CN114591981B - Tppi基因在调控植物根系发育和促进植物茉莉酸积累方面的应用 - Google Patents

Tppi基因在调控植物根系发育和促进植物茉莉酸积累方面的应用 Download PDF

Info

Publication number
CN114591981B
CN114591981B CN202210308573.5A CN202210308573A CN114591981B CN 114591981 B CN114591981 B CN 114591981B CN 202210308573 A CN202210308573 A CN 202210308573A CN 114591981 B CN114591981 B CN 114591981B
Authority
CN
China
Prior art keywords
tppi
gene
plant
application
jasmonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210308573.5A
Other languages
English (en)
Other versions
CN114591981A (zh
Inventor
林清芳
齐世连
巩佳昕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Zhongpin Agricultural Technology Co.,Ltd.
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN202210308573.5A priority Critical patent/CN114591981B/zh
Publication of CN114591981A publication Critical patent/CN114591981A/zh
Application granted granted Critical
Publication of CN114591981B publication Critical patent/CN114591981B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03012Trehalose-phosphatase (3.1.3.12)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了TPPI基因在调控植物根系发育和促进植物茉莉酸积累方面的应用,属于分子生物学技术领域。本发明提供TPPI基因在调控植物根系发育方面的应用以及TPPI基因在促进正常情况下和轻度冷胁迫条件下植物茉莉酸积累中的应用,所述TPPI基因的核苷酸序列如SEQ ID NO.1所示。本发明可以直接通过过量表达TPPI基因促进植物主根生长,不仅可以减少深施土壤所带来的劳动力消耗,还可以少施肥料,减少肥料污染,在喜硝态氮作物上和氮素容易流失的土壤中具有潜在应用;本发明可以直接通过过量表达TPPI基因促进植物在正常情况下和轻度冷胁迫条件下茉莉酸的积累,可以帮助植物抵御寒冷,适应轻度冷胁迫。

Description

TPPI基因在调控植物根系发育和促进植物茉莉酸积累方面的 应用
技术领域
本发明涉及分子生物学技术领域,具体涉及TPPI基因在调控植物根系发育方面的应用。
背景技术
植物的根系是植物吸收养分和水分的主要器官,因此,根系对植物的生长发育极其重要。土壤养分状况会影响根系生长,增加养分供应不仅可以促进根系的生长,还可以改变根的形态。土壤中养分浓度高,根系则集中生长。氮素对根的影响尤其明显,氮素作为植物重要的营养元素,主要是以无机态氮硝态氮(NO3 -)和氨态氮(NH4 +)存在。根系吸收的氮素,不仅可以通过木质部导管运输到地上部,参与各种生理代谢,还可以通过韧皮部向根部转运,促进根部的生长。氮素对根系生长的影响则尤其明显,在氮浓度高的区域,根系密度就高。因此农业上为了促进作物主根生长,提高产量,一般会通过深施肥料、合理灌溉和中耕松土等办法来促进主根生长,但是这些都相当耗费劳动力。
植物在自然界中往往会受到各种环境胁迫的影响,包括干旱,盐胁迫和冷害等,其中温度胁迫是影响植物分布和作物产量的重要环境因子之一。植物激素茉莉酸(Jasmonate)作为一类重要的生长调节物质,广泛参与调控植物的各种生理过程和植物逆境响应,其中就包括冷胁迫。外源施加茉莉酸可以提高植株抗冷能力。但是对于可以直接调控茉莉酸积累的调控因子暂时没有报道。
拟南芥TPPI(trehalose-6-phosphate phosphatase I)基因的过表达能够有效的抑制气孔开闭,并提高植物海藻糖的含量,调节细胞内外的渗透压,减少蒸腾失水和干旱胁迫对植株细胞的破坏,进而提高植株的抗旱能力。目前,TPPI 基因在促进植物根系发育或促进植物茉莉酸积累方面的研究还没有报道。
发明内容
本发明的目的之一是提供TPPI基因在调控植物根系发育方面的应用,能够在氮素不足的情况下,促进植物根系发育。
本发明的目的之二是提供TPPI基因在促进植物茉莉酸积累中的应用。
为实现上述目的,本发明采用的技术方案如下:
第一方面,本发明提供TPPI基因在调控植物根系发育方面的应用。
进一步地,所述TPPI基因的核苷酸序列如SEQ ID NO.1所示。
进一步地,所述应用为促进主根生长。
进一步地,所述植物为拟南芥。
第二方面,本发明提供TPPI基因在促进正常情况下植物茉莉酸积累中的应用。
第三方面,本发明提供TPPI基因在促进轻度冷胁迫条件下植物茉莉酸积累中的应用。
进一步地,所述TPPI基因在所述植物中过量表达。
进一步地,所述植物为拟南芥。
第四方面,本发明提供一种促进植物主根伸长或提高植物抵御轻度冷胁迫的方法,将TPPI基因导入植物,得到相比于植物TPPI基因过表达的转基因植物。所述植物为拟南芥。
与现有技术相比,本发明具有以下有益效果:
1、本发明可以直接通过过量表达TPPI基因促进植物主根生长,不仅可以减少深施土壤所带来的劳动力消耗,还可以少施肥料,减少肥料污染,在喜硝态氮作物上和氮素容易流失的土壤中具有潜在应用。
2、本发明可以直接通过过量表达TPPI基因促进植物在正常情况下和轻度冷胁迫条件下茉莉酸的积累,可以帮助植物抵御寒冷,适应轻度冷胁迫。
附图说明
图1为TPPI基因过表达植株中TPPI基因表达水平的检测。WT:野生型 (wild-type),为拟南芥Col-0生态型;OE4和OE5为2个不同TPPI基因表达水平的TPPI转基因纯合植株。
图2为TPPI基因在植物人工气候室对植物主根生长的影响。MS519为全氮培养基,MS531+KNO3为缺氮培养基MS531加入10mM KNO3的MS培养基。
图3为TPPI基因在植物人工气候室对植物主根生长影响的数据分析。
图4为TPPI基因在植物培养箱对植物主根生长的影响。MS519为全氮培养基,MS531+KNO3为缺氮培养基MS531加入10mM KNO3的MS培养基。
图5为TPPI基因在植物培养箱对植物主根生长的影响的数据分析。
图6为采用四参数Logistic曲线拟合的标准曲线。
图7为对照组和处理组的茉莉酸含量测定值的统计分析结果。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
拟南芥Col-0生态型(Arabidopsis thaliana,Columbia ecotype)在文献“Wang,L.,Hua,D.,He,J.,Duan,Y.,Chen,Z.,Hong,X.,and Gong,Z.(2011).Auxin ResponseFactor2(ARF2)and its regulated homeodomain gene HB33 mediate abscisic acidresponse in Arabidopsis.PLoS genetics 7,e1002172.”中公开过,公众可从江苏师范大学获得。
下述实施例中所用到的TPPI基因(TPPI基因的cDNA序列如SEQ ID No.1 所示)、TPPI基因过表达的转基因植株OE4、OE5在中国专利申请CN 109161537A中公开过,公众可从江苏师范大学获得。
下述实施例中所用到的tppi1突变体在文献“Qingfang Lin,Song Wang, YihangDao,Jianyong Wang,Kai Wang*.Arabidopsis thaliana trehalose-6-phosphatephosphatase gene TPPI enhances drought tolerance by regulating stomatalapertures.Journal of Experimental Botany.2020,71(14):4285-4297.”中公开过,公众可从江苏师范大学获得。
实施例1、TPPI基因的表达水平检测
(1)引物设计
根据TPPI基因的CDS序列设计实时荧光定量的引物,引物序列为:
正向引物:5'-GAATCAACGCTTGGGTAGATTC-3'(SEQ ID No.2)
反向引物:5'-TTGACATGAAAGCTTTGTCTGG-3'(SEQ ID No.3)
(2)提取野生型拟南芥,即拟南芥Col-0生态型(Arabidopsis thaliana,Columbia ecotype)(以下简称为WT)和转基因植株OE4、OE5的总RNA,通过反转录得到其cDNA,以其为模板,以SEQ ID No.2和SEQ ID No.3寡核苷酸序列为引物,进行实时荧光定量PCR扩增,得到PCR扩增产物,核苷酸序列如SEQ ID No.4所示。TPPI基因表达水平的检测结果如图1所示。以野生型 WT为对照组;以eIF-4A基因作为内参基因,保证cDNA的起始用量一致;OE4 和OE5表达量分别是WT的7.9和4.4倍。
实施例2、TPPI基因在植物人工气候室对植物主根生长的影响
转基因植株OE4、OE5和野生型WT种子分别用6.5%NaClO消毒15min,弃掉NaClO,然后用灭菌的无菌水将种子清洗3-5次,随后均匀点在MS固体培养基上垂直培养,用的固体培养基为Phytotech公司的MS519固体培养基(蔗糖含量为5g/L,琼脂用量为10g/L)和MS531固体培养基(5g/L蔗糖,10g/L 琼脂),MS531+KNO3为MS531固体培养基加入10mM KNO3。4℃冰箱放置3 天后放置人工气候室中垂直生长,人工气候室培养温度为22℃,光照强度为6000lux,周期为16h光照/8h黑暗,相对湿度为50%。生长10天后观察表型并拍照,结果如图2所示。
对图2中生长10天的植株的根长进行测量,数据分析结果如图3所示。
结果表明,在全氮培养基MS519,OE4和OE5相对于WT,根长生长并无显著差别;而在缺氮培养基MS531,添加10mM KNO3的垂直培养基,OE4和 OE5相对于WT主根根长显著增加,说明TPPI基因在此条件下可以显著提高植物主根生长。
实施例3、TPPI基因在植物培养箱对植物主根生长的影响
将tppi1突变体、转基因植株OE4、OE5和野生型WT种子分别用6.5% NaClO消毒15min,弃掉NaClO,然后用灭菌的无菌水将种子清洗3-5次,随后均匀点在MS固体培养基上垂直培养,用的固体培养基为Phytotech公司的 MS519固体培养基和MS531固体培养基,MS531+KNO3为MS531固体培养基加入10mM KNO3。4℃冰箱放置3天后放置光照培养箱中垂直生长,光照培养箱培养温度为22℃,光照强度为9000lux,光周期为16h光照/8h黑暗,相对湿度为50%。生长14天后观察表型并拍照,结果如图4所示。
对图4中生长14天的植株根长进行测量,数据分析结果如图5所示。
结果表明,在全氮培养基MS519,OE4和OE5相对于WT,根长生长并无显著差别;而在缺氮培养基MS531,添加10mM KNO3的垂直培养基,OE4和 OE5相对于WT主根根长显著增加,而tppi1突变体依然是根短的表型,说明 TPPI基因在此条件下可以显著提高植物主根生长。
实施例4、TPPI基因对植物茉莉酸积累的影响
一、样品准备
在无菌超净台中,将拟南芥野生型种子WT(即拟南芥Col-0生态型)、tppi1 突变体和TPPI基因的过表达植株OE5分别用6.5%NaClO消毒15min,弃掉 NaClO,然后用灭菌的无菌水将种子清洗3-5次,随后均匀点在MS培养基 (MS519(Phytotech,M&S Basal Mediumwith Vitamins,10g/L蔗糖,6.5g/L 琼脂),4℃冰箱放置3天后放置光照培养箱中进行培养。培养条件为光照强度为9000lux,光周期为16h光照/8h黑暗,相对湿度为50%。生长14天后,一部分作为对照继续在22℃光照培养箱生长,一部分作为处理组放置4℃低温光照培养箱处理3天,然后将对照组和处理组分别整株取样,液氮速冻,存至-80℃冰箱备用。
二、茉莉酸含量测定
茉莉酸含量测定采用睿信生物公司的ELISA茉莉酸含量测定试剂盒。
(1)茉莉酸提取
将步骤一中准备的材料用液氮研磨,每个样品称取0.1g(误差±3%以内),加入1ml的提取液(80%甲醇),置于-20℃过夜;过夜后4℃,8000rpm,离心1小时,取上清;上清液过C-18固相萃取柱。具体步骤是:80%甲醇(1mL) 平衡柱→上样→收集样品→移开样品后用100%甲醇(5mL)洗柱→100%乙醚 (5mL)洗柱→100%甲醇(5mL)洗柱→循环。过柱后的样本真空干燥或氮气吹干,保存备用;上样前加入pH 7.4 PBS缓冲液(1mL定容)。混匀后室温放置30分钟,然后4℃离心(8000rpm,15分钟),取上清并暂时保存于4℃待用。
(2)样品蛋白含量测定
上述样品同时进行蛋白含量测定,应用睿信生物公司蛋白定量(STP)检测试剂盒,加入样品体积9倍的提取液(pH 7.4 PBS缓冲液);于4℃,8000rpm,离心30分钟,取上清并进行蛋白含量测定。
(3)茉莉酸含量测定
A、将各种试剂移至室温平衡半小时,取浓缩洗涤液,根据当批检测数量,用蒸馏水1:20稀释,混匀后备用。
B、将预包被板从密封袋中取出,设一个空白对照孔,不加任何液体;每个校准品设2孔,每孔加入对应校准品50μL;其余每个检测孔直接加待测血清或质控品50μL。
C、除空白孔外所有孔加入生物素化抗原50μL,混匀,贴上封板膜,置37℃温育60分钟。
D、手工洗板:弃去孔内液体,洗涤液注满各孔,静置10秒甩干,重复3 次后拍干。洗板机洗板:选择洗涤3次程序洗板后拍干。
E、每孔加入酶标亲合素50μL(空白对照孔除外),混匀,贴上封板膜,置37℃温育30分钟。
F、手工洗板:弃去孔内液体,洗涤液注满各孔,静置10秒甩干,重复3 次后拍干。洗板机洗板:选择洗涤3次程序洗板后拍干。
G、每孔加显色剂A 50μL,显色剂B 50μL,振荡混匀后,置37℃避光显色15分钟,每孔加终止液50μL。
用酶标仪(Rayto RT-6100)读数,取波长450nm,先用空白对照孔调零点,然后测定各孔光密度值(OD值)。
三、结果计算
检测完成后,以标准品浓度作为横坐标,对应的吸光度(OD值)作为纵坐标,利用计算机软件,采用四参数Logistic曲线拟合(4-pl),创建标准曲线方程,通过样本的吸光度(OD值),利用方程计算样品的浓度值。
如果样品被稀释,通过上述方法测的浓度值,要乘以稀释倍数,才是样品的最终浓度。
X(pmol/L) Y-反应值 Y-平均值(CV%) Y-计算值 Y-残差
0 1.8135 1.8140 0.0005
125 0.8300 0.8210 -0.0090
250 0.4790 0.5030 0.0240
500 0.3153 0.3000 -0.0153
1000 0.2157 0.1949 -0.0208
2000 0.1258 0.1464 0.0206
采用四参数Logistic曲线拟合如图6所示,标准曲线方程具体是Y=(A-D) /[1+(x/C)^B]+D;A=1.81402;B=1.25512;C=95.82744;D=0.10959; R2=0.99912。
对照组和处理组的茉莉酸含量测定值的统计分析结果如图7所示,数据分析采用Duncan,不同字母代表存在差异显著性。
结果表明,对照组和处理组均是突变体tppi1的茉莉酸含量显著低于野生型,而过表达TPPI基因的纯合植株OE5的茉莉酸含量却显著高于野生型植株。另外,4℃冷处理可以显著促进茉莉酸的积累。表明TPPI基因的过表达可以促进茉莉酸含量的积累,而且在轻度低温胁迫下可能会通过积累茉莉酸含量响应冷胁迫。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
序列表
<110> 江苏师范大学
<120> TPPI基因在调控植物根系发育和促进植物茉莉酸积累方面的应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1143
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atggtgcgtt ttgtcgtgga aaaaccacag ataatgtcag ctagtcaaaa cattgtcgta 60
tcagagacta caatgtcaag tatcatcccc aacaacaaca acaacaacaa caactcttct 120
tcacagaaac tccctccttg tttaatctca atttccaaga aaaagcttct caagaacatc 180
gacatcatca atggtggtgg acaaagaatc aacgcttggg tagattcaat gcgtgcttct 240
tctcctactc atctcaaatc tcttccttct tctatctcca cacagcaaca actcaactca 300
tggatcatgc aacatccttc agcactagaa aaattcgaac agataatgga agcttcgaga 360
gggaaacaaa tcgtaatgtt tcttgattat gacggtactc tctctcccat tgttgatgat 420
ccagacaaag ctttcatgtc aagcaagatg agaagaacag tgaaaaaact ggctaagtgt 480
ttccccactg ctatagttac tggtagatgc atagacaagg tgtataactt tgtgaagctt 540
gctgagctgt attatgctgg aagccatggc atggacatta aaggtccagc aaaaggcttc 600
tccagacaca agagggttaa acagtctctt ctgtaccaac cagctaatga ctatcttccc 660
atgatcgatg aagtttatag acaactcttg gaaaaaacaa aatcgactcc aggagccaaa 720
gtagaaaacc acaagttttg tgcttctgtg cactttcgct gcgtcgatga gaagaaatgg 780
agcgaactgg ttctacaggt tcggtcggta ttaaagaaat tccctacgct gcaactgacc 840
caaggtcgga aggttttcga aatccgtcca atgattgaat gggataaagg aaaggctctt 900
gagttcttgt tagaatcact tggatttggg aacactaaca atgttttccc ggtttatatt 960
ggtgacgatc gaactgacga agatgcattt aagatgctac gagacagagg cgaaggcttt 1020
ggcattcttg tctccaagtt tcccaaggat actgatgctt cgtattcttt gcaagatcca 1080
tccgaggtga tggatttctt acgacgattg gtggaatgga aacaaatgca gccaagaatg 1140
tga 1143
<210> 2
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
gaatcaacgc ttgggtagat tc 22
<210> 3
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
ttgacatgaa agctttgtct gg 22
<210> 4
<211> 237
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
gaatcaacgc ttgggtagat tcaatgcgtg cttcttctcc tactcatctc aaatctcttc 60
cttcttctat ctccacacag caacaactca actcatggat catgcaacat ccttcagcac 120
tagaaaaatt cgaacagata atggaagctt cgagagggaa acaaatcgta atgtttcttg 180
attatgacgg tactctctct cccattgttg atgatccaga caaagctttc atgtcaa 237

Claims (4)

1. 核苷酸序列如SEQ ID NO.1所示的TPPI基因在促进正常情况下植物拟南芥茉莉酸积累中的应用。
2. 核苷酸序列如SEQ ID NO.1所示的TPPI基因在促进轻度冷胁迫条件下植物拟南芥茉莉酸积累中的应用。
3.根据权利要求1或2所述的应用,其特征在于,所述TPPI基因在所述植物中过量表达。
4. 一种提高植物拟南芥抵御轻度冷胁迫的方法,其特征在于,将核苷酸序列如SEQ IDNO.1所示的TPPI 基因导入植物拟南芥,得到相比于植物TPPI 基因过表达的转基因植物。
CN202210308573.5A 2022-03-25 2022-03-25 Tppi基因在调控植物根系发育和促进植物茉莉酸积累方面的应用 Active CN114591981B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210308573.5A CN114591981B (zh) 2022-03-25 2022-03-25 Tppi基因在调控植物根系发育和促进植物茉莉酸积累方面的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210308573.5A CN114591981B (zh) 2022-03-25 2022-03-25 Tppi基因在调控植物根系发育和促进植物茉莉酸积累方面的应用

Publications (2)

Publication Number Publication Date
CN114591981A CN114591981A (zh) 2022-06-07
CN114591981B true CN114591981B (zh) 2023-05-26

Family

ID=81810114

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210308573.5A Active CN114591981B (zh) 2022-03-25 2022-03-25 Tppi基因在调控植物根系发育和促进植物茉莉酸积累方面的应用

Country Status (1)

Country Link
CN (1) CN114591981B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106687A1 (en) * 2002-06-13 2003-12-24 Stichting Voor De Technische Wetenschappen Method for enhancing the disease resistance in plants by altering trehalose-6-phosphate levels

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103710376A (zh) * 2006-12-15 2014-04-09 克罗普迪塞恩股份有限公司 具有改良的种子产量相关性状的植物及其制备方法
WO2009127441A2 (en) * 2008-04-16 2009-10-22 Universität Potsdam Transcription factors involved in drought stress in plants
AR081386A1 (es) * 2010-05-10 2012-08-29 Texas A & M Univ Sys Composiciones, organismos, sistemas y metodos para expresar un producto genetico en plantas
CN103582418B (zh) * 2011-06-06 2016-05-04 日本农药株式会社 植物生长调节剂及其使用方法
CA3060515A1 (en) * 2016-10-05 2018-04-12 Corbion Biotech, Inc. Novel acyltransferases, variant thioesterases, and uses thereof
CN110305218A (zh) * 2018-03-22 2019-10-08 江苏师范大学 拟南芥转录因子at3g46080基因的应用
CN108624598A (zh) * 2018-06-06 2018-10-09 福建农林大学 Tppf基因在调控植物海藻糖合成和提高植物抗旱性中的应用
CN109161537B (zh) * 2018-10-16 2021-09-14 福建农林大学 Tppi基因在调控植物气孔开度和提高植物抗旱性中的应用
CN114591966A (zh) * 2020-11-20 2022-06-07 江苏师范大学 拟南芥转录因子srg1基因在调控植物生长发育中的应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106687A1 (en) * 2002-06-13 2003-12-24 Stichting Voor De Technische Wetenschappen Method for enhancing the disease resistance in plants by altering trehalose-6-phosphate levels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
十字花科植物PIN3基因调控元件及表达分析;李玉军;赵燕;黄丽华;汤宾;黄妤;张学文;;中国农业大学学报(第07期);全文 *

Also Published As

Publication number Publication date
CN114591981A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
Gahoonia et al. A root hairless barley mutant for elucidating genetic of root hairs and phosphorus uptake
CN109536490B (zh) 转基因抗虫耐除草剂玉米cm8101外源插入片段旁侧序列及其应用
Bahrman et al. Differential change in root protein patterns of two wheat varieties under high and low nitrogen nutrition levels
CN118147176B (zh) 玉米“一因多效”基因ZmGPAT6在耐盐和抗禾谷炭疽病中的应用
Feng et al. Identification and characterization of apple MdNLP7 transcription factor in the nitrate response
Xu et al. Genome-wide association study on seminal and nodal roots of wheat under different growth environments
CN107828805A (zh) 水稻环氧类胡萝卜素双加氧酶OsNCED3基因编码序列及其应用
CN103060285B (zh) OsPP18基因在控制水稻抗旱性中的应用
Li et al. Unraveling differential characteristics and mechanisms of nitrogen uptake in wheat cultivars with varied nitrogen use efficiency
CN110199854A (zh) 一种幼苗期大麦耐盐性的鉴定方法
Jinling et al. Polyphosphate accelerates transformation of nonstructural carbohydrates to improve growth of ppk-expressing transgenic rice in phosphorus deficiency culture
CN114591981B (zh) Tppi基因在调控植物根系发育和促进植物茉莉酸积累方面的应用
Jia et al. Evaluation of drought tolerance in ZmVPP1-overexpressing transgenic inbred maize lines and their hybrids
CN115449560B (zh) 一种番茄缺铁耐受型品种的快速筛选鉴定方法
CN114410650B (zh) 一种水稻盐敏感突变基因SS2、突变体ss2以及应用
Wijayanto et al. Seedling-stage screening method for tolerance of upland rice genotypes to low pH stress
CN107868840A (zh) 一种亚麻中与全生长日数相关联的ssr分子标记和应用
CN111793633B (zh) OsNRT2.3b在提高产量与稻米品质中的应用
CN103421814B (zh) Dwa1基因控制水稻抗旱性及叶表皮蜡质合成中的应用
CN113122573A (zh) 棉花GhBASS5和拟南芥AtBASS5基因在植物抗旱性中的应用
CN112760397A (zh) 一种沃特曼篮状菌Talaromyces wortmannii在作物抗旱、促生中的应用
CN105647883B (zh) 拟南芥tt4基因在植物抗盐方面的新应用
Fridman et al. Cultivation of Arabidopsis thaliana in a Laboratory Environment
CN117535312B (zh) 一种液泡膜阴离子通道蛋白在调控玉米碳氮平衡中的应用
CN114868760B (zh) 6-磷酸-海藻糖的应用及提升普通菜豆产量和抗病性的培育方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240402

Address after: Room 509, 510, No. 2 Xueyuan Road, Tangzhang Town, Tongshan District, Xuzhou City, Jiangsu Province, 221008

Patentee after: Jiangsu Zhongpin Agricultural Technology Co.,Ltd.

Country or region after: China

Address before: 221000 No. 101, Shanghai Road, Copper Mt. New District, Jiangsu, Xuzhou

Patentee before: Jiangsu Normal University

Country or region before: China