-23 2019-03-08 江南大学 一种催化效率提高的CotA漆酶及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUOTAO MAO ET AL.: ""A sustainable approach for degradation and detoxifiation of malachite green by an engineered polyphenol oxidase at high temperature"", 《JOURNAL OF CLEANER PRODUCTION》 *
PARVEEN,S. ET AL.: ""peptidoglycan editing factor PgeF [Caldicellulosiruptor bescii]",Accession Number:WP_01 5907945.1", 《GENBANK》 *

Also Published As

Publication number Publication date
CN114606209B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
CN108559735B (zh) 一种亮氨酸脱氢酶突变体的构建及其应用
CN108251396B (zh) 5-氨基乙酰丙酸合成酶突变体及其宿主细胞和应用
Liu et al. Novel L-cysteine-dependent maleylpyruvate isomerase in the gentisate pathway of Paenibacillus sp. strain NyZ101
Akel et al. Characterization of a purified thermostable protease from hyperthermophilic Bacillus strain HUTBS71
CN109439635B (zh) 一种催化效率提高的CotA漆酶及其应用
CN113106082B (zh) 动物粪便宏基因组来源的丙氨酸消旋酶及其制备和应用
CN113151198A (zh) 一种γ-谷酰胺甲胺合成酶的突变体,其编码基因、氨基酸序列及其应用
CN110713993B (zh) 5-氨基乙酰丙酸合成酶突变体及其宿主细胞和应用
CN114606209B (zh) 一种Cblac-Mut8漆酶突变体
Reichenbecher et al. Transhydroxylase of Pelobacter acidigallici: a molybdoenzyme catalyzing the conversion of pyrogallol to phloroglucinol
CN101103117B (zh) 通过在衣藻中异源表达ⅱ型nad(p)h脱氢酶来生产氢气
CN114590906B (zh) 细菌漆酶在降解有机染料中的应用
WO2015008637A1 (ja) キサンチンオキシダーゼ遺伝子とそれをコードするアミノ酸配列
De Vendittis et al. Regulation of the properties of superoxide dismutase from the dental pathogenic microorganism Streptococcus mutans by iron-and manganese-bound co-factor
Yoneda et al. The first archaeal L-aspartate dehydrogenase from the hyperthermophile Archaeoglobus fulgidus: gene cloning and enzymological characterization
Bai et al. Purification and Stabilization of a Monomeric Isocitrate Dehydrogenase fromCorynebacterium glutamicum
CN113699173A (zh) HbACLB-1基因在提高原核表达菌生长速率、研究橡胶树产胶能力中的应用
CN113151199A (zh) 一种具有热稳定性的γ-谷酰胺甲胺合成酶的突变体,其编码基因、氨基酸序列及其应用
JP2009089649A (ja) クロストリジウム・クルベリのジアホラーゼ遺伝子およびその利用
CN110862977B (zh) 一种耐氯化钠和氯化钾的木糖苷酶突变体h328d及其应用
CN114621944B (zh) 酶活提高的精氨酸脱亚胺酶突变体
JP5858542B2 (ja) アルギン酸の分解方法
JP2019129716A (ja) 新規酵素剤、その製造方法およびその用途
Wakai et al. Purification and biochemical characterization of the F1-ATPase from Acidithiobacillus ferrooxidans NASF-1 and analysis of the atp operon
JP4349669B2 (ja) アンモニア測定用液状試薬

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant