CN109161537B - Tppi基因在调控植物气孔开度和提高植物抗旱性中的应用 - Google Patents

Tppi基因在调控植物气孔开度和提高植物抗旱性中的应用 Download PDF

Info

Publication number
CN109161537B
CN109161537B CN201811199844.8A CN201811199844A CN109161537B CN 109161537 B CN109161537 B CN 109161537B CN 201811199844 A CN201811199844 A CN 201811199844A CN 109161537 B CN109161537 B CN 109161537B
Authority
CN
China
Prior art keywords
tppi
gene
plant
plants
drought resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811199844.8A
Other languages
English (en)
Other versions
CN109161537A (zh
Inventor
王凯
林清芳
王松
朱虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Agriculture and Forestry University
Original Assignee
Fujian Agriculture and Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Agriculture and Forestry University filed Critical Fujian Agriculture and Forestry University
Priority to CN201811199844.8A priority Critical patent/CN109161537B/zh
Publication of CN109161537A publication Critical patent/CN109161537A/zh
Application granted granted Critical
Publication of CN109161537B publication Critical patent/CN109161537B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03012Trehalose-phosphatase (3.1.3.12)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明属于生物技术领域,具体涉及TPPI基因在调控植物气孔开度和提高植物抗旱性中的应用。TPPI基因序列如SEQ ID NO.1自5’末端起第32位至第1138位核苷酸所示。同时公开一种提高植物海藻糖含量,抑制气孔开度及提高植物抗旱能力的方法,是通过出发植物中的TPPI基因的过表达来实现的。本发明证明拟南芥TPPI基因在调控植物海藻糖含量,抑制气孔开度及提高植物抗旱能力中具有重要作用。

Description

TPPI基因在调控植物气孔开度和提高植物抗旱性中的应用
技术领域
本发明属于生物技术领域,具体涉及TPPI基因在调控植物气孔开度和提高植物抗旱性中的应用。
背景技术
干旱是影响作物产量的一个重要原因。土壤干旱时,植物水分丢失严重,细胞失去张力,叶片下垂,植物生长困难或者停止生长出现暂时萎蔫,如果植物不能得到可吸收的水分,植物则会由暂时性萎蔫变为永久萎蔫,直至植株死亡。植物在复杂多变的环境中,为了能够进行正常的生长发育,演化形成了一系列抵抗干旱胁迫的策略。其中就包括渗透调节。具体是通过调节代谢相关的基因和一系列代谢途径减少或者修复植物受到的胁迫伤害,维持植物体的一系列生理活动。
面对干旱胁迫,增加根吸收水分的能力并减少地上部分叶片蒸腾的水分散失是植物应对干旱的重要方式。植物形态结构抗旱性主要指在干旱条件下,植物会在一定程度上改变形态结构,以便更好的调节维持自身正常生长发育所需要的水分。例如植株变小、根系发达、根冠比高、气孔关闭、新生气孔减少、蒸腾面积减少等,可以有效的增加水分吸收,同时减少水分的耗散。其中,气孔减少和气孔关闭可以有效减少蒸腾面积,进而减少水分的耗散,这将有利于保证植物水分的供应。
同时,植物通过调节细胞内渗透势的变化也可以增强抵抗外界干旱胁迫的能力,如产生更多的渗透调节物质,脯氨酸、甜菜碱、可溶性糖等,都具有提高植物细胞渗透调节能力的作用。其中,海藻糖在干燥失水等恶劣环境条件下能够在细胞表面形成独特的保护膜,有效地保护蛋白质分子不变性失活,从而维持生命体的生命过程和生物特征。因此,干旱条件下,测定植物体内这些渗透调节物质的含量,也是反应植物抗旱能力的一个重要指标。
我们发现在拟南芥中TPPI(trehalose-6-phosphate phosphatase I)基因的过表达能够有效的抑制气孔开闭,并提高植物海藻糖的含量,调节细胞内外的渗透压,减少蒸腾失水和干旱胁迫对植株细胞的破坏,进而提高植株的抗旱能力。
TPPI基因在调控海藻糖合成及提高植物抗旱性方面的研究还没有报道。
发明内容
本发明的目的是提供TPPI基因在调控植物气孔开度和提高植物抗旱性中的应用。
一种培育转基因植物的方法,包括如下步骤:将TPPI基因导入出发植物,得到相比于出发植物TPPI基因过表达,进而抗旱能力提高的转基因植物。
一种培育转基因植物的方法,包括如下步骤:将TPPI基因导入出发植物,得到相比于出发植物TPPI基因过表达,进而气孔开度被抑制的转基因植物。
一种培育转基因植物的方法,包括如下步骤:将TPPI基因导入出发植物,得到相比于出发植物TPPI基因过表达,进而失水速率降低的转基因植物。
一种培育转基因植物的方法,包括如下步骤:将TPPI基因导入出发植物,得相比于出发植物TPPI基因过表达,进而植物海藻糖含量提高的转基因植物。
一种提高植物抗旱能力的方法,通过出发植物中TPPI基因的过表达来提高所述植物的抗旱能力。
一种抑制植物气孔开度的方法,通过出发植物中TPPI基因的过表达来抑制植物气孔开度。
一种降低植物失水速率的方法,通过出发植物中TPPI基因的过表达来降低植物失水速率。
一种提高干旱条件下植物海藻糖含量的方法,通过出发植物中TPPI基因的过表达来提高植物海藻糖含量。
以上任一所述方法中:TPPI基因为拟南芥的TPPI基因;TPPI基因的cDNA序列如SEQID No.1中自5’末端起第32位至第1138位核苷酸所示;TPPI基因所编码的蛋白序列如SEQID NO.2所示;所述出发植物为拟南芥;TPPI基因过表达的方法是将含有TPPI基因的重组表达载体导入所述植物中。
进一步的,所述TPPI基因重组表达载体具体是将TPPI基因的cDNA序列插入到pMDC140载体上得到的。
进一步的,所述述海藻糖含量具体为所述植物整株的海藻糖含量。
进一步的,所述气孔开度减少具体体现为叶片气孔开度减少。
本发明还提供了在干旱条件下TPPI基因在抑制气孔开度,或提高植株海藻糖含量,或提高植物的抗旱能力中的应用。
本发明的优点在于:只需要过表达单个基因,即拟南芥TPPI基因,即能提高植物的抗旱性抑制植物的气孔开度、降低植物的失水速率和提高植物的海藻糖含量,操作简便,便于筛选,能有效降低成本。本发明表明拟南芥TPPI基因在调节海藻糖含量,抑制气孔开度、降低失水速率和提高抗旱性中发挥了重要作用。
附图说明
图1为TPPI基因过表达植株中TPPI基因表达水平的检测。WT:野生型(wild-type);OE1、OE3、OE4、OE5、OE6、OE7、OE8,为7个三类不同TPPI基因表达水平的TPPI转基因纯合植株;eIF-4A为内参基因。
图2为TPPI基因对植物抗旱性的影响。0 DDT:干旱0天;18 DDT:干旱18天18DDT+Rehydrated for 4 days:干旱18天又复水4天;WT:野生型;OE3、OE5、OE6均为TPPI基因过表达植株。
图3为TPPI基因过表达植株气孔开度的检测。WT:野生型; OE5为TPPI基因过表达植株。
图4为TPPI基因过表达植株离体叶片失水速率的检测。WT:野生型; OE5、OE6均为TPPI基因过表达植株。
图5为TPPI基因过表达对干旱胁迫下植株海藻糖含量的影响。Control:正常情况下野生型(WT)和转基因植株OE5的海藻糖含量测定;Drought:PEG6000模拟干旱胁迫后的野生型(WT)和转基因植株OE5的海藻糖含量测定。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
pMDC140在文献“Eva M. Farre´ and Steve A. Kay . (2007). PRR7 proteinlevels are regulated by light and the circadian clock in Arabidopsis. Plant J52, 548-560.”中公开过,公众可从福建农林大学海峡联合研究院获得。
拟南芥Col-0生态型(Arabidopsis thaliana,Columbia ecotype)在文献“Wang,L., Hua, D., He, J., Duan, Y., Chen, Z., Hong, X., and Gong, Z. (2011). AuxinResponse Factor2 (ARF2) and its regulated homeodomain gene HB33 mediateabscisic acid response in Arabidopsis. PLoS genetics 7, e1002172. ”中公开过,公众可从福建农林大学海峡联合研究院获得。
Gateway® BP Clonase® II Enzyme Mix购自Invitrogen公司,产品目录号为11789-020。
Gateway® LR Clonase® II Enzyme mix购自Life Technologies公司,产品目录号为11791-020。
实施例1、TPPI基因的cDNA基因克隆
(1)引物的设计和合成
根据TPPI基因的CDS序列设计带有Gateway接头的引物,引物序列为:
SEQ ID No.3:正向引物
5'- GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGTGCGTTTTGTCGTGGAA-3'
SEQ ID No.4:反向引物
5'- GGGGACCACTTTGTACAAGAAAGCTGGGTCTCACATTCTTGGCTGCATTTGT-3'
(2)提取野生型拟南芥,即拟南芥Col-0生态型(Arabidopsis thaliana,Columbiaecotype)(以下简称为Col)的总RNA,通过反转录得到拟南芥的cDNA,以拟南芥cDNA为模板,以SEQ ID No.3 和SEQ ID No.4寡核苷酸序列为引物,进行PCR扩增,得到PCR扩增产物如SEQ ID No.1所示,TPPI基因的cDNA序列如SEQ ID No.1中自5’末端起第32位至第1174位核苷酸所示,TPPI蛋白序列如SEQ ID No.2所示。
(3)利用Gateway 克隆入门试剂盒中的BP ClonaseⅡ Enzyme Mix将SEQ ID No.1所示的DNA分子与中间载体pDONR207进行BP重组反应,鉴定获得阳性克隆后再利用Gateway克隆表达试剂盒(Gateway® LR Clonase® II Enzyme mix)将TPPI基因的cDNA序列插入到pMDC140载体上,得到重组质粒,将其命名为pMDC140-TPPI,将pMDC140-TPPI送测序,结果正确。
实施例2、TPPI基因对植物抗旱性的影响
(1)TPPI基因过表达植株的获得
将实施例1得到的重组质粒pMDC140-TPPI转化入C58农杆菌中,采用农杆菌侵染的方法将pMDC140-TPPI质粒转入野生型Col中,将转染后的植株在含30mg/L潮霉素的MS培养基上筛选,得到具有潮霉素抗性的纯合TPPI基因过表达的转基因植株,从中选取7个转基因植株,即OE1、OE3、OE4 、OE5、OE6、OE7进行TPPI基因表达水平的检测。
转基因植株中TPPI基因表达水平的检测结果如图1所示。以野生型Col为对照组;以eIF-4A基因作为内参基因,保证cDNA的起始用量一致;图中结果表明,TPPI基因有三类不同的表达水平,其中OE6与野生型的表达水平相当;OE3、OE4、OE7和OE8稍高于野生型;OE1和OE5表达量最高,从中选取OE3,OE5和OE63个植株进行后续抗旱表型分析。
(2)TPPI基因过表达植株的抗旱表型分析
转基因植株OE3,OE5和OE6和野生型Col在 MS固体培养基上培养,萌发后继续在MS培养基上生长8天的苗子移苗至土壤中生长,比较干旱0天、18天和干旱18天又复水4天的各植株的抗旱表型,结果如图2所示。
结果表明,与野生型拟南芥相比,TPPI基因的过表达使转基因植株OE3,OE5和OE6比Col更抗旱,说明TPPI基因能够提高植物抗旱性。
实施例3、TPPI基因过表达植株气孔开度的检测
转基因植株OE5和野生型Col在MS培养基上生长3周后,将植株莲座叶剪下,浸泡在stomata-opening buffer (10 mM MES-KOH, pH 6.15, 10 mM KCl)中2h,持续光照,取第一片真叶进行后续气孔开度实验。待气孔完全打开后,用10 μM ABA处理2h,显微观察气孔开度,结果如图3所示。
图3表明,在10 μM ABA处理的情况下,转基因植株OE5与野生型Col相比,气孔开度被抑制,而在0 μΜ ABA处理的对照条件下,二者没有差异。说明TPPI基因能够抑制植物气孔开度。
实施例4、TPPI基因过表达植株离体叶片失水的检测
转基因植株OE5、OE6和野生型Col在土壤中生长4周后,剪取同样重量的莲座叶,进行离体叶片失水实验,检测失水速率,结果如图4所示。
图4表明,转基因植株OE5、OE6与野生型Col相比,其失水速率显著降低。说明TPPI基因能够降低植物失水速率。
实施例5、TPPI基因过表达植株在干旱胁迫下植株海藻糖含量的测定
转基因植株OE5和野生型Col在MS培养基上生长2周后,用MS+20% PEG6000处理3h,取莲座叶片测定海藻糖含量,结果如图5所示。
图5表明,在实验组PEG6000模拟干旱胁迫条件下,转基因植株OE5比野生型Col积累了更多的海藻糖,而在对照组正常条件下,二者的海藻糖含量无差异。说明TPPI基因能够提高干旱条件下植物的海藻糖含量。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
SEQUENCE LISTING
<110> 福建农林大学
<120> TPPI基因在调控植物气孔开度和提高植物抗旱性中的应用
<130> 4
<160> 4
<170> PatentIn version 3.3
<210> 1
<211> 1204
<212> DNA
<213> 人工序列
<400> 1
ggggacaagt ttgtacaaaa aagcaggctt catggtgcgt tttgtcgtgg aaaaaccaca 60
gataatgtca gctagtcaaa acattgtcgt atcagagact acaatgtcaa gtatcatccc 120
caacaacaac aacaacaaca acaactcttc ttcacagaaa ctccctcctt gtttaatctc 180
aatttccaag aaaaagcttc tcaagaacat cgacatcatc aatggtggtg gacaaagaat 240
caacgcttgg gtagattcaa tgcgtgcttc ttctcctact catctcaaat ctcttccttc 300
ttctatctcc acacagcaac aactcaactc atggatcatg caacatcctt cagcactaga 360
aaaattcgaa cagataatgg aagcttcgag agggaaacaa atcgtaatgt ttcttgatta 420
tgacggtact ctctctccca ttgttgatga tccagacaaa gctttcatgt caagcaagat 480
gagaagaaca gtgaaaaaac tggctaagtg tttccccact gctatagtta ctggtagatg 540
catagacaag gtgtataact ttgtgaagct tgctgagctg tattatgctg gaagccatgg 600
catggacatt aaaggtccag caaaaggctt ctccagacac aagagggtta aacagtctct 660
tctgtaccaa ccagctaatg actatcttcc catgatcgat gaagtttata gacaactctt 720
ggaaaaaaca aaatcgactc caggagccaa agtagaaaac cacaagtttt gtgcttctgt 780
gcactttcgc tgcgtcgatg agaagaaatg gagcgaactg gttctacagg ttcggtcggt 840
attaaagaaa ttccctacgc tgcaactgac ccaaggtcgg aaggttttcg aaatccgtcc 900
aatgattgaa tgggataaag gaaaggctct tgagttcttg ttagaatcac ttggatttgg 960
gaacactaac aatgttttcc cggtttatat tggtgacgat cgaactgacg aagatgcatt 1020
taagatgcta cgagacagag gcgaaggctt tggcattctt gtctccaagt ttcccaagga 1080
tactgatgct tcgtattctt tgcaagatcc atccgaggtg atggatttct tacgacgatt 1140
ggtggaatgg aaacaaatgc agccaagaat gtgagaccca gctttcttgt acaaagtggt 1200
cccc 1204
<210> 2
<211> 380
<212> PRT
<213> 人工序列
<400> 2
Met Val Arg Phe Val Val Glu Lys Pro Gln Ile Met Ser Ala Ser Gln
1 5 10 15
Asn Ile Val Val Ser Glu Thr Thr Met Ser Ser Ile Ile Pro Asn Asn
20 25 30
Asn Asn Asn Asn Asn Asn Ser Ser Ser Gln Lys Leu Pro Pro Cys Leu
35 40 45
Ile Ser Ile Ser Lys Lys Lys Leu Leu Lys Asn Ile Asp Ile Ile Asn
50 55 60
Gly Gly Gly Gln Arg Ile Asn Ala Trp Val Asp Ser Met Arg Ala Ser
65 70 75 80
Ser Pro Thr His Leu Lys Ser Leu Pro Ser Ser Ile Ser Thr Gln Gln
85 90 95
Gln Leu Asn Ser Trp Ile Met Gln His Pro Ser Ala Leu Glu Lys Phe
100 105 110
Glu Gln Ile Met Glu Ala Ser Arg Gly Lys Gln Ile Val Met Phe Leu
115 120 125
Asp Tyr Asp Gly Thr Leu Ser Pro Ile Val Asp Asp Pro Asp Lys Ala
130 135 140
Phe Met Ser Ser Lys Met Arg Arg Thr Val Lys Lys Leu Ala Lys Cys
145 150 155 160
Phe Pro Thr Ala Ile Val Thr Gly Arg Cys Ile Asp Lys Val Tyr Asn
165 170 175
Phe Val Lys Leu Ala Glu Leu Tyr Tyr Ala Gly Ser His Gly Met Asp
180 185 190
Ile Lys Gly Pro Ala Lys Gly Phe Ser Arg His Lys Arg Val Lys Gln
195 200 205
Ser Leu Leu Tyr Gln Pro Ala Asn Asp Tyr Leu Pro Met Ile Asp Glu
210 215 220
Val Tyr Arg Gln Leu Leu Glu Lys Thr Lys Ser Thr Pro Gly Ala Lys
225 230 235 240
Val Glu Asn His Lys Phe Cys Ala Ser Val His Phe Arg Cys Val Asp
245 250 255
Glu Lys Lys Trp Ser Glu Leu Val Leu Gln Val Arg Ser Val Leu Lys
260 265 270
Lys Phe Pro Thr Leu Gln Leu Thr Gln Gly Arg Lys Val Phe Glu Ile
275 280 285
Arg Pro Met Ile Glu Trp Asp Lys Gly Lys Ala Leu Glu Phe Leu Leu
290 295 300
Glu Ser Leu Gly Phe Gly Asn Thr Asn Asn Val Phe Pro Val Tyr Ile
305 310 315 320
Gly Asp Asp Arg Thr Asp Glu Asp Ala Phe Lys Met Leu Arg Asp Arg
325 330 335
Gly Glu Gly Phe Gly Ile Leu Val Ser Lys Phe Pro Lys Asp Thr Asp
340 345 350
Ala Ser Tyr Ser Leu Gln Asp Pro Ser Glu Val Met Asp Phe Leu Arg
355 360 365
Arg Leu Val Glu Trp Lys Gln Met Gln Pro Arg Met
370 375 380
<210> 3
<211> 52
<212> DNA
<213> 人工序列
<400> 3
ggggacaagt ttgtacaaaa aagcaggctt catggtgcgt tttgtcgtgg aa 52
<210> 4
<211> 52
<212> DNA
<213> 人工序列
<400> 4
ggggaccact ttgtacaaga aagctgggtc tcacattctt ggctgcattt gt 52

Claims (2)

1.TPPI基因在提高植物抗旱性中的应用,其特征在于:将TPPI基因导入出发植物,得到相比于出发植物TPPI基因过表达的转基因植物;所述TPPI基因的cDNA序列如SEQ ID No.1中自5’末端起第32位至第1174位核苷酸所示;所述TPPI基因所编码蛋白的序列如SEQ IDNO.2所示。
2.根据权利要求1所述的应用,其特征在于:所述出发植物为拟南芥;TPPI基因过表达的方法是将含有TPPI基因的重组表达载体导入出发植物中。
CN201811199844.8A 2018-10-16 2018-10-16 Tppi基因在调控植物气孔开度和提高植物抗旱性中的应用 Active CN109161537B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811199844.8A CN109161537B (zh) 2018-10-16 2018-10-16 Tppi基因在调控植物气孔开度和提高植物抗旱性中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811199844.8A CN109161537B (zh) 2018-10-16 2018-10-16 Tppi基因在调控植物气孔开度和提高植物抗旱性中的应用

Publications (2)

Publication Number Publication Date
CN109161537A CN109161537A (zh) 2019-01-08
CN109161537B true CN109161537B (zh) 2021-09-14

Family

ID=64878141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811199844.8A Active CN109161537B (zh) 2018-10-16 2018-10-16 Tppi基因在调控植物气孔开度和提高植物抗旱性中的应用

Country Status (1)

Country Link
CN (1) CN109161537B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114591981B (zh) * 2022-03-25 2023-05-26 江苏师范大学 Tppi基因在调控植物根系发育和促进植物茉莉酸积累方面的应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2638770A1 (en) * 2006-02-28 2007-09-07 Suntory Limited Gene encoding trehalose-6-phosphate phosphatase and use thereof
KR20080076193A (ko) * 2007-02-15 2008-08-20 한국과학기술원 트레할로스 생합성에 관여하는 유전자로 형질전환된 균주를 이용한 트레할로스의 제조방법
US9556449B2 (en) * 2011-07-15 2017-01-31 Syngenta Participations Ag Methods of increasing yield and stress tolerance in a plant by decreasing the activity of a trehalose-6-phosphate phosphatase
CN103642899A (zh) * 2013-06-28 2014-03-19 广西大学 一种编码6-磷酸海藻糖磷酸酶的基因的用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Arabidopsis thaliana haloacid dehalogenase-like hydrolase (HAD) superfamily protein (TPPI),mRNA.;Tabata, S.等;《Genbank登录号:NM_001343088.1》;20170320;参见全文 *

Also Published As

Publication number Publication date
CN109161537A (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
Polle et al. Engineering drought resistance in forest trees
Wang et al. Enhanced expression of phospholipase C 1 (ZmPLC1) improves drought tolerance in transgenic maize
CN109456982B (zh) 水稻OsMYB6基因及其编码蛋白在抗旱和抗盐中的应用
Cai et al. A maize mitogen-activated protein kinase kinase, ZmMKK1, positively regulated the salt and drought tolerance in transgenic Arabidopsis
Wu et al. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.
Zhang et al. An ABSCISIC ACID INSENSITIVE3-like gene from the desert moss Syntrichia caninervis confers abiotic stress tolerance and reduces ABA sensitivity
Ping et al. Expression profiles of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase genes in Phalaenopsis, implications for regulating the performance of crassulacean acid metabolism
CN109879947B (zh) 毛竹转录因子PheDof 2基因及应用
CN107828805A (zh) 水稻环氧类胡萝卜素双加氧酶OsNCED3基因编码序列及其应用
WO2008069496A1 (en) Stress resistant plant introduced by stress - induced promoter and the gene encoding zeaxanthin epoxidase
CN106749577B (zh) 耐逆性相关转录因子蛋白nac及其应用
CN109161537B (zh) Tppi基因在调控植物气孔开度和提高植物抗旱性中的应用
WO2013056677A1 (en) USE OF OsPP18 GENE IN CONTROLLING RICE DROUGHT RESISTANCE
Magalhaes et al. The role of root morphology and architecture in phosphorus acquisition: physiological, genetic, and molecular basis
CN112626078A (zh) 玉米转录因子ZmGBF1基因及其表达载体和应用
Junlin et al. Functional identification of Ammopiptanthus mongolicus anion channel AmSLAC1 involved in drought induced stomata closure
CN108823220B (zh) 一种苹果中蜡质合成相关基因MdCER1的克隆及其应用
CN111118042A (zh) 抗白粉病的葡萄钙依赖蛋白激酶基因VpCDPK9及其应用
Petterle ABA and Chromatin Remodelling Regulate the Acțivity-Dormancy Cycle in Hybrid Aspen
Kuluev et al. Growth of transgenic tobacco plants with changed expression of genes encoding expansins under the action of stress factors
CN115960916A (zh) 一种茶树wrky转录因子基因及其抗寒应用
CN104498514A (zh) 一种唐古特白刺NtCIPK9基因及其表达蛋白和应用
Chun et al. Cloning and characterization of a SnRK2 gene from Jatropha curcas L.
CN116622666A (zh) 调控植物抗旱性的方法及TaMPK3在调控植物抗旱性中的应用
Rao et al. Molecular and metabolic perspectives of sugarcane under salinity stress pressure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant