WO2018168713A1 - 中性子捕捉療法システム及び制御装置 - Google Patents

中性子捕捉療法システム及び制御装置 Download PDF

Info

Publication number
WO2018168713A1
WO2018168713A1 PCT/JP2018/009314 JP2018009314W WO2018168713A1 WO 2018168713 A1 WO2018168713 A1 WO 2018168713A1 JP 2018009314 W JP2018009314 W JP 2018009314W WO 2018168713 A1 WO2018168713 A1 WO 2018168713A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
treatment plan
neutron
information
control device
Prior art date
Application number
PCT/JP2018/009314
Other languages
English (en)
French (fr)
Inventor
哲也 武川
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2019505980A priority Critical patent/JP7018054B2/ja
Priority to CN201880017802.XA priority patent/CN110418666A/zh
Priority to EP18767199.5A priority patent/EP3597269A4/en
Publication of WO2018168713A1 publication Critical patent/WO2018168713A1/ja
Priority to US16/567,410 priority patent/US20200001113A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1031Treatment planning systems using a specific method of dose optimization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/009Neutron capture therapy, e.g. using uranium or non-boron material
    • A61K41/0095Boron neutron capture therapy, i.e. BNCT, e.g. using boronated porphyrins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1094Shielding, protecting against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1098Enhancing the effect of the particle by an injected agent or implanted device

Definitions

  • the present invention relates to a neutron capture therapy system and a control device.
  • neutron capture therapy which is a neutron capture therapy that kills cancer cells by irradiating neutrons.
  • NCT neutron capture therapy
  • a neutron beam is irradiated to a substance such as boron that has been previously taken into the cancer cell, and the cancer cell is selectively destroyed by scattering of heavy charged particles generated thereby (for example, Patent Document 1). reference).
  • treatment planning is performed using a treatment planning device that performs radiation irradiation planning in consideration of the effects of radiation being applied to the affected area and the non-affected area in the pre-treatment stage.
  • Treatment planning software for general radiotherapy such as X-ray treatment and proton beam treatment is widespread, and treatment plan data created by the treatment planning software can be read by the irradiation apparatus side.
  • treatment planning software for neutron capture therapy has not become widespread, the setting of irradiation time, etc. based on the treatment plan created with treatment planning software for general radiation therapy has been set on the neutron irradiation equipment side. An operator etc. input manually. Therefore, when there is an error in the input content, there is a possibility that the neutron beam irradiation by the neutron beam irradiation apparatus is not performed properly.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a neutron capture therapy system and a control device capable of appropriately performing neutron irradiation based on a treatment plan.
  • a neutron capture therapy system includes a treatment planning device, a control device, and an irradiation device included in a network capable of transmitting and receiving information, and is irradiated by the irradiation device.
  • a neutron capture therapy system for irradiating a body with a neutron beam wherein the treatment planning device creates treatment plan information relating to a treatment plan, and the control device is configured to process the treatment plan information created in the treatment planning device.
  • the irradiation apparatus adjusts the irradiation apparatus so that it can be used, and the irradiation apparatus irradiates the irradiated body with neutron beams based on the treatment plan information after adjustment by the control apparatus.
  • a control device is a control device included in a neutron capture therapy system that irradiates an irradiated object with an irradiation device, and relates to a treatment plan that is created and transmitted by the treatment planning device.
  • the treatment plan information is received and adjusted so as to be usable in the irradiation apparatus.
  • the treatment plan information created by the treatment plan device is adjusted so that the control device can irradiate the neutron beam with the irradiation device. And irradiation of a neutron beam is performed in an irradiation apparatus based on the treatment plan information after adjustment.
  • These devices are included in a network capable of transmitting and receiving information, and information is transmitted and received between the devices. Therefore, in the neutron capture therapy system and the control device described above, it is possible to appropriately perform neutron irradiation based on a treatment plan, as compared with a case where an operator or the like manually inputs information.
  • the treatment plan information includes information related to a drug concentration for each predetermined region of the irradiated body
  • the control device is based on information related to a drug concentration for each predetermined region of the irradiated body. Further, it is possible to set an irradiation time of the neutron beam to the irradiated object.
  • the treatment plan information created by the treatment plan apparatus includes information related to the drug concentration for each predetermined region of the irradiated object, and the control apparatus sets the drug concentration included in the treatment plan information. Based on such information, if the irradiation device has a configuration for calculating the irradiation time of the neutron beam, the operator will not be involved in the calculation of the irradiation time of the neutron beam. It is possible to perform neutron irradiation appropriately.
  • the apparatus further includes a drug concentration measurement device included in the network and acquiring drug concentration information related to the drug concentration of the irradiated object, and the control device is based on the drug concentration information from the drug concentration measurement device.
  • the neutron irradiation time for the irradiated object may be recalculated.
  • the control device has a configuration for recalculating the irradiation time of the neutron beam by the irradiation device, in the body of the irradiated object More appropriate neutron irradiation based on the concentration distribution of the drug becomes possible. Furthermore, since the operator's involvement is not necessary for the recalculation of the neutron beam irradiation time, the neutron beam irradiation can be performed more appropriately.
  • a neutron capture therapy system and a control device capable of appropriately performing neutron irradiation based on a treatment plan are provided.
  • Neutron capture therapy system is a system for cancer treatment using neutron capture therapy, substances to accumulate in cancer cells (e.g., boron (10 B)) is boron patients administered Cancer treatment is performed by irradiating the accumulated position with neutron beams.
  • the neutron capture therapy system is an irradiation device (neutron capture therapy device) for irradiating a patient with a neutron beam, a control device for controlling the irradiation device, and a treatment for planning a neutron beam irradiation in the irradiation device. Includes planning equipment.
  • a neutron beam irradiation apparatus that irradiates a neutron beam will be described, and then a neutron capture therapy system will be described.
  • FIG. 1 and FIG. 2 The outline
  • the neutron beam irradiation apparatus 1 irradiates a patient (irradiated body) S restrained by a treatment table 3 with a neutron beam N to perform cancer treatment of the patient S. have.
  • the neutron beam irradiation apparatus 1 includes a neutron beam generator 10 that generates a neutron beam N for treatment, and a neutron beam irradiator that irradiates the patient S restrained by the treatment table 3 in the irradiation chamber 2 with the neutron beam N. 20.
  • a passage and a door 45 may be provided in order for a patient, an operator, etc. to pass.
  • the neutron beam generation unit 10 scans the charged particle beam L, an accelerator 11 that accelerates charged particles and emits the charged particle beam L, a beam transport path 12 that transports the charged particle beam L emitted by the accelerator 11, and the charged particle beam L.
  • a charged particle beam scanning unit 13 that controls the irradiation position of the charged particle beam L with respect to the target 8, a target 8 that generates a neutron beam N by causing a nuclear reaction when irradiated with the charged particle beam L, and a charged particle beam
  • a current monitor 16 for measuring the current of L.
  • the accelerator 11 and the beam transport path 12 are disposed in a charged particle beam generation chamber 14 having a substantially rectangular shape, and the charged particle beam generation chamber 14 is a space covered with a concrete shielding wall W. .
  • the charged particle beam generation chamber 14 may be provided with a passage and a door 46 through which an operator for maintenance passes.
  • the charged particle beam generation chamber 14 is not limited to a substantially rectangular shape, and may have another shape. For example, when the path from the accelerator to the target is L-shaped, the charged particle beam generation chamber 14 may also be L-shaped.
  • the charged particle beam scanning unit 13 controls the irradiation position of the charged particle beam L with respect to the target 8, for example, and the current monitor 16 measures the current of the charged particle beam L irradiated to the target 8.
  • the accelerator 11 generates charged particle beams L by accelerating charged particles.
  • a cyclotron is employed as the accelerator 11.
  • the accelerator 11 may be another accelerator such as a synchrotron, a synchrocyclotron, or a linac instead of the cyclotron.
  • the beam transport path 12 includes a beam adjusting unit 15 that adjusts the charged particle beam L.
  • the beam adjusting unit 15 includes a horizontal steering electromagnet and a horizontal vertical electromagnet that adjust the axis of the charged particle beam L, a quadrupole electromagnet that suppresses the divergence of the charged particle beam L, and a four-way that shapes the charged particle beam L. Has slits and the like.
  • the beam transport path 12 only needs to have a function of transporting the charged particle beam L, and the beam adjustment unit 15 may not be provided.
  • the charged particle beam L transported by the beam transport path 12 is irradiated to the target 8 by controlling the irradiation position by the charged particle beam scanning unit 13.
  • the charged particle beam scanning unit 13 may be omitted, and the charged particle beam L may always be irradiated to the same portion of the target 8.
  • the target 8 generates a neutron beam N when irradiated with the charged particle beam L.
  • the target 8 is made of, for example, beryllium (Be), lithium (Li), tantalum (Ta), or tungsten (W), and has a plate shape (however, details of the material of the target 8 will be described later). To do).
  • the target 8 is not limited to a plate shape, and may be, for example, a liquid (liquid metal).
  • the neutron beam N generated by the target 8 is irradiated toward the patient S in the irradiation chamber 2 by the neutron beam irradiation unit 20.
  • the neutron beam irradiation unit 20 includes a moderator 21 that decelerates the neutron beam N emitted from the target 8 and a shield 22 that shields radiation such as neutron beam N and gamma rays from being emitted to the outside.
  • the moderator 21 and the shield 22 constitute a moderator.
  • the moderator 21 has a laminated structure made of a plurality of different materials, for example, and the material of the moderator 21 is appropriately selected according to various conditions such as the energy of the charged particle beam L. Specifically, for example, when the output from the accelerator 11 is a proton beam of 30 MeV and a beryllium target is used as the target 8, the material of the moderator 21 can be lead, iron, aluminum, or calcium fluoride.
  • the shield 22 is provided so as to surround the moderator 21, and has a function of shielding the neutron beam N and radiation such as gamma rays generated with the generation of the neutron beam N from being emitted to the outside of the shield 22.
  • the shield 22 may be at least partially embedded in the wall W1 separating the charged particle beam generation chamber 14 and the irradiation chamber 2 or may not be embedded.
  • a wall body 23 that forms a part of the side wall surface of the irradiation chamber 2 is provided between the irradiation chamber 2 and the shield 22.
  • the wall body 23 is provided with a collimator mounting portion 23a serving as an output port of the neutron beam N.
  • a collimator 31 for defining an irradiation field of the neutron beam N is fixed to the collimator mounting portion 23a. In addition, you may attach the collimator 31 to the treatment table 3 mentioned later, without providing the collimator attaching part 23a in the wall body 23.
  • FIG. 1 A collimator 31 for defining an irradiation field of the neutron beam N is fixed to the collimator mounting portion 23a. In addition, you may attach the collimator 31 to the treatment table 3 mentioned later, without providing the collimator attaching part 23a in the wall body 23.
  • the target 8 is irradiated with the charged particle beam L, and the target 8 generates the neutron beam N along with this.
  • the neutron beam N generated by the target 8 is decelerated while passing through the moderator 21, and the neutron beam N emitted from the moderator 21 passes through the collimator 31 to the patient S on the treatment table 3. Irradiated.
  • the neutron beam N a thermal neutron beam or an epithermal neutron beam having relatively low energy can be used.
  • the treatment table 3 functions as a mounting table used in neutron capture therapy, and can be moved from the preparation room (not shown) to the irradiation room 2 with the patient S mounted thereon.
  • the treatment table 3 includes a base portion 32 that constitutes the base of the treatment table 3, a caster 33 that enables the base portion 32 to move on the floor surface, a top plate 34 on which the patient S is placed, and a top plate 34. And a drive unit 35 for moving the base plate 32 relative to the base unit 32. Note that the base portion 32 may be fixed to the floor without using the casters 33.
  • the neutron beam irradiation apparatus 1 includes an irradiation control unit 132 for performing various control processes.
  • the irradiation control unit 132 is electrically connected to the accelerator 11, the beam adjustment unit 15, the charged particle beam scanning unit 13, and the current monitor 16. Then, the accelerator 11, the beam adjustment unit 15, and the charged particle beam scanning unit 13 are controlled based on the adjusted treatment plan information transmitted from the control device described later and the detection result output from the current monitor 16.
  • the neutron capture therapy system 100 includes a treatment planning device 110, a control device 120, an irradiation device 130, and a drug concentration measurement device 140.
  • the treatment planning device 110 is a device that performs a treatment plan of neutron capture therapy for irradiating the patient S with neutrons.
  • the control device 120 is a device that controls the irradiation device 130 based on the treatment plan information created by the treatment planning device 110.
  • the irradiation device 130 is a device that irradiates the patient S with a neutron beam based on an instruction from the control device 120.
  • the neutron beam irradiation apparatus 1 shown in FIGS. 1 and 2 corresponds to the irradiation apparatus 130 in the neutron capture therapy system 100.
  • the drug concentration measuring device 140 is a device that measures the drug concentration of the patient S on the day when the irradiation device 130 irradiates the neutron beam.
  • the drug concentration is the boron concentration of the patient S.
  • the distribution of the drug concentration can be obtained from the boron concentration in blood and the boron concentration ratio of each tissue in the body of the patient S.
  • the drug concentration of the patient S may be measured using a PG-SPECT (Prompt Gamma-ray Single Photon Emission Computed Tomography) device, a PET (Positron Emission Tomography) device, or the like.
  • the drug concentration varies depending on the region to be irradiated with the neutron beam (for example, by tissue) in the patient S.
  • the effect of neutron irradiation changes according to the concentration of the drug accumulated in the body of the patient S. Therefore, the drug concentration for each predetermined region in the body of the patient S greatly affects the dose of neutron radiation.
  • the treatment planning device 110, the control device 120, the irradiation device 130, and the drug concentration measurement device 140 included in the neutron capture therapy system 100 are included in a wired or wireless network and can transmit and receive information to and from each other.
  • the treatment planning device 110, the control device 120, the irradiation device 130, and the drug concentration measurement device 140 are each physically a CPU, a RAM and a ROM that are main storage devices, a communication module that is a data transmission / reception device, a hard disk,
  • the computer system includes an auxiliary storage device exemplified as a flash memory, an input device exemplified as a keyboard as an input device, an output device such as a display, and the like.
  • the control device 120, the irradiation device 130, and the drug concentration measurement device 140 by reading predetermined computer software on hardware such as CPU and RAM, a communication module and input under the control of the CPU. A series of functions in each device is realized by operating the device and the output device and reading and writing data in the RAM and the auxiliary storage device.
  • the treatment planning apparatus 110 includes a communication unit 111 and a treatment plan creation unit 112.
  • the communication unit 111 has a function of transmitting information related to the treatment plan created by the treatment plan creation unit 112 to the control device 120.
  • the treatment plan creation unit 112 has a function of creating a treatment plan related to irradiation of neutrons with respect to the patient S.
  • Information (treatment plan information) related to the treatment plan created by the treatment plan creation unit 112 is transmitted from the treatment planning device 110 to the control device 120 by the communication unit 111.
  • the preparation of a treatment plan is specifically performed according to the following procedure.
  • the treatment plan creation unit 112 acquires an image of the patient S, sets the body outline of the patient S, and then sets a region of the tissue (bone, organ, etc.) of the patient S for each tissue. Thereafter, the dose of the neutron beam irradiated to the patient S is set based on the concentration of the drug in the patient S, the atomic composition corresponding to each tissue, the resistance to the neutron beam, and the like.
  • the dose distribution when the patient S is irradiated is calculated. That is, in the treatment plan creation unit 112, information related to the three-dimensional dose distribution when the patient S is irradiated with neutron rays is created as a treatment plan.
  • the treatment plan created by the treatment plan creation unit 112 when information on the three-dimensional dose distribution in the body of the patient S is irradiated for each “grid” indicating a region serving as a basic unit of neutron irradiation, Information on the upper dose limit, the dose rate based on the administration of the drug, the dose rate derived from the tissue, and the drug concentration in the patient S body.
  • information from an external apparatus 150 such as a CT apparatus may be used.
  • the control device 120 includes a communication unit 121 and a treatment plan adjustment unit 122.
  • the communication unit 121 receives treatment plan information created and transmitted by the treatment plan device 110 and drug concentration information created and transmitted by a later-described drug concentration measurement device 140 and is adjusted by the treatment plan adjustment unit 122. In addition, it has a function of transmitting the adjusted treatment plan information to the irradiation device 130.
  • the treatment plan adjustment unit 122 has a function of adjusting treatment plan information created by the treatment planning device 110 based on drug concentration information created and transmitted by a later-described drug concentration measuring device 140.
  • the adjustment of the treatment plan is to adjust the treatment plan information created by the treatment plan device 110 so that it can be used in the irradiation device 130 (neutron beam irradiation device 1).
  • the treatment plan information includes information on the dose distribution in the body of the patient S.
  • control device 120 sets various conditions (such as irradiation time (irradiation amount of neutron beam) for each irradiation region) required when the irradiation device 130 irradiates the neutron beam.
  • various conditions such as irradiation time (irradiation amount of neutron beam) for each irradiation region) required when the irradiation device 130 irradiates the neutron beam.
  • the adjustment of the treatment plan includes, for example, adjusting the format so that the irradiation apparatus 130 can use it.
  • the adjustment of the treatment plan by the treatment plan adjustment unit 122 includes correction of the irradiation time based on the drug concentration information related to the patient S.
  • the treatment plan adjustment unit 122 has a function of correcting the treatment plan.
  • the irradiation device 130 includes a communication unit 131, an irradiation control unit 132, and an irradiation unit 133.
  • the communication unit 131 has a function of receiving the adjusted treatment plan information adjusted and transmitted by the control device 120.
  • the irradiation control unit 132 has a function of controlling the irradiation unit 133 in the irradiation apparatus 130 based on the adjusted treatment plan information.
  • the irradiation unit 133 has a function of irradiating the patient S with neutron beams based on the adjusted treatment plan information under the control of the irradiation control unit 132.
  • the irradiation unit 133 in the irradiation device 130 includes a neutron beam generation unit 10 that generates a neutron beam N for treatment in the neutron beam irradiation device 1 described with reference to FIGS. And a neutron beam irradiation unit 20 that irradiates the patient S with the neutron beam N.
  • the drug concentration measurement device 140 includes a communication unit 141 and a drug concentration acquisition unit 142.
  • the communication unit 141 has a function of transmitting drug concentration information, which is information related to the blood drug concentration of the patient S created and acquired by the drug concentration acquiring unit 142, to the control device 120.
  • the drug concentration acquisition unit 142 has a function of acquiring information related to the blood drug concentration of the patient S and creating drug concentration information to be transmitted to the control device 120.
  • the drug concentration acquisition unit 142 may have a function of measuring the drug concentration of the patient S, or acquires information related to the drug concentration measured by another device or the like, and controls it. It may have only a function to transmit to 120.
  • the measurement of the drug concentration can also be performed using, for example, a SPECT (Single Photon Emission Computed Tomography) imaging device, an ICP (High Frequency Inductively Coupled Plasma) analyzer, a prompt gamma ray detector, or the like. That is, the drug concentration measuring device 140 may be configured to include these devices.
  • the treatment plan creation unit 112 of the treatment planning apparatus 110 creates a treatment plan related to the neutron capture therapy of the patient S (S01).
  • the treatment plan information created by the treatment plan creation unit 112 is transmitted to the control device 120 via the communication unit 111 and received by the communication unit 121 of the control device 120 (S02).
  • the drug concentration acquisition unit 142 acquires the drug concentration information related to the patient S (S03), and the drug concentration information is transmitted from the communication unit 141 to the control device 120. (S04). Since the drug information on the treatment day of the patient S is used as the drug concentration information, the acquisition of the drug concentration information (S03) and the transmission of the drug concentration information (S04) in the drug concentration measurement device 140 are performed on the treatment day of the patient S. Is called.
  • the treatment plan adjustment unit 122 of the control device 120 based on the treatment plan information from the treatment plan device 110 and the drug concentration information from the drug concentration measurement device 140, the recalculation of irradiation time (S05) and the treatment plan Adjustment (S06) is performed.
  • T grid can be calculated by the following equation (1).
  • D limit indicates the upper limit rate [Gy] of the dose in this case, and is set for each tissue (normal tissue / affected tissue, organ, grid, etc.).
  • D ⁇ 10B indicates the dose rate [Gy / s] given by the drug in each grid when the treatment plan is created, and is set for each grid.
  • Dr tissue includes dose provision due to the reaction between in vivo nuclei and neutrons, and dose provision caused by gamma rays. ] Is set for each grid.
  • N 10B (plan) indicates a drug concentration [ppm] in each grid when a treatment plan is created, and is set based on a measured value or an assumed value. N 10B (plan) may be set for each organization, or more specifically, may be set for each grid.
  • the above-mentioned D limit , Dr 10B , Dr tissue , and N 10B (plan) are information included in the treatment plan information because they are information used when creating the treatment plan.
  • N 10B (irr) indicates the drug concentration [ppm] of the patient when the neutron beam is irradiated, and is information transmitted from the drug concentration measuring device 140 to the control device 120.
  • the treatment plan adjustment unit 122 of the control device 120 includes D limit , Dr 10B , Dr tissue , and N 10B (plan) included in the treatment plan information transmitted from the treatment planning device 110, and the drug concentration measurement device 140.
  • the irradiation time is recalculated in combination with N 10B (irr) included in the drug concentration information transmitted from.
  • a method for recalculating the irradiation time in the control device 120 a method different from the above may be used.
  • the recalculation method can be changed as appropriate based on the irradiation conditions and the like.
  • the treatment plan adjustment unit 122 of the control device 120 may change the format or the like so that irradiation of the neutron beam in the irradiation device 130 is appropriately performed as adjustment of the treatment plan (S06).
  • the adjusted treatment plan information after the recalculation of the irradiation time (S05) and the treatment plan adjustment (S06) in the treatment plan adjustment unit 122 of the control device 120 is transmitted from the communication unit 121 of the control device 120. And received by the communication unit 131 of the irradiation device 130 (S07).
  • various controls related to the irradiation of the neutron beam are performed in the irradiation control unit 132 based on the adjusted treatment plan information received by the communication unit 131, and as a result, the irradiation unit 133 of the irradiation device 130 performs the control.
  • the patient S is irradiated with a neutron beam (S08).
  • the neutrons in the irradiation device 130 are transmitted by the control device 120. Adjustments are made to allow irradiation of the line. Then, the adjusted treatment plan information is transmitted from the control device 120 to the irradiation device 130, and the irradiation device 130 irradiates the neutron beam based on the adjusted treatment plan information. Therefore, in the neutron capture therapy system 100 according to the present embodiment, it is possible to appropriately perform neutron beam irradiation based on the treatment plan.
  • the treatment planning device for creating a treatment plan and the irradiation device for irradiating the patient S with neutron beams have been configured as independent devices. Therefore, in the conventional neutron capture therapy, a configuration in which an operator who operates the irradiation apparatus manually inputs information necessary for neutron irradiation based on a treatment plan created by the treatment planning apparatus is common. . However, when the operator manually controls the irradiation device based on the treatment plan, an operator's operation mistake or input mistake may occur. Therefore, there was a possibility that the neutron irradiation based on the treatment plan could not be appropriately performed.
  • the treatment plan information created in the treatment planning device 110 is transmitted from the treatment planning device 110 to the control device 120. Is done. Then, the treatment plan is adjusted in the control device 120, the adjusted treatment plan information is transmitted from the control device 120 to the irradiation device 130, and the irradiation device 130 based on the adjusted treatment plan information. Irradiation is performed. Therefore, unlike the conventional neutron capture therapy procedure, the operator operating the irradiation device is prevented from manually entering the information necessary for neutron irradiation, thus preventing malfunctions caused by input errors. Therefore, it is possible to appropriately perform neutron irradiation based on the treatment plan.
  • the treatment plan information created by the treatment planning device 110 is adjusted in accordance with the control of the irradiation of the neutron beam in the irradiation device 130, so that it is not necessary for the operator to be involved in the adjustment of the treatment plan information. Become. Therefore, it is possible to appropriately perform neutron irradiation based on the treatment plan.
  • the treatment plan information created by the treatment plan device 110 includes information related to the drug concentration for each predetermined region (for example, for each grid or for each tissue) of the patient, and the control device 120 includes the treatment plan information. It has the structure which calculates the irradiation time of the neutron beam in the irradiation apparatus 130 based on the information which concerns on the chemical
  • the control device 120 recalculates the irradiation time of the neutron beam by the irradiation device 130 based on the drug concentration information transmitted from the drug concentration measuring device 140.
  • neutron irradiation can be performed based on the concentration distribution of the drug in the body of the patient S, and neutron irradiation based on the treatment plan can be performed more appropriately. it can.
  • the operator does not need to be involved in the recalculation of the irradiation time of the neutron beam by the irradiation device 130, and the risk of a calculation error or the like can be further reduced.
  • the neutron capture therapy system 100 according to one embodiment of the present invention has been described, but the present invention is not limited to the above-described embodiment, and is modified without changing the gist described in each claim, Or it may be applied to other things.
  • each apparatus includes a plurality of computers and the like. It may be constituted by. Moreover, the structure by which the function of two or more apparatuses was implement
  • achieved by one apparatus may be sufficient.
  • the control device 120 may be configured not to recalculate the irradiation time based on the drug concentration information.
  • generates and irradiates a neutron can be changed suitably.
  • it can also be set as the apparatus which produces
  • DESCRIPTION OF SYMBOLS 100 ... Neutron capture therapy system, 110 ... Treatment plan apparatus, 120 ... Control apparatus, 130 ... Irradiation apparatus, 140 ... Drug concentration measuring apparatus.

Abstract

情報の送受信が可能なネットワークに含まれる治療計画装置(110)、制御装置(120)、及び、照射装置(130)を含み、照射装置(130)により被照射体へ中性子線を照射する中性子捕捉療法システム(100)であって、治療計画装置(110)は、治療計画に係る治療計画情報を作成して、制御装置(120)に対して送信し、制御装置(120)は、治療計画装置(110)から送信された治療計画情報について、照射装置(130)において利用可能となるように調整し、照射装置(130)は、制御装置(120)による調整後の治療計画情報に基づいて、被照射体へ中性子線を照射する。

Description

中性子捕捉療法システム及び制御装置
 本発明は、中性子捕捉療法システム及び制御装置に関する。
 放射線を用いた治療方法として、中性子線を照射してがん細胞を死滅させる中性子捕捉療法である中性子捕捉療法(NCT:Neuron Capture Therapy)が知られている。中性子捕捉療法では、がん細胞に予め取り込ませておいたホウ素等の物質に中性子線を照射し、これにより生じる重荷電粒子の飛散によってがん細胞を選択的に破壊する(例えば、特許文献1参照)。
特許第5410608号明細書
 放射線治療においては、治療の前段階において、放射線を患部及び患部以外の領域に照射される際の影響等を考慮しながら、放射線の照射についての計画を行う治療計画装置を利用して治療計画の作成を行う。X線治療や陽子線治療等の一般的な放射線治療用の治療計画ソフトが普及しており、治療計画ソフトにて作成された治療計画データは、照射装置側にて読み込み可能となっている。しかしながら、中性子捕捉療法用の治療計画ソフトは普及していないため、従来は一般的な放射線治療用の治療計画ソフトで作成された治療計画に基づいた照射時間等の設定を中性子線照射装置側にオペレータ等が手動で入力していた。そのため、入力内容に誤りがある場合には、中性子線照射装置による中性子線の照射が適切に行われない可能性が考えられる。
 本発明は上記を鑑みてなされたものであり、治療計画に基づいた中性子線の照射を適切に行うことが可能な中性子捕捉療法システム及び制御装置を提供することを目的とする。
 上記目的を達成するため、本発明の一形態に係る中性子捕捉療法システムは、情報の送受信が可能なネットワークに含まれる治療計画装置、制御装置、及び、照射装置を含み、前記照射装置により被照射体へ中性子線を照射する中性子捕捉療法システムであって、前記治療計画装置は、治療計画に係る治療計画情報を作成し、前記制御装置は、前記治療計画装置において作成された前記治療計画情報について、前記照射装置において利用可能となるように調整し、前記照射装置は、前記制御装置による調整後の前記治療計画情報に基づいて、前記被照射体へ中性子線を照射する。
 本発明の一形態に係る制御装置は、照射装置により被照射体へ中性子線を照射する中性子捕捉療法システムに含まれる制御装置であって、治療計画装置において作成されて送信される治療計画に係る治療計画情報を受信し、前記照射装置において利用可能となるように調整する。
 上記の中性子捕捉療法システム及び制御装置では、治療計画装置により作成された治療計画情報について、制御装置において照射装置での中性子線の照射が可能なように調整がされる。そして、調整後の治療計画情報に基づいて、照射装置において中性子線の照射が行われる。また、これらの装置は情報の送受信が可能なネットワークに含まれて、装置間で情報の送受信が行われる。したがって、上記の中性子捕捉療法システム及び制御装置では、オペレータ等が手動で情報を入力する場合と比較して、治療計画に基づいた中性子線の照射を適切に行うことを可能としている。
 ここで、前記治療計画情報は、前記被照射体の所定の領域毎の薬剤濃度に係る情報を含み、前記制御装置は、前記被照射体の所定の領域毎の薬剤濃度に係る情報に基づいて、前記被照射体に対する中性子線の照射時間を設定する態様とすることができる。
 上記のように、治療計画装置が作成する治療計画情報には、被照射体の所定の領域毎の薬剤濃度に係る情報が含まれていて、制御装置において、治療計画情報に含まれる薬剤濃度に係る情報に基づいて、照射装置における中性子線の照射時間を算出する構成を有している場合、中性子線の照射時間の算出に関してもオペレータ等の関与が不要となることから、治療計画に基づいた中性子線の照射を適切に行うことを可能とする。
 また、前記ネットワークに含まれ、前記被照射体の薬剤濃度に係る薬剤濃度情報を取得する薬剤濃度測定装置をさらに含み、前記制御装置は、前記薬剤濃度測定装置からの前記薬剤濃度情報に基づいて、前記被照射体に対する中性子線の照射時間の再計算を行う態様とすることができる。
 上記のように、薬剤濃度測定装置からの薬剤濃度情報に基づいて、制御装置において、照射装置による中性子線の照射時間の再計算を行う構成を有している場合、被照射体の体内での薬剤の濃度分布に基づくより適切な中性子線の照射が可能となる。さらに、中性子線の照射時間の再計算に関してもオペレータの関与が不要となるため、中性子線の照射をより適切に行うことができる。
 本発明によれば、治療計画に基づいた中性子線の照射を適切に行うことが可能な中性子捕捉療法システム及び制御装置が提供される。
本実施形態の中性子捕捉療法システムに含まれる中性子線照射装置の概要を説明する図である。 図1の中性子線照装置における中性子線照射部近傍を示す図である。 中性子捕捉療法システムの各機能部を説明する図である。 中性子捕捉療法システムにおける一連の処理を説明するシーケンス図である。
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。
 本実施形態にかかる中性子捕捉療法システムは、中性子捕捉療法を用いたがん治療を行うシステムであり、がん細胞に集積する物質(例えば、ホウ素(10B))が投与された患者のホウ素が集積した位置に対して中性子線を照射してがん治療を行うものである。中性子捕捉療法システムは、患者に対して中性子線を照射するための照射装置(中性子捕捉療法装置)と、当該照射装置を制御する制御装置、及び、照射装置における中性子線の照射に関する計画を行う治療計画装置を含む。上記システムの詳細を説明する前に、まず、中性子線を照射する中性子線照射装置(中性子捕捉療法装置)について説明し、その後、中性子捕捉療法システムについて説明する。
(中性子線照射装置)
 図1及び図2を用いて、中性子線照射装置の概要を説明する。図1及び図2に示すように、中性子線照射装置1は、治療台3に拘束された患者(被照射体)Sに中性子線Nを照射して患者Sのがん治療を行う照射室2を有している。
 患者Sを治療台3に拘束する等の準備作業は、照射室2外の準備室(不図示)で実施され、患者Sが拘束された治療台3が準備室から照射室2に移動される。また、中性子線照射装置1は、治療用の中性子線Nを発生させる中性子線発生部10と、照射室2内で治療台3に拘束された患者Sに中性子線Nを照射する中性子線照射部20と、を備えている。なお、照射室2は遮蔽壁Wに覆われているが、患者や作業者等が通過するために通路及び扉45が設けられてよい。
 中性子線発生部10は、荷電粒子を加速して荷電粒子線Lを出射する加速器11と、加速器11が出射した荷電粒子線Lを輸送するビーム輸送路12と、荷電粒子線Lを走査してターゲット8に対する荷電粒子線Lの照射位置の制御を行う荷電粒子線走査部13と、荷電粒子線Lが照射されることで核反応を起こして中性子線Nを発生させるターゲット8と、荷電粒子線Lの電流を測定する電流モニタ16と、を備えている。加速器11及びビーム輸送路12は、略長方形状を成す荷電粒子線生成室14の室内に配置されており、この荷電粒子線生成室14は、コンクリート製の遮蔽壁Wで覆われた空間である。なお、荷電粒子線生成室14には、メンテナンスのための作業者が通過するための通路及び扉46が設けられてよい。なお、荷電粒子線生成室14は略長方形状に限定されず、他の形状であってもよい。例えば、加速器からターゲットまでの経路がL字状の場合には、荷電粒子線生成室14もL字状にしてよい。また、荷電粒子線走査部13は例えば荷電粒子線Lのターゲット8に対する照射位置を制御し、電流モニタ16はターゲット8に照射される荷電粒子線Lの電流を測定する。
 加速器11は、荷電粒子を加速して荷電粒子線Lを生成するものである。本実施形態では、加速器11としてサイクロトロンが採用されている。なお、加速器11として、サイクロトロンに代えて、シンクロトロン、シンクロサイクロトロン又はライナック等の他の加速器を用いてもよい。
 ビーム輸送路12の一端(上流側の端部)は、加速器11に接続されている。ビーム輸送路12は、荷電粒子線Lを調整するビーム調整部15を備えている。ビーム調整部15は、荷電粒子線Lの軸を調整する水平型ステアリング電磁石及び水平垂直型ステアリング電磁石と、荷電粒子線Lの発散を抑制する四重極電磁石と、荷電粒子線Lを整形する四方スリット等を有している。なお、ビーム輸送路12は荷電粒子線Lを輸送する機能を有していればよく、ビーム調整部15は無くてもよい。
 ビーム輸送路12によって輸送された荷電粒子線Lは、荷電粒子線走査部13によって照射位置を制御されてターゲット8に照射される。なお、荷電粒子線走査部13を省略して、常にターゲット8の同じ箇所に荷電粒子線Lを照射するようにしてもよい。
 ターゲット8は、荷電粒子線Lが照射されることによって中性子線Nを発生させる。ターゲット8は、例えば、ベリリウム(Be)、リチウム(Li)、タンタル(Ta)又はタングステン(W)で構成されており、板状を成している(ただし、ターゲット8の材質の詳細については後述する)。なお、ターゲット8は、板状に限定されず、例えば、液状(液体金属)であってもよい。ターゲット8が発生させた中性子線Nは、中性子線照射部20によって照射室2内の患者Sに向かって照射される。
 中性子線照射部20は、ターゲット8から出射された中性子線Nを減速させる減速材21と、中性子線N及びガンマ線等の放射線が外部に放出されないように遮蔽する遮蔽体22と、を備えており、この減速材21と遮蔽体22とでモデレータが構成されている。
 減速材21は例えば異なる複数の材料から成る積層構造とされており、減速材21の材料は荷電粒子線Lのエネルギー等の諸条件によって適宜選択される。具体的には、例えば加速器11からの出力が30MeVの陽子線でありターゲット8としてベリリウムターゲットを用いる場合には、減速材21の材料は鉛、鉄、アルミニウム又はフッ化カルシウムとすることができる。
 遮蔽体22は、減速材21を囲むように設けられており、中性子線N、及び中性子線Nの発生に伴って生じたガンマ線等の放射線が遮蔽体22の外部に放出されないように遮蔽する機能を有する。遮蔽体22は、荷電粒子線生成室14と照射室2とを隔てる壁W1に少なくともその一部が埋め込まれていてもよく、埋め込まれていなくてもよい。また、照射室2と遮蔽体22との間には、照射室2の側壁面の一部を成す壁体23が設けられている。壁体23には、中性子線Nの出力口となるコリメータ取付部23aが設けられている。このコリメータ取付部23aには、中性子線Nの照射野を規定するためのコリメータ31が固定されている。なお、コリメータ取付部23aを壁体23に設けずに、後述する治療台3にコリメータ31を取り付けてもよい。
 以上の中性子線照射部20では、荷電粒子線Lがターゲット8に照射され、これに伴いターゲット8が中性子線Nを発生させる。ターゲット8によって発生した中性子線Nは、減速材21内を通過している際に減速され、減速材21から出射された中性子線Nは、コリメータ31を通過して治療台3上の患者Sに照射される。ここで、中性子線Nとしては、比較的エネルギーが低い熱中性子線又は熱外中性子線を用いることができる。
 治療台3は、中性子捕捉療法で用いられる載置台として機能し、患者Sを載置したまま準備室(不図示)から照射室2へ移動可能となっている。治療台3は、治療台3の土台を構成する土台部32と、土台部32を床面上で移動可能とするキャスタ33と、患者Sを載置するための天板34と、天板34を土台部32に対して相対的に移動させるための駆動部35と、を備えている。なお、キャスタ33を用いず、土台部32を床に固定しても良い。
 中性子線照射装置1は、各種制御処理を行うための照射制御部132を備えている。照射制御部132は、加速器11、ビーム調整部15、荷電粒子線走査部13、電流モニタ16と電気的に接続されている。そして、後述の制御装置から送信される調整後の治療計画情報、及び電流モニタ16から出力された検出結果に基づいて、加速器11、ビーム調整部15、及び荷電粒子線走査部13を制御する。
(中性子捕捉療法システム)
 次に、上記の中性子線照射装置1を含む中性子捕捉療法システムについて、図3を参照しながら説明する。
 図3に示すように、中性子捕捉療法システム100は、治療計画装置110と、制御装置120と、照射装置130と、薬剤濃度測定装置140と、を含む。治療計画装置110は、患者Sへ中性子を照射する中性子捕捉療法の治療計画を行う装置である。また、制御装置120は、治療計画装置110で作成された治療計画情報に基づいて、照射装置130を制御する装置である。また、照射装置130は、制御装置120からの指示に基づいて、患者Sに対して中性子線を照射する装置である。図1及び図2に示した中性子線照射装置1は、中性子捕捉療法システム100における照射装置130に相当する。また、薬剤濃度測定装置140は、照射装置130による中性子線の照射を行う当日の患者Sの薬剤濃度を測定する装置である。薬剤濃度とは、ホウ素中性子捕捉療法においては、患者Sのホウ素濃度であり、例えば、血中のホウ素濃度及び患者Sの体内の各組織のホウ素濃度比から薬剤濃度の分布を求めることができる。または、PG-SPECT(Prompt Gamma-ray Single Photon Emission Computed Tomography)装置やPET(Positron Emission Tomography)装置等を用いて、患者Sの薬剤濃度を測定してもよい。薬剤濃度は、患者Sの体内においても、中性子線の照射対象の領域別(例えば、組織別等)に異なる。中性子捕捉療法では、患者Sの体内に蓄積された薬剤の濃度に応じて、中性子線照射による効果が変化する。したがって、患者Sの体内の所定の領域毎の薬剤濃度は、中性子線の照射量に大きく影響する。
 中性子捕捉療法システム100に含まれる治療計画装置110、制御装置120、照射装置130及び薬剤濃度測定装置140は、有線又は無線のネットワークに含まれていて、互いに情報の送受信が可能となっている。
 また、治療計画装置110、制御装置120、照射装置130及び薬剤濃度測定装置140は、物理的には、それぞれ、CPU、主記憶装置であるRAM及びROM、データ送受信デバイスである通信モジュール、ハードディスク、フラッシュメモリ等に例示される補助記憶装置、入力デバイスであるキーボード等に例示される入力装置、ディスプレイ等の出力装置等を含むコンピュータシステムを含んで構成される。治療計画装置110、制御装置120、照射装置130及び薬剤濃度測定装置140では、CPU、RAM等のハードウェア上に所定のコンピュータソフトウェアを読み込ませることにより、CPUの制御のもとで通信モジュール、入力装置、出力装置を動作させるとともに、RAMや補助記憶装置におけるデータの読み出し及び書き込みを行うことで、各装置における一連の機能が実現される。
 中性子捕捉療法システム100を構成する各装置の機能についてさらに説明する。まず、治療計画装置110は、通信部111と、治療計画作成部112と、を含む。
 通信部111は、治療計画作成部112により作成された治療計画に関する情報を制御装置120に対して送信する機能を有する。また、治療計画作成部112は、患者Sに対する中性子線の照射に関する治療計画を作成する機能を有する。治療計画作成部112により作成された治療計画に係る情報(治療計画情報)は、通信部111により治療計画装置110から制御装置120に対して送信される。
 治療計画の作成は、具体的には以下の手順で行われる。まず、治療計画作成部112は、患者Sの画像を取得し、患者Sの身体の輪郭を設定した後、患者Sの組織(骨、臓器等)の領域を組織毎に設定する。その後、患者S体内の薬剤の濃度、各組織に対応する原子組成、中性子線に対する耐性等に基づいて、患者Sに対して照射する中性子線の線量が設定されると共に、当該線量の中性子線を患者Sに照射した場合の線量分布を算出する。すなわち、治療計画作成部112では、患者Sに中性子線を照射した際の3次元線量分布に係る情報が治療計画として作成される。治療計画作成部112で作成される治療計画には、患者S体内の3次元線量分布に係る情報として、中性子線照射の基礎単位となる領域を示す「グリッド」毎に、中性子線を照射した際の線量上限、薬剤の投与に基づく線量率、組織に由来する線量率、患者S体内の薬剤濃度に係る情報が含まれる。なお、治療計画装置110による治療計画の作成の際には、例えば、CT装置等の外部装置150からの情報が用いられていてもよい。
 制御装置120は、通信部121と、治療計画調整部122と、を含む。
 通信部121は、治療計画装置110により作成され送信される治療計画情報、及び、後述の薬剤濃度測定装置140により作成され送信される薬剤濃度情報を受信すると共に、治療計画調整部122により調整された調整後の治療計画情報を照射装置130に対して送信する機能を有する。
 治療計画調整部122は、後述の薬剤濃度測定装置140により作成され送信される薬剤濃度情報に基づいて、治療計画装置110により作成された治療計画情報を調整する機能を有する。
 治療計画の調整とは、治療計画装置110により作成された治療計画情報を、照射装置130(中性子線照射装置1)において利用可能なように調整するものである。治療計画情報には患者Sの体内における線量分布の情報等が含まれているが、照射装置130においては、患者Sの体内の所定の領域毎(例えば、グリッド毎)に、中性子線の照射時間(中性子線の照射量)を設定し、設定通りに中性子線を照射することが必要である。したがって、制御装置120では、照射装置130において中性子線を照射する際に必要となる諸条件(照射領域毎の照射時間(中性子線の照射量)等)を設定する。このような処理を「治療計画の調整」という。なお、治療計画の調整には、例えば、照射装置130で使用可能となるようにフォーマットを調整すること等も含まれる。
 また、中性子捕捉療法では、患者Sの治療当日の薬剤濃度に係る情報(薬剤濃度情報)に基づいて、患者Sに対する中性子線の照射時間を再計算し設定することが一般的である。したがって、治療計画調整部122による治療計画の調整には、患者Sに係る薬剤濃度情報に基づく照射時間の補正も含まれる。治療計画調整部122は、この治療計画の補正を実施する機能を有する。
 照射装置130は、通信部131と、照射制御部132と、照射部133と、を含む。
 通信部131は、制御装置120により調整され送信される調整後の治療計画情報を受信する機能を有する。照射制御部132は、調整後の治療計画情報に基づいて、照射装置130における照射部133を制御する機能を有する。
 照射部133は、照射制御部132の制御により、調整後の治療計画情報に基づき患者Sに対して中性子線を照射する機能を有する。照射装置130における照射部133には、図1,2で説明した中性子線照射装置1において、治療用の中性子線Nを発生させる中性子線発生部10と、照射室2内で治療台3に拘束された患者Sに中性子線Nを照射する中性子線照射部20と、が含まれる。
 薬剤濃度測定装置140は、通信部141と、薬剤濃度取得部142と、を含む。
 通信部141は、薬剤濃度取得部142により取得し作成された患者Sの血中薬剤濃度に係る情報である薬剤濃度情報を制御装置120に対して送信する機能を有する。
 薬剤濃度取得部142は、患者Sの血中薬剤濃度に係る情報を取得し、制御装置120に対して送信する薬剤濃度情報を作成する機能を有する。なお、薬剤濃度取得部142は、患者Sの薬剤濃度の測定を行う機能を有していていてもよいし、他の装置等で測定された薬剤濃度に係る情報を取得し、それを制御装置120に対して送信する機能のみを有していてもよい。なお、薬剤濃度の測定は、例えば、SPECT(単一光子放射型コンピュータ断層)撮影装置、ICP(高周波誘導結合プラズマ)分析装置、即発ガンマ線検出装置等を用いて行うこともできる。すなわち、薬剤濃度測定装置140は、これらの装置を含んで構成されていてもよい。
 次に、図4を参照しながら、中性子捕捉療法システム100による一連の処理について説明する。
 まず、治療計画装置110の治療計画作成部112では、患者Sの中性子捕捉療法に係る治療計画が作成される(S01)。治療計画作成部112において作成された治療計画情報は、通信部111を経て制御装置120に対して送信され、制御装置120の通信部121において受信される(S02)。
 一方、薬剤濃度測定装置140では、薬剤濃度取得部142において、患者Sに係る薬剤濃度情報が取得され(S03)、薬剤濃度情報が通信部141から制御装置120に対して送信され、制御装置120の通信部121において受信される(S04)。薬剤濃度情報として、患者Sの治療当日の薬剤情報が用いられるので、薬剤濃度測定装置140における薬剤濃度情報の取得(S03)及び薬剤濃度情報の送信(S04)は、患者Sの治療当日に行われる。
 次に、制御装置120の治療計画調整部122では、治療計画装置110からの治療計画情報及び薬剤濃度測定装置140からの薬剤濃度情報に基づいて、照射時間の再計算(S05)及び治療計画の調整(S06)が行われる。
 治療計画調整部122で行われる照射時間の再計算(S05)の方法の一例について説明する。治療計画情報には、患者Sに対して予め求められた照射時間だけ中性子線を照射した場合の3次元の線量分布が求められる。そこで、照射時間の再計算の際には、線量を算出した領域(グリッド)において以下の計算を行い、グリッドのそれぞれにおいて線量が上限(組織において耐え得る線量の上限)に達する中性子線の照射時間を算出し、その最小値を治療照射時間とする。
 具体的には、各グリッドにおいて中性子線を照射した際に線量上限に達する時間率[秒]をTgridとした場合に、Tgridは以下の数式(1)で算出することができる。
Figure JPOXMLDOC01-appb-M000001
 なお、Dlimitは、当該における線量の上限率[Gy]を示し、組織毎(正常組織・患部組織別、器官毎、グリッド毎、等)に設定される。またDγ10Bは、治療計画を作成した際の各グリッドにおいて薬剤により与えられる線量率[Gy/s]を示し、グリッド毎に設定される。また、Drtissueは、生体内原子核と中性子との反応による線量付与、ガンマ線により生じる線量付与を含み、治療計画を作成した際の各グリッドにおいて生体組織に起因して与えられる線量率[Gy/s]を示し、グリッド毎に設定される。また、N10B(plan)は、治療計画を作成した際の各グリッドにおける薬剤濃度[ppm]を示し、測定値若しくは想定値に基づいて設定される。N10B(plan)は、組織毎に設定されていてもよいし、より詳細には、グリッド毎に設定されていてもよい。上記のDlimit、Dr10B、Drtissue、及び、N10B(plan)は、治療計画作成時に用いられる情報であるから、治療計画情報に含まれる情報である。
 さらに、N10B(irr)は、中性子線を照射する際の患者の薬剤濃度[ppm]を示し、薬剤濃度測定装置140から制御装置120に対して送信される情報である。
 すなわち、制御装置120の治療計画調整部122では、治療計画装置110から送信される治療計画情報に含まれるDlimit、Dr10B、Drtissue、及び、N10B(plan)と、薬剤濃度測定装置140から送信される薬剤濃度情報に含まれるN10B(irr)と、を組み合わせて、照射時間の再計算を行う。
 なお、制御装置120における照射時間の再計算の方法として、上記とは異なる方法を用いてもよい。照射条件等に基づいて再計算の方法は適宜変更することができる。
 さらに、制御装置120の治療計画調整部122では、治療計画の調整(S06)として、照射装置130における中性子線の照射が適切に行われるように、フォーマットの変更等を行ってもよい。
 制御装置120の治療計画調整部122において照射時間の再計算(S05)及び治療計画の調整(S06)が行われた後の、調整後の治療計画情報は、制御装置120の通信部121から送信され、照射装置130の通信部131で受信される(S07)。照射装置130では、通信部131で受信された調整後の治療計画情報に基づいて、照射制御部132において中性子線の照射に係る各種制御が行われ、その結果、照射装置130の照射部133により、患者Sに対して中性子線が照射される(S08)。
 以上のように、本実施形態に係る中性子捕捉療法システム100では、治療計画装置110により作成された治療計画情報が制御装置120に対して送信された後、制御装置120において照射装置130での中性子線の照射が可能なように調整がされる。そして、調整後の治療計画情報が制御装置120から照射装置130に対して送信され、照射装置130において調整後の治療計画情報に基づいて中性子線の照射が行われる。したがって、本実施形態に係る中性子捕捉療法システム100では、治療計画に基づいた中性子線の照射を適切に行うことを可能としている。
 従来は、治療計画を作成する治療計画装置と、患者Sに対して中性子線を照射する照射装置と、は、それぞれ独立した装置として構成されていた。したがって、従来の中性子捕捉療法においては、治療計画装置で作成された治療計画に基づいて、照射装置を操作するオペレータが中性子線の照射に必要な情報を手動で入力する構成が一般的であった。しかしながら、オペレータが治療計画に基づいて照射装置を手動で制御する構成とした場合、オペレータの操作ミス若しくは入力ミス等が発生する可能性がある。したがって、治療計画に基づいた中性子線の照射を適切に行うことができない可能性があった。
 これに対して、本実施形態に係る中性子捕捉療法システム100及び当該システムに含まれる制御装置120では、治療計画装置110において作成された治療計画情報が治療計画装置110から制御装置120に対して送信される。そして、制御装置120において治療計画の調整が行われ、調整後の治療計画情報が制御装置120から照射装置130に対して送信されて、照射装置130において調整後の治療計画情報に基づいて中性子線の照射が行われる。したがって、従来の中性子捕捉療法における手順のように、照射装置を操作するオペレータが中性子線の照射に必要な情報を手動で入力することが防がれることから、入力ミス等に由来する誤動作を防止することができ、治療計画に基づいた中性子線の照射を適切に行うことを可能とする。また、制御装置120において、治療計画装置110で作成された治療計画情報を照射装置130における中性子線の照射の制御に対応させて調整するため、治療計画情報の調整についてもオペレータの関与が不要となる。したがって、治療計画に基づいた中性子線の照射を適切に行うことを可能とする。
 また、治療計画装置110が作成する治療計画情報には、患者の所定領域毎(例えば、グリッド毎若しくは組織毎)の薬剤濃度に係る情報が含まれていて、制御装置120では、治療計画情報に含まれる薬剤濃度に係る情報に基づいて、照射装置130における中性子線の照射時間を算出する構成を有している。したがって、中性子線の照射時間の算出に関してもオペレータの関与が不要となり、治療計画に基づいた中性子線の照射を適切に行うことを可能とする。
 さらに、上記実施形態の中性子捕捉療法システム100では、薬剤濃度測定装置140から送信される薬剤濃度情報に基づいて、制御装置120において、照射装置130による中性子線の照射時間の再計算を行う構成を有している。このような構成を有していることで、患者Sの体内での薬剤の濃度分布に基づいて、中性子線の照射が可能となり、治療計画に基づいた中性子線の照射をより適切に行うことができる。また、照射装置130による中性子線の照射時間の再計算に関してもオペレータの関与が不要となり、計算ミス等のリスクをより低減させることができる。
 以上、本発明の一実施形態に係る中性子捕捉療法システム100について説明したが、本発明は、上記実施形態に限定されるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用したものであってもよい。
 例えば、上記実施形態では、治療計画装置110、制御装置120、照射装置130、及び、薬剤濃度測定装置140がそれぞれ個別に設けられている場合について説明したが、それぞれの装置が複数台のコンピュータ等により構成されていてもよい。また、2以上の装置の機能が1台の装置によって実現されている構成であってもよい。
 中性子捕捉療法システム100に薬剤濃度測定装置140が含まれる構成について説明したが、薬剤濃度測定装置140が含まれない構成であってもよい。その場合、制御装置120は、薬剤濃度情報に基づく照射時間の再計算を行わない構成であってもよい。
 また、上記実施形態では、加速器から出射された荷電粒子線をターゲット8へ照射して中性子を生成する構成について説明したが、中性子を生成して照射する装置の装置構成は適宜変更することができ、例えば、原子炉にて中性子を生成する装置とすることもできる。
 100…中性子捕捉療法システム、110…治療計画装置、120…制御装置、130…照射装置、140…薬剤濃度測定装置。

Claims (4)

  1.  情報の送受信が可能なネットワークに含まれる治療計画装置、制御装置、及び、照射装置を含み、前記照射装置により被照射体へ中性子線を照射する中性子捕捉療法システムであって、
     前記治療計画装置は、治療計画に係る治療計画情報を作成し、
     前記制御装置は、前記治療計画装置において作成された前記治療計画情報について、前記照射装置において利用可能となるように調整し、
     前記照射装置は、前記制御装置による調整後の前記治療計画情報に基づいて、前記被照射体へ中性子線を照射する、中性子捕捉療法システム。
  2.  前記治療計画情報は、前記被照射体の所定の領域毎の薬剤濃度に係る情報を含み、
     前記制御装置は、前記被照射体の所定の領域毎の薬剤濃度に係る情報に基づいて、前記被照射体に対する中性子線の照射時間を設定する、請求項1に記載の中性子捕捉療法システム。
  3.  前記ネットワークに含まれ、前記被照射体の薬剤濃度に係る薬剤濃度情報を取得する薬剤濃度測定装置をさらに含み、
     前記制御装置は、前記薬剤濃度測定装置からの前記薬剤濃度情報に基づいて、前記被照射体に対する中性子線の照射時間の再計算を行う、請求項2に記載の中性子捕捉療法システム。
  4.  照射装置により被照射体へ中性子線を照射する中性子捕捉療法システムに含まれる制御装置であって、
     治療計画装置において作成されて送信される治療計画に係る治療計画情報を受信し、前記照射装置において利用可能となるように調整する制御装置。
PCT/JP2018/009314 2017-03-13 2018-03-09 中性子捕捉療法システム及び制御装置 WO2018168713A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019505980A JP7018054B2 (ja) 2017-03-13 2018-03-09 中性子捕捉療法システム及び制御装置
CN201880017802.XA CN110418666A (zh) 2017-03-13 2018-03-09 中子捕捉疗法系统及控制装置
EP18767199.5A EP3597269A4 (en) 2017-03-13 2018-03-09 NEUTRON CAPTURE THERAPY SYSTEM AND CONTROL DEVICE
US16/567,410 US20200001113A1 (en) 2017-03-13 2019-09-11 Neutron capture therapy system and control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017047185 2017-03-13
JP2017-047185 2017-03-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/567,410 Continuation US20200001113A1 (en) 2017-03-13 2019-09-11 Neutron capture therapy system and control device

Publications (1)

Publication Number Publication Date
WO2018168713A1 true WO2018168713A1 (ja) 2018-09-20

Family

ID=63522500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009314 WO2018168713A1 (ja) 2017-03-13 2018-03-09 中性子捕捉療法システム及び制御装置

Country Status (6)

Country Link
US (1) US20200001113A1 (ja)
EP (1) EP3597269A4 (ja)
JP (1) JP7018054B2 (ja)
CN (1) CN110418666A (ja)
TW (1) TWI666037B (ja)
WO (1) WO2018168713A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023530015A (ja) * 2020-07-03 2023-07-12 中硼(厦▲門▼)医▲療▼器械有限公司 中性子捕捉療法装置及びその監視システムの動作ステップ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7430057B2 (ja) * 2019-12-25 2024-02-09 住友重機械工業株式会社 校正装置、治療計画装置及び校正方法
CN116603176A (zh) * 2020-10-14 2023-08-18 中硼(厦门)医疗器械有限公司 硼中子捕获治疗系统及其照射参数选取方法
TWI828268B (zh) * 2022-08-11 2024-01-01 禾榮科技股份有限公司 劑量控制系統

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410608B2 (ja) 1973-07-31 1979-05-08
JP2016077812A (ja) * 2014-10-22 2016-05-16 住友重機械工業株式会社 中性子捕捉療法装置
JP2016159107A (ja) * 2015-03-05 2016-09-05 住友重機械工業株式会社 中性子捕捉療法装置
JP2016214760A (ja) * 2015-05-25 2016-12-22 株式会社東芝 ホウ素中性子捕捉療法用治療装置及びその制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117591C (zh) * 1999-09-28 2003-08-13 王乔生 快中子近距离自动遥控后装放射治疗设备
US7945021B2 (en) * 2002-12-18 2011-05-17 Varian Medical Systems, Inc. Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager
US20070093463A1 (en) * 2004-05-20 2007-04-26 Brookhaven Science Associates, Llc Radiation enhancement agent for X-ray radiation therapy and boron neutron-capture therapy
CN201324447Y (zh) * 2008-11-21 2009-10-14 深圳市尊瑞科技有限公司 一种中子后装治疗装置
US20130072784A1 (en) * 2010-11-10 2013-03-21 Gnanasekar Velusamy Systems and methods for planning image-guided interventional procedures
WO2014016896A1 (ja) * 2012-07-24 2014-01-30 三菱電機株式会社 加速器の高周波制御装置および粒子線治療装置
RU2606337C1 (ru) * 2015-11-25 2017-01-10 Федеральное государственное бюджетное учреждение науки Институт ядерной физики им. Г.И. Будкера Сибирского отделения РАН (ИЯФ СО РАН) Способ измерения поглощенной дозы при бор-нейтронозахватной терапии злокачественных опухолей

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410608B2 (ja) 1973-07-31 1979-05-08
JP2016077812A (ja) * 2014-10-22 2016-05-16 住友重機械工業株式会社 中性子捕捉療法装置
JP2016159107A (ja) * 2015-03-05 2016-09-05 住友重機械工業株式会社 中性子捕捉療法装置
JP2016214760A (ja) * 2015-05-25 2016-12-22 株式会社東芝 ホウ素中性子捕捉療法用治療装置及びその制御方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SAKURAI, HIDEYUKI: "Accelerator based-BNCT project of University of Tsukuba", 8 November 2016 (2016-11-08), pages 1 - 6, XP055623010, Retrieved from the Internet <URL:http://www.pref.osaka.lg.jp/attach/28090/002z649/bnctsymposiryouall-12tsukuba.pdf> *
See also references of EP3597269A4
TAKADA, KENTA ET AL.: "Development of Monte Carlo based real-time treatment planning system with fast calculation algorithm for boron neutron capture therapy", PHYSICA MEDICA, vol. 32, no. 12, 2016, pages 1846 - 1851, XP029861664 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023530015A (ja) * 2020-07-03 2023-07-12 中硼(厦▲門▼)医▲療▼器械有限公司 中性子捕捉療法装置及びその監視システムの動作ステップ
JP2023531287A (ja) * 2020-07-03 2023-07-21 中硼(厦▲門▼)医▲療▼器械有限公司 中性子捕捉療法装置及びその監視システムの動作ステップ
JP2023532541A (ja) * 2020-07-03 2023-07-28 中硼(厦▲門▼)医▲療▼器械有限公司 中性子捕捉療法装置及びその監視システムの動作ステップ

Also Published As

Publication number Publication date
CN110418666A (zh) 2019-11-05
TWI666037B (zh) 2019-07-21
JPWO2018168713A1 (ja) 2020-01-16
EP3597269A1 (en) 2020-01-22
TW201834715A (zh) 2018-10-01
US20200001113A1 (en) 2020-01-02
JP7018054B2 (ja) 2022-02-09
EP3597269A4 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
RU2721658C1 (ru) Устройство и способ экранирования излучения на основе медицинских изображений
US7848488B2 (en) Radiation systems having tiltable gantry
US9061143B2 (en) Charged particle beam irradiation system and charged particle beam irradiation planning method
JP7018054B2 (ja) 中性子捕捉療法システム及び制御装置
CN105050659B (zh) 粒子束治疗系统
US7679049B2 (en) Calibrating a positron emission tomography scanner
EP2321009B1 (en) Radiotherapy apparatus
WO2017073683A1 (ja) 中性子捕捉療法システム
WO2018056146A1 (ja) 中性子捕捉療法システム、及び中性子捕捉療法用治療計画システム
WO2017170909A1 (ja) 中性子捕捉療法用治療計画システム
Farr et al. Clinical commissioning of intensity‐modulated proton therapy systems: report of AAPM Task Group 185
US20030174808A1 (en) In vivo planning and treatment of cancer therapy
JP2016077812A (ja) 中性子捕捉療法装置
JP2017042311A (ja) 中性子捕捉療法システム及び中性子捕捉療法システムの制御方法
Loi et al. Neutron production from a mobile linear accelerator operating in electron mode for intraoperative radiation therapy
KR102068326B1 (ko) 동물용 방사선 치료기
JPS5976A (ja) 放射線治療用高エネルギct
US20230347176A1 (en) Radiotherapy system and therapy plan generation method therefor
Dunning et al. X-ray fluorescence computed tomography induced by photon, electron, and proton beams
CN108883298A (zh) 用于粒子疗法治疗计划的频谱建模系统、方法和设备
Powers Commissioning and out-of-field dose characterisation of the elekta unity MRL
Prall et al. Towards proton therapy and radiography at FAIR
JP2019122555A (ja) 治療計画システム
Schnürle et al. Development of integration mode proton imaging with a single CMOS detector for a small animal irradiation platform
JP7220403B2 (ja) 粒子線治療システム、計測粒子線ct画像生成方法、およびct画像生成プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505980

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018767199

Country of ref document: EP

Effective date: 20191014