CN114599426A - 用于光束位置监测和光束成像的系统、设备和方法 - Google Patents

用于光束位置监测和光束成像的系统、设备和方法 Download PDF

Info

Publication number
CN114599426A
CN114599426A CN202080061006.3A CN202080061006A CN114599426A CN 114599426 A CN114599426 A CN 114599426A CN 202080061006 A CN202080061006 A CN 202080061006A CN 114599426 A CN114599426 A CN 114599426A
Authority
CN
China
Prior art keywords
electrodes
line
accelerator
current
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080061006.3A
Other languages
English (en)
Inventor
V·维克塞尔曼
A·杜纳耶夫斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tae Technologies
Original Assignee
Tae Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tae Technologies filed Critical Tae Technologies
Publication of CN114599426A publication Critical patent/CN114599426A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/22Details of linear accelerators, e.g. drift tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0046Arrangements for measuring currents or voltages or for indicating presence or sign thereof characterised by a specific application or detail not covered by any other subgroup of G01R19/00
    • G01R19/0061Measuring currents of particle-beams, currents from electron multipliers, photocurrents, ion currents; Measuring in plasmas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2277/00Applications of particle accelerators
    • H05H2277/10Medical devices
    • H05H2277/11Radiotherapy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2277/00Applications of particle accelerators
    • H05H2277/10Medical devices
    • H05H2277/11Radiotherapy
    • H05H2277/113Diagnostic systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Measurement Of Radiation (AREA)
  • Particle Accelerators (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

系统、设备和方法的实施例涉及用于检测光束线中的光束未对准的快速光束位置监测。在示例中,快速光束位置监测器包括延伸到光束线的组件的内部的多个电极。快速光束位置监测器被配置为基于束晕电流检测穿过光束线的组件的光束的位置。系统、设备和方法的实施例还涉及非侵入性地监测沿着光束线前进的光束的监测参数。在示例中,气体沿着光束线被喷吹入泵送室。根据由前进通过光束线的光束的高能光束粒子的碰撞引起的荧光来测量一个或多个光束参数。

Description

用于光束位置监测和光束成像的系统、设备和方法
相关申请的交叉引用
本申请要求于2020年8月13日提交的题为“SYSTEMS,DEVICES,AND METHODS FORFAST BEAM POSITION MONITORING(用于快速光束位置监测的系统、设备和方法)”的美国临时申请序列号63/065,448、和于2020年8月13日提交的题为“SYSTEMS,DEVICES,ANDMETHODS FOR GAS PUFF BEAM IMAGING(用于气体喷吹光束成像的系统、设备和方法)”的美国临时申请序列号63/065,442、和于2019年8月30日提交的题为“SYSTEMS,DEVICES,ANDMETHODS FOR FAST BEAM POSITION MONITORING(用于快速光束位置监测的系统、设备和方法)”的美国临时申请序列号62/894,290、和于2019年8月30日提交的题为“SYSTEMS,DEVICES,AND METHODS FOR GAS PUFF BEAM IMAGING(用于气体喷吹光束成像的系统、设备和方法)”的美国临时申请序列号62/894,220的优先权,其全部通过引用以其整体并入本文。
技术领域
本文所描述的主题大体涉及光束系统,并且具体地涉及光束系统的带电粒子光束线的光束诊断,并且更具体地,涉及用于促进快速光束位置监测以检测光束线中的光束未对准的系统和方法。本主题进一步涉及用于促进非侵入性光束诊断的系统和方法。
背景技术
硼中子捕获治疗(BNCT)是一种治疗多种类型癌症的方式,包括一些最困难的类型。BNCT是一种使用硼化合物选择性地治疗肿瘤细胞同时保留正常细胞的技术。将包含硼的物质注射到血管中,并且硼聚集在肿瘤细胞中。然后患者接收利用中子(例如,以中子束的形式)的放射治疗。中子与硼反应以杀死肿瘤细胞,同时减少或消除对正常细胞的伤害。长期临床研究已经证明,能量谱在3-30千电子伏(keV)范围内的中子束可能更好实现更有效的癌症治疗,同时降低对患者的辐射负荷。该能谱或范围通常被称为超热(epithermal)。
用于产生超热中子(例如超热中子束)的大多数常规方法是基于质子(例如质子束)与铍或锂(例如铍靶或锂靶)的核反应。
对于基于静电加速器的解决方案,光束诊断是带电粒子光束线设计的固有部分。光束传输中的一项关键任务是确保光束正确定位在光束线内(例如,光束与光束线组件和墙壁没有直接的相互作用)。放置或使用这样的光束诊断的任何影响可以与光束能量成比例,因为光束破坏力随光束能量上升。这对于直流(DC)光束的传输尤其如此,其中可以在毫秒时间尺度上对光束线组件产生不可逆的损坏。因此,在基于加速器的解决方案中,连续监测光束位置是使光束传输成功的关键。
基于二次发射监测器阵列的传统光束位置监测器(BPM)证明了具有毫米分辨率的可靠操作。然而,由于传统BPM的探头(薄箔)与光束的直接相互作用,传统BPM具有相对低的光束功率接受阈值。因此,对于高达3.5兆瓦(MW)的光束来说,基于二次发射监测器阵列的光束监测不是优选的。
非破坏性光束位置监测器(BPM)通常基于光束阻抗的检测。这样的非破坏性BPM大多是电容型BPM(例如,线性剪切、按钮类型、和带状线BPM)。这样的光束阻抗检测设备的操作原理导致它们的使用限于脉冲束。
传统系统出现1)无法使用直流DC光束成功操作,2)缺乏毫秒响应时间,3)无法接受具有每核高达2.5兆电子伏(MeV)的功率的光束,4)缺乏简单性,以及5)缺乏可靠性。
对于基于加速器的解决方案,这样的光束诊断的可交付成果还包括提供关于光束参数和特性的信息,这些信息广泛用于光束线元件的布置和控制、光束整形、光束聚焦、光束弯曲、清洁和旋转或光束线元件、光束监测和统计等。通常,最发达和使用最多的光束诊断可以称为侵入式诊断,其对光束的影响(例如,在测量过程期间)通常导致一个或多个光束参数的不期望的扰动。
用于测量光束尺寸和横截面轮廓的传统侵入式光束诊断包括狭缝网格和艾里逊(Allison)发射度扫描器、线束轮廓仪等。然而,这样的侵入式光束诊断不太适合实时光束跟踪,因为它们a)以一种通常导致在短持续时间之后不期望地终止光束的方式扰动光束,并且b)由于与光束粒子的直接相互作用,在可接受的光束功率方面受到限制。
传统光束线扫描器的使用受探头收集的光束功率限制。因此,直流(DC)光束仅可在低光束能量区域(例如,在15毫安(mA)电流下相对低能量光束线中的30千电子伏特(keV))进行探测。为了克服该限制,可以使用脉冲光束,它允许使用具有更高能量光束的线扫描器(由光束脉冲持续时间确定)。然而,由于测量期间的光束失真,这两种方法(例如,有或没有脉冲光束)都不适合连续监测光束参数(位置和尺寸)。
重要的是要注意,高能束粒子与探针的相互作用通常伴随着各种现象,其中一些可能使信号解释变得非常复杂。例如,二次电子发射(SEE)现象修改在探针上测量的电流(信号)。经由探针偏置的SEE抑制的常用方法并不确保减少对任意光束粒子能量的信号的SEE贡献。此外,探针表面附近的可能等离子体形成和探针的快速加热也是影响信号的过程。这些现象的贡献难以预测和解释。
为了监测高功率直流光束(高达5千瓦(kW))并输送基本的光束特性,诸如光束位置、尺寸和轮廓,真正的非侵入式光束诊断是期望的。另外,这样的非侵入式光束诊断的可用性可以促进用于光束控制系统的实时反馈回路。
出于这些和其他原因,需要监测光束系统内的光束位置的改进的、高效的和紧凑的系统、设备和方法以及提供中子束系统内的非侵入式光束诊断的改进的、高效的和紧凑的系统、设备和方法。
发明内容
本文针对光束系统描述了系统、设备和方法的示例实施例,并且更具体地,描述了用于促进快速光束位置监测以检测光束线中的光束未对准的系统和方法。在某些示例实施例中,为配置为中子束系统(NBS)的示例光束系统提供光束位置监测器(BPM)(例如,本文中也称为快速光束位置监测器或FBPM)。
在某些示例实施例中,光束位置监测器(BPM)可包括延伸到光束系统的光束线的内部的多个电极。在这些实施例中,光束位置监测器(BPM)可以通过电极收集束晕电流来操作。电极可以与BPM的壁电流隔离并相对于BPM壁偏置,这可以减少二次电子发射(SEE)电流对信号的贡献,并且可以增加从束产生的等离子体所收集的束晕电流。
光束位置监测器(BPM)可包括与减少或消除光束引起的对光束线组件的损坏相关联的检测灵敏度水平,同时最小化对前进通过光束线的光束的干扰。也就是说,前进通过光束线的组件的光束的束电流的最小量可以由于电极而被减少。
系统、设备和方法的实施例还涉及基于加速器的光束系统,并且更具体地,涉及用于促进非侵入式光束诊断的系统和方法。在示例实施例中,非侵入式光束诊断系统包括适合于光束线的气体喷吹光束成像(GPBI)诊断系统,例如用作中子束系统(NBS)的一部分的光束线。气体喷吹光束成像(GPBI)诊断系统可适于实时输送关于光束位置和尺寸的信息,而不产生大量光束扰动。非侵入式光束诊断系统是时间分辨和空间分辨的,并且适用于各种不同的光束功率。而且,目前的气体喷吹光束成像(GPBI)诊断系统适合于高能束线(HEBL),或作为中子束系统(NBS)的一部分在串联加速器中或附近。
通过实现光束的非侵入式连续监测和获取用于光束控制系统的关键光束参数(尺寸、位置、轮廓)而没有对光束功率上限的限制,示例实施例克服了与传统侵入式光束监测解决方案相关联的上述限制。另外,目前的GPBI诊断系统的时间和空间分辨率都比传统诊断有所提高。例如,目前的GPBI诊断系统的时间分辨率约是数百毫秒,这比线扫描器的测量时间尺度(几秒)有显著改进。
在示例实施例中,由于与高能束粒子的碰撞而产生的残余(背景)或喷吹气体的荧光被用作用于测量横向光束尺寸(轮廓)和光束位置的非破坏性诊断技术的一部分。为了测量光束参数(例如,横向尺寸、位置、倾角),来自光束-气体相互作用区域的荧光的辉光由记录设备或光束成像诊断的成像组件(例如,相机)记录,提供关于光束横向尺寸、光束位置和倾角的数据。
在检查以下附图和详细描述后,本文所描述的主题的其他系统、设备、方法、特征和优点对于本领域技术人员来说将是或将变得显而易见。本发明的意图是,所有这样的附加系统、方法、特征和优点被包括在本说明书中,在本文所描述的主题的范围之内,并且受到随附的权利要求保护。示例实施例的特征绝不应被解释为限制所附权利要求,在权利要求中没有对那些特征的明确叙述。
附图说明
通过研究附图,本文阐述的主题关于其结构和操作的细节可能是显而易见的,其中相同的附图标记指代相同的部分。附图中的组件不必按比例,相反重点在于说明本主题的原理。而且,所有说明都旨在传达概念,其中相对尺寸、形状和其他详细属性可以示意性地说明,而不是字面或精确地说明。
图1A是用于与本公开的实施例一起使用的中子束系统的示例实施例的示意图。
图1B是用于硼中子捕获治疗(BNCT)的中子束系统的示例实施例的示意图。
图2示出了用于与本公开的实施例一起使用的示例预加速器系统或离子束注入器。
图3是图2所示的离子束注入器系统的光束位置监测器(BPM)的示例实施例的透视图。
图4是示出在人工未对准期间在示例光束位置监测器(BPM)的电极上所收集的示例电流波形的图表图像。
图5是具有光束成像(例如,GPBI)诊断系统的图2所示的离子束注入器系统的泵送室的实施例的透视图。
图6是用于脉冲光束的光束成像(GPBI)诊断系统的成像组件的透视图。
图7示出了用于与本公开的实施例一起使用的示例时序方案。
图8是由气体喷吹光束成像(GPBI)诊断系统所获取的示例光束图像。
图9是图8所示的后处理图像的示例。
图10是示出测量的光束线积分轮廓的示例的图。
图11A和图11B示出了描绘控制系统的示例实施例的框图,本公开的实施例可以利用该控制系统进行操作。
图12是描绘可以与本公开的实施例一起使用的计算装置的示例实施例的框图。
具体实施方式
在详细描述本主题之前,应当理解,本公开不限于所描述的特定实施例,因此当然可以改变。还应当理解,本文使用的术语仅出于描述特定实施例的目的,而不旨在限制,因为本公开的范围将仅由所附权利要求限制。
术语“粒子(particle)”在本文中广泛使用,并且除非另外限制,否则可用于描述电子、质子(或H+离子)或中性,以及具有多于一个电子、质子和/或中子(例如,其他离子、原子和分子)的物质。
本文描述了用于光束系统(例如,包括粒子加速器)中的诊断的系统、设备和方法的示例实施例。本文所描述的实施例可以与任何类型的粒子加速器一起使用,或在涉及以特定能量产生带电粒子束以提供给粒子加速器的任何粒子加速器应用中使用。本文中的实施例可用于多种应用,其中的示例是作为用于产生用于硼中子捕获治疗(BNCT)的中子束的中子束系统。为了便于描述,本文所描述的许多实施例将在用于BNCT中的中子束系统的上下文中进行,尽管实施例不仅限于中子束的产生,也不仅限于特别是BNCT应用。
图1A是用于与本公开的实施例一起使用的光束系统的示例实施例的示意图。此处,光束系统10包括源22、低能光束线(LEBL)190、被耦接到低能光束线(LEBL)190的加速器40、和从加速器40延伸到容纳靶196的靶组件的高能光束线(HEBL)50。LEBL 190被配置为将光束从源22传输到加速器40,加速器40被配置为加速光束。HEBL 50将光束从加速器40的输出传送到靶196。
本文描述了系统、设备和方法的示例性实施例,用于促进快速光束位置监测,以检测光束系统10的光束线中的光束未对准。在示例实施例中,提供了一种简单且可靠的光束位置监测器(BPM)。在某些示例实施例中,光束位置监测器(BPM)可包括延伸到中子束系统(NBS)的光束线的内部的多个电极。在这些实施例中,光束位置监测器(BPM)可以通过电极收集束晕电流来操作。电极可以与BPM的壁电流地隔离,并使用外部电源进行偏置。相对于BPM壁的偏置可以减少二次电子发射(SEE)电流对信号的贡献,并且可以增加从光束产生的等离子体收集的束晕电流。
在示例实施例中,光束位置监测器(BPM)被配置为当前进通过光束线的光束偏离轴时信通知号或指示控制系统。
光束位置监测器(BPM)可包括与减少或消除光束引起的对光束线组件的损坏相关联的检测灵敏度水平,同时最小化对前进通过光束线的光束的干扰。也就是说,穿过光束线的组件的光束的束电流的最小量可以由于电极的电流收集而被减少。BPM的示例实施例可以有利地利用直流(DC)光束操作,具有毫秒(或更快)响应时间,和/或接受每核2.5MeV(和更高)的光束功率。
在一些示例实施例中,BPM可以是被配置用于从离子束产生中子束的光束系统的一部分。光束系统可包括用作离子束注入器系统的LEBL、被耦接到离子束注入器系统的高电压(HV)串联加速器、以及从串联加速器延伸到容纳中子产生靶的中子靶组件的HEBL。在这些示例实施例中,离子束注入器可包括离子源、结合到从离子源延伸的低能光束线中的光束光学器件、预加速器管、被耦接到串联加速器的泵送室和光束诊断。离子源可以在等离子体体积中产生带电粒子,这些带电粒子可以在输送到中子产生靶时被提取、加速、调节并最终用于产生中子。监测光束位置的这样的改进的、高效的和紧凑的系统、设备和方法使得能够在保持操作效率的同时保护中子束系统设备。
系统10还可包括基于气体的或基本上非侵入性的光束诊断系统。该诊断系统可包括适合于LEBL的气体喷吹(puff)光束成像(GPBI),用作光束系统的光束注入器,其中GPBI适于实时地输送关于光束位置和尺寸的信息而没有光束扰动。而且,目前的GPBI诊断系统适用于高能束线(HEBL),或在加速器中或附近。非侵入式光束诊断系统是时间和空间分辨的,并且对光束功率没有上限。
在示例实施例中,由于与高能束粒子的碰撞而产生的残余(背景)或喷吹气体的荧光被用作用于测量横向光束尺寸(轮廓)和光束位置的非破坏性诊断技术的一部分。由于气体原子和分子的碰撞激发,带电粒子传播通过气体环境导致光的发射。为了测量光束参数(横向尺寸、位置、倾角),来自光束-气体相互作用区域的荧光的辉光由记录设备或成像组件(例如,相机)记录,提供关于光束横向尺寸、光束位置和倾角的数据。所获得的图像可以经由Abel反演(在某些假设下,例如光束轴对称)或使用断层扫描技术进一步与实际光束轮廓相关联。
在示例实施例中,GPBI诊断系统包括一个或多个成像组件,并且在许多实施例中,至少两(2)个正交取向的成像组件,被耦接并延伸到泵送室的内部和从泵送室延伸并提供进入泵送室的通道的气体喷吹口。
气体喷吹口是可控的,使得调节引入GPBI诊断系统的中性点(neutral)的数量以避免与要测量或观察的光束相互作用。也就是说,穿过光束线的光束,在由GPBI诊断系统观察到时,穿过中性点云而没有受到实质性干扰。在实施例中,在本公开的实施例中喷吹的气体包括氩气或氙气中的一种或多种。
图1B是示出根据本公开的实施例的用于硼中子捕获治疗(BNCT)的示例中子束系统10的示意图。中子束系统10包括形成LEBL的至少一部分的预加速器系统20(其中预加速器系统20用作如图2所示的带电粒子束注入器),被耦接到预加速器系统20的高电压(HV)串联加速器40,以及从串联加速器40延伸到容纳中子产生靶的中子靶组件200的高能光束线50。在该实施例中,束源22是离子源并且带电粒子束是在串联加速器40内转换成质子束之前的负离子束。将理解到,中子束系统10以及预加速器系统20也可以用于其他应用,诸如货物检查和其他,并且不限于BNCT。
预加速器系统20(在本文中也称为带电粒子束注入器或离子束注入器)被配置为将离子束从离子源22传送到串联加速器40的输入(例如,输入孔径)。
在许多实施例中,由耦合到其的高压电源42供电的串联加速器40可以产生质子束,质子束的能量通常等于施加到位于串联加速器40内的加速电极的电压的两倍。质子束的能级是通过以下来实现的:将负氢离子束从串联加速器40的输入加速到最里面的高电位电极,从每个离子中剥离两个电子,并且然后以相反的顺序遇到通过相同电压将产生的质子向下游加速。
高能光束线50将质子束从串联加速器40的输出传送到中子靶组件200中的中子产生靶,中子靶组件200位于光束线延伸到患者治疗室的分支70的端部处。系统10可以被配置为将质子束引导到任意数量的一个或多个目标和相关联的治疗区域。在该实施例中,高能光束线50包括三个分支70、80和90以延伸到三个不同的患者治疗室中。高能光束线50包括泵送室51、防止光束散焦的四极磁体52和72、将光束转向到治疗室的偶极或弯曲磁体56和58、光束校正器53、诸如电流监测器54和76的诊断仪、快速光束位置监测器55部分,以及扫描磁体74。
高能光束线50的设计可以取决于治疗设施的配置(例如,治疗设施的单层配置、治疗设施的两层配置等)。可以使用弯曲磁体56将光束输送到目标组件(例如,定位在治疗室附近)200。可以包括四极磁体72,然后将光束聚焦到目标处的特定尺寸。然后,光束通过一个或多个扫描磁体74,其以期望的图案(例如,螺旋、弯曲、成行和成列阶梯、其组合等等)提供光束在目标表面上的横向移动。光束横向移动可以帮助实现质子束在锂靶上的平滑、均匀的时间平均分布,防止过热,并使锂层内的中子产生尽可能均匀。
在进入扫描磁体74之后,可以将光束输送到电流监测器76中,该电流监测器76测量束电流。所测量的束流值可用于操作安全联锁。可以用闸阀77将目标组件200与高能光束线体积物理分离。闸阀的主要功能是在目标交换/加载时将光束线的真空体积与目标分离。在实施例中,光束可能不由弯曲磁体56弯曲90度,它相反直接向右移动,它然后进入位于水平光束线中的四极磁体52。之后,光束可以通过另一弯曲磁体58弯曲到所需的角度,这取决于房间配置。否则,弯曲磁体58可以用Y形磁体替换,以便将光束线分成两个方向,用于位于同一楼层的两个不同治疗室。
图2示出了用于与本公开的实施例一起使用的预加速器系统或离子束注入器的示例。在该示例中,预加速器系统20包括单(einzel)透镜(未示出)、预加速器管26和螺线管510,并且被配置为加速从离子源22注入的负离子束。预加速器系统20被配置为将束粒子加速到串联加速器40所需的能量,并且提供负离子束的整体会聚以匹配串联加速器40的输入孔径或入口处的输入孔径区域。预加速器系统20还被配置为在回流从串联加速器40通过预加速器系统时最小化或散焦回流,以减少对离子源的损坏和/或回流到达离子源的细丝的可能性。
在实施例中,离子源22被配置为向单透镜(未示出)下游提供负离子束,并且负离子束继续穿过预加速器管26和螺线管510。螺线管510位于预加速器管与串联加速器之间并且可与电源电耦接。负离子束穿过螺线管510到达串联加速器40。
预加速器系统20还可包括离子源真空箱24和泵送室28,其与预加速器管26以及上文所描述的其他元件是通向(lead to)串联加速器的相对低能量光束线的一部分。单透镜(未示出)位于其内的离子源真空箱24从离子源22延伸。预加速器管26可被耦接到离子源真空箱24,并且螺线管510可被耦接到预加速器管26。泵送室28可被耦接到螺线管510和串联加速器40。离子源22用作带电粒子源,这些带电粒子可以在输送到中子产生靶时被加速、调节并最终用于产生中子。本文将参考产生负氢离子束的离子源来描述示例实施例,尽管实施例不限于此,并且其他正粒子或负粒子可由该源产生。
预加速器系统20可以具有零个、一个或多个磁性元件,用于诸如聚焦和/或调整光束的对准的目的。例如,任何这样的磁性元件可用于将光束与光束线轴和串联加速器40的接受角相匹配。离子真空箱24可以具有位于其中的离子光学器件。
存在两种类型的负离子源22,它们的不同之处在于负离子的产生机制:表面类型和体积类型。表面类型通常要求特定内表面上存在铯(Cs)。体积类型依赖于在高电流放电等离子体的体积中形成负离子。虽然两种类型的离子源都可以为与串联加速器相关的应用输送期望的负离子电流,但是表面类型负离子源对于调制是不期望的。也就是说,对于本文所描述的实施例中的负离子束的调制,体积类型的负离子源(例如,不使用铯(Cs))是优选的。
转到图3,示例光束位置监测器(BPM)(例如,或快速光束位置监测器)30包括在一对法兰34之间延伸的圆柱形壁32,该法兰34适于沿着光束线(例如,低能光束线(LEBL),包括预加速器系统20、加速器40、高能光束线(HEBL)50)安装光束位置监测器(BPM)30。在光束位置监测器(BPM)30沿着低能光束线(LEBL)安装的示例中,光束位置监测器(BPM)可以安装在预加速器管26与泵送室28之间。光束位置监测器(BPM)30的操作可以基于电极36所收集的束晕电流,该电极36从壁32突出并延伸到光束线的内部。在示例实施例中,电极36可以通过一个或多个冷却设备41来冷却。在示例实施例中,一个或多个冷却设备可包括水冷却设备。
在图3中,光束位置监测器(BPM)30被示出为包括四个电极36,尽管实施例不限于四个电极(例如,在本公开的范围内可以采用任何数量的电极)。电极36优选地成形为圆柱体并且由钽(Ta)或钨(W)中的一种或多种制成以增加对热通量的阻力。电极36也可以由能够承受由光束产生的热负荷的复合材料制成。可以针对每个电极36单独调整电极36的插入长度(例如,进入光束线的内部的电极延伸距离)(例如,使用控制系统,在图3中未示出),允许用户适应用于任意尺寸的光束的光束位置监测器(BPM)30。电极36旨在暴露于束晕电流,因此预期所收集的功率通量要低得多。而且,在光束-残余气体相互作用区域附近所形成的等离子体扩展到束外边界(beam outer boundary),形成用于光束位置监测器(BPM)30的附加信号。
电极36可以与BPM壁32电流地隔离并使用外部电源来偏置。相对于BPM壁32的偏置a)可以减少二次电子发射(SEE)电流对信号的贡献,并且b)可以增加从光束产生的等离子体所收集的束晕电流。
当光束系统正在操作并且光束正在从源(例如22)提取并传播通过示例光束系统(例如10)的组件(例如190、40、50、196)时,光束位置监测器(BPM)30使得控制系统能够有源(active)地监测光束位置。每个电极36可以具有与其相关联的电流阈值(例如,信号阈值)。当由给定电极所收集的电流(例如,或信号)超过其电流阈值时,可能认为光束已朝向该电极偏转太远,因此偏离轴。光束位置监测器(30)可以向控制系统提供由电极所收集的电流已经超过其电流阈值的指示,并且控制系统可以调整整个光束系统(例如,10)的一个或多个组件的参数以将光束移回轴上。可调整参数的示例可包括提供给光束转向磁体的输入,使得改变光束转向磁体的位置以将光束移回到期望轴上。以这种方式,光束位置监测器(BPM)30连同控制系统连续/重复地且实时地向光束转向磁体和/或光束系统的其他组件提供反馈。
在实施例中,与给定电极相关联的电流阈值可以不同于与光束位置监测器(30)的另一电极相关联的电流阈值。进一步地,给定电极可能具有与其相关联的多个电流阈值,用于更精细地检测光束位置。也就是说,多个电流阈值可以与光束位置监测器的电极(例如,30)一起使用。在电极之间的方向上的光束离轴运动的检测可以基于与相邻电极相关联的多个电流阈值。
例如,一对相邻电极都可以记录信号电平(例如,所收集的电流)的增加,然而信号电平的增加可能超过与该对相邻电极中的每个电极相关联的第二较低电流阈值。在这样的示例中,超过与该对相邻电极中的每个电极相关联的第二较低电流阈值的信号电平可以指示光束在电极之间的离轴方向上。
因此,控制系统可以基于信号电平超过用于光束位置监测器(BPM)30的单个电极的单个阈值的指示或基于信号电平超过用于相邻电极的两个较低阈值的指示,调整光束转向磁体。
而且,控制系统可以监测电极中的每一个上的信号的幅度,并且基于信号的幅度(例如,独立于或结合与电极相关联的一个或多个电流阈值)外推特定方向上的光束偏转的程度。然后,控制系统可以基于外推的(一个或多个)光束偏转的程度来调整光束转向磁体或其他参数,以便补偿光束偏转并使光束回到其期望轴。在这样的示例中,控制系统可以基于检测到的最小偏转量(例如,偏转阈值)连续地且实时地调整光束线参数,诸如光束转向磁体的位置。
在示例中,预测BPM电极36上的信号电平可能是困难的。因此,可能期望并执行在操作之前对BPM 30的校准。校准可通过可控且安全将光束移离光束线轴并收集BPM电极36上的电流来完成。
在BPM 30的校准期间,光束操作的脉冲模式可能是优选的,以减少BPM 30和其他光束线组件上的总光束沉积能量。其他光束位置诊断(例如,气体喷吹光束成像)也可能与BPM校准一起参与,以满足安全或其他规定。
在示例中,示例BPM 30的操作在示例中子束系统(NBS)10的示例低能光束线(LEBL)(例如,包括预加速器系统20的190)上进行了测试。在测试中,LEBL中的总负氢离子束电流约是12毫安(mA)。为了证明BPM 30的性能,使用X和Y转向磁体故意使光束偏离光束线轴。图4示出了由每个BPM电极36收集的电流波形。如图4所示,当使用X和Y转向磁体故意未对准光束时,BPM电极36收集更大的电流。显示最大电流值以及最小电流值。基于图4所示的结果,针对每个FBPM电极36的阈值电流可以被定义为向控制系统发出光束未对准的信号。在用于生成图4所描绘的结果的测试中,BPM 30的响应时间是4微秒(μs)。
在正常操作期间由BPM电极36所收集的束电流的小幅度有利地确保了BPM 30的长寿命。也就是说,由于由BPM电极36所收集的束电流的小幅度,可以避免或显著延迟导致BPM30的一个或多个组件的期满(expiration)的束诱发损坏。
示例BPM有利地使能以微秒分辨率检测异常光束行为。在某些实施例中,BPM的响应时间可以基于读取电子装置的采集速率。BPM有利地向控制系统提供光束未对准的快速警报/通知。
BPM 30有利地允许独立调整每个电极36的插入长度(例如,电极到光束线的内部的延伸距离),使得可以用较大的信号更快地检测到小的光束偏差(例如,利用减少的响应时间)。这改进了BPM对任意(包括相当复杂)形状的光束的反应时间。
每个电极36可以与光束位置监测器(BPM)内的唯一的电极位置相关联,并且每个唯一的电极位置可以是可调整的。因此,虽然一对电极可以以给定的距离分离,但是这样的距离也是可调整的。
BPM 30不限于在本文所描述的具体示例中使用,并且还可以用于在工业或制造过程中实现的光束系统,诸如半导体芯片的制造、材料特性的改变(诸如表面处理)、食品辐照、和医疗灭菌中的病原体破坏。BPM 30还可用于成像应用,诸如货物或集装箱检查。并且通过另一个非详尽示例,BPM 30可用于医学应用的粒子加速器,诸如医学诊断系统、医学成像系统、或其他非BNCT放射治疗系统。
转到图5,泵送室28可以具有安装在光束传播轴B的横向(例如,正交)方向上的多组(例如,如图5中描绘的两组)光束成像诊断500。光束成像诊断500的这样的布置使得能够在横向于光束传播方向的方向上表征光束。气体喷吹口31(部分示出)从泵送室28延伸并且提供进入泵送室28的内部的通道。泵送室28的顶部上的涡轮分子泵29可用于泵出通过气体喷吹口31喷吹的气体。涡轮分子泵29还可以在低能光束线20中保持期望或要求的背景气体压力。
图6示出了光束成像诊断系统500的示例实施例。在实施例中,记录设备或成像组件33(例如,相机)可以与透镜35耦接。透镜35可用于确定光束成像诊断系统500的视场和空间分辨率。光学管38的端部处的孔径39可以与记录设备(例如相机)33和透镜35匹配或对准,并且用于切断大部分以其它方式可能到达记录设备或成像组件(例如相机)的传感器(未示出)的背景光。为了进一步降低背景噪声(例如背景光),干涉带通滤波器(未示出)可以可选地安装在滤波器支架37内部,该滤波器支架37可以位于光学管38与透镜35之间。
气体喷吹可以由耦接到气体喷吹阀31(图5所示)的气阀(未示出)驱动。气阀(未示出)可以在气阀打开状态的受控持续时间下驱动气体喷吹,从而使能控制喷吹入泵送室28的气体的量以及控制或选择将气体喷吹入泵送室28时的时间。
光束成像诊断系统500的(一个或多个)记录设备和其他组件、气阀可以通过控制系统(未示出;图11A和11B描绘其示例)来控制。
可能希望选择喷嘴结构和气体喷吹的位置,以便在记录设备或成像组件33(例如,相机)的视场内实现气体的均匀分布。这可以显著改进所收集的信号的线性度并简化数据分析。
在示例实施例中,示例光束成像诊断系统500可以被配置为跟踪以DC和脉冲模式操作的光束系统的带电粒子束。这可以根据图7所示的示例时序方案来实现。光束成像诊断系统500的触发对于DC光束可以是任意的。在脉冲束产生的情况下,可以在光束脉冲之前触发气阀,以确保气体存在于光束诊断系统500的诊断视场内,以及气体的均匀性。记录设备或成像组件(例如,相机)触发可以相对于光束脉冲被延迟,以适应光束平衡时间以及荧光发射延迟。可以调整相机检测器曝光时间以累积尽可能多的信号,同时将信噪比(SNR)保持在最高水平。
图8示出了由示例光束成像诊断系统500的示例记录设备(例如,相机)所获取的原始图像。光束在图像中间可见。也就是说,30keV、12mA的负氢离子在图8的图像中从左向右传播。均匀的黑色背景由安装在真空室内的观察转储(observe dump)(未示出)形成。图9呈现了减去背景、人工重新缩放以强调光束并显示约10毫米(mm)光束长度的后处理图像。
从背景光中清除的图9中的图像可进一步用于获得LEBL内的光束位置、横向尺寸和光束倾角,它们实时传送到控制系统(参见例如图11A、11B)。光束尺寸在束电流的90%处被估计。可以取决于假设或测量的束电流分布来调整该水平。图像SNR可以通过使用带通滤波器(参见例如图6)以将收集限制为有用信号并使能更有效地切断背景光来进一步提高。
图10示出了所测量的光束线积分轮廓的示例,图10示出了类似高斯的束电流分布并且示出在束电流的90%水平处计算的光束尺寸是约10mm。图10中的径向距离在光束质心处归零(与图9比较)。可以使用例如Abel反演算法(基于光束的对称性)或使用断层扫描技术从图10重建实际的光束轮廓。
为了估计相对于低能光束线(LEBL)的轴的光束倾角,沿着光束传播计算光束质心,并与光束成像诊断系统的校准期间所获得的光束线轴坐标进行比较。
光束成像诊断系统500可以放置在光束线的任何期望位置,或者在加速器的低能量侧,在加速器本身中,或者在高能量侧。系统500不限于在本文所描述的具体示例中使用,并且还可以用于在工业或制造过程中实现的光束系统,诸如半导体芯片的制造、材料特性的改变(诸如表面处理)、食品辐照和医疗灭菌中的病原体破坏。系统500还可用于成像应用,诸如货物或集装箱检查。并且通过另一个非详尽示例,系统500可用于医学应用的粒子加速器,诸如医学诊断系统、医学成像系统或其他非BNCT放射治疗系统。
图11A和图11B示出了描绘控制系统的示例实施例的框图,本公开的实施例可以利用该控制系统进行操作。例如,所示的示例系统包括光束系统10和一个或多个计算设备3002。在实施例中,光束系统10可以是示例中子束系统(例如,以上系统10)的一部分。在这样的实施例中,光束系统10可以采用一个或多个控制系统3001A,一个或多个计算设备3002可以与控制系统3001A通信,以便与光束系统10(例如,中子束系统10)的系统和组件交互。这些设备和/或系统中的每一个被配置为彼此直接通信或经由诸如网络3004的本地网络进行通信。
计算设备3002可以由各种用户设备、系统、计算设备等来体现。例如,第一计算设备3002可以是与特定用户相关联的台式计算机,而另一计算设备3002可以是与特定用户相关联的膝上型计算机,并且又一计算设备3002可以是移动设备(例如,平板电脑或智能设备)。计算设备3002中的每一个可以被配置为与光束系统10通信,例如通过可经由计算设备访问的用户界面。例如,用户可以在计算设备3002上执行桌面应用,计算设备3002被配置为与光束系统10通信。
通过使用计算设备3002与光束系统10通信,用户可以根据本文所描述的实施例提供用于光束系统10的操作参数(例如,操作电压等)。在实施例中,光束系统10可包括控制系统3001A,光束系统10可以通过该控制系统3001A接收和应用来自计算设备3002的操作参数。
控制系统3001A可以被配置为从光束系统10的组件接收测量结果、信号或其他数据。例如,控制系统3001A可以从示例光束位置监测器(BPM)30(例如,图11A)接收指示穿过光束系统10的光束的位置的信号。控制系统3001A,取决于穿过光束系统的光束的位置,可以提供对一个或多个光束线组件3006(诸如光束转向磁体)的输入的调整,以根据本文所描述的方法改变光束的位置。控制系统3001A还可以直接或经由通信网络3004向计算设备3002提供从光束系统10的任何组件(包括光束位置监测器(BPM)30(例如,图11A))收集的信息。
例如,控制系统3001A可以从示例光束诊断系统500(例如,图11B)接收指示穿过光束系统10的光束的光束位置、光束的横向尺寸、光束的光束倾角、光束电流分布等的信号。取决于接收到的信号,控制系统3001A可以提供对一个或多个光束线组件3006的输入的调整,以根据本文所描述的方法改变光束的位置或其他参数。例如,控制系统3001A可以在光束脉冲之前触发气阀,以确保气体存在于光束诊断系统500(例如,图11B)的诊断视场内,以及气体的均匀性。控制系统3001A可以进一步相对于光束脉冲延迟记录设备或成像组件(例如,相机)的触发,以适应光束平衡时间以及荧光发射延迟。控制系统3001A可进一步调整相机检测器曝光时间以累积尽可能多的信号,同时将信噪比(SNR)保持在最高水平。
控制系统3001A还可以直接或经由通信网络3004向计算设备3002提供从光束系统10的任何组件(包括光束诊断系统500(例如,图11B))所收集的信息。
通信网络3004可包括任何有线或无线通信网络,包括例如有线或无线局域网(LAN)、个域网(PAN)、城域网(MAN)、广域网(WAN)等,以及实现它所需的任何硬件、软件和/或固件(诸如,例如,网络路由器等)。例如,通信网络3004可包括802.11、802.16、802.20、和/或WiMax网络。进一步地,通信网络3004可包括公共网络,诸如互联网,专用网络,诸如内联网,或其组合,并且可以利用现在可用或以后开发的各种网络协议,包括但不限于基于TCP/IP的网络协议。
计算设备3002和控制系统3001A可以由一个或多个计算系统来体现,诸如图12所示的装置3100。如图12所示,装置3100可包括处理器3102、存储器3104、输入和/或输出电路3106、以及通信设备或电路3108。还应当理解,这些组件3102-3108中的某些组件可包括类似的硬件。例如,两个组件都可以利用相同的处理器、网络接口、存储介质等来执行它们的相关联的功能,使得每个设备不需要重复的硬件。因此,如本文所使用的关于装置的组件的术语“设备”和/或“电路”的使用可以涵盖配置有软件以执行与该特定设备相关联的功能的特定硬件,如本文所描述的。
术语“设备”和/或“电路”应广义地理解为包括硬件,在一些实施例中,设备和/或电路还可包括用于配置硬件的软件。例如,在一些实施例中,设备和/或电路可包括处理电路、存储媒体、网络接口、输入/输出设备等。在一些实施例中,装置3100的其他元件可提供或补充(一个或多个)特定设备的功能。例如,处理器3102可提供处理功能,存储器3104可提供存储功能,通信设备或电路3108可提供网络接口功能等。
在一些实施例中,处理器3102(和/或协处理器或任何其他辅助处理器或以其他方式与处理器相关联的处理电路)可以经由总线与存储器3104通信,用于在装置的组件之间传递信息。存储器3104可以是非暂态的并且可以包括例如一个或多个易失性和/或非易失性存储器。换句话说,例如,存储器可以是电子存储设备(例如,计算机可读存储介质)。存储器3104可以被配置为存储信息、数据、内容、应用、指令等,用于使得装置能够执行根据本公开的示例实施例的各种功能。
处理器3102可以以多种不同的方式实现,并且可以例如包括被配置为独立执行的一个或多个处理设备。附加地或可替代地,处理器可以包括一个或多个处理器,该处理器经由总线串联配置以使能指令、流水线和/或多线程的独立执行。术语“处理设备”和/或“处理电路”的使用可以理解为包括单核处理器、多核处理器、在装置的内部的多个处理器、和/或远程或“云”处理器。
在示例实施例中,处理器3102可以被配置为执行存储在存储器3104中或以其他方式处理器可访问的指令。可替代地或附加地,处理器可以被配置为执行硬编码功能。因此,无论是通过硬件或软件方法配置,还是通过硬件与软件的组合配置,处理器都可以表示在相应配置时能够执行根据本公开的实施例的操作的实体(例如,物理地体现在电路中)。可替代地,作为另一示例,当处理器被体现为软件指令的执行器时,指令可以具体地配置处理器以在执行指令时执行本文所描述的算法和/或操作。
在一些实施例中,装置3100可包括输入/输出设备3106,该输入/输出设备3106进而可以与处理器3102通信以向用户提供输出,并且在一些实施例中,从用户接收输入。输入/输出设备3106可包括用户界面并且可包括设备显示器,诸如用户设备显示器,其可包括网络用户界面、移动应用、客户端设备等。在一些实施例中,输入/输出设备3106还可包括键盘、鼠标、操纵杆、触摸屏、触摸区域、软键、麦克风、扬声器或其他输入/输出机构。处理器和/或包括处理器的用户接口电路可以被配置为通过存储在处理器可访问的存储器(例如存储器3104和/或类似物)上的计算机程序指令(例如,软件和/或固件)来控制一个或多个用户接口元件的一个或多个功能。
通信设备或电路3108可以是任何装置,诸如体现在硬件或硬件和软件的组合中的设备或电路,其被配置为从/向与装置3100通信的网络和/或任何其他设备或电路接收和/或发送数据。在该方面中,通信设备或电路3108可包括例如用于使能与有线或无线通信网络通信的网络接口。例如,通信设备或电路3108可包括一个或多个网络接口卡、天线、总线、交换机、路由器、调制解调器、和支持硬件和/或软件,或任何其他适合于使能经由网络进行通信的设备。附加地或可替代地,通信接口可包括用于与(一个或多个)天线交互以引起经由(一个或多个)天线传输信号或处理经由(一个或多个)天线处理接收信号的电路。这些信号可以由装置3100使用多种无线个域网(PAN)技术中的任何一种来发送,诸如当前和未来的蓝牙标准(包括蓝牙和蓝牙低功耗(BLE))、红外无线(例如IrDA)、FREC、超宽带(UWB)、感应无线传输等。另外,应当理解,这些信号可以使用Wi-Fi、近场通信(NFC)、微波存取全球互通(WiMAX)、或其他基于接近度的通信协议来发送。
如将理解到,任何这样的计算机程序指令和/或其他类型的代码可以加载到计算机、处理器、或其他可编程装置的电路上以产生机器,使得在机器上执行代码的计算机、处理器或其他可编程电路创建用于实现各种功能的装置,包括本文所描述的功能。
如上文所描述的并且如基于本公开将理解到,本公开的实施例可以被配置为系统、方法、移动设备、后端网络设备等。因此,实施例可包括各种装置,包括完全硬件或软件和硬件的任何组合。此外,实施例可以采取在至少一个非暂态计算机可读存储介质上的计算机程序产品的形式,该存储介质具有体现在存储介质中的计算机可读程序指令(例如,计算机软件)。可以使用任何适合的计算机可读存储介质,包括非暂态硬盘、CD-ROM、闪存、光学存储设备、或磁性存储设备。
用于与本公开的实施例一起使用的处理电路可包括一个或多个处理器、微处理器、控制器和/或微控制器,它们中的每一个可以是分立芯片或分布在多个不同芯片之间(和一部分)。用于与本公开的实施例一起使用的处理电路可包括数字信号处理器,该数字信号处理器可以在用于与本公开的实施例一起使用的处理电路的硬件和/或软件中实现。用于与本公开的实施例一起使用的处理电路可以与本文附图的其他组件通信地耦接。用于与本公开的实施例一起使用的处理电路可以执行存储在存储器上的软件指令,该软件指令使得处理电路采取许多不同的动作并控制本文附图的其他组件。
用于与本公开的实施例一起使用的存储器可以由各种功能单元中的一个或多个共享,或者可以分布在它们中的两个或多个之间(例如,作为存在于不同芯片内的单独存储器)。存储器也可以是它自己的单独芯片。存储器可以是非暂态的,并且可以是易失性的(例如,RAM等)和/或非易失性的存储器(例如,ROM、闪存、F-RAM等)。
用于执行根据所描述的主题的操作的计算机程序指令可以用一种或多种编程语言的任何组合来编写,包括面向对象的编程语言,诸如Java、JavaScript、Smalltalk、C++、C#、Transact-SQL、XML、PHP等以及传统的过程编程语言,诸如“C”编程语言或类似的编程语言。
下面阐述本主题的各方面,回顾和/或补充迄今为止所描述的实施例,其中这里的重点在于以下实施例的相互关系和可互换性。换句话说,重点在于实施例的每个特征可以与每个其他特征组合,除非另外明确说明或逻辑上不可信。
在一些实施例中,光束位置监测器包括延伸到光束线的组件的内部的多个电极。在这些实施例中的一些实施例中,光束位置监测器被配置为基于穿过光束线的组件的光束的晕电流来检测该光束的位置。在这些实施例中的一些实施例中,光束位置监测器还包括冷却装置。
在这些实施例中的一些实施例中,多个电极中的每个电极与电流阈值相关联。在这些实施例中的一些实施例中,多个电极中的至少一个电极与与不同于多个电极中的一个或多个其他电极的电流阈值相关联。在这些实施例中的一些实施例中,多个电极中的每个电极与多个电流阈值相关联。
在这些实施例中的一些实施例中,光束位置监测器被配置为当由多个电极中的一个或多个电极所的测量电流超过其相关联的电流阈值时将信号发送到控制系统。在这些实施例中的一些实施例中,光束位置监测器被配置为当由多个电极中的相邻电极所的测量电流超过与相邻电极中的每个电极相关联的多个电流阈值中的下限阈值时,将信号发送到控制系统。
在这些实施例中的一些实施例中,多个电极中的每个电极与电极延伸距离相关联。在这些实施例中的一些实施例中,电极延伸距离表示电极延伸到组件的内部的距离。在这些实施例中的一些实施例中,每个电极延伸距离是可调整的。
在这些实施例中的一些实施例中,电极与光束位置监测器的壁电流隔离。在这些实施例中的一些实施例中,多个电极被配置为由外部电源偏置。
在这些实施例中的一些实施例中,光束位置监测器被配置为当前进通过光束线的光束偏离轴时向控制系统发送信号。在这些实施例中的一些实施例中,穿过光束线的组件的光束的束电流的最小量由于多个电极而被减少。
在一些实施例中,光束系统包括光束位置监测器,该光束位置监测器被配置为基于穿过光束线的组件的光束的晕电流来检测该光束的位置。在这些实施例中的一些实施例中,光束系统还包括控制系统,该控制系统被配置为基于光束的位置来调整光束线参数。
在这些实施例中的一些实施例中,光束位置监测器包括延伸到光束线的组件的内部的多个电极。
在这些实施例中的一些实施例中,控制系统包括至少一个处理器和存储指令的至少一个存储器,该指令当由至少一个处理器执行时,使得控制系统:接收来自光束位置监测器的一个或多个信号,以及基于一个或多个信号,发送中断光束系统的操作的指令。
在这些实施例中的一些实施例中,控制系统包括至少一个处理器和存储指令的至少一个存储器,该指令当由至少一个处理器执行时,使得控制系统:接收来自光束位置监测器的一个或多个信号,以及基于一个或多个信号,将代表一个或多个信号的数据发送到计算设备。
在这些实施例中的一些实施例中,控制系统包括至少一个处理器和存储指令的至少一个存储器,该指令当由至少一个处理器执行时,使得控制系统:接收来自光束位置监测器的一个或多个信号。在这些实施例中的一些实施例中,使得控制系统:基于一个或多个信号,确定光束偏离期望轴,以及将调整信号发送到一个或多个光束线组件以调整光束的位置,使得光束返回期望轴。
在这些实施例中的一些实施例中,控制系统包括至少一个处理器和存储指令的至少一个存储器,该指令当由至少一个处理器执行时,使得控制系统:接收来自光束位置监测器的一个或多个信号。在这些实施例中的一些实施例中,还使得控制系统:基于一个或多个信号,确定光束偏转期望轴的程度,以及将调整信号发送到一个或多个光束线组件,以补偿光束偏转期望轴的程度。
在这些实施例中的一些实施例中,一个或多个光束线组件包括一个或多个光束转向磁体。在这些实施例中的一些实施例中,调整信号调整一个或多个光束转向磁体的位置。
在这些实施例中的一些实施例中,一个或多个信号表示多个电极中的一个或多个电极所测量的电流。
在这些实施例中的一些实施例中,一个或多个信号表示由多个电极中的一个或多个电极所测量的电流超过与一个或多个电极相关联的电流阈值。
在这些实施例中的一些实施例中,一个或多个信号表示由多个电极中的相邻电极所测量的电流超过与相邻电极相关联的电流阈值。
在这些实施例中的一些实施例中,光束系统包括根据前述实施例中的任一个所述的光束位置监测器。
在这些实施例中的一些实施例中,光束系统包括:离子源,其被配置为生成离子;以及串联加速器,其被配置为加速从离子源传播的离子。在这些实施例中的一些实施例中,一个或多个光束位置监测器位于以下中的一个或多个:串联加速器的上游或串联加速器的下游。
在一些实施例中,中子束系统包括:预加速器系统,其被配置为加速来自离子源的离子;串联加速器,其被配置为加速来自预加速器系统的离子;以及根据前述实施例中的任一个所述的光束位置监测器。在这些实施例中的一些实施例中,离子源被配置为生成离子。
在这些实施例中的一些实施例中,中子束系统还包括:光束线,其被耦接到串联加速器的出口;以及预加速器系统,其被耦接到串联加速器的入口。
在这些实施例中的一些实施例中,预加速器系统包括以下中的一个或多个:单透镜、预加速器管、磁聚焦元件或泵送室。
在一些实施例中,一种监测前进通过光束线的光束的位置的方法,包括:当光束前进通过光束线时,测量在位于光束线内的多个电极中的一个或多个单独电极处的电流的幅度。在这些实施例中的一些实施例中,多个电极中的每个单独电极与一个或多个电流阈值相关联。
在这些实施例中的一些实施例中,方法还包括:通过将在一个或多个单独电极中的一个或多个单独电极处的电流的幅度与一个或多个电流阈值进行比较,确定前进通过光束线的光束是否偏离轴。
在这些实施例中的一些实施例中,方法还包括:通过将在一个或多个单独电极中的第一电极处的第一电流幅度与第一电流阈值进行比较,并且将在一个或多个单独电极中的第二电极处的第二电流幅度与第二电流阈值进行比较,确定前进通过光束线的光束是否偏离轴。在这些实施例中的一些实施例中,第一电极和第二电极彼此相邻地定位。
在这些实施例中的一些实施例中,方法还包括:当在一个或多个单独电极中的一个或多个单独电极处的电流的幅度超过或低于一个或多个电流阈值时,向控制系统发信号通知光束偏离轴。
在这些实施例中的一些实施例中,方法还包括:当在第一电极处的第一电流幅度超过或低于第一电流阈值并且在第二电极处的第二电流幅度超过或低于第二电流阈值时,向控制系统发信号通知光束偏离轴。
在这些实施例中的一些实施例中,方法还包括:使用外部电源偏置多个电极。在这些实施例中的一些实施例中,方法还包括:水冷却多个电极。
在这些实施例中的一些实施例中,多个电极中的每个单独电极与电极延伸距离相关联。在这些实施例中的一些实施例中,电极延伸距离表示电极延伸到光束线的组件的内部的距离。
在这些实施例中的一些实施例中,每个单独电极与唯一的预定阈值电流相关联。
在一些实施例中,一种控制前进通过光束系统的光束线的光束的位置的方法,方法包括:从光束位置监测器接收一个或多个信号;以及基于一个或多个信号,确定前进通过光束线的光束是否偏离轴。
在这些实施例中的一些实施例中,光束位置监测器包括延伸到光束线的组件的内部的多个电极。
在这些实施例中的一些实施例中,方法还包括:基于一个或多个信号,发送中断光束系统的操作的指令。在这些实施例中的一些实施例中,方法还包括:基于一个或多个信号,将代表一个或多个信号的数据发送到计算设备。在这些实施例中的一些实施例中,方法还包括:在确定光束偏离期望轴时,将调整信号发送到一个或多个光束线组件以调整光束的位置,以使得光束返回期望轴。
在这些实施例中的一些实施例中,方法还包括:基于一个或多个信号,确定光束偏转期望轴的程度;以及将调整信号发送到一个或多个光束线组件,以补偿光束偏转期望轴的程度。
在这些实施例中的一些实施例中,一个或多个光束线组件包括一个或多个光束转向磁体。在这些实施例中的一些实施例中,调整信号调整一个或多个光束转向磁体的位置。
在这些实施例中的一些实施例中,一个或多个信号表示由多个电极中的一个或多个电极所测量的电流。在这些实施例中的一些实施例中,一个或多个信号表示由多个电极中的一个或多个电极所测量的电流超过与一个或多个电极相关联的电流阈值。在这些实施例中的一些实施例中,一个或多个信号表示由多个电极中的相邻电极所测量的电流超过与相邻电极相关联的电流阈值。
在这些实施例中的一些实施例中,光束偏转的程度量化光束偏离轴行进的距离。
在一些实施例中,一种光束成像诊断系统,包括:两(2)个或更多个成像组件,其被耦接并延伸到泵送室的内部,并且与泵送室的光束传播轴正交地取向。在这些实施例中的一些实施例中,泵送室可沿着光束线定位。在这些实施例中的一些实施例中,两(2)个或更多个成像组件被配置为随着气体的注入而基本上非侵入性地监测前进通过光束线的光束。在这些实施例中的一些实施例中,光束成像诊断系统被配置为监测前进通过光束线的光束的光束参数。在这些实施例中的一些实施例中,光束参数包括以下中的一个或多个:尺寸、位置、倾角或轮廓。
在这些实施例中的一些实施例中,光束成像诊断系统还包括:气体喷吹口,其从泵送室延伸并且提供进入泵送室的通道。在这些实施例中的一些实施例中,两(2)个或更多个成像组件包括与透镜耦接的相机。在这些实施例中的一些实施例中,光学管是与透镜间接或直接耦接中的一个或多个。在这些实施例中的一些实施例中,光学管的与相机最远的端部包括具有特定形状的开口的孔径。在这些实施例中的一些实施例中,孔径与相机匹配并且被配置为切断以其它方式能够到达相机的相机传感器的大部分背景光。在这些实施例中的一些实施例中,两(2)个或更多个成像组件还包括位于光学管与透镜之间的干涉带通滤波器。
在这些实施例中的一些实施例中,气体喷吹口由气阀驱动。
在这些实施例中的一些实施例中,两(2)个或更多个成像组件包括可调整的检测器曝光时间。在这些实施例中的一些实施例中,可调整的检测器曝光时间是可调整的,以提供尽可能多的信号累积,同时保持最高可能的信噪比(SNR)。
在这些实施例中的一些实施例中,气阀被配置为控制所喷吹的气体量以及气体量被喷吹入泵送室的时间。在这些实施例中的一些实施例中,气阀还被配置为控制被喷吹入泵送室的气体的位置,以使得在两(2)个或更多个成像组件的视场内实现气体的均匀分布。
在这些实施例中的一些实施例中,相机包括以下中的一个或多个:时间分辨率、信噪比、或尺寸。在这些实施例中的一些实施例中,时间分辨率是2毫秒或更少。在这些实施例中的一些实施例中,信噪比超过40:1。
在一些实施例中,光束系统包括沿着光束系统被定位的光束成像诊断系统。在这些实施例中的一些实施例中,光束成像诊断系统被配置为非侵入性地监测前进通过光束系统的光束。在这些实施例中的一些实施例中,光束系统还包括:控制系统,其被配置为接收来自光束成像诊断系统的一个或多个信号。
在这些实施例中的一些实施例中,光束成像诊断系统包括根据前述实施例中的任一个的光束成像诊断系统。
在这些实施例中的一些实施例中,控制系统包括至少一个处理器和存储指令的至少一个存储器,该指令当由至少一个处理器执行时,使得控制系统:基于一个或多个信号,确定一个或多个光束参数,光束参数包括以下中的一个或多个:尺寸、位置、倾角或轮廓。
在这些实施例中的一些实施例中,控制系统包括至少一个处理器和存储指令的至少一个存储器,该指令当由至少一个处理器执行时,使得控制系统:基于一个或多个信号,将控制信号发送到以下中的一个或多个:气阀、或光束成像诊断系统的一个或多个成像组件。
在这些实施例中的一些实施例中,光束系统还包括低能光束线(LEBL)。在这些实施例中的一些实施例中,LEBL包括以下中的一个或多个:负离子源、光束光学器件、预加速器系统、光束诊断、或泵送室。在这些实施例中的一些实施例中,光束系统还包括在LEBL的下游的加速器。在这些实施例中的一些实施例中,根据前述实施例中的任一个的第一光束成像诊断系统位于加速器的上游。在这些实施例中的一些实施例中,根据前述实施例中的任一个的第二光束成像诊断系统位于加速器的下游。
在一些实施例中,中子束系统包括:预加速器系统,其被配置为加速来自离子源的离子;串联加速器,其被配置为加速来自预加速器系统的离子;以及根据前述实施例中的任一个所述的光束成像诊断系统。
在这些实施例中的一些实施例中,中子束系统还包括被配置为生成离子的离子源。在这些实施例中的一些实施例中,中子束系统还包括:高能光束线(HEBL),其被耦接到串联加速器的出口;以及预加速器系统,其被耦接到串联加速器的入口。在这些实施例中的一些实施例中,预加速器系统包括以下中的一个或多个:单透镜、预加速器管、磁聚焦元件、或泵送室。
在这些实施例中的一些实施例中,中子束系统还包括:控制系统,其被配置为接收来自光束成像诊断系统的一个或多个信号。
在这些实施例中的一些实施例中,控制系统包括至少一个处理器和存储指令的至少一个存储器,指令当由至少一个处理器执行时,使得控制系统:基于一个或多个信号,确定一个或多个光束参数,光束参数包括以下中的一个或多个:尺寸、位置、倾角、或轮廓。
在这些实施例中的一些实施例中,控制系统包括至少一个处理器和存储指令的至少一个存储器,指令当由至少一个处理器执行时,使得控制系统:基于一个或多个信号,将控制信号发送到以下中的一个或多个:气阀、或光束成像诊断系统的一个或多个成像组件。
在一些实施例中,一种非侵入性地监测沿着光束线前进的光束的参数的方法,方法包括:将气体喷吹入泵送室;以及基于由前进通过光束线的光束的高能光束粒子的碰撞所引起的荧光,测量一个或多个光束参数。
在这些实施例中的一些实施例中,方法还包括:当光束前进通过光束线时,将气体喷吹入泵送室。
在这些实施例中的一些实施例中,方法还包括:沿着光束线将气体喷吹入泵送室,以使得对前进通过光束线的光束的干扰最小化。
在这些实施例中的一些实施例中,方法还包括:测量一个或多个光束参数,以使得对前进通过光束线的光束的干扰最小化。
在这些实施例中的一些实施例中,方法还包括:在光束的脉冲前进通过光束线之前,将气体喷吹入泵送室。
在这些实施例中的一些实施例中,一个或多个光束参数包括以下中的一个或多个:横向光束尺寸(轮廓)、或光束位置。
在这些实施例中的一些实施例中,测量包括记录来自光束-气体相互作用区域的荧光的辉光。在这些实施例中的一些实施例中,记录荧光的辉光包括使用两个或多个正交取向的成像组件进行记录。在这些实施例中的一些实施例中,方法还包括:相对于光束的脉冲来延迟针对两个或多个正交取向的成像组件的触发。在这些实施例中的一些实施例中,触发被延迟以适应以下中的一个或多个:光束平衡时间或荧光发射延迟。
在这些实施例中的一些实施例中,该方法还包括将一个或多个光束参数传送到控制系统。在这些实施例中的一些实施例中,一个或多个光束参数包括:光束位置、横向尺寸、和光束倾角。在这些实施例中的一些实施例中,方法还包括将一个或多个光束参数实时地传送到控制系统。
在这些实施例中的一些实施例中,方法还包括:沿着光束传播计算光束质心;以及将光束质心与光束线轴坐标进行比较。在这些实施例中的一些实施例中,方法还包括:在光束成像诊断系统的校准期间获得光束线轴坐标。
在这些实施例中的一些实施例中,方法还包括:在治疗之前、治疗期间或治疗之后中的一个或多个,测量一个或多个光束参数。
在这些实施例中的一些实施例中,气体包括以下中的一个或多个:氩气或氙气。
应当注意,关于本文所提供的任何实施例所描述的所有特征、元件、组件、功能和步骤旨在与来自任何其他实施例的特征、元件、组件、功能和步骤自由组合和替代。如果仅关于一个实施例描述了某个特征、元件、组件、功能或步骤,那么应当理解,该特征、元件、组件、功能或步骤可以与本文所描述的每个其他实施例一起使用,除非另外明确说明。因此,本段作为在任何时候引入权利要求的先行基础和书面支持,这些权利要求组合了来自不同实施例的特征、元件、组件、功能和步骤,或者将来自一个实施例的特征、元件、组件、功能和步骤替换为另一个实施例的特征、元件、组件、功能和步骤,即使以下描述没有明确说明,在特定情况下,这样的组合或替换是可能的。明确承认,每一种可能的组合和替换的明确叙述过于繁琐,特别是考虑到每一种这样的组合和替换的允许性将被本领域普通技术人员容易地识别。
就本文所公开的实施例包括存储器、存储装置和/或计算机可读介质或与其相关联地操作的程度而言,那么该存储器、存储装置和/或计算机可读介质是非暂态的。因此,就存储器、存储装置和/或计算机可读介质被一项或多项权利要求所涵盖的程度而言,那么该存储器、存储装置和/或计算机可读介质仅是非暂态的。
如本文所使用的并且在随附的权利要求中,除非上下文另外清楚指示,否则单数形式“一”、“一个”、和“该”包括复数指示物。
尽管实施例易于进行各种修改和替代形式,但是其具体示例已在附图中示出并在本文中详细描述。然而,应当理解,这些实施例不限于所公开的特定形式,相反,这些实施例将覆盖落入本公开的精神内的所有修改、等同物和替代物。此外,实施例的任何特征、功能、步骤或元件可以在权利要求中记载或添加到权利要求中,以及通过不在该范围内的特征、功能、步骤或元件定义权利要求的发明范围的负面限制。

Claims (106)

1.一种光束位置监测器,包括:多个电极,其延伸到光束线的组件的内部,其中,所述光束位置监测器被配置为基于穿过所述光束线的组件的光束的晕电流来检测所述光束的位置。
2.根据权利要求1所述的光束位置监测器,还包括冷却装置。
3.根据权利要求1所述的光束位置监测器,其中,所述多个电极中的每个电极与电流阈值相关联。
4.根据权利要求1所述的光束位置监测器,其中,所述多个电极中的至少一个电极与不同于所述多个电极中的一个或多个其他电极的电流阈值相关联。
5.根据权利要求1所述的光束位置监测器,其中,所述多个电极中的每个电极与多个电流阈值相关联。
6.根据权利要求3或4所述的光束位置监测器,其中,所述光束位置监测器被配置为当由所述多个电极中的一个或多个电极所测量的电流超过其相关联的电流阈值时,将信号发送到控制系统。
7.根据权利要求5所述的光束位置监测器,其中,所述光束位置监测器被配置为当由所述多个电极中的相邻电极所测量的电流超过与所述相邻电极中的每个电极相关联的多个电流阈值中的下限阈值时,将信号发送到控制系统。
8.根据权利要求1所述的光束位置监测器,其中,所述多个电极中的每个电极与电极延伸距离相关联。
9.根据权利要求8所述的光束位置监测器,其中,所述电极延伸距离表示所述电极延伸到所述组件的内部的距离。
10.根据权利要求8或9所述的光束位置监测器,其中,每个电极延伸距离是可调整的。
11.根据权利要求1所述的光束位置监测器,其中,所述多个电极与所述光束位置监测器的壁电流地隔离。
12.根据权利要求1所述的光束位置监测器,其中,所述多个电极被配置为由外部电源偏置。
13.根据权利要求1所述的光束位置监测器,其中,所述光束位置监测器被配置为当前进通过所述光束线的光束偏离轴时将信号发送到控制系统。
14.根据权利要求13所述的光束位置监测器,其中,穿过所述光束线的组件的所述光束的束电流的最小量由于所述多个电极而被减少。
15.一种光束系统,包括:
光束位置监测器,其被配置为基于穿过光束线的组件的光束的晕电流来检测所述光束的位置;以及
控制系统,其被配置为基于所述光束的位置来调整光束线参数。
16.根据权利要求15所述的光束系统,其中,所述光束位置监测器包括延伸到所述光束线的组件的内部的多个电极。
17.根据权利要求16所述的光束系统,其中,所述控制系统包括至少一个处理器和存储指令的至少一个存储器,所述指令当由所述至少一个处理器执行时,使得所述控制系统:
接收来自所述光束位置监测器的一个或多个信号;以及
基于所述一个或多个信号,发送中断所述光束系统的操作的指令。
18.根据权利要求16所述的光束系统,其中,所述控制系统包括至少一个处理器和存储指令的至少一个存储器,所述指令当由所述至少一个处理器执行时,使得所述控制系统:
接收来自所述光束位置监测器的一个或多个信号;以及
基于所述一个或多个信号,将代表所述一个或多个信号的数据发送到计算设备。
19.根据权利要求16所述的光束系统,其中,所述控制系统包括至少一个处理器和存储指令的至少一个存储器,所述指令当由所述至少一个处理器执行时,使得所述控制系统:
接收来自所述光束位置监测器的一个或多个信号;
基于所述一个或多个信号,确定所述光束偏离期望轴;以及
将调整信号发送到一个或多个光束线组件以调整所述光束的位置,以使得所述光束返回所述期望轴。
20.根据权利要求16所述的光束系统,其中,所述控制系统包括至少一个处理器和存储指令的至少一个存储器,所述指令当由所述至少一个处理器执行时,使得所述控制系统:
接收来自所述光束位置监测器的一个或多个信号;
基于所述一个或多个信号,确定光束偏转期望轴的程度;以及
将调整信号发送到一个或多个光束线组件,以补偿光束偏转所述期望轴的程度。
21.根据权利要求19或20中的任一项所述的光束系统,其中,所述一个或多个光束线组件包括一个或多个光束转向磁体。
22.根据权利要求21所述的光束系统,其中,所述调整信号调整所述一个或多个光束转向磁体的位置。
23.根据权利要求17至22中的任一项所述的光束系统,其中,所述一个或多个信号表示由所述多个电极中的一个或多个电极所测量的电流。
24.根据权利要求17至22中的任一项所述的光束系统,其中,所述一个或多个信号表示由所述多个电极中的一个或多个电极所测量的电流超过与所述一个或多个电极相关联的电流阈值。
25.根据权利要求17至22中的任一项所述的光束系统,其中,所述一个或多个信号表示由所述多个电极中的相邻电极所测量的电流超过与所述相邻电极相关联的电流阈值。
26.根据权利要求15至25中的任一项所述的光束系统,其中,所述光束位置监测器包括根据权利要求1至14中的任一项所述的光束位置监测器。
27.根据权利要求15至26中的任一项所述的光束系统,还包括:
离子源,其被配置为生成离子;以及
串联加速器,其被配置为加速从所述离子源传播的离子;
其中,一个或多个光束位置监测器位于以下中的一个或多个:所述串联加速器的上游或所述串联加速器的下游。
28.一种中子束系统,包括:
预加速器系统,其被配置为加速来自离子源的离子;
串联加速器,其被配置为加速来自所述预加速器系统的离子;以及
根据权利要求1至14中的任一项所述的光束位置监测器。
29.根据权利要求28所述的中子束系统,其中,所述离子源被配置为生成离子。
30.根据权利要求29所述的中子束系统,还包括:光束线,其被耦接到所述串联加速器的出口;以及所述预加速器系统,其被耦接到所述串联加速器的入口。
31.根据权利要求29所述的中子束系统,其中,所述预加速器系统包括以下中的一个或多个:单透镜、预加速器管、磁聚焦元件、或泵送室。
32.一种监测前进通过光束线的光束的位置的方法,所述方法包括:
当光束前进通过所述光束线时,测量在位于光束线内的多个电极中的一个或多个单独电极处的电流的幅度。
33.根据权利要求32所述的方法,其中,所述多个电极中的每个单独电极与一个或多个电流阈值相关联。
34.根据权利要求33所述的方法,还包括:
通过将在所述一个或多个单独电极中的一个或多个单独电极处的所述电流的幅度与一个或多个电流阈值进行比较,确定前进通过所述光束线的所述光束是否偏离轴。
35.根据权利要求33所述的方法,还包括:
通过将在所述一个或多个单独电极中的第一电极处的第一电流幅度与第一电流阈值进行比较,并且将在所述一个或多个单独电极中的第二电极处的第二电流幅度与第二电流阈值进行比较,确定前进通过所述光束线的所述光束是否偏离轴,其中,所述第一电极和所述第二电极彼此相邻地定位。
36.根据权利要求34所述的方法,还包括:
当在所述一个或多个单独电极中的一个或多个单独电极处的所述电流的幅度超过或低于所述一个或多个电流阈值时,向控制系统发信号通知所述光束偏离轴。
37.根据权利要求35所述的方法,还包括:
当在所述第一电极处的所述第一电流幅度超过或低于所述第一电流阈值并且在所述第二电极处的所述第二电流幅度超过或低于所述第二电流阈值时,向控制系统发信号通知所述光束偏离轴。
38.根据权利要求32所述的方法,还包括:
使用外部电源偏置所述多个电极。
39.根据权利要求32所述的方法,还包括:
水冷却所述多个电极。
40.根据权利要求32所述的方法,其中,所述多个电极中的每个单独电极与电极延伸距离相关联。
41.根据权利要求39所述的方法,其中,电极延伸距离表示电极延伸到所述光束线的组件的内部的距离。
42.根据权利要求32所述的方法,其中,每个单独电极与唯一的预定阈值电流相关联。
43.一种控制前进通过光束系统的光束线的光束的位置的方法,所述方法包括:
从光束位置监测器接收一个或多个信号;以及
基于所述一个或多个信号,确定前进通过所述光束线的光束是否偏离轴。
44.根据权利要求43所述的方法,其中,所述光束位置监测器包括延伸到所述光束线的组件的内部的多个电极。
45.根据权利要求44所述的方法,还包括:
基于所述一个或多个信号,发送中断所述光束系统的操作的指令。
46.根据权利要求44所述的方法,还包括:
基于所述一个或多个信号,将代表所述一个或多个信号的数据发送到计算设备。
47.根据权利要求44所述的方法,还包括:
在确定所述光束偏离期望轴时,将调整信号发送到一个或多个光束线组件以调整所述光束的位置,以使得所述光束返回所述期望轴。
48.根据权利要求44所述的方法,还包括:
基于所述一个或多个信号,确定光束偏转期望轴的程度;以及
将调整信号发送到一个或多个光束线组件,以补偿光束偏转所述期望轴的程度。
49.根据权利要求47或48中的任一项所述的方法,其中,所述一个或多个光束线组件包括一个或多个光束转向磁体。
50.根据权利要求49所述的方法,其中,所述调整信号调整所述一个或多个光束转向磁体的位置。
51.根据权利要求44至50中的任一项所述的方法,其中,所述一个或多个信号表示由所述多个电极中的一个或多个电极所测量的电流。
52.根据权利要求44至50中的任一项所述的方法,其中,所述一个或多个信号表示由所述多个电极中的一个或多个电极所测量的电流超过与所述一个或多个电极相关联的电流阈值。
53.根据权利要求44至50中的任一项所述的方法,其中,所述一个或多个信号表示由所述多个电极中的相邻电极所测量的电流超过与所述相邻电极相关联的电流阈值。
54.根据权利要求48所述的方法,其中,光束偏转的程度量化所述光束偏离轴行进的距离。
55.一种光束成像诊断系统,包括:两(2)个或更多个成像组件,其被耦接并延伸到泵送室的内部,并且与所述泵送室的光束传播轴正交地取向。
56.根据权利要求55所述的光束成像诊断系统,其中,所述泵送室可沿着光束线被定位。
57.根据权利要求56所述的光束成像诊断系统,其中,所述两(2)个或更多个成像组件被配置为随着气体的注入而基本上非侵入性地监测前进通过所述光束线的光束。
58.根据权利要求57所述的光束成像诊断系统,其中,所述光束成像诊断系统被配置为监测前进通过所述光束线的光束的光束参数。
59.根据权利要求58所述的光束成像诊断系统,其中,光束参数包括以下中的一个或多个:尺寸、位置、倾角、或轮廓。
60.根据权利要求55所述的光束成像诊断系统,还包括:气体喷吹口,其从所述泵送室延伸并且提供进入所述泵送室的通道。
61.根据权利要求55所述的光束成像诊断系统,其中,所述两(2)个或更多个成像组件包括与透镜耦接的相机。
62.根据权利要求61所述的光束成像诊断系统,其中,光学管是与所述透镜间接或直接耦接中的一个或多个。
63.根据权利要求62所述的光束成像诊断系统,其中,所述光学管的与所述相机最远的端部包括具有特定形状的开口的孔径。
64.根据权利要求63所述的光束成像诊断系统,其中,所述孔径与所述相机匹配,并且被配置为切断以其它方式能够到达所述相机的相机传感器的大部分背景光。
65.根据权利要求62所述的光束成像诊断系统,其中,所述两(2)个或更多个成像组件还包括位于所述光学管与所述透镜之间的干涉带通滤波器。
66.根据权利要求60所述的光束成像诊断系统,其中,所述气体喷吹口由气阀驱动。
67.根据权利要求55所述的光束成像诊断系统,其中,所述两(2)个或更多个成像组件包括可调整的检测器曝光时间。
68.根据权利要求67所述的光束成像诊断系统,其中,所述可调整的检测器曝光时间是可调整的,以提供尽可能多的信号累积,同时保持最高可能的信噪比(SNR)。
69.根据权利要求66所述的光束成像诊断系统,其中,所述气阀被配置为控制所喷吹的气体量以及所述气体量被喷吹入所述泵送室的时间。
70.根据权利要求69所述的光束成像诊断系统,其中,所述气阀还被配置为控制被喷吹入所述泵送室的气体的位置,以使得在所述两(2)个或更多个成像组件的视场内实现气体的均匀分布。
71.根据权利要求61所述的光束成像诊断系统,其中,所述相机包括以下中的一个或多个:时间分辨率、信噪比、或尺寸。
72.根据权利要求71所述的光束成像诊断系统,其中,所述时间分辨率是2毫秒或更少。
73.根据权利要求71所述的光束成像诊断系统,其中,所述信噪比超过40:1。
74.一种光束系统,包括:
光束成像诊断系统,其沿着所述光束系统被定位,所述光束成像诊断系统被配置为非侵入性地监测前进通过所述光束系统的光束;以及
控制系统,其被配置为接收来自所述光束成像诊断系统的一个或多个信号。
75.根据权利要求74所述的光束系统,其中,所述光束成像诊断系统包括根据权利要求55至73中的任一项所述的光束成像诊断系统。
76.根据权利要求74或75中的任一项所述的光束系统,其中,所述控制系统包括至少一个处理器和存储指令的至少一个存储器,所述指令当由所述至少一个处理器执行时,使得所述控制系统:
基于所述一个或多个信号,确定一个或多个光束参数,所述光束参数包括以下中的一个或多个:尺寸、位置、倾角、或轮廓。
77.根据权利要求74至76中的任一项所述的光束系统,其中,所述控制系统包括至少一个处理器和存储指令的至少一个存储器,所述指令当由所述至少一个处理器执行时,使得所述控制系统:
基于所述一个或多个信号,将控制信号发送到以下中的一个或多个:气阀、或所述光束成像诊断系统的一个或多个成像组件。
78.根据权利要求77所述的光束系统,还包括:低能光束线LEBL。
79.根据权利要求78所述的光束系统,其中,所述LEBL包括以下中的一个或多个:负离子源、光束光学器件、预加速器系统、光束诊断、或泵送室。
80.根据权利要求78所述的光束系统,还包括:在所述LEBL的下游的加速器。
81.根据权利要求80所述的光束系统,其中,根据权利要求55至73中的任一项所述的第一光束成像诊断系统被定位在所述加速器的上游。
82.根据权利要求81所述的光束系统,其中,根据权利要求55至73中的任一项所述的第二光束成像诊断系统被定位在所述加速器的下游。
83.一种中子束系统,包括:
预加速器系统,其被配置为加速来自离子源的离子;
串联加速器,其被配置为加速来自所述预加速器系统的离子;以及
根据权利要求1至19中的任一项所述的光束成像诊断系统。
84.根据权利要求83所述的中子束系统,其中,所述离子源被配置为生成离子。
85.根据权利要求83所述的中子束系统,还包括:高能光束线(HEBL),其被耦接到所述串联加速器的出口;以及所述预加速器系统,其被耦接到所述串联加速器的入口。
86.根据权利要求83所述的中子束系统,其中,所述预加速器系统包括以下中的一个或多个:单透镜、预加速器管、磁聚焦元件、或泵送室。
87.根据权利要求83至86中的任一项所述的中子束系统,还包括:控制系统,其被配置为接收来自所述光束成像诊断系统的一个或多个信号。
88.根据权利要求87所述的中子束系统,其中,所述控制系统包括至少一个处理器和存储指令的至少一个存储器,所述指令当由所述至少一个处理器执行时,使得所述控制系统:
基于所述一个或多个信号,确定一个或多个光束参数,所述光束参数包括以下中的一个或多个:尺寸、位置、倾角、或轮廓。
89.根据权利要求87所述的中子束系统,其中,所述控制系统包括至少一个处理器和存储指令的至少一个存储器,所述指令当由所述至少一个处理器执行时,使得所述控制系统:
基于所述一个或多个信号,将控制信号发送到以下中的一个或多个:气阀、或所述光束成像诊断系统的一个或多个成像组件。
90.一种非侵入性地监测沿着光束线前进的光束的参数的方法,所述方法包括:
将气体喷吹入泵送室;以及
基于由前进通过所述光束线的光束的高能光束粒子的碰撞所引起的荧光,测量一个或多个光束参数。
91.根据权利要求90所述的方法,还包括:当所述光束前进通过所述光束线时,将所述气体喷吹入所述泵送室。
92.根据权利要求90所述的方法,还包括:沿着所述光束线将所述气体喷吹入所述泵送室,以使得对前进通过所述光束线的光束的干扰最小化。
93.根据权利要求90所述的方法,还包括:测量所述一个或多个光束参数,以使得对前进通过所述光束线的光束的干扰最小化。
94.根据权利要求90所述的方法,还包括:在所述光束的脉冲前进通过所述光束线之前,将所述气体喷吹入所述泵送室。
95.根据权利要求90所述的方法,其中,所述一个或多个光束参数包括以下中的一个或多个:横向光束尺寸(轮廓)、或光束位置。
96.根据权利要求95所述的方法,其中,测量包括:记录来自光束-气体相互作用区域的荧光的辉光。
97.根据权利要求96所述的方法,其中,记录所述荧光的辉光包括:使用两个或多个正交取向的成像组件进行记录。
98.根据权利要求97所述的方法,还包括:相对于所述光束的脉冲来延迟针对所述两个或多个正交取向的成像组件的触发。
99.根据权利要求98所述的方法,其中,所述触发被延迟以适应以下中的一个或多个:光束平衡时间或荧光发射延迟。
100.根据权利要求90所述的方法,还包括:将一个或多个光束参数传送到控制系统。
101.根据权利要求100所述的方法,其中,所述一个或多个光束参数包括:光束位置、横向尺寸、和光束倾角。
102.根据权利要求101所述的方法,还包括:将所述一个或多个光束参数实时地传送到所述控制系统。
103.根据权利要求90所述的方法,还包括:
沿着光束传播计算光束质心;以及
将所述光束质心与光束线轴坐标进行比较。
104.根据权利要求103所述的方法,还包括:在光束成像诊断系统的校准期间获得所述光束线轴坐标。
105.根据权利要求90所述的方法,还包括:
在治疗之前、治疗期间或治疗之后中的一个或多个,测量所述一个或多个光束参数。
106.根据权利要求105所述的方法,其中,所述气体包括以下中的一个或多个:氩气或氙气。
CN202080061006.3A 2019-08-30 2020-08-28 用于光束位置监测和光束成像的系统、设备和方法 Pending CN114599426A (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201962894290P 2019-08-30 2019-08-30
US201962894220P 2019-08-30 2019-08-30
US62/894,220 2019-08-30
US62/894,290 2019-08-30
US202063065442P 2020-08-13 2020-08-13
US202063065448P 2020-08-13 2020-08-13
US63/065,442 2020-08-13
US63/065,448 2020-08-13
PCT/US2020/048443 WO2021041837A1 (en) 2019-08-30 2020-08-28 Systems, devices, and methods for beam position monitoring and beam imaging

Publications (1)

Publication Number Publication Date
CN114599426A true CN114599426A (zh) 2022-06-07

Family

ID=74686086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080061006.3A Pending CN114599426A (zh) 2019-08-30 2020-08-28 用于光束位置监测和光束成像的系统、设备和方法

Country Status (7)

Country Link
US (1) US20210166832A1 (zh)
EP (1) EP4021569A4 (zh)
JP (1) JP2022546374A (zh)
KR (1) KR20220054348A (zh)
CN (1) CN114599426A (zh)
CA (1) CA3148953A1 (zh)
WO (1) WO2021041837A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116347740A (zh) * 2023-03-08 2023-06-27 中子高新技术产业发展(重庆)有限公司 一种中子治疗束流传输系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2397607A1 (en) * 1999-12-17 2001-06-21 Carla M. Mann Magnitude programming for implantable electrical stimulator
US8872057B2 (en) * 2006-03-15 2014-10-28 Communications & Power Industries Llc Liquid cooling system for linear beam device electrodes
US8192399B2 (en) * 2007-05-23 2012-06-05 Biosense Webster, Inc. Extension control handle with adjustable locking mechanism
EP2268359B1 (de) * 2008-04-21 2012-09-12 Varian Medical Systems Particle Therapy GmbH Teilchenstrahl-therapieanlage und verfahren zum führen eines strahls geladener teilchen in einer teilchenstrahl-therapieanlage
JP5490651B2 (ja) 2010-09-01 2014-05-14 住友重機械工業株式会社 中性子線照射システム
US10940332B2 (en) * 2011-05-19 2021-03-09 The Trustees Of Dartmouth College Cherenkov imaging systems and methods to monitor beam profiles and radiation dose while avoiding interference from room lighting
US9237640B2 (en) * 2011-11-29 2016-01-12 Ion Beam Applications RF device for synchrocyclotron
US20140209481A1 (en) * 2013-01-25 2014-07-31 Google Inc. Standby Biasing Of Electrochemical Sensor To Reduce Sensor Stabilization Time During Measurement
EP3291884B1 (en) * 2015-05-06 2021-02-17 Neutron Therapeutics Inc. Neutron target for boron neutron capture therapy
US10879028B2 (en) * 2016-04-14 2020-12-29 Varian Medical Systems, Inc. Beam position monitors for medical radiation machines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116347740A (zh) * 2023-03-08 2023-06-27 中子高新技术产业发展(重庆)有限公司 一种中子治疗束流传输系统
CN116347740B (zh) * 2023-03-08 2023-10-20 中子高新技术产业发展(重庆)有限公司 一种中子治疗束流传输系统

Also Published As

Publication number Publication date
KR20220054348A (ko) 2022-05-02
EP4021569A4 (en) 2023-11-01
EP4021569A1 (en) 2022-07-06
US20210166832A1 (en) 2021-06-03
JP2022546374A (ja) 2022-11-04
WO2021041837A1 (en) 2021-03-04
CA3148953A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
US10603514B2 (en) Device and method for high dose per pulse radiotherapy with real time imaging
JP2016159107A (ja) 中性子捕捉療法装置
IL270996A (en) Systems and methods for ion beam satisfaction
Green et al. Enhanced proton flux in the MeV range by defocused laser irradiation
EP2946809B1 (en) Neutron capture therapy apparatus and nuclear transformation apparatus
CN114599426A (zh) 用于光束位置监测和光束成像的系统、设备和方法
US20230126790A1 (en) System and method for particle therapy
JP2016191621A (ja) 中性子捕捉療法装置
JP6214906B2 (ja) レーザイオン源、イオン加速器及び重粒子線治療装置
US20220078900A1 (en) Systems, devices, and methods for initiating beam transport in a beam system
US20220065611A1 (en) Systems, devices, and methods for beam misalignment detection
US20220084774A1 (en) Systems, devices, and methods for ion beam modulation
Sakamoto et al. Emittance and energy measurements of low-energy electron beam using optical transition radiation techniques
US11501943B2 (en) Systems and methods for providing a beam of charged particles
Ma et al. The Applications of Machine Learning in Slit Scan Emittance Measurements
JP2022169060A (ja) 荷電粒子ビーム輸送装置
JP2015109247A (ja) レーザイオン源、イオン加速器及び重粒子線治療装置
WO2016132445A1 (ja) 荷電粒子照射システム
JP2020010792A (ja) 粒子線治療システムの寿命評価装置及び寿命評価方法
JP2006210354A (ja) 粒子線治療装置
Asova et al. Phase space measurements with tomographic reconstruction at PITZ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination