WO2009127441A2 - Transcription factors involved in drought stress in plants - Google Patents

Transcription factors involved in drought stress in plants Download PDF

Info

Publication number
WO2009127441A2
WO2009127441A2 PCT/EP2009/002975 EP2009002975W WO2009127441A2 WO 2009127441 A2 WO2009127441 A2 WO 2009127441A2 EP 2009002975 W EP2009002975 W EP 2009002975W WO 2009127441 A2 WO2009127441 A2 WO 2009127441A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
loc
polynucleotide
plant
seqidno
Prior art date
Application number
PCT/EP2009/002975
Other languages
French (fr)
Other versions
WO2009127441A3 (en
Inventor
Slobodan Ruzicic
Bernd Müller-Röber
Masood Soltaninajafabadi
Original Assignee
Universität Potsdam
MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universität Potsdam, MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. filed Critical Universität Potsdam
Publication of WO2009127441A2 publication Critical patent/WO2009127441A2/en
Publication of WO2009127441A3 publication Critical patent/WO2009127441A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Definitions

  • tolerance to abiotic stress is associated with a host of morphological and physiological traits; these include root structure, shoot architecture, variation in leaf cuticle thickness, stomatal regulation, osmotic adjustment, antioxidant capacity, hormonal regulation, desiccation tolerance e.g. via membrane and protein stability, maintenance of photosynthesis, or the timing of events during reproduction
  • a drought is a period of dry weather that persists long enough to produce a hydrologic imbalance, which can result, for example, in wilting, senescence, and general crop damage. Short periods of dry weather can also lead to hydrologic imbalances of economic importance.
  • Abiotic stress is the most harmful factor concerning the growth and productivity of crops worldwide.
  • the most obvious detriment concerning abiotic stress involves farming and agriculture. It has been claimed by one study that abiotic stress causes the most crop loss of any other factor and that most 55 major crops are reduced in their yield by more than 50% from their potential yield. It is expected that this yield reduction will only worsen with the dramatic climate changes expected in the future.
  • Abiotic stress is essentially unavoidable and affects animals, but plants are especially dependent on environmental factors, so it is particularly constraining. Generally, under drought stress plant water
  • SO and osmotic potential become more negative and, as a primary response to minimize water loss, stomata close leading to a reduction of the transpiration rate.
  • Such physiological responses changes can be observed within hours after the onset of drought stress.
  • Problems for plants caused by low water availability or drought include for example mechanical stresses caused by the withdrawal of cellular water. Damaging molecules such as free radicals and reactive oxygen species, which are i5 usually produced under abiotic stresses, destroy the integrity of a cell which is a major damage for the cell. Drought also causes plants to become more susceptible to various diseases. A plant's first line of defense against abiotic stress is in the roots. If the soil holding the plant is healthy and biologically diverse, the plant will have a higher chance of surviving stressful conditions.
  • Plants are extremely sensitive to changes of conditions, and do not generally adapt quickly. Plants also adapt very differently from one another, even from a plant living in the same area. When a group of different plant species was prompted by a variety of different stress signals, such as drought or cold, each plant responded uniquely. Hardly any of the responses were similar, even though the plants had become accustomed to the exact same home environment.
  • plants For resisting or adapting to disadvantageous environmental factors, plants receive extracellular changes of environmental conditions and transfer them through many pathways into cells to induce expressions of some responding genes and generate some functional proteins, osmoregulation substances as well as transcription factors for signal transmission and gene expression regulation. Thus plants are able to make corresponding responses to environmental changes and avoid damages for example caused by drought.
  • the regulating factors regulate the expression of functional genes for responding environmental changes. Regulating factors, like transcription factors can modulate gene expression, either increasing or decreasing (inducing or repressing) the rate of transcription. When plants encounter stresses, transcription factor as a controlling gene is able to regulate the expression of a series of downstream genes to enhance the tolerance of plants to the stresses.
  • Transcription factors are key controlling elements of biological pathways, therefore altering their expression levels can change entire biological pathways in an organism. For example, manipulation of the levels of selected transcription factors may result in increased expression of economically useful proteins or biomolecules in plants or improvement in other agriculturally relevant characteristics.
  • a transcription factor may reduce biosynthesis of unwanted compounds or remove an undesirable trait. Therefore, manipulating transcription factor levels in a plant offers tremendous potential in agricultural biotechnology for modifying a plant's traits, including traits that improve a plant's survival and yield during periods of drought and other abiotic stresses. So far abiotic stress, particularly low water availability or drought, is a major problem for agriculture. Breeding of more resistant plants is to slow and time consuming.
  • the present invention relates to an isolated polynucleotide capable of giving a plant tolerance to abiotic stress, particularly drought stress, which consists of a polynucleotide sequence selected from the group comprising SEQ ID NO. 1 to SEQ ID NO. 230.
  • the present invention also relates to an expression vector comprising the said polynucleotide and/or a promoter capable of giving a plant tolerance to abiotic stress, particularly drought stress, and to a host cell transformed or transfected by
  • the present invention further relates to a use of said polynucleotide or promoter sequence in improvement of plant tolerance to abiotic stress, particularly drought stress.
  • LOC_Os01g39020 1 ATGCTTAA ACTCCAGATCGGTGGGAGTTTGCAAATGAAGCCTTCTTAGCTGGTCAGAAGCATTTGCTGAAAAACATCAAGAGGAGGCGTGTTTCCAAGCCTC
  • SEQ ID NO. 8 LOC_Os01g4359 CGAGCAGACGGCCATCGGGGAGGAGCTGGCGC ⁇ . ⁇ ATC. ⁇ GCC ⁇ CCGGCTGC ⁇ GGCGACGGAGCGGCGGCCCGACCAGCTCATGTCCTTCCTCGC
  • SEQ ID NO. 20 LOC_Os01g60490 1 ATGGTTAAGA
  • LOC_Os01g63980 1 ATGAGGATGGGGCTGCGGACCTGCAGCGCCATGG AAGGTGAGGTCGTCGCCGCCTCGCCr ⁇ CTTCGAGTGGCTCAAGCCACCGCCGCGCGGCGTCATCCTCGTCGTGGTCGTCGTCTTTCTCCTCGT
  • AATCAGTACTCAGGATTTTGA SEQ ID NO. 25 LOC Os01g640202 ATGGTGCAAGGTGAGGAGAGTTCTTGGAGGATGGCAGCAAGCACCCACC ATGAGAGAGC AATACCrCTCAACCAAGCACTTGCTTATGGAGTCCAAGCCCATGCTTCTCCTTCTGTTGCTGCTGCACCACCTGCCAGCTTCTTGG ACTTCCAGCCTGCTGCCGCGGCAGCTGCCTACTTCGGCGAGCTGGAGGAGGCCCTCATCCATGGCGCCAACGCCGGCGGCGTCGTCGATCCCGG )0
  • SEQ ID NO. 26 LOC_Os01g64310 1 ATGGCCGACG
  • LOC_Os01g64360 1 ATGGATTTGTACGGCGGCGGCGGGCGGGGGACCGGTGGCGAGGCGACCGTGGAGCAA CACGCCGCAGGAGGCCTTGGAGCACTACCAGGTGCTCGTCGCCGACATCGATCTCATCATGCGCGGCGCCGTCGACGCCCCCGGGTCCTGGGAC
  • LOC_OS01G65080 1 ATGGACAGTGGCTTGGGAAGAAGTTCAGAGA CCATGTTTTGCAAGACCTGGTCAATCGTTCCCTGCRRTTRCCTCCACTCTTRGGGGTTCAGTCTTCCAGCRTGTATTTACCTGATGACATTGAAG
  • ATAA SEQ ID NO.42 LOC_Os02g09830 1 ATGCAGCATGATGCCATATCCAACATTGCATACCATCCTAGCATGGATTTCACAAGCTTTTTCCTGC
  • LOC_Os02g35600 1 ATGGACGAGGGAGGCGGCGCTGGTGCTGCGGCTGCCGCCGCCGGGAAC
  • TGTGGAGCTACCGTGATCCCTAG SEQ ID NO. 66
  • LOC_Os02g45780 1 ATGGGGTTCCCTCTGGTGTGCTACTOr ATGGCG VTCCCC ⁇ ACCCGCTC AT ⁇ GCCTTGGCC ⁇ CCTCCTCGCCGCCATCAGGGAGGCCC I LCAGCTGATGCTCTTCGTCGTCGGGATCTGCCACCACCCGGAGCGATCGGGCCG
  • LOC_Os02g46030 1 ATGGAGATGGCCTGTTTGCCGGGAAACGCCATGGCAACCGACGAAAACGGTGCCGACGATCGCGCCGGCGGCGAGAGCACCGTGGATCATCTC
  • ATCTAAGCAATAGTAGCCAAAAGTAG SEQ ID NO. 79 LOC_Os03g07360 1 ATGGGGGAGTGCAAGGTGGGAGGAGGAGGCGGAGGCGGAGACT GCTTGATCAAGCTGTTCGGGAAGACCATCCCCGTGCCAGAGCCCGGCGCCTGCGCCGCCGGCGATGTTGATAAGGACCTTCAACACAGTGGCAG
  • LOC_Os03g08310 1 ATGGCGTCGACGGA GGAGAGGCGCGAGGATTGGCTCGCGCTGGGAAGCCTTGGACACATGCACTCGCGCTGA SEQ ID NO. 81 LOC_Os03g08320 1 ATGGCCGGTAGT
  • CAGATAA SEQ ID NO. 94 LOC_Os03g 175703 ATGGGTAGCGCCTGCGAAGCTGGTACGGACGAGCCTTCCCGAGACGATGTTAAGGGGACAGGG
  • GTTCCAGTCCTT AGGCT ATTTGGCAAGAGGGTT ATGG TG AATGATTTACATCAGATGTCAGCCCCTGATGCCGGGAACCTGCAAACTGTGGCAGA
  • OIVDWODV >DOVOOUDI VDJJJ.DVDD DVODIJOVJaOIODOVOIVVIVDDVIDOVOJJOOIVOODIDJOOJLDJaVDOIOOOIOIJJJ-VVVDVOOOVVIDDJJ ⁇ IVJJLVIOIDIIIDVDOVDV
  • LOC_Os05g45020 1 ATGGCGAGCCGAGAGCACCTCCTGCT
  • LOC_Os06g06360 1 ATGGACGGAGGAGACATCCACCTGCTGCTGAGCATCCTCGC CGACGGCGAGGAGCAGGCCCGGCAGCTCGGCGAGCCCGCCGCGGrnncrfiArGACGAGTACCACGGCGGCGGCCGCGGGGAGGAGTACTACA
  • LOC_Os07g38030 1 ATGCTCCAGGGAGTCCTGTCGCGAGCTCCCGGCGCCGAC GAAGC AAGGGTT AGTGGTGGTGAGTACGGGGGAGGAGGAGGAGGCGGCGGCGGAGACGCGTGGGCTGCGGCTGCTT AGTTTGTTGCTGAGGTG
  • VDOOl VJJJ. VIOVOJJJLVVDWOWOVOVJJ.OVaiaWlVVVlV ⁇ VaVOWOlVlOVDIVOlVlOJJ.OOOWOVWVDD WVDlDOiJLL VWO
  • AATGCTG SEQ ID NO. 189 LO €_Os08g38990 3 ATGG ACGGG A AAGAGCAAAGCTTTCATCGATTCAAGCCGGGAAG AAGCTCAAATGGCTGTCTGTCAGAGAGGATGGCTGC AACCCATTTTGGGATCTAAGCCACCAACTTGT
  • LOC_OS09GL 1480 1 ATGTGTG AGAAGAAGCGTGGTGGCGGCGGCGACGACGACTGGGAGGCCGCCTTCCGGGAGTTCATCGCTGGCGACGACGACGACGACGACGGCGGCGTTT TGAGGCGGAGCTACCCGTACCGCGGCGTCCGGCAGCGGCCGTGGGGGCGGTGGGCGTCGGAGAT ⁇ GCG ⁇ CCCCCTC ⁇ ACGGCGCCCGCGTCT
  • GGAACTGA SEQ ID NO. 195 LOC_Os09g35870 1 ATGGCGAGCTACGGCGACGACGGCGTGGAGCTCACCGAGCTGACGCTGGGGCCTCCCGGAG
  • polynucleotide consisting of a sequence selected from the group comprising SEQ ID NO. 1 to SEQ ID NO. 4, SEQ ID NO. 35, SEQ ID NO. 36, SEQ ID NO. 38 to SEQ ID NO. 40, SEQ ID NO. 43, SEQ ID NO 49, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 53, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61 to SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 80 to SEQ ID NO 82, SEQ ID NO 90 to SEQ ID NO. 97, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO.
  • SEQ ID NO 1 1 1 SEQ ID NO 1 14, SEQ ID NO. 1 16, SEQ ID NO. 1 17, SEQ ID NO. 120, SEQ ID NO. 124, SEQ ID NO. 125.
  • a polynucleotide consisting of a sequence having at least 70%, preferred 80%, more preferred 90%, especially preferred 98% sequence identity to a sequence selected from the group comprising SEQ ID NO. 1 to SEQ ID NO. 4, SEQ ID NO. 35, SEQ ID NO. 36, SEQ ID NO. 38 to SEQ ID NO. 40, SEQ ID NO. 43, SEQ ID NO. 49, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 53, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61 to SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 80 to SEQ ID NO. 82, SEQ ID NO. 90 to SEQ ID NO. 97, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 108, SEQ ID NO. I l l, SEQ ID NO. 114, SEQ ID NO.
  • Polynucleotides of the present invention that are variants of the polynucleotides provided herein will generally demonstrate significant identity with the polynucleotides provided herein.
  • polynucleotide homologs having at least about 60% sequence identity, at least about 70% sequence identity, at least about 80% sequence identity, at least about 85% sequence identity, and more preferably at least about 90%, 95% or even greater, such as 98% or 99% sequence identity with polynucleotide sequences described herein.
  • sequence identity refers to a measure of relatedness between two or more nucleic acids, and is given as a percentage with reference to the total comparison length. The identity calculation takes into account those nucleotide residues that are identical and in the same relative positions in their respective larger sequences.
  • a partially complementary sequence is one that at least partially inhibits (or competes with) a completely complementary sequence from hybridizing to a target nucleic acid.
  • the inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or Northern blot, solution hybridization and the like) under conditions of low stringency.
  • a substantially homologous sequence or probe will compete for and inhibit the binding (in other words, the hybridization) of a sequence which is completely homologous to a target under conditions of low stringency. This is not to say that conditions of low stringency are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (in other words, selective) interaction.
  • the absence of non-specific binding may be tested by the use of a second target which lacks even a partial degree of complementarity (for example, less than about 30% identity); in the absence of non-specific binding the probe will not hybridize to the second non-complementary target.
  • a partial degree of complementarity for example, less than about 30% identity
  • the polynucleotides of the present invention may be present in the form of DNA, such as cDNA or genomic DNA, or as RNA, for example mRNA.
  • the polynucleotides of the present invention may be single or double stranded and may represent the coding, or sense strand of a gene, or the non-coding, antisense, strand.
  • isolated is used herein in reference to purified polynucleotide or polypeptide molecules.
  • purified refers to a polynucleotide or polypeptide molecule separated from substantially all other molecules normally associated with it in its native state. More preferably, a substantially purified molecule is the predominant species present in a preparation. A substantially purified molecule may be greater than 60% free, preferably 75% free, more preferably 90% free, and most preferably 95% free from the other molecules (exclusive of solvent) present in the natural mixture.
  • isolated is also used herein in reference to polynucleotide molecules that are separated from nucleic acids which normally flank the polynucleotide in nature.
  • polynucleotides fused to regulatory or coding sequences with which they are not normally associated, for example as the result of recombinant techniques are considered isolated herein. Such molecules are considered isolated even when present, for example in the chromosome of a host cell, or in a nucleic acid solution.
  • isolated and purified as used herein are not intended to encompass molecules present in their native state.
  • abiotic stress is the negative impact of non-living factors on the living organisms.
  • the non-living variable influences the environment beyond its normal range of variation to adversely affect the population performance or individual physiology of the organism.
  • Abiotic stress factors, or stressors are naturally occurring, often intangible, factors such as intense sunlight or wind that may cause harm to the plants and animals in the area affected. Abiotic stress comes in many forms.
  • the stressors include: high winds, extreme temperatures, heat, cold, strong light, water deficit, drought, flood, and other natural disasters, such as tornados and wildfires, poor edaphic conditions like rock content and pH, high radiation, compaction, contamination, non-optimal nutrient or salt levels, non-optimal light levels and other, highly specific conditions like rapid rehydration during seed germination.
  • tolerant or “tolerance” refers to the ability of a plant to overcome, completely or to some degree, the detrimental effect of an environmental stress or other limiting factor.
  • the transgenic plants are preferred tolerant to conditions including, but not limited to osmotic stress, particularly water-deficit and/or drought conditions (e.g., prolonged and/or extreme water-deficit).
  • the term “drought” and “water-deficit” refers to environmental conditions where the amount of water (e.g., rainfall or other available water source for plant life) is less than the average water conditions for the particular environment, or the amount of water available is less than the amount of water typically needed by a certain species of plant or by a plant growing in a particular environment. Typically a “drought” indicates a more intense or more prolonged period of reduced water availability than a "water-deficit".
  • drought-resistance or “drought-tolerance” refer to the ability of a plant to recover from periods of drought stress (i.e., little or no water for a period of days).
  • the invention relates to an isolated polynucleotide, wherein the polynucleotide is selected from the group comprising SEQ ID NO 48, SEQ !D NO 43, SEQ ID NO 57, SEQ ID NO 228 to SEQ ID NO 230. It was very surprising that these sequences can be used to alter a plant's tolerance to drought stress. These sequences showed particularly good results in rice.
  • “Expression” means the production of a protein or nucleotide sequence in the cell itself or in a cell-free system. It includes transcription into an RNA product, post-transcriptional modification and/or translation to a protein product or polypeptide from a DNA encoding that product, as well as possible post-translational modifications.
  • an isolated polynucleotide selected from the group comprising:
  • nucleotide sequence encoding a polypeptide, wherein said nucleotide sequence is selected from the group consisting of SEQ ID NO. 1 to SEQ ID NO. 4, SEQ ID NO. 35, SEQ ID NO.
  • SEQ ID NO. 38 to SEQ ID NO. 40 SEQ ID NO. 43, SEQ ID NO. 49, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 53, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61 to SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 80 to SEQ ID NO. 82, SEQ ID NO. 90 to SEQ ID NO. 97, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 108, SEQ ID NO. I l l , SEQ ID NO. I 14, SEQ ID NO. 1 16, SEQ ID NO. 1 17, SEQ ID NO. 120, SEQ ID NO. 124, SEQ ID
  • SEQ ID NO. 125 SEQ ID NO. 128, SEQ ID NO. 129, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 136 to SEQ ID NO. 138, SEQ ID NO. 140, SEQ ID NO. 142, SEQ ID NO. 150, SEQ ID NO. 152, SEQ ID NO. 154 to SEQ ID NO. 156, SEQ ID NO. 161, SEQ ID NO. 166, SEQ ID NO. 167, SEQ ID NO. 172, SEQ ID NO. 174, SEQ ID NO. 184, SEQ ID NO. 194 to SEQ ID NO. 196, SEQ ID NO. 200 to SEQ ID NO. 206, SEQ ID NO. 210, SEQ ID NO.
  • SEQ ID NO. 214 to SEQ DD NO. 220, SEQ ID NO. 223 to SEQ ID NO. 227
  • a nucleotide sequence encoding a polypeptide wherein said polypeptide is selected from the group consisting of SEQ ID NO. 231 to 234, SEQ ID NO. 265, SEQ ID NO. 266, SEQ ID NO. 268 to SEQ ID NO. 270, SEQ DD NO. 273, SEQ ID NO. 279, SEQ ID NO. 280, SEQ DD NO. 282, SEQ DD NO. 283, SEQ DD NO. 287, SEQ ID NO. 289, SEQ DD NO. 291 to SEQ DD NO. 295, SEQ DD NO.
  • SEQ DD NO. 310 to SEQ DD NO. 312, SEQ DD NO. 320 to SEQ DD NO. 327, SEQ DD NO. 330, SEQ DD NO. 332, SEQ DD NO. 338, SEQ DD NO. 341, SEQ DD
  • an isolated polynucleotide selected from the group comprising SEQ DD NO. 67, SEQ DD NO. 80 to SEQ DD NO. 82, SEQ DD NO. 90 to SEQ DD NO. 97, SEQ DD NO. 100, SEQ DD NO. 102, SEQ DD NO. 108, SEQ DD NO. 111, SEQ ID NO. 114, SEQ DD NO. 116, SEQ DD NO. 117, SEQ DD NO. 120, SEQ DD NO. 124, SEQ DD NO. 125, SEQ DD NO. 128, SEQ DD NO. 129, SEQ DD NO. 133, SEQ DD NO. 134, SEQ DD NO.
  • the invention relates to an isolated polynucleotide selected from the group comprising SEQ DD NO. 1 to SEQ DD NO. 4, SEQ DD NO. 35, SEQ DD NO. 36, SEQ DD NO. 38 to SEQ DD NO. 40, SEQ DD NO. 43, SEQ DD NO. 49, SEQ DD NO. 50, SEQ DD NO. 52, SEQ DD NO.
  • SEQ DD NO. 57 SEQ DD NO. 59, SEQ DD NO. 61 to SEQ DD NO. 65.
  • These sequences can be used to alter a plants tolerance to drought particularly well. Plants comprising these sequences or modifications thereof showed a better growth during drought stress compared to control plants.
  • an isolated polynucleotide selected from the group comprising NO. 142, SEQ ID NO. 150, SEQ ID NO. 152, SEQ ID NO. 154 to SEQ ID NO. 156, SEQ ID NO. 161, SEQ ID NO. 166, SEQ ID NO. 167, SEQ ID NO. 172, SEQ ID NO. 174, SEQ ID NO. 184, SEQ ID NO. 194 to SEQ ID NO. 196, SEQ ID NO. 200 to SEQ ID NO. 206, SEQ ID NO. 210, SEQ ID NO. 212, SEQ ID NO. 214 to SEQ ID NO. 220, SEQ ID NO. 223 to SEQ ID NO. 227. Said sequences are especially preferred for the modification of stress tolerance in monocotyledons.
  • the polynucleotides of the present invention find particular use in generation of transgenic plants to provide for increased or decreased expression of the polypeptides encoded by the polynucleotides provided herein.
  • plants, particularly crop plants, having improved properties are obtained.
  • Crop plants of interest in the present invention include, but are not limited to soy, cotton, canola, maize, wheat, sunflower, sorghum, alfalfa, barley, millet, rice, tobacco, fruit and vegetable crops, and turf grass.
  • the invention relates to a nucleotide construct comprising a one of the mentioned polynucleotide, wherein said polynucleotide is operabiy linked to a promoter that drives expression in a plant cell.
  • operbiy linked is intended a functional linkage between a promoter and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA sequence corresponding to the second sequence.
  • operbiy linked means that the nucleic acid sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in the same reading frame.
  • the cassette may additionally contain at least one additional gene to be cotransformed into the organism. Alternatively, the additional gene(s) can be provided on multiple expression cassettes.
  • a construct will generally include a plant promoter to direct transcription of the protein-encoding region or the antisense sequence of choice or gene-specific antisense region of sequence or gene- specific region of sequence appropriate for the design of gene-specific artificial micro RNA.
  • plant promoters to direct transcription of the protein-encoding region or the antisense sequence of choice or gene-specific antisense region of sequence or gene- specific region of sequence appropriate for the design of gene-specific artificial micro RNA.
  • nucleotide construct wherein said promoter is a constitutive promoter, especially preferred a tissue-preferred promoter. Further preferred is the nucleotide construct, wherein said promoter is an inducible promoter, preferred an stress-inducible promoter.
  • the invention relates to an isolated polypeptide encoded by one of the mentioned polynucleotides and/or nucleotide constructs.
  • polypeptides consisting of a sequences selected from the group comprising SEQ ID NO. 231 to SEQ ID NO. 460.
  • RAR* SEQ ID NO. 234 LOC_Os01gl l350 1 MAQLPPKIPTMATAWPEFGGGHHHHAAHGHHHQRSPSMGAFLAAPLPPFPLPPPAPANGGAQQQQQQ ZO QQHQPSWVDEFLDFSATKRGAHRRSVSDSV AFLDPVSDDNAGVGAHDFDRLDDDQLMSMFSDDLQPPPPQQQPAAP AASASSPSDHNSMNDEKQDK
  • AKVEPPFPFCLLGQAFF* SEQ ID NO. 240 LOC_Os01g49830 1 MDSSSCLVDDTNSGGSSTDKLRALAAAAAETAPLERMGSGASAVVDAAEPGAEA DSGSGGRVCGGGGGGAGGAGGKLPSSKFKGVVPQPNGRWGAQIYERHQRVWLGTFAGEDDAARAYDV AAQRFRGRDA VTNFRPLAEADPDAAAE LRFLATRSKAEVVDMLRK HTYFDELAQSKRTF AASTPSAATTTASLSNGHLSSPRSPFAPAAA RDHLFDKTVTPSDVGKLNRLVIPKQHAEKHFPLQ LP
  • TMDYRQPLSAFQAFAICLSNFGTKLA* SEQ ID NO. 246 LOC_OS01G55750 1 MILGSNQAAAAAAAAAAAEEEAAELARKHTAAVATSRQWSAQTES RIVRVSRVFGGKDRHSKVKTVKGLRDRRVRLSVPTAIQLYDLQDRLGLNQPSKVVDWLLNAARHEIDKLPPLQFPPQDHLCMGHHHHLPSAMPLMHH
  • LOC_Os01g60640 1 MAMLGSSSAVVLELMTMGYQSAAYLGELLRAASP AQAGDEQQELAAEILRCCDRVIAKLNRGGATGATTGKKRKAAES AAAAA VTSPSLP VTPTKRRARGAEAVREVRSGTTTDGFIWRKYGQKEINGCKH APSETSQGWSPSFSSEVELDVVGFDLAGADSSASPVWEFLNGSFDWEFVINSL* SEQ ID NO. 253 LOC_Os01g63980 1 MRMGLRTCSAMEGEVVAA
  • LOC_Os01g65080 1 MDSGLGRSSETSLKALPSMASNATR RMHMRCHCDEYKTAAALAK-PiKDSSL
  • KYGQKVTKDNPCPRAYFRCSFAPACPVKKKVQRSAEDNTILV ATYEGEHNHGQPPPPLQSAAQNSDGSGKSAGKPPHAPAAAPPAPVVPHRQHEP VV VNGEQQAAAASEM1RRNLAEQM AMTLTRDPSFKAALVTALSGRILELSPTKD* SEQ ID NO. 269 LOC_Os02g084403 MDPWISTQPSLSLDLRVGLP ATAA VAMVKPKVLVEEDFFHQQPLKKDPEV AALEAELKRMGAENRQLSEMLAAVAAKYEALQSQFSDMVTASANNGGGGGNNPSSTSEGGSVSPSR
  • DAWLLSVAFYFGARFGFDKEARRRLFTM INGLPTVYEVVTGIAKKQTKVSNGSSKSNKSNPKPSKQSNSNSKPAKPPQPKDEEDSGPEGTEDEDQAYM CGACGETY ANGEFWICCDVCEKWFHGKCVRITP AKAEHIKQYKCPGCSSKRSRE* SEQ ID NO. 282 LOC_Os02g36510 1 MASRSPTNKQISSEDRVR
  • ASPASRERWVPQMYADQLAAGSKRSRTSTASSYSYW* SEQ ID NO. 290 LOC_Os02g43790 1 MLLNPASREVAALDSIRHHLLEEEEETPATAPAPTR RP VYCRSSSFGSLVADQWSESLPFRPNDAEDM VVYGALRDAFSSGWLPDGSFAAVKPESQDSYDGSSIGSFLASSSSEAGTPGEVTSTEATVTPGIREGE
  • WSFDDFPIDGALF* SEQ ID NO.314 LOC_OS03G08470 2 MCGGAILAEFIPAPSRAAAATKRVTASHLWPAGSKNAARGKSKSKRQQRSFADVDDFEA AFEQFDDDSDFDDAEEEDEGHFVFASKSRVVAGHDGRAAARAASKKKRGRHFRGIRQRPWGKWAAEIRDPHKGTRVWLGTFNTPEEAA RA YDVEAR
  • EQDCLMEAQYNSNNPQYVLR* SEQ ID NO. 320 LOC_OS03GL2760 1 MGQTGGRPGGGGGPALQRLRRHAAGKVASRSLARCREGARRRGRQAAGQ RHSGRQGSNESTTQSQPTVTVIEDLKLEIDCQHVKKNIAHSPGQQCSPSERFDEWKSSSRRRPKCDV ATNLHWCHLHPFQMSTLSNKVSLSSNLLNLQT GLAEEPEELTYMYHQEEHARMQEQFAGTPLVEQPVRFDQFYP ASMAPNQFHPSHCSSFPAFGGSSALPSLAFGAVATTKKEQVQQPSPSSSNVLSFAGQ VQGSTTTLDFSGRGWQQDDGVGVFQQPPERRSRPPANAQEHVIAERKRREKLQQQFVALATIVPGLKKTDKISLLGSTIDYVKQLEEKVKALEEGSRRT
  • PAIEEEPDRARPAGLAVEFPVVVDFPC* SEQ ID NO. 322 LOC_OS03GL7570 1 MGSACEAGTDEPSRDDVKGTGNGILENGHSHKPEEEEWRNGMGE DLPNGHSTPPEPQQTDEQKEHQVQIVRWERFLPVKTLRVLLVENDDSTRQVVSALLRKCCYEVIPAENGLHA WQCLEDLQNHIDLVLTEVVMPRLSGI
  • VEYPGAMQGQQKNDGASEFEELE* SEQ ID NO. 330 LOC_Os03g21030 1 MSEVSVMAEVEETAAAAPLDLPPGFRFHPTDEEIVSHYLTPKALNHRFS
  • RQESSQ* SEQ ID NO. 333
  • LOC_Os03g32220 1 MVTNMTHDDYVSLCLMALAQAGVGGQWPAQKQQIDMAPPAPERELLRFRCSVCGKAFPSHQALG GHKASHRKPPTAALPMHVIDAPPPPSAEDTASSSTTTTTSGGGRHRCSVCHRTFATGQALGGHKRCHYWDGLS VVSVTASASGSGSSSVRNFDLNLKP VPETVAAGVRRWGEEEEVQSPLPFKKRRLSSPSLELNL* SEQ ID NO.
  • LOC_Os04g45810 1 MNGRTQLASWARIAMDRGDHHHLQQ QHQFLMPPPAPVVPPQLCMPAMMADEQYMDLGGGG AAAAPGRGGAGERKRRFTEEQIRSLESMFHAHHAKLEPREKAELARELG LQPRQVAIWFQN KRAR WRSKQLEHDY AALRSKYDALHSRVES LKQEKLALTVQLHELRERLREREERSGNGG AATTAASSSSCNGSGSEEVDDDDDKRN AAAGCLDLEP PESCVLGGATCATPADVSVESDQCDDQLDYDEGLFPESFCATPELWEPWPLVEWNAVA* SEQ ID NO.353 LOC_Os04g48030 1 MASPAAGTPPFLT 30 KTYAMVEDPSTDETISWNDSGTAFVVWRPAEFARDLLPKHFKHSNFSSF
  • LVLKNLEANLSA* SEQ ID NO. 360 LOC_Os05g07120 1 MAACQQQIWQEGKQQQHLHHGGYDDLSSVYRGTVVLPRRQGGLAPEPPPPRPSSSSGRS AAAQATAMTIHSEAERRRRERINAHLATLRRILPDAKQMDKATLLASVVNQVKHLKTRATEATTPSTAATIPPEANEVTVQCYAGGEHTAAARTYVR
  • LOC_Os05g37060 1 MAFYLGSMGGSPSSWGVAEVPVPbSRPWSKAEDKVFESALVAFPEHTHNRWALVASRL PGRSAHEVWEHYQVLVDDVDLIERGMVASPGCWDDDNNSAGHGRGSGGDERRRGVPWTEEEHRLFLEGLEKYGRGDWRNISRWSVKTRTPTQVAS HAQKFFIRQANASSRGDSKRKSIHDITAP* SEQ ID NO.370 LOC_Os05g39720 1 MTAAPGSLPLVNSRPVSLSLAASRSSFSSLLSGGAGSSLNLMTPP SSLPPSSPSSYFGGVSSSGFLDSPILLTPSLFPSPTTTGALFSWITTATATAA]APESQVQGGVKDEQQQYSDFTFLPTASTAPATTMAGATATTSNSFMQD 55 SMLMAPLGGDPYNGEQQQPWSYQEPTMDADTRPAEFTSSAAAGDV AGNGSYSQ
  • RTCPCCRELVLVPPAARLAAPTYR* SEQ ID NO. 372
  • LOC_Os05g40060 1 MALIATGATATATAAPVASPAASSMASELMAQGRESAA VLEALLHGA SIJ 1 PAHGGAHALAAEILRCCDRAI-AALRAGGDAESSSADTKRKPATAQPSTRRRRRATASGGGAAAAAEPARVEKARTSEDGFLWRKYGQICEIKNSK
  • VSELVM* SEQ ID NO.375 LOC_Os05g47650 1 MDSTSCLLDDASSGASTGKKAAAAAASKALQRVGSGASAVMDAAEPGAEADSGGERRGGGGGK LPSSKYKGVVPQPNGRWGAQIYERHQRVWLGTFTGEAEAARA YDVAAQRFRGRDA VTNFRPLAESDPEAAVELRFLASRSKAEVVDMLRKHTYLEE LTQNKRAFAAISPPPPKHPASSPTSSSAAREHLFDKTVTPSDVGKLNRLVIPKQHAEKHFPLQLPPPTTTSSVAAAADAAAGGGDCKGVLLNFEDAAGK
  • LOC_Os05g50340 1 MAQQARAQWPQKQNKLFEQALAVYDKETPDRWHNIARAVGGG 20 KSAEDVKRYYEMLEEDIKHIESGKVPFPAYRCPAAAGYQAERLKHLKI' SEQ ID NO.378 LOC_Os05g5U60 1 MHAIMARRCSGDYSTAGQRAGEE
  • LWSY* SEQ ID NO. 380 LOC_Os06g06360 1 MDGGDIHLLLSILADGEEQARQLGEPAAAADDEYHGGGRGEEYYRGVARQLQGTLARAMGIARAIE AAAFAGGGGGGGASGSRGTTGDRSDSPRS ADESSGRTARDAA VAQQERHHDTIKRRKGLPRWTEKFRVPDASLEATPDDGFSWRKYGQKDILGAKFP RGYYRCTYRNAQGCPATKQVQRSDADLAVFDVTYQGAHTCHQKQRJIAAAAGDQPPPPPPQADPSVELLVNFRHGLKVETNGIJU 3 PPPPTTTTNFH
  • DADVAVAGDTHHESHDS* SEQ ID NO. 401 LOC_Os07g38750 1 MELNFQVQPPVFQLQDYCYYYSQEVAAAASPAAKPTKPRGRKKGSTSHSKFVG VRQRPSGRWVAEIKDTTQKIRM WLGTF ETADAAARA YDEAARLLRGAEARTNFAPRISPDCPI AVR ⁇ RGILHHKKLKKARSA ⁇ AATAO&PG AASKKRS TTAAAAAATPTnTTSNSNSDGAGSACCCSSSSSSSTDSCDGAVKQGGGGGGAPTDASEVYRPDFVHAGAEEFDSWMFDTAFGPFPELDSFAAVDAVT +_ ⁇ PPPATASPEESSAGTPPVEMAEFERIKVERRISASLY AMNGLQEYFDKVFDASACDPFWDFSPLCH* SEQ ID NO.402 LOC_Os07g41S80 1 MPDSDNE
  • GNAGAAASQQLMGRLPKQHPQM* SEQ ID NO. 419 LOC_OsOSg38990 3 iviDGTNNHGALMDDWMLPSPSPRTLMSSFLNEEFSSGPFSDIFCDNGSN K.HQDGLGKSKAFiDSSKbbrAQLAKKFESNLFGANQKSSSNGCLSERMAARTGFGVLKIDTSRVGYSTPIRSPV ⁇ PPGVSPRELLESPVFLPNAIAQPSPT
  • LOC_Os09g28210 1 MDFDLFNSYPESQLDLMSTMLQLEQLTALS DQSLFM
  • VEIDPEAVRPPKRRNVRISKDPQSV AARLRRERISERIRILQRLVPGGTKM DTASMLDEAIHYVKFLKSQVQSLERAAAATGAAAHRAAAFGAA YP AAL PMQHHAPW* SEQ ID NO. 423
  • LOC_Os09g28440 1 MTKKVIP AMAAARQDSCKTKLDERGGSHQAPSSARW[SSEQEHSIIVAALRYVVSGCTTPPPEI
  • VTKLCELFVQELILRA WVCANSHNREIILGTDIAEAITTTESYHFLANVVHGHQALGSNIPEIGVSAWKRHKLDEM TS LCHPPQA VQVTDLANHPPNIPV CPPIGQSGTQHTTSTHVLMMQG ESIHKASKEKSPLKEVMVPTNKVGMTNSSYGVPNGGGATSSKVVIDSPKGETAQVFSSQHACPSLEDNYVIPIPAGH GDSFRTLDEANIPQLHQEQKNFISQDAIVGENIPLNESLEKSKHKDEDLLFPDKDLPE* SEQ ID NO.
  • SEQ ID NO. 458 LOC_Osl2g42400.1 : M AMDRGVPEILNFSMVPGKGEKCSEHSTTIALQSPFA
  • polypeptide selected from the group comprising:
  • polypeptide consisting of a sequence selected from the group comprising SEQ ID NO. 231 5 to 234, SEQ ID NO. 265, SEQ ID NO. 266, SEQ ID NO. 268 to SEQ ID NO. 270, SEQ ID NO. 273,
  • polypeptide consisting of a sequence having at least 70%, preferred 80%, more preferred 90%, especially preferred 98% sequence identity to a sequence selected from the group comprising SEQ ID NO. 231 to 234, SEQ ID NO. 265, SEQ ID NO. 266, SEQ ID NO. 268 to SEQ ID NO. 270, SEQ ID NO. 273, SEQ ID NO. 279, SEQ ID NO. 280, SEQ ID NO. 282, SEQ ID NO. 283, SEQ ID
  • polypeptide means an unbranched chain of amino acid residues that are covalently linked by an amide linkage between the carboxyl group of one amino acid and the amino group of another.
  • polypeptide can encompass whole proteins (i.e. a functional protein encoded by a particular gene), as well as fragments of proteins.
  • polypeptides of the present invention which represent whole proteins or a sufficient portion of the entire protein to impart the relevant biological activity of the protein.
  • protein also includes molecules consisting of one or more polypeptide chains.
  • a polypeptide of the present invention may also constitute an entire gene product, but only a portion of a functional oligomeric protein having multiple polypeptide chains.
  • polypeptides involved in one or more important biological properties in plants are polypeptides involved in one or more important biological properties in plants.
  • Such polypeptides may be produced in transgenic plants to provide plants having improved ph ⁇ notypic properties and/or improved response to stressful environmental conditions. Ln some cases, decreased expression of such polypeptides may be desired, such decreased expression being obtained by use of the polynucleotide sequences provided herein, for example in antisense or cosuppression methods
  • Polypeptides of the present invention that are variants of the polypeptides provided herein will generally demonstrate significant identity with the polypeptides provided herein.
  • polypeptides having amino acid sequences provided herein reference polypeptides
  • functional homologs of such reference polypeptides wherein such functional homologs comprises at least 50 consecutive amino acids having at least 90% identity to a 50 amino acid polypeptide fragment of said reference polypeptide.
  • protein(s) when used herein refer to amino acids in a polymeric form of any length. Said terms also include known amino acid modifications such as disulphide bond formation, cysteinylation, oxidation, glutathionylation, methylation, acetylation, farnesylation, biotinylation, stearoylation, formylation, lipoic acid addition, phosphorylation, sulphation, ubiquitination, myristoylation, palmitoylation, geranylgeranylation, cyclization (e.g. pyroglutamic acid formation), oxidation, deamidation, dehydration, glycosylation (e.g.
  • acylation and radiolabels e.g. S 35 , C 14 , P 32 , P 33 , 3H 3 ) as well as non-naturally occurring amino acid residues, L-amino acid residues and D-amino acid residues.
  • Polypeptides useful for improved stress tolerance under a variety of stress conditions include polypeptides involved in involved in gene regulation, such as ion antiporters, ion transporters, H + pyrophosphatases, H + ATPases, aquaporines, CNGCs, glutamate receptors, Ca 2+ -ATPases, transcription factors, serine/threonine-protein kinases, MAP kinases, MAP kinase kinases, and MAP kinase kinase kinases; polypeptides that act as receptors for signal transduction and regulation, such as receptor protein kinases; intracellular signaling proteins, such as protein phosphatases, GTP binding proteins, and phospholipid signaling proteins; polypeptides involved in arginine biosynthesis; polypeptides involved in ATP metabolism, including for example ATPase, adenylate transporters, and poly
  • polypeptide wherein said polypeptide is a transcription factor.
  • Transcription factors play a key role in plant growth and development by controlling the expression of one or more genes in spatial, temporal and physiological specific patterns. Enhanced or reduced activity of such polypeptides in transgenic plants will provide significant changes in gene transcription patterns and provide a variety of beneficial effects in plant growth, development and response to environmental conditions.
  • Transcription factors of interest include, but are not limited to ABI3VP1, C3H, HRT, SBP, Alfin-like, CAMTA, HSF, Sigma70-like, AP2-EREBP, CCAAT, LFY, SRS, ARF, CPP, LIM, TAZ, ARR-B, CSD, MADS, TCP, BBR/BPC, DBP, MYB, Trihelix, BESl, E2F-DP, MYB-related, TUB, bHLH, EIL, NAC, ULT, bZIP, FHA, Orphans, VOZ, C2C2-CO-like, G2-like, PBF-2-like, WRKY, C2C2-Dof, GeBP, PLATZ, zf-HD, C2C2-GATA, GRAS, Pseudo ARR-B, ZM, C2C2-YABBY, GRF, RWP-RK, C2H2, HB, SlFa-like,
  • any of a variety of polynucleotide sequences are capable of encoding the transcription factors and transcription factor homologue polypeptides of the invention. Due to the degeneracy of the genetic code, many diffident polynucleotides can encode identical and/or substantially similar polypeptides in addition to those sequences illustrated in the Sequence Listing. Nucleic acids having a sequence that differs from the sequences shown in the Sequence Listing, or complementary sequences, that encode functionally equivalent peptides (i.e., peptides having some degree of equivalent or similar biological activity) but differ in sequence from the sequence shown in the sequence listing due to degeneracy in the genetic code, are also within the scope of the invention.
  • polypeptide consisting of a sequence selected from the group comprising SEQ ID NO. 231 to 234, SEQ ID NO. 265, SEQ ID NO. 266, SEQ ID NO. 268 to SEQ ID NO. 270, SEQ ID NO. 273, SEQ ID NO. 279, SEQ ID NO. 280, SEQ ID NO. 282, SEQ ID NO. 283, SEQ ID NO. 287, SEQ ID NO. 289, SEQ ID NO. 291 to SEQ ID NO. 295, SEQ ID NO. 297, SEQ ID NO. 310 to SEQ ID NO. 312, SEQ ID NO. 320 to SEQ ID NO. 327, SEQ ID NO. 330, SEQ ID NO. 332, SEQ ID NO.
  • amino acids have analogous physicochemical properties so that these amino acids advantageously can be replaced by each other.
  • these include the group of nonpolar (hydrophobic) amino acids (a) glycine, alanine, valine, leucine and/or isoleucine; or the hydroxy amino acids (b) serine, threonine and/or tyrosine, the amides of amino dicarboxylic acids (c) asparagine and glutamine, the amino dicarboxylic acids (d) aspartic acid and glutamic acid; the basic amino acids (e) lysine, arginine and/or ornithine as well as the group of aromatic amino acids (f) phenylalanine, tyrosine and/or tryptophan.
  • nonpolar amino acids a) glycine, alanine, valine, leucine and/or isoleucine
  • hydroxy amino acids b) serine, threonine and/or tyrosine
  • amino acids by structural similar amino acids.
  • this is the case in the group with a ⁇ - functional group (g) cysteine, methionine, serine, ⁇ - aminobutyric acid and selenocysteine as well as the turn-inducing group (h) proline, 1 -amino-2-carboxy cyclohexane, pipecolic acid and an ortho- aminobenzoic acid.
  • a-h the same group
  • peptide sequences will have a sufficient homology to be an analogous to an amino acid sequence of the peptides of the invention.
  • the amino acids can be replaced by modified amino acids or specific enantiomers.
  • the invention relates to a vector comprising one of the polynucleotides and/or the nucleotide construct.
  • vector is meant a DNA sequence, which can be introduced in an organism by transformation and can be stably maintained in said organism. Vector maintenance is possible in e.g. cultures of
  • Vector sequences generally comprise a set of unique sites recognised by restriction enzymes, the multiple cloning site (MCS), wherein one or more non-vector sequence(s) can be inserted.
  • MCS multiple cloning site
  • “Expression vectors” form a subset of vectors which, by virtue of comprising the appropriate regulatory sequences enabling the creation of an expressible format for the inserted non-vector sequence(s), thus allowing expression of the protein encoded by said non-vector sequence(s).
  • Expression vectors are known in the art enabling protein- (gene-) expression in organisms including bacteria (e.g. Escherichia coli), fungi (e.g. Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris), insect cells (e.g. baculoviral expression vectors), animal cells (e.g. COS or CHO cells) and plant cells.
  • the current invention clearly includes any vector or expression vector comprising a non- vector DNA sequence encoding a polypeptide of the invention, homologue and/or derivative.
  • Vectors may also include a screenable marker.
  • Screenable markers may be used to monitor transformation.
  • Exemplary screenable markers include antibiotic resistant genes, genes expressing a colored or fluorescent protein such as a luciferase or green fluorescent protein (GFP), a beta- glucuronidase or uidA gene (GUS), which encodes an enzyme for which various chromogenic substrates are known or an R-locus gene, which encodes a product that regulates the production of anthocyanin pigments (red color) in plant tissues.
  • GFP green fluorescent protein
  • GUS beta- glucuronidase
  • uidA gene GUS
  • Other possible selectable and/or screenable marker genes will be apparent to those of skill in the art.
  • the vector is a viral expression vector, a phage display vector, a bacterial expression vector, a yeast expression vector, a vector for expression in insects cells, a vector for in-vitro expression, a mammalian expression vector, a fungus expression vector, an algae expression vector or a plant expression vector.
  • the invention in another preferred embodiment relates to a host cell comprising at least one of the mentioned polynucleotides, nucleotide constructs, polypeptides and/or vectors. Also preferred is the host cell, wherein the host cell is selected from the group comprising a bacterial cell, a yeast cell, a fungus cell, a mammalian cell, an insect cell, an algae cell and/or a plant cell.
  • the invention relates to a transgenic plant cell having stably 5 incorporated into its genome at least one nucleotide construct comprising at least one of the mentioned polynucleotides, operably linked to a promoter that drives expression in said cell.
  • transgenic organism is one whose genome has been altered by the incorporation of foreign genetic material or additional copies of native genetic material, e.g. by transformation or 10 recombination.
  • a "transgenic plant” refers to a plant that contains genetic material not found in a wild type plant of the same species, variety or cultivar.
  • the genetic material may include a transgene, an insertional mutagenesis event (such as by transposon or T-DNA insertional mutagenesis), an activation tagging 15 sequence, a mutated sequence, a homologous recombination event or a sequence modified by chimeraplasty.
  • the foreign genetic material has been introduced into the plant by human manipulation, but any method can be used as one of skill in the art recognizes.
  • a transgenic plant may contain an expression vector or cassette.
  • the expression cassette typically contains
  • -0 comprises a polypeptide-encoding sequence operably linked (i.e., under regulatory control of) to appropriate inducible or constitutive regulatory sequences that allow for the expression of polypeptide.
  • the expression cassette can be introduced into a plant by transformation or by breeding after transformation of a parent plant.
  • a plant refers to a whole plant as well as to a plant part, such as seed, fruit, leaf, or root, plant tissue, plant cells or any other plant material, e.g., a plant explant, as well as to
  • Transgenic plant in terms of the invention does also relate to cisgenic plants.
  • Plant or "Plants” comprise all plant species which belong to the superfamily Viridiplantae.
  • the present invention is applicable to any plant, in particular monocotyledonous plants and dicotyledonous plants including a fodder or forage legume, ornamental plant, food crop, tree, or shrub selected from the list comprising Acacia spp., Acer spp., Actinidia spp., Aesculus spp., Agathis australis, Albizia amara, Alsophila tricolor, Andropogon spp., Arachis spp,
  • ZO sempervirens Sequoiadendron giganteum, Sorghum bicolor, Spinacia spp., Sporobolus fimbriatus, Stiburusi alopecuroides, Stylosanthos humilis, Tadehagi spp, Taxodium distichum, Themeda triandra, Trifolium spp., Triticum spp., Tsuga heterophylla, Vaccinium spp., Vicia spp., Vitis vinifera, Watsonia pyramidatai, Zantedeschia aethiopica, Zea mays, amaranth, artichoke, asparagus, broccoli, brussel sprout, cabbage, canola, carrot, cauliflower, celery, collard greens, flax, kale, lentil, oilseed
  • Polynucleotides or DNA constructs of the invention may be introduced into the genome of the desired
  • the DNA construct may be introduced directly into the genomic DNA of the plant cell using techniques such as electroporation and microinjection of plant cell protoplasts, or the DNA constructs can be introduced directly to plant tissue using ballistic methods, such as DNA particle bombardment.
  • the DNA constructs may be combined with suitable T-DNA flanking regions and introduced into a conventional
  • Agrobacterium tumefaciens host vector The virulence functions of the Agrobacterium tumefaciens host will direct the insertion of the construct and adjacent marker into the plant cell DNA when the cell is infected by the bacteria.
  • Microinjection techniques are known in the art and well described in the scientific and patent literature. The introduction of DNA constructs using polyethylene glycol precipitation is described in Paszkowski et al. Embo J. 3:2717-2722 (1984). Electroporation techniques are described in Frornm et al Proc. Natl. Acad. Sci. USA 82:5824 (1985). Ballistic transformation techniques are described in Klein et al. Nature 327:70-73 (1987).
  • Agrobacterium tumefaciens-mediated transformation techniques including disarming and use of binary vectors, are well described in the scientific literature. See, for example Horsch et al. Science 233:496-498 (1984), and Fraley et al. Proc. Natl. Acad. Sci. USA 80:4803 (1983).
  • Transformed plant cells which are derived by any of the above transformation techniques can be cultured to regenerate a whole plant which possesses the transformed genotype and thus the desired phenotype.
  • the expression cassette is stably incorporated in transgenic plants and confirmed to be operable, it can be introduced into other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed.
  • transgenic plant having an altered tolerance to abiotic stress, preferred drought stress, compared to a wild-type plant, wherein the transgenic plant comprises at least one modified polynucleotide of claim 1 , wherein the modified polynucleotide is selected from the group comprising an overexpressed polynucleotide, a suppressed polynucleotide and/or a knocked out polynucleotide.
  • transgenic plant having an altered tolerance to abiotic stress compared to a control plant, wherein the transgenic plant comprises at least one of said polynucleotides, and the control plant does not overexpress a polypeptide encoded by the polynucleotide.
  • transgenic plant having an altered tolerance to abiotic stress compared to a control plant, wherein the transgenic plant comprises at least one of said polynucleotides foreign DNA and the gene including the polynucleotide is not knocked out in the control plant.
  • transgenic plant having an altered tolerance to abiotic stress compared to a control plant, wherein the expression of at least one of said polynucleotides is suppressed in transgenic plants and the gene including the polynucleotide is not suppressed in the control plant. Further preferred is a transgenic plant comprising at least one said polypeptides.
  • Drought resistance can assayed according to any of a number of well-know techniques. For example, plants can be grown under conditions in which less than optimum water is provided to the plant. Drought resistance can be determined by any of a number of standard measures including turgor pressure, growth, yield, yield of photosynthesis, stomatal conductivity, transpiration rate, etc.
  • transgenic plant wherein the transgene comprises a polynucleotide sequence that hybridizes under stringent conditions to one of the complement polynucleotides.
  • hybridize refers to the pairing of complementary nucleic acids. Hybridization and the strength of hybridization (in other words, the strength of the association between the nucleic acids) is impacted by such factors as the degree of complementary between the nucleic acids, stringency of the conditions involved, the T n , of the formed hybrid, and the G:C ratio within the nucleic acids.
  • T m refers to the "melting temperature" of a nucleic acid.
  • the melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half dissociated into single strands.
  • the equation for calculating the T n , of nucleic acids is well known in the art.
  • stringent conditions refers to the conditions of temperature, ionic strength, and the presence of other compounds such as organic solvents, under which nucleic acid hybridizations are conducted.
  • transgenic plant wherein the plant is selected from the group consisting of poales, preferred poaceae, more preferred ehrhartoideae and/or panicideae, especially preferred rice and/or maize.
  • transgenic plant wherein said plant is a crop plant or a monocot or a cereal, such as maize, wheat, barley, millet, rye, sorghum, oats preferred rice; or a plant cell derived from said transgenic plant.
  • a crop plant or a monocot or a cereal such as maize, wheat, barley, millet, rye, sorghum, oats preferred rice; or a plant cell derived from said transgenic plant.
  • Rice is one of the most important alimentary corps.
  • the tolerance to abiotic stress, preferred drought stress is particularly important for rice.
  • transgenic plant wherein the abiotic stress is drought stress. Jo
  • transgenic plant wherein the transgenic plant is a cultured host cell.
  • the invention also relates to a seed produced from the transgenic plant, preferred a transformed seed.
  • the invention also relates to a method for producing one of said plants, said method comprising the steps of transforming a target plant with an expression vector comprising a polynucleotide, encoding a transcription factor polypeptide.
  • the transformed plant has a morphology that is substantially similar to a control plant.
  • Also preferred is a method for altering a plant stress response comprising stably introducing into the genome of a plant at least one nucleotide construct comprising a polynucleotide operably linked to a promoter that drives expression in a piant ceil, wherein said polynucleotide is selected from the group comprising:
  • polynucleotide consisting of a sequence selected from the group comprising SEQ ID NO. 1 to SEQ ID NO. 4, SEQ ID NO. 35, SEQ ID NO. 36, SEQ ID NO. 38 to SEQ ID NO. 40, SEQ ID NO. 43, SEQ ID NO. 49, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 53, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61 to SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 80 to SEQ ID NO. 82, SEQ ID NO. 90 to SEQ ID NO. 97, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 40, SEQ ID NO. 43, SEQ ID NO. 49, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 53, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61 to SEQ ID NO. 65, SEQ
  • SEQ ID NO. 108 SEQ ID NO. 1 1 1 , SEQ ID NO. 1 14, SEQ ID NO. 1 16, SEQ ID NO. 1 17, SEQ ID NO. 120, SEQ ID NO. 124, SEQ ID NO. 125, SEQ ID NO. 128, SEQ ID NO. 129, SEQ ID NO. 133, SEQ lD NO. 134, SEQ ID NO. 136 to SEQ ID NO. 138, SEQ ID NO. 140, SEQ ID NO. 142, SEQ ID NO. 150, SEQ ID NO. 152, SEQ ID NO. 154 to SEQ ID NO. 156, SEQ ID NO. 161, SEQ ID NO. 166, SEQ ID NO. 167, SEQ ID NO. 172, SEQ ID NO. 174, SEQ ID NO.
  • Also preferred is the method for improving the yield of a plant comprising stably incorporating into the genome of said plant at least one nucleotide construct comprising a polynucleotide operably linked to a promoter that drives expression in a plant cell, wherein said polynucleotide is selected from the group comprising:
  • polynucleotide consisting of a sequence selected from the group comprising SEQ ID NO. 1 to SEQ ID NO. 4, SEQ ID NO. 35, SEQ ID NO. 36, SEQ ID NO. 38 to SEQ ID NO. 40, SEQ ID NO. 43, SEQ ID NO. 49, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 53, SEQ ID NO. 57,
  • Yield refers to increased plant growth, increased crop growth, increased biomass, and/or increased plant product production, and is dependent to some extent on temperature, plant size, organ size, planting density, light, water and nutrient availability, and how the plant copes with various stresses, such as through temperature acclimation and water or nutrient use efficiency.
  • Example 1 Physiological analysis of plants with reduced expression level of the gene Os02g41510
  • Plants in Figure 1 were grown for 22 days at stress (S) and non-stress (C) conditions. Data are means ⁇ SE obtained from eight biological replicates.
  • Example 2 Cell membrane stability in plants with increased expression level of gene Os05g37050
  • the cell membrane is one of the main cellular targets affected by different stresses (Levitt, 1980). Drought stress induces membrane deterioration leading to severe metabolic dysfunction (Buttrose and Swift, 1975). Removal of water from the membrane disrupts the normal bilayer structure and results in the membrane becoming exceptionally porous when desiccated (Mahajan and Tuteja, 2005).
  • Example 3 Gas exchange parameters in plants with reduced expression level of gene Osl0g28340
  • Figure 3 shows the response of transpiration and stomatal conductance in wild-type (blue bars) and transgenic (gray bars) seedlings upon drought stress for up to 18 days. The data were normalized based on the measurements performed for wild-type plants immediately before stress onset. S and C indicate stress and control condition, respectively. Data are means ⁇ SE of four biological replicates.
  • Figure 4 shows the photosynthetic rate analysed in wild-type and osl0g28340-l mutant plants grown at control (C) and drought stress (S) conditions. The data were normalized based on measurements performed on the wild-type immediately before stress onset. Data are means ⁇ SE of four biological replicates.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention relates to isolated polynucleotides, Polypeptides encoded by the polynucleotides, vectors and host cells comprising the polynucleotide and transgenic plants comprising the polynucleotide or the Polypeptide. The invention also relates to a method for altering a plants stress response, preferred drought stress.

Description

Transcription factors involved in drought stress in plants
Background
Environmental stress, for example drought, water-deficit or extreme temperatures, represent a few of 5 the major factors that affect plant growth, survival, and productivity. Droughts, extreme temperature or light fluctuations can be devastating to crop and ornamental plants, resulting in financial losses.
In the natural environment, plants often grow under unfavourable conditions, such as drought, high salinity, freezing, high temperature, flooding, or strong light. Any of these abiotic stresses can delay
10 growth and development, reduce productivity or cause the plant to die. In general, tolerance to abiotic stress is associated with a host of morphological and physiological traits; these include root structure, shoot architecture, variation in leaf cuticle thickness, stomatal regulation, osmotic adjustment, antioxidant capacity, hormonal regulation, desiccation tolerance e.g. via membrane and protein stability, maintenance of photosynthesis, or the timing of events during reproduction
15
Low water availability, which in a severe form is referred to as a drought, is a major factor in crop yield reduction worldwide. A drought is a period of dry weather that persists long enough to produce a hydrologic imbalance, which can result, for example, in wilting, senescence, and general crop damage. Short periods of dry weather can also lead to hydrologic imbalances of economic importance. In
-0 severe cases, drought can last for several years and can have devastating effects on agriculture.
Abiotic stress is the most harmful factor concerning the growth and productivity of crops worldwide. The most obvious detriment concerning abiotic stress involves farming and agriculture. It has been claimed by one study that abiotic stress causes the most crop loss of any other factor and that most 55 major crops are reduced in their yield by more than 50% from their potential yield. It is expected that this yield reduction will only worsen with the dramatic climate changes expected in the future.
Abiotic stress is essentially unavoidable and affects animals, but plants are especially dependent on environmental factors, so it is particularly constraining. Generally, under drought stress plant water
SO and osmotic potential become more negative and, as a primary response to minimize water loss, stomata close leading to a reduction of the transpiration rate. Such physiological responses changes can be observed within hours after the onset of drought stress. Problems for plants caused by low water availability or drought include for example mechanical stresses caused by the withdrawal of cellular water. Damaging molecules such as free radicals and reactive oxygen species, which are i5 usually produced under abiotic stresses, destroy the integrity of a cell which is a major damage for the cell. Drought also causes plants to become more susceptible to various diseases. A plant's first line of defense against abiotic stress is in the roots. If the soil holding the plant is healthy and biologically diverse, the plant will have a higher chance of surviving stressful conditions. Plants are extremely sensitive to changes of conditions, and do not generally adapt quickly. Plants also adapt very differently from one another, even from a plant living in the same area. When a group of different plant species was prompted by a variety of different stress signals, such as drought or cold, each plant responded uniquely. Hardly any of the responses were similar, even though the plants had become accustomed to the exact same home environment.
Breeding of stress-tolerant crops is one approach to these problems, but conventional breeding is a very slow process for generating plant varieties with improved tolerance to stress conditions.
Additional problems encountered in conventional breeding are limited germplasm resources for stress tolerance and incompatibility in crosses between distantly related plant species. Because individual plants react so differently to similar abiotic stress factors, it is also be difficult to breed a species for more than one resilient trait at a time. Recent progress in plant genetic transformation and the availability of potentially useful genes characterized from different sources have made it possible to generate stress-tolerant crops using transgenic approaches.
For resisting or adapting to disadvantageous environmental factors, plants receive extracellular changes of environmental conditions and transfer them through many pathways into cells to induce expressions of some responding genes and generate some functional proteins, osmoregulation substances as well as transcription factors for signal transmission and gene expression regulation. Thus plants are able to make corresponding responses to environmental changes and avoid damages for example caused by drought. The regulating factors regulate the expression of functional genes for responding environmental changes. Regulating factors, like transcription factors can modulate gene expression, either increasing or decreasing (inducing or repressing) the rate of transcription. When plants encounter stresses, transcription factor as a controlling gene is able to regulate the expression of a series of downstream genes to enhance the tolerance of plants to the stresses.
Transcription factors are key controlling elements of biological pathways, therefore altering their expression levels can change entire biological pathways in an organism. For example, manipulation of the levels of selected transcription factors may result in increased expression of economically useful proteins or biomolecules in plants or improvement in other agriculturally relevant characteristics.
Conversely, blocked or reduced expression of a transcription factor may reduce biosynthesis of unwanted compounds or remove an undesirable trait. Therefore, manipulating transcription factor levels in a plant offers tremendous potential in agricultural biotechnology for modifying a plant's traits, including traits that improve a plant's survival and yield during periods of drought and other abiotic stresses. So far abiotic stress, particularly low water availability or drought, is a major problem for agriculture. Breeding of more resistant plants is to slow and time consuming.
5 Therefore it was an object of the invention to identify polynucleotides, preferred coding transcription factors, whose modification results in an altered stress tolerance in plants.
Description 0 The present invention relates to an isolated polynucleotide capable of giving a plant tolerance to abiotic stress, particularly drought stress, which consists of a polynucleotide sequence selected from the group comprising SEQ ID NO. 1 to SEQ ID NO. 230. The present invention also relates to an expression vector comprising the said polynucleotide and/or a promoter capable of giving a plant tolerance to abiotic stress, particularly drought stress, and to a host cell transformed or transfected by
15 the said expression vector. The present invention further relates to a use of said polynucleotide or promoter sequence in improvement of plant tolerance to abiotic stress, particularly drought stress.
Before the embodiments of the present disclosure are described in detail, it is to be understood that unless otherwise indicated the present disclosure is not limited to particular materials, reagents, 20 reaction materials, manufacturing processes, or the like, as such may vary. It is also to be understood that the terminology used herein is for purposes of describing particular embodiments only, and is not intended to be limiting. It is also possible in the present disclosure that steps may be executed in different sequence where this is logically possible.
25 SEQ ID NO. 1 LOC_Os01g07120 1 ATGCTGTITCGATTTGTGTCTTGCAATGTTCAGCTTTGTGGAATTATTGAGTTACCTCATTGGGTCAGGAAGA
CTGCGCATGCATACGATGAGGCGGCAAGGGCAATGTATGGTCCCACAGCACGTGTCAATTTTGCAGATAATTCCACAGATGCCAACTCTGGCTG
CTTGAAACGTGTTTGTCAGGAGCGG AAGAATATGGAGGTATGTGAATCAGAAGGGATCGTTTTACACAAAGAAGTGAACATAAGTTATGATTAT
AACATAAGTT ATG
Figure imgf000004_0001
Figure imgf000005_0001
SEQ ID NO. 7 LOC_Os01g39020 1 ATGCTTAA
Figure imgf000005_0002
ACTCCAGATCGGTGGGAGTTTGCAAATGAAGCCTTCTTAGCTGGTCAGAAGCATTTGCTGAAAAACATCAAGAGGAGGCGTGTTTCCAAGCCTC
TCGTGGATTCACAACTAAGAAATAAAGCAAGTGTTGTTTTTGGACAGCCTGAGGCTCCTGGTGAGGTTGTGAGCTTGAAGAGAGACCGTGCAGC
AGGCAACAGCAGACCATCGGCTTCTTTGCCAAGGTACTCACCAACCCGGCTTTCGTGCAGCAGGTTCTACTCAACTATGTGAATAAGAATGGCCT
SEQ ID NO. 8: LOC_Os01g4359
Figure imgf000005_0003
CGAGCAGACGGCCATCGGGGAGGAGCTGGCGCΓ.ΠATC.ΛGCCΛCCGGCTGCΛGGCGACGGAGCGGCGGCCCGACCAGCTCATGTCCTTCCTCGC
GTGGACGACGGAGCATCATCATCATCATCATCATCAGATGAAGCCCATGACGGTGTTGCCATCCTTGGAGCCGCCCACCGCTAGCTGCGGCGTG GTCAAGCTTTCTTTTAA SEQ ID NO. 9 LOC_Os01g435902 ATGGACGGGCTGCACACGGAGCTCGCGCTGGGGCTGATCGGGTGCTGCGGCGGC
TCGTGCGCCGCAAGAAGCGTGGCGAGGGCGGCGGTGGCGGTGGCGGCGCGTCCTGCTCTTTCGGTGGCGGCGCCGGCGAGCACCAGGTGGCTGC
Figure imgf000005_0004
GCACTAGTATAG SEQ ID NO. 11 LOC_Os01g53220 1 ATGATGGGCGGCGAGTGCAAGGTCCACCAGCTCCAGGCCGCCGGCGACGGGGGCCCAG CCTCGTGCTCGACCCCGCCGCCTTCTCCGACTTCCTCCTCCCCTCCTACTTCAAGCACCGCAACTTCGCCAGCTTCGTCCGGCAGCTCAACACCTA
Figure imgf000005_0005
TGCCGTTCCCGTTCTCTGTTCTTGGCCAAGTGTTCTACTAG SEQ ID NO. 12 LOC_Os01g53650 1 ATGGCATACGAGACGTCGTCTGACCACCAGC
CCGGGTGCCCGTTCGCGCACGGGACCTTCGAGACGTGGCTGCACCCGTCGCGCTACCGCACGCGGCCGTGCCGCTCCGGCATGCTGTGCGCTCGC CGCTCCAAAAACGGACATGTTACAGCAGGAGCTGGAAGAGGACGCTCCGGAACTGGGATGGGTGTCTGACCTGTTGATGTGA SEQ ID NO. 13 L
Figure imgf000006_0001
GACTTCTTGATCCACCACCACCTAAGGACAGACTTCCGGCCGCCCATCTAG SEQ ID NO. 14 LOC_Os01g55430 1 ATGGTTCCGTGGCGCCGCTC
GAGTCCGGG AAGATCACGTTCCCCTCCTCATTGAAGCAGCCTGGACCAAGGGACGCACCAATGCAGTGTTTCATCAAGAGGAACAAGAAAAACT CATTCGTGATTGGCAACCACCATATGAAGGTGCTAAGGCGTTCAGCAGCAGATCCGGTCGCTGGTTTGGAAACAAACACAGATGCCCACTGGTT
15 LOC_Os01g554302 ATGGTTCCGTGGCGCCGCTCCTCC
Figure imgf000006_0002
CTTTTTCCTATATCTTGGATTAACACAAGAACTAACAGATGATGAGAAATTTCTGTTGGCGGCTCGGAGGTGCAGGCGTGGGTTGCATAAGGAAT
GTTTCCA CGGGTGATGTAGAAGTTGGAGAGGTATCCTATAAATACAGTTTACTCAGACCAAGAGGTCCAAGAAGAATGAGCTGCAGTGTTCAGTGTCCCGT
CATGAGCATCTTCAGTGCTGGTGCTTGAATTTTCACGGCCGGGTT ATGGTTGCATCTGTGAAGAACTTCCAGCTTATTGCTCCAGTCGAACCAGG GGAGCCGTCGGATAAGACAGT AGTACTGCAGTTTGG AAAAATTGACGATGACGTTTTT ACAATGGACTACCGGCAGCCTCTGTCGGCATTCCAG 1 ATGATACTAGGAAGCAACCAAGCGGC
Figure imgf000006_0003
TGGGGAGGTTCCCCGCCGGTGGCTACCACCGGTTCATGGGGCTGA AC AACCCCCTGGGGΛTGG I CAACAGCGCCGCCGGCGCCGCCATGCCGTT CCACTACGCΓGGTGΛCTCATGGAATAATOGCAGCGTGCAAGACAGCGGCGCCGGCTCGCCGCAGGTGGCCGCCGCCGCGGCTCACCACACCTCG CCGTTCCCTTCACTGCTTTCCTTGGCTCCAGGGCCGCATCATCAGCTGGTGTTCTACTCCTCCGAGGCCGAGCAGTTCACAGTAGACAACCTTGGC SEQ ID NO. 17 LOC_Os01g557502 ATGATACTAGGAA
Figure imgf000006_0004
TCACCACACCTCGCCGTTCCCTTCACTGCTTTCCTTGGCTCCAGGGCCGCATCATCAGCTGGTGTTCTACTCCTCCGAGGCCGAGCAGTTCACAGT SEQ ID NO. 18: LOC_Os01g557503
Figure imgf000006_0005
AGCAGTTCACAGTAGACAACCTTGGCTCGCAGGGCTTGTCCCTGAGCTCGGCGAGAGCTTTCCATGATCAGACAGGAAGCTAA SEQ ID NO. 19:
LOC_Os01g58420 1
GGAGCCGGGGGT(
TGGCTCGGTACCTACGACACGGCAGAGGAGGCCGCCCGCGCCTACGACGCCGCCGCTCGAGAGTTCCGGGGTGCCAAGGC AAAAACAAACTTTC
SEQ ID NO. 20: LOC_Os01g60490 1 ATGGTTAAGA
Figure imgf000006_0006
TGCAGAATCAGCTGGTAATAATAGCGCCGCTGCTTTGCCGGTAAACAGGCCGCCGCCGGCGGTGGCCAGAAGCGACCATTACAGCTGCAGCTAT TTTGGCTTGGCTCAAAGAATCCACGCACACTGGTTGA SEQ ID NO. 21: LOC_Os01g60600 1 ATGCAGGCGCAATCCCGCCTCGCTGCTGCCGCGA
Figure imgf000007_0001
GAGGCGACGCCGCCGCCGCCGCCGCGTGCCGGGACGGGG AACTAATGCCACCTGCCGTCATCAACTCCGGCGCGTCGAGCTTCGCCGCCGCTTG
CAGCTTCGACTGGGAATTCGTCATCAACTCCCTCTGA SEQ ID NO. 23 LOC_Os01g63980 1 ATGAGGATGGGGCTGCGGACCTGCAGCGCCATGG AAGGTGAGGTCGTCGCCGCCTCGCCrπCTTCGAGTGGCTCAAGCCACCGCCGCGGCCGGCGTCATCCTCGTCGTGGTCGTCGTCTTTCTCCTCGT
Figure imgf000007_0002
GCCGGTATTGGATCCCGACGCCGGCGCAGATCCTCGTCGGCCCGGTGCAGTTCATCTGCCATGTCTGTAACAAAACCTTC AACAGATACAACAAC
Figure imgf000007_0003
GAATCCGCCGCCGCCGCCGCCACCACCCCCGCCGACAAAGACCGCATCATAAGCTTCCAACGGTGA SEQ ID NO. 24 LOC_Os01g64020 1 ATGG CCATGCTrCTCCTTCrGTTGCTGCTGCACCACCT-GCCAGCrTCTTGGACTTCCAGCCTGCTGCCGCGGCAGCTGCCTACTTCGGCGAGCTGGAGGA
Figure imgf000007_0004
TGCAAAACCTAGAGACCAGCAGGGTCAGGCTTCAGCAGATCGAGCAAGAACTCCAAAGAGCACGGTCACAGGGCCTGTTTCTTGGGGGGTGCA 1 f\
CAACTACATGAGCCTCATGGCCATCGCCCTGGACAAGCTCGCCAGCCTCG.^.ΛGCTTCTACCAGCAUGCTGACAATCTGAGGCAACAAACGTTG +5 CATCAGrTGCGGCGGATTCTAACAACCCGGCAGGCGGCTCGGTGTTTCCTCTCCATTGGGGAGTATTACCGCCGCCTCCGTGCTCTCAGCAACCT
AATCAGTACTCAGGATTTTGA SEQ ID NO. 25 LOC Os01g640202 ATGGTGCAAGGTGAGGAGAGTTCTTGGAGGATGGCAGCAAGCACCCACC ATGAGAGAGC AATACCrCTCAACCAAGCACTTGCTTATGGAGTCCAAGCCCATGCTTCTCCTTCTGTTGCTGCTGCACCACCTGCCAGCTTCTTGG ACTTCCAGCCTGCTGCCGCGGCAGCTGCCTACTTCGGCGAGCTGGAGGAGGCCCTCATCCATGGCGCCAACGCCGGCGGCGTCGTCGATCCCGG )0
ACCACTGATGATTACAGCTACAAGCCAGGCCTCGCTGCTGCCTCCCCAAGCTTTCAGCAGCAGCATCAGCTCCAGCACCACCAGCAGCAGCAGC GCAAGAACTCCAAAGAGCACGGTCACAGGGCCTGTTTCTTGGGGGGTGCAGAGCAGCAGGCGACATGAGTTCTGGCGCGGCCATGTTCGACATG
SEQ ID NO. 26: LOC_Os01g64310 1 ATGGCCGACG
Figure imgf000007_0005
TAGAGATTAG SEQ ID NO. 27 LOC_Os01g64360 1 ATGGATTTGTACGGCGCGGCGGCGGGCGGGGGACCGGTGGCGAGGCGACCGTGGAGCAA CACGCCGCAGGAGGCCTTGGAGCACTACCAGGTGCTCGTCGCCGACATCGATCTCATCATGCGCGGCGCCGTCGACGCCCCCGGGTCCTGGGAC
SEQ ID NO. 29 LOCJDsOl
Figure imgf000007_0006
SEQ ID NO.30
Figure imgf000008_0001
AGCTCAACTTCCCCGAGGACGCGCGCCTCTACCCGACCGCCGCCACCACCACCACCGCGGCGCCGCCCCCGGCGCCGGTCGCGGCGGCATCGCC
Figure imgf000008_0002
AGCTATCACCACCACCCGCCGCCGCCGCACACGCAGTAG SEQ ID NO. 31 LOC_OS01G65080 1 ATGGACAGTGGCTTGGGAAGAAGTTCAGAGA CCATGTTTTGCAAGACCTGGTCAATCGTTCCCTGCRRTTRCCTCCACTCTTRGGGGTTCAGTCTTCCAGCRTGTATTTACCTGATGACATTGAAG
CAGCTTGTCACTGCTGATCTCACITGTATTATAATTCAGCTTATTTCAACAGCTGGTΓCCTTGCTTCCTTCGATGAAGAACCCAATCAGCAGCAAC CCGGCACTCAGACATCTCAGTAACACACTTTGTGCTCCTATGATCCTGGGCACCAATTGTAACCTGCGACCAAGCGCAAACGACGAAGCCACAA
GGGTCTTATGTAGTATTGC AATTAGAGAAGGAGGAGATTTTAGCACCACATACTCACTTCTGCTTGATCTGTGGCAAGGGTTTTAAAAGAGATGC
TAATCTTAGGATGCACATGAGGGGCCATGGAGACGAGTACAAAACTGCTGCAGCTCTTGCGAAACCTTCGAAAGATTCTAGCTTAGAGTCTGCA
^TCCTGTGTGTGAAGA ^CTTGAAGACTCATGA
AAAGCACTGTGGCCGCGACAAGTGGCTATGCTCGTGTGGAACTACCITCTCAAGAAAAGACAAGTTATTTGGGCATGTTGCΓCTTTTCCAAGGGC
CTGGGTATAACTTCCCCGGTAGCTCATCGGACGACATCCCAAATCTTGACATG AAGATGGCTGATGATCCACGCTATTTCTCGCCATTGAGCTTT
GGGCAGCAGAACGGAGACAGCTGA SEQ ID NO. 32 LOC_OsO!g650802 ATGGACAGTGGCTTGGGAAGAAGTTCAGAGACATCCTTGAAAGCC ACCTGGTC AATCGTTCCCTGCTTTTCCTCCACTCTTTGGGGTTCAGTCTTCCAGCTTGTATTTACCTGATGACATTGAAGCTAAAATCGGTAACCA
TGATCTCACTTGTATTATAATTCAGCTTATTTCAACAGCTGGTTCCTTGCTTCCTTCGATGAAGAACCCAATCAGCAGCAACCCGGCACTCAGACA TCTCAGTAACACACTTTGTGCTCCTATGATCCTGGGCACCAATTGTAACCTGCGACCAAGCGCAAACGACGAAGCCACAATTCCTGACATTAGCA
TTGCAATTAGAGAAGGAGGAGATTTTAGCACCACATACTCACTTCTGCTTGATCTGTGGCAAGGGTTTTAAAAGAGATGCTA ATCTTΛGGATGCA
CATGAGGGGCCATGGAGACGAGTACAAAACTGCTGCAGCTCTTGCr1AA-ACCTTCGAAAGATTCTAGCTTAGAGTCTGCACCAGTTACAAGGTAC
TCGTGCCCATA TGTTGGCTGCAAGCGG AAUAAAGAGCACAAGAAGTTCCAGCCTCTCAAGACAATCCTGTGTGTGAAGAACCACT ACAAGAGAA CGACAAGTGGCTATGCTCGTGTGGAACTACCTTCTCAAGAAAAGACAAGTTATTTGGGCATGTTGCTCTTTTCCAAGGGCACACGCCTGCACTCC
CCGGT AGCTCATCGGACGACATCCCAAATCTTGACATGAAGATGGCTGATGATCCACGCTATTTCTCGCCATTGAGCTTTGATCCTTGCTTCGGTG GGCTTGATGACTTCACTCGACCTGGATTTGACATCTCTGAGAATCCCTTCTCCTTCTTGCCCl CAGGATCATGCAGCTTCGGGCAGCAGAACGGA GACAGCTGA SEQ ID NO. 33 LOC_Os01g65080 3 ATGGACAGTGGCTTGGGAAGAAGTTCAGAGACATCCTTGAAAGCCTTGCCATCAATGGCAA GTAATGC AACAAGG AATACTGATCCTGACCAACAGGGTGTTCGATTCAGTTCCATGGACCAGCCTCCATGTTTTGCAAGACCTGGTC AATCGTTC CCTGCTTTTCCTCCACTCTTTGGGGTTCAGTCTTCCAGCTTGTATTTACCTGATGACATTGAAGCTAAAATCGGTAACCAGTTCGAATCAAATCCT TCCCCGAATAATCCTACAATGGATTGGGACCCTCAGGCAATGCTGAGC AACTTATCCTTCCTTGAGCAGAAGATC AAGCAGGTAAAAGACATCG
Figure imgf000008_0003
AGGAGGAGATTTTAGCACCACATACTCACTTCTGCTTGATCTGTGGCAAGGGTTTTAAAAGAGATGCTAATCTTAGGATGCACATGAGGGGCCAT GGAGACGAGTACAAAACTGCTGCAGCTCTTGCGAAACCTTCGAAAGATTCTAGCTTAGAGTCTGCACCAGTTACAAGGTACTCGTGCCCATATGT
TGCTCGTGTGGAACTACCTTCTCAAGAAAAGACAAGTrATTTGGGCATGTTGCTCTTTTCCAAGGGCACACGCCTGCACTCCCTATGGATGATAT SEQ I
Figure imgf000008_0004
TTGGGTGCTGTGCCGGATTTACAACAAGAAGGGCGGGCTGGAGAAGCCGCCGGCCGCGGCGGTGGCGGCGGCGGGGATGGTGAGCAGCGGCGG
SEQ ID
Figure imgf000008_0005
EQ ID NO. 36 LOC_Os01g661203 ATGGCGCTGTACGGAGAGAAGGAGTGGTACTTCTTCTCCCCGCGAGACCGCAAGTACCCGAACGGGTCGCG SEQ ID NO. 38 LOC_Os02g084402 ATGGGCGCG
Figure imgf000009_0001
SEQ ID NO 40
Figure imgf000009_0002
Figure imgf000009_0003
ATAA SEQ ID NO.42 LOC_Os02g09830 1 ATGCAGCATGATGCCATATCCAACATTGCATACCATCCTAGCATGGATTTCACAAGCTTTTTCCTGC
GATGAAAATGGAAGATGCTGAAGTAGCTGCTGCTGCTGCTGCAGCACCACGAACATTAGAAGTAGCTTAA SEQ ID NO 43 LOC_Os02gl3800 1
50 ATCGCCTGGGGCAGGGACAGCAACAGCTTCGTCGTCGCCGACCCCTTCGCCTTCTCCCAGACCCTCCTCCCCGCCCACTTCAAGCACTCCAACTT
CTCCAGCTTCGTCCGCCAGCTCAACACCTACGGGTrTCGCAAGGTTGATCCGGACAGGTGGGAGTTCGCGCACGTGTCGTTCCTGCGCGGCCAGA
Figure imgf000009_0004
SEQ ID NO 44 LOC_Os02gl5100 1 ATGTCGCTGTCGTCGAG
Figure imgf000009_0005
LOC_Os02g 16680 1 ATGAAGAAGTGCCCGTCGGAGCTG
Figure imgf000009_0006
AACCACTCCAATGGCGCCATGTCCAAGTGA SEQ ID NO 46 LOC_Os02gl6680 2 ATGAAGAAGTGCCCGTCGGAGCTGAACTTCGAGGCGTTCT
Figure imgf000010_0001
CGACGACGGAGCACAGGACGACTGACCAAACTACTGGAAGATTGCTCTAG SEQ ID NO. 48 LOC_Os02g31890 1 ATGTCACACACATCAGAGGA
15 AGACGAGGTCACCCAGGAAACCCAGATCCAGATGTTGAGGTCGTAGCTTTGTCACCTAAGACACTCCTGGCAACAAACAGGTATATATGCGAGG AAGCTAAGAAGAAGGTGTATGTCTGCCCTGAGATTACCTGCCCTCATCATGATGCAACCCGAGCTTTGGGCGATCTCACAGGCATTAAGAAACA
20 ATGTGGCACCAAGGAGTACCGATGTGACTGTGGGACAATCTTCTCAAGAAAGGATAGTTTCATCACACACCGAGCCTTCTGTGATGCATTAGCTG AAGACACTTCTAGGGTTAACCACAGCCTGGCAACAATGGTTCKJAAGTCΓGCACGGTCAACAGCAAGATATGTTTTCACATGGAGTGCCTAGCTT
Figure imgf000010_0002
AGGTACTGTGCCTTT AATTGGACT AATGAACCATCCATTTTCCATGAGAGAAGAAAAGGATAACCCTAGCATTTTCCCTG AAAACCAGACACAG
(VCTTTGGATA CCATCAGTC
30 ATCTCTTGACCCCACTGCATTGGAAAAACCCATTTGGGATTCTTAA SEQ ID NO.49 LOC_Os02g32590 1 ATGGACCACAACACCGACCCTCCTC
CGCGCGACGTGCTCCCCCACCACTTCAAGCACAACAACTTCTCCAGCTTCGTCCGGCAGCTCAACACCTATGGTTTTCGCAAGGTTCATGCTGAT 35 AGATGGGAGTTTGCTCATGAGGATTTCCTACGACATAGCAAACATTTGTTGAAGAAGATTGTCCGGCGCAGGTCCTCACCAACACAACAAAGTG
GTCTTC/ GCTGAAi TTTCTTC
40 CCTGGACCrTCCAGCCACGCACAGTGACATCITAGACCTTCAGAATTrTCTTTTGGAAGATGGGGACCTCAATCTTGCCATGCTGCCAGAGAACA
TAGGACTTGATGGAATCGAAGCACCAGACGACATCGGGGCGTTGGTTCAGGGATTTGACACACAGGAGG AACTTGAGCTTGGTAGCGGAGTTGA
CTACCTCTTCTGAAGCTGATTGCCTCGGATCATTTTCTGACAATATGGGGATGCTTTCTGACTCCATGTTACAAACAGCC.Γ.C.TA.Δ.ΔTTCATGGATG
CAGATGATGACGAGCGAATTTGGGGCGTCGATC.ΓTTCGTCCCCTTTACAAAGTTCTTOLAGTGGCACTAGTCAGCAAGCAT ATGGTAGTCTTGTT
4-5 AGTGATCCCTA 1 CTG ATGGAGATGGCTAATAAGCCTG AAAAATTCTGGGAGCTCGATTTTCAGGCACTGGATGATGGAG ATCTGCAGCTGGACA
AGTGTGTTATCGATGACCCTGCTCTTCAGCAACAGAGAGGAAATATGAATTCGTAG SEQ ID NO. 50 LOC_Os02g325902 ATGGACCACAACAC
50 CCTCCGCCTTCGCGCGCGACGTGCTCCCCCACCACTTCAAGCACAACAACTTCTCCAGCTTCGTCCGGCAGCTCAACACCTATGGTTTTCGCAAG
ACAACAAAGTGGTCTTCAGCCTGGCTCTTCTGGTGAATCCGGTTTAGACCCTGAACTCAACACACTGAGAAGGGAGAAGAGTGCATTGCTTCAG
GAGGTGACCAGGCTG
CAGATGGTCTCTTTCT
55
GGGCGTTGGTTCAGGGATTTGACACACAGGAGG AACTTGAGCTTGGTAGCGGAGTTGAGCTACTGGAAATACCTCCAGCTTCTGGTCCTCGTGG CTGACAATATGGGGATGCTTTCTGACTCCATGTTACAAACAGCGGGTAAATTGATGGATGCAGATGATGACGAGCGAATTTGGGGCGTCGATGC
50 CTGAAAAATTCTGGGAGCTCGATTTTCAGGCACTGGATGATGGAGATCTGCAGCTGGACAAGTGTGTTATCGATGACCCTGCTCTTCAGCAACAG AGAGGAAATATGAATTCGTAG SEQ ID NO. 51 LOC_Os02g35600 1 ATGGACGAGGGAGGCGGCGCTGGTGCTGCGGCTGCCGCCGCCGGGAAC
ACCACCGATGTGGAGAAGTTCTACCGGCAGTGCGACCCCGAGAAAGAGAACCTGTGCCTTTATGGATTGCCCAATGAGACCTGGGACGTGACCC TTCCAGCTGAGGAAGTACCTCCTGAACTTCCAGAACCAGCACTGGGCATAAACTTTGCTCGTGATGG AATGATCGAAAAAGATTGGTTGTCGCTG
55 GTΓGCAGTTCATAGCGATGCATGGCTACTGTCTGTAGCATTTTACTTTGGGGCTCGCTTTGGATTTGATAAGGAAGCCAGGAGACGGCTCTTCAC
Figure imgf000010_0003
CTCATCGGGAGCTATCCGGAAGTGGACGACGTGTTGCACTTCATGGACGAGTGA SEQ ID NO. 53 LOC_Os02g38090 1 ATGCAGGCGCAGCAGG
Figure imgf000011_0001
SEQ ID NO.
Figure imgf000011_0002
GGCAGCCTΠTCTACCCCGAACACTCCATGGCCCACAGCΠTGTCGTCGTCGGAGGTCGCGATCGTACCGGACGCGCTGTCGGCGGGCTCGGCGGC SEQ ID NO. 56 LOC_Os02g405
Figure imgf000011_0003
CTCCGCTACAGGATAAAGGCCTCGCTTTCTACTAG SEQ ID NO. 57 LOC_Os02g41510 1 ATGGGGAGGGCGCCGTGCTGCGAGAAGATGGGGCT
W GGAGGACGCCATCATCCACCTCCACGACCTTCTCGGCAACCGATGGTCCGCGATTGCAGCGAGGCTGCCGGGGAGGACGGACAACGAGATCAA
SEQ ID N
SEQ ID NO. 60 LOC Os
Figure imgf000011_0004
SEQ ID NO. 61 LOC_Os02g452
Figure imgf000011_0005
SEQ ID NO. 63 LOC_Os02g45200 3 ATGGAAGAGATGCTG
SEQ ID NO. 64 LOC_Os02g452004 ATGGAAGAGATGCT
SEQ ID NO. 65 LOC_Os02g45420 1 ATGGCTGACCTGAC
Figure imgf000012_0001
TGTGGAGCTACCGTGATCCCTAG SEQ ID NO. 66 LOC_Os02g45780 1 ATGGGGTTCCCTCTGGTGTGCTACTOr ATGGCG VTCCCCΛACCCGCTC ATΓGCCTTGGCCΛΛCCTCCTCGCCGCCATCAGGGAGGCCC I LCAGCTGATGCTCTTCGTCGTCGGGATCTGCCACCACCCGGAGCGATCGGGCCG
GCGCCCCGCCGCCGGCCCGCGCGGGCGACTGGGCCGCCTCGCCACCCGCCTCACGGGCGTCGTTTGGTGA SEQ ID NO 67 LOC_Os02g46030 1 ATGGAGATGGCCTGTTTGCCGGGAAACGCCATGGCAACCGACGAAAACGGTGCCGACGATCGCGCCGGCGGCGAGAGCACCGTGGATCATCTC
AAGTGGACGGACGAGGAGCACAGGCTGTTCTTGG AAGCCCTGCAGCTGCACGGCCGCGCATGGCGCCGTATACAAGAGCACATAGGTACCAAG
Figure imgf000012_0002
ATGCAGGCGCCAAATACTAAGATGTCAATTGCAACCACGGATGCCAAAGAAGCATCCTCAGAAGCATCAGTCTTCAGGCTATTCGGAAAGAGCG
SEQ ID NO. 68 LOC_Os02g51670
Figure imgf000012_0003
SEQ ID NO. 69 LOC_Os02g5278
70 LOC_Os02g527802 ATGGATTTTCCGGGAGGGAGCG
Figure imgf000012_0004
10 1 ATGGCGAGGCCGCAGCAACGATACCGCGGCGTGCGGC
3 ATGGAGCTGGAGCTTGGGCTGGCGCCACCGAATTCC
Figure imgf000013_0001
GGGGGCGAGTACTGGGCTACTAGCTAA SEQ ID NO. 76 LOC_Os03g05590 1 ATGGAGGACGACAAGAGTAAGGAGGGGAAATCGTCGTCGTCG
GACACCGCGGAGGAGGCCr^r,CGGGCGT ACCΛCCGCGCCGCATTCGCCAT<J AACJGGCGCCACGGCCATGCTCAACTTCCCGGGAGATCATCATC +5 ACGGCGCCGCAAGCAGGATGACCAGCACCGGCTCTTCTTCGTCCTCCTTCACCACGCCTCCTCCGGCGAACTCCTCCGCGGCGGCGGGCCGCGGC
AACTACTAG SEQ ID NO. 77 LOC_Os03g06630 1 ATGGAGAAGATGATGCCGGGGATGGTGAAGGAGGAGTGGCCGCCGAGCTCGCCGGAGGAG
50 CAACAATTTCTCCAGCTTCGTCCGCCAGCTCAACACCTACTTCTTGGl CCGGACGAATTACCTG AACAAGCGATCACATTTCTACAGTTTGAG ATT
TCAGGGTTTCAGAAAGATTGATCCTGACAGATGGGAATTCGCGAATGATGGTTTCCTGAGAGGCCAGAGGCATCTTCTAAAGATGATTAAGAGG AGGAGACCATTGTCTTA AAAGCGTGACAAGAAC, GCTGCAACATGCGGAGCAGAAGCAGGTCCAGATGATGGGTrTCTTGGCAAGAGCAATGCAGAACCCTGACTTCTTTCACCAGTTGATTCACCAG
CAGGGCGATCAACTCGAGTCGACATTGCTGTTTGATCCAAGGCCATTTGCTGAACTG AATGATGAGCCTGCAAAGTCTGAACTGGAGAATTTAG
CCGACGACTTCTGGGAGGAGCTTCTGAATGAAGGAGCAAGAGATGATGCTGGGATTCCAGGGATGGAGCG AAGAAGACCTAGATATGTCGATG CATTAGCGCAGAAGCTGGGTTATCTAAGCAATAGTAGCCAAAAGTAG SEQ ID NO. 78 LOC_Os03g066302 ATGGAGAAGATGATGCCGGGGAT
}0
GTCTTCGCCGCCGTCrTCCTCCCACGCITCTrCAAGCACAACAATTTCTCCAGCTTCGTCCGCCAGCTCAACACCTACGGTTTCAGAAAGATTGAT CCTGACAGATGGGAATTCGCG AATGATGGTTTCCTGAGAGGCCAGAGGCATCTTCTAAAGATGATTAAGAGGAGGAGACCATTGTCTTATCTCC
AGCAGGTCCAGATGATGGGTTTCTTGGCAAGAGCAATGCAGAACCCTGACTTCTTTCACCAGTTGATTCACCAGCAGGATAAAATGAAGGGGCT CGAGGACACATTCTCGAAGAAGAGGACGAGGTCGATAGACATAGTGCCATTTCTCAACCCCGGGGAGGTCAGCCAGGGCGATCAACTCGAGTC GACATTGCTGTTTGATCCAAGGCCATTTGCTG AACTGAATGATGAGCCTGCAAAGTCTG AACTGGAGAATTTAGCACTGAACATCCAGGGTCTTG
70
ATCTAAGCAATAGTAGCCAAAAGTAG SEQ ID NO. 79 LOC_Os03g07360 1 ATGGGGGAGTGCAAGGTGGGAGGAGGAGGCGGAGGCGGAGACT GCTTGATCAAGCTGTTCGGGAAGACCATCCCCGTGCCAGAGCCCGGCGCCTGCGCCGCCGGCGATGTTGATAAGGACCTTCAACACAGTGGCAG
75
GGACAGCGGGTGGTGCCATGCGCAACGTGCCTGTGGGTGCAGGCCGACGCAAGAGCAAGAGCGTATCGGCCGCTTCCCATTTCCTCCAGAGGGT CACAGAACAAATGAAGCATCTAAAAGATAAGTTTATCCCAACAACCGGTATCAAGAACACCGACGAGATGCCAGTCGGTTTGTGTGCTG AAGGA $0 GGAGGAGCCATGTGGCCATTTGGCGTGGCACCACCACCTGCTTATTACACTTCAAGCATrGCAATTCCATTCTATCCAGCTGCAGCAGCTGfTGT
CTCCA(J ΓATCCACAATGACCAACTGCTTCAGATTAGG AAAGCACCCTAGAGATGGTGATGAGGAACTGGATAGCAAGGGTAATGGCAAGGTGTG
GGTGCCGAAGACGGTTCGGATCGACGATGTCGACGAGGTGGCCAGGAGCTCTATCTGGTCGCTTATTGGGATCAAGGGTGACAAGGTGGGAGCA
GATCATGGCAGAGGATGCAAGCITGCAAAGGTTTTTGAGTCAAAGGATGAGGCAAAGGCATCAACTCACACAGCGATCAGCAGCTTGCCATTCA
55 TGCAGGGGAACCCGGCTGCCCTAACACGCTCGGTGACCTTCCAAGAGGGATCTTGA SEQ ID NO. 80 LOC_Os03g08310 1 ATGGCGTCGACGGA GGAGAGGCGCGAGGATTGGCTCGCGCTGGGAAGCCTTGGACACATGCACTCGCGCTGA SEQ ID NO. 81 LOC_Os03g08320 1 ATGGCCGGTAGT
SEQ ID NO. 82 LOC_Os03g08330 1 ATGGCGATG
Figure imgf000014_0001
SEQ ID
SEQ ID N
Figure imgf000014_0002
SEQ ID NO.
Figure imgf000014_0003
AGAGCTTCCTGCTGCACAAGTACCCGTCGCTGGAGATCGACTGGGACGCGATCCTTTCCTGA SEQ ID NO 87 LOC Os03gl2370 1 ATGGGCTCT 50
ACGTT ATCTCGTGGGCCGAGGGCGGCGGCAGCTTCGTGATCTGGGACTCGCACGCCTTCGAGC GCGACCTCCACAGGCACTTCAAGCACAGCAA TTTCACCAGCTTCAT ACGCCAGCTCAACACCTATGGATTTCGTAAAGTTCACCCTGATAGATGGGAGTGGGCCAATGAAGGTTTTATT ATGGGCC 55
AGATCTCAGGCACTACCAGCAAACATCTAACCTTGAAGTGCAGAATTTAATTGAACGGCTTCAAGTAATGG AACAGAACCAGCAGCAGATGATG GCACTTCT AGCAATCGTTGTCCAGAATCCTAGTTTTCTCAACCAGCTTGTGCAGCAACAGCAGCAGCAGCGCAGATCCAACTGGTGGAGTCCTGA TGG AAGC AAGAAAAGGAGATTTCATGCTCTTGAGCAGGGCCCTGTAACTGATCAGGAGACCTCTGGCCGTGGGGCACATATTGTTGAATATCTC 70 CACCCATGGACATGCAΛACGTCTAACGTTGCTGATACTCTCGGTTCATCTGAGGAGCCTTTCGCTGATAACTCTACTCTACATGAATGGGATGAT AACGACATGCAGCTTCTGTTrGATGATAACCTAGACCCAATACTTCCACCATTTGAGAATGATGGTCAAATGGGCCCTCCTTTGAGTGTTCAAGA
EQ ID NO. 88 LOC_Os03gl2370 2 ATGGGCTCTAAGAAGCGGTCGCCTCAGCATCCGGCCGCCGCGGCGCCCCCTCCCGCCGTCGGCGGCGGCGG 75 CCTTCGAG
CGCGACCTCCACAGGCACTTCAAGCACAGCAATTTCACCAGCTTCATACGCCAGCTCAACACCTATGGATTTCGTAAAGTTCACCCTGATAGATG GGAGTGGGCCAATGAAGGTTTTATTATGGGCCAAAAACATCTTCTGAAGACCATTAAGAGGAGGAAGAAGTCTTCTCAGGAATCACCTAGCGAG
AGGGATAAAGCTCTTCTCATGCAGCAGCTTGTAGATCTCAGGCACTACCAGCAAACATCTAACCTTG AAGTGCAGAATTTAATTGAACGGCTTCA 30 CAGCAGCGCAGATCCAACTGGTGGAGTCCTGATGGAAGCAAGAAAAGGAC.ATTTC A.TGCTCTTGAGCAGGGCCCTGTAACTGATCAGGAGACCT
TGATAACTCTACTCTACATGAATGGGATGATAACGACATGCAGCTTCTGTTTGATGATAACCTAGACCCAATACTTCCACCATTTGAGAATGATG 35 GTCAAATGGGCCCTCCTΓTGAGTGTTCAAGATTATGATTTTCCGCAGTTAGAGCAGGATTGTCTGATGGAAGCACAATATAACTCCAACAATCCT CAATATGGTAATGACTAA SEQ ID NO. 89 LOC_OS03GL23703 ATGGGCTCTAAGAAGCGGTCGCCTCAGCATCCGGCCGCCGCGGCGCCCCCTC AAGTTCACCCTGATAGATGGGAGTGGGCCAATG AAGGTTTTATTATGGGCCAAAAACATCTTCTGAAGACCATTAAGACKJAGG AAGAAGTCTTC
Figure imgf000015_0001
TCATCTGAGGACKCTTrcGCTGATAACrCTACTCrACATGAATGGGATGATAACGACATGCAGCTrCTGTTTGATGATAACCTAGACCCAATACT
10 TCCACCATrTGAGAATGATGGTCAAATGGGCCCTCCπTGAGTGTTCAAGATTATGATTTTCCGCAGTTAGAGCAGGATTGTCTGATGGAAGCAC
AATATAACTCCAACAATCCTCAATATGTTCTTCGGTGA SEQ ID NO. 90 LOC_Os03gl2760 1 ATGGGCCAGACAGGAGGCAGGCCAGGCGGAGG
15 AAGTCGTCTAGTCGCCGCCGCCCCAAGTGCGACGTCGCTACAAACCTCCATTGGTGCCATCTTCATCCGTTTCAGATGAGCACACTATCTAACAA
AGTGTCACTGTCGTCGAACCTACTGAATCTTCAGACAGGTCTTGCTGAGGAGCCTGAAGAGTTAACCTACATGTATCATC AAGAAGAGCACGCC AGGATGCAAGAGCAATTCGCTGGGACGCCGCTCGTCGAGCAACCAGTTCGATTTGATCAGTTCTACCCAGCATCCATGGCGCCAAACCAGTTCC
92 LOC_Os03gl7570 1 ATGGGTAGCGCCTGCGAAGCTGG
Figure imgf000015_0002
GTCGTAATGCCACGTCTGTCTGGCATTGGTCTGCTTAGTAAGATCACAAGCCACAAAATTTGCAAGGATATTCCCGTGATTATGATGTCTTCGAA TGACTCAATGGGTACAGTCTTTAAGTGTTTGTCAAAAGGAGCAGTTGACTTTCTAGTGAAGCCTATACGTAAGAATGAACTTAAGAACCTTTGGC
Figure imgf000015_0003
CAAGAGAGATGTCCGTTAATCCAACAGAAAAACAGCATGAAACTrrC ATGCCCCAAAGTAAAACAACAAG AGAAACAGATAGTAGGAACACAC
CTGGATCTGCAACTGAAATCCATGATGAACGAAATATTCTGAAAAGATCAGATCTCTCAGCTTTCACCAGGTACCATACAACTGTGGCTTCTAAT
Figure imgf000015_0004
GTATTTGATCCTCCCATTGAAGGTCATGCGGCAAACTATAGTGTGAACGGGAGCTTTTCAGGTGGCCATAATGGAAACAATGGGCAAAGAGGAC
Figure imgf000015_0005
TGGCATrGGTCTGCTTAGTAAGATCACAAGCCACAAAATTTGCAAGGATATTCCCGTGATTATGATGTCTTCGAATGACTCAATGGGTACAGTCT
Figure imgf000015_0006
ATGGAAATGATAAAAATCGTGATTCTCTCATTGATATGACATCTGAAGAGTTGGGTTTG AAGAGATTGAAAACAACTGGATCTGCAACTGAAAT CCATGATGAACGAAATATTCTG AAAAGATCAGATCTCTCAGCTTTCACCAGGTACCATACAACTGTGGCTTCTAATCAAGGTGGAGCTGGATTTG
Figure imgf000015_0007
AAGGTCATGCGGCAAACTATAGTGTGAACGGGAGCTTTTCAGGTGGCCATAATGG AAACAATGGGCAAAGAGGACCTAGTACTGCTCCCAATGT
50 GTATCAGAATGGGGTCTGTT ACCGAGAAGCTGCATTGAACAAATTCAGACAGAAACGGAAAGTGAGGAACTTTGGAAAAAAGGTGCGCTA TCA
CAGATAA SEQ ID NO. 94 LOC_Os03g 175703 ATGGGTAGCGCCTGCGAAGCTGGTACGGACGAGCCTTCCCGAGACGATGTTAAGGGGACAGGG
S5 TTGCTGGTGGAGAATGATGACTCT ACCCGTCAGGTGGTCAGCGCACTGCTTCGT AAGTGTTGTT ATGAAGTT ATCCCTGCTGAAAATGGGCT ACA
TGCATGGCAATGTCTTGAAGATCTGCAAAACCACATTGACCTTGTATTGACCGAGGTCGTAATGCCACGTCTGTCTGGCATTGGTCTGCTTAGTA AGATCACAAGCCACAAAATTTGCAAGGATATTCCCGTGATTATGATGTCTTCGAATGACTCAATGGGTACAGTCTTT AAGTGTTTGTC AAAAGGA GCAGTTGACTTTCT AGTG AAGCCTATACGTAAGAATGAACTT AAGAACCTTTGGCAGCATGTTTGGAGACGATGCCACAGTTCCAGTGGCAGTG
Figure imgf000016_0001
CAACAACAATGACATGGGCTCCAGTACTAAGAATGCCATCACAAAACCTTCTTCAAACAGGGGAAAAGTGATATCACCATCAGCTGTCAAAGCT
GAGTTAATGTGGGCCACCCTGTAGATGTACAAAATAGCTTTATGCAGCACCATCATCATGTTCATTACTACGTCCATGTTATGACACAGCAGCAG
15 TGTGAACGGGAGCTTTTCAGGTGGCCATAATGGAAACAATGGGCAAAGAGGACCTAGTACTGCTCCCAATGTTGGGAGGCCAAACATGGAGACT
GAGAAGCTGCATTGAACAAATTCAGACAGAAACGG AAAGTGAGGAACTTTGGAAAAAAGGTGCGCT ATCAGAGCAGAAAGAGGTTGGCTGAGC AGCGCCCTCGGATCCGCGGGCAATTCGTGCGACAATCTGGACAGGAAGATCAGGCAGGCCAAGACGAAGACAGATAA SEQ ID NO. 95 LOC_Os
ATGAACAGAAGGAGCACCAAGTGCAGATTGTCCGGTGGGAGAGGTTCCTCCCTGTG AAGACACTGAGGGTCTTGCTGGTGGAGAATGATGACTC
AAGGATATTCCCGTGATTATGATGTCTTCGAATGACTCAATGGGTACAGTCITΓAAGTGTΓTGTCAAAAGGAGCAGTTGACTTTCTAGTGAAGCC 15 TATACGTAAGAATGAACTRAAGAACCTTTGGCAGCATGTTTGGAGACGATGCCACAGTTCCAGTGGCAGTGGAAGCGAAAGTGGCATCCGAACA
GACAGCCCACAACAAATGTCTCCTGATCAACCATCCGATCTACCAGATAGTACTTGTGCGC AAGTAATTCACCCCACATCAGAGATATGCAGCA AACAACAAGAGAAACAGATAGTAGGAACACACAGAATGAACCAACTACTCAAACTGTTGATTTAATTAGTTCAATAGCCAGAAGCACAGATGA TTTCACCAGGTACCATACAACTGTGGCTTCTAATCAAGGTGGAGCTGGATTTGGGGGAAGCTGTTCACCTCAAGATAACAGTTCAGAGGCTCTGA
GTAGATGTACAAAATAGCTTTATGCAGCACCATCATCATGTTCATTACTACGTCCATGTTATGACACAGCAGCAGCAGCAGCCATCCATTGAGCG
ATTCAGACAGAAACGGAAAGTGAGGAACTTTGGAAAAAAGGTAGCCTGTTTTCAGTT ACACGCCTATCAAAGTCATGAGTCCTAA SEQ ID NO 9
ATGGfCATAGTCACAAGCCAGAGGAGGAGGAATr,r,AGG*ATCCCATGGGAGAGGACl I ACCCAATGGGCACAGTACACCACCAGAGCCCCAGC T-) AAACAC
ATGACT GAAGAl
AATTTGCAAGGATATTCCCGTGATT ATGATGTCTTCG AATGACTCAATGGGT ACAGTCTTT AAGTGTTTGTCAAAAGGAGCAGTTGACTTTCTAGT GAAGCCT ATACGTAAGAATGAACTT AAGAACCTTTGGCAGCATGTTTGGAGACGATGCCACAGTTCCAGTGGCAGTGGAAGCGAAAGTGGCATC
GAGATTGACAGCCCACAACAAATGTCTCCTGATCAACCATCCGATCT ACCAGATAGTACTTGTGCGCAAGTAATTCACCCCACATCAGAGATATG
GAGCTCCTAGAAATTCTAGTATGGAGTACCAATCTTCTCCAAGAGAGATGTCCGTTAATCCAACAGAAAAACAGCATGAAACTCTCATGCCCCA )5 AAGTAAAACAACAAGAGAAACAGAT AGTAGGAACACACAGAATGAACCAACTACTCAAACTGTTGATTT AATTAGTTCAATAGCCAGAAGCAC AAATGATAAAAATCGTGATTCTCTCATTGATA
SEQ ID NO 98 LOC_Os03g20780 I ATGATGGGAGGTG
Figure imgf000016_0002
99 LOC_Os03g207802 ATGATGGGAGGTGGTCTGGTG
Figure imgf000017_0001
ATGGAGAGGCCTAATGCAGTCAACCCAAGGATACAGATTGAAGAAGGCTTTTTTGGACAGGGAAGTGGCATCGGCGGCAGCAACGGAGGTGTG
AGATGGGCGACATCAATGGCGCATCGGAGTTCAGGTTCGGCTCTGGTTTC AACATGTCAGGTGCCGTCGAATACCCCGGCGCAATGCAGGGCCA GCAGAAGAATGACGGCGCATCGGAGTTTGAGGAATTGGAATGA SEQ ID NO. 100 LOC_Os03g21030 1 ATGTCTGAGGTGTCCGTTATGGCCGA
30
TGGGGGAGAAGGAGTGGTACTTCTTCTGCCACAAGGACCGC AAGTACCCGACCGGGACGAGGACGAACCGGGCGACGGAGAGCGGCTACTGGA AGGCCACCGGC AAGGACAAGGAGATCTTCCGCGGGAGGGGCATCCTCGTCGGCATGAAGAAGACGCTCGTCTTCTACCTCGGCCGCGCGCCCCG
Figure imgf000017_0002
CGACGACTTCTGGAACTAA SEQ ID NO. 101 LOC_Os03g28940 1 ATGGCTTCCGCGAAATCCGGGGAGAGGGGGAGCAGCAGCTTCGCCATGGC
^TGCGAGCCACCAAGAGAA C,ΓC.CCA.*TTAACCΛTCTTCTACGGTGGGAAGGTCCTGO 1 (J ΓΓTGATGACTTCCCAGCTGAGAAGGCCAAGGACCTGATGCAGATGGCCAGCAAG
15
TCAGCCATGGCTTGGGTTAGGACCTCAGGTTGCCGCTCCCGACCTGAGCTTGCGGCAGGAATCGAGCCAATGA SEQ ID NO. 102 LOC_Os03g289 402 ATGTCATATCATTTTTCAGGTGAAGCCGATGCGAACAAGGGGAAGGAGACCATGGAGCTGTTCCCCCAGAATTCCGGGTTCGGCTCTGAAG
50 JTTTGATGACTT
Figure imgf000017_0003
GGTGGGGAGAGGAGGAGGAGGTGCAGAGCCCTTTGCCGTTCAAGAAGCGCCGGCTGTCAAGCCCATCATTGGAGCTTAATTTATAG SEQ ID NO. 104 LOC_Os03g32230 1 ATGACGGCCGCCCTGCAAGCGCTGCTCGACCCGACGGCGCTGTCCTTGGGCCTGCCCACGCCGGCGATCAACAAGGAG
)5 GCGGACACAAGTCCAGCCACCGGAAGCCGCCTTCCCCGGGAGACCACTACGGCGCCGCCGCCGCGGCGCAGCAGCTGGCATCCGCTGGTGACTC
AGAAGCTCAGGATGTCCAACTAA SEQ ID NO. 105 LOC_Os03g53340 1 ATGAATCCATTGCGCGTCATCGTGAAAGAGGAGGAGCTCGACTTCG
70 AGCTTCGTCGTCTGGGACGCCAATGCGTTCGCCGCCGTGCTCCTCCCGCGCTACTTCAAGCACAGCAACTTCTCCAGCTTCGTCCGCCAGCTCAA
SEQ ID NO. 106 LOC_Os03g533402 ATGAATCCATTGCG
Figure imgf000017_0004
Figure imgf000018_0001
Figure imgf000018_0002
AACAGGGTG
SEQ ID NO. 109 LOC_Os
1 ATGGCGGTCGATTGGATCTGGGAGAGGCGCCGGAGAGAG
Figure imgf000018_0003
TC AATGGGAGGCTCCGGATTTTGCACA AC.ΓTΓ,GTAΓΓTA_ATGGAΛCC A.4.A.GTGGA.TATCΛGCΛCΛΛTC-CTTCACCAGGCCGTCCATT ACGTGAA GTTCTTGCAGCT ACAGATCAAGGTAGAAGTCCAAATAGTTTGTCATGATCAGATGCTTAGCTCTGATGAGCTGTGGATGTACGCACCGATTGTTT Ill LOC_Os03g60080 1 ATGGGGATGGGGATGAGGAG
ACGGCGT
SEQ ID NO. 113 LOC_Os03g60630 1 A
Figure imgf000018_0004
ACCCGTTCGACGCGGAGGCCGCCGCCGACGCC
ATTCAACTCGTCGTCGTCGGGGAACATACTGTGA SEQ ID NO. 114 LOC_Os03g54260 1 ATGCATTGCTGCATGTCGCTTCATCCTCACCGCCGCC CAACAGCAGGCGTTCCGCGGGGTGCGCAAGCGGCCATGGGGCAAGTTTGCGGCGGAGATCCGCGACTCGACGCGCAACGGCGTGCGCGTGTGG
SEQ ID NO. 115 LOC
Figure imgf000018_0005
Figure imgf000019_0001
1 ATGATGAACTTCTCCTCGTACTTCTACTCGTC
SEQ ID NO. 120 LOC_Os04g42020 1 ATGGAGGGGG
SEQ ID NO. 121 LOC_OS04G42950 1 ATGGCGGCGGCG
Figure imgf000019_0002
GCTCGTCGAGCATGTCAGGCAGCACGGCGAAGGCCGGTGGAATTΓTCTΓTΓΓΛ ΛGCTTΔCΔGC.TCTGΛΛCΛCAACCGGCAAGAGCTGCAGGCT
SEQ ID NO. 122 LOC_Os04g45810 1 ATGAATGGTCGAAC
Figure imgf000019_0003
CGGAGTCCTTCTGCGCCACGCCGGAGCTGTGGGAGCCATGGCCGCTCGTCGAGTGGAATGCGGTGGCTTGA SEQ ID NO. 123 LOC_Os04g48030 CGACTCCGGCACGGCCTTCGTGGTGTGGCGCCCCGCCGAGTTCGCCCGCGACCTCCTCCCCAAGCACTTCAAGCACAGCAACTTCTCCTCCTTCG
SEQ ID NO. 12
Figure imgf000019_0004
GTTCCAGTCCTT AGGCT ATTTGGCAAGAGGGTT ATGG TG AATGATTTACATCAGATGTCAGCCCCTGATGCCGGGAACCTGCAAACTGTGGCAGA
CRGACTAACACACAGCAGTTTCRGTATTATCTTCCTAACGGACAAATTTTCTCCGTGCATTCTGCTCTCCCATGCTTCACCTACCATAATGAGGGT GTTACTTGCACCCAGTTTTCAAACCCACAGGTGGTAGCCTCAGATCAACAGCATCAACACCAAACTTCTGAACΓTGTAGATTACAAGGGTATACA
AAGAGATGTGTTGCTGATAGTGAGGCGCTGCTGAAGTCACAGGCGCCTCAGGAGGAGGCAGACGGAGAGATGACGAGGCTGTGCTTATAA SEQ ID NO. 125 LOC_OS04G49450 2 ATGG ATTGTGTTGCTTGCAAGGTCATCAAAGAATCATCTGGGGACAATTGCAACAGCTTGGGTGCTGC ATCATC DIlDODDVVOOVIOVIOiαiOOVVOIVDOVDOODIIOOVQDIOOIVODDDVDVOIVODIVDVVVOVDDDDVVVDDlQlIIDDDVOOVVDDVlOO DVOIOOVVOOXVOIVVOVOiDOIVDVOXVOXiVIVOIIIIOiIVIIVOVOOVVOOVOOVOVDOVIDDOVOOOJUVJLODVVOOIDIODOVOlXlDX
VOIOIVVOIVVIVVXIVVDVVDVVDVIOVOOIOVOOOIVODVOIVXIDOOXOOXDVVXIXIOIVOVVOIIOIVOVDOVOIVOOIOOOVDIOVDDI
VDVVOVXDIOWDOWDOVDVVIXDOOIOOIDDIOOVXXIOOIDIVWOIOIDOVDOVIDVDOXIOOVDIIODDJLIOOIOOIDDODOI VDIVOOV
OOOOXXXIV
DIDlDVQV.
DODDVOOVDOVVVOOOOVVO1V i 0e6Z23S0SO DOT Kl "OV Ol 03S VOIOIIDOOOVOIXIOIIDVOIDIOVOIVOVVDOIIDDDIDDDOXOIV Q£
OIVDDVOOODXlODVDDIODIVDOODVOVDlVOOlVOVVVDVODDOVVVDDlDIXlDODVOOVVDDVIDDOVOlDOWOOIVOlVVDVOXDOi VOVOIVOXIVIVOXXXIOXIVXIVOVOOVVOOVODVOVDDVIDDOVDOOXXVXDOVVODIOXODOVOXXIOXDOVOOVDODDVDVVDOX VVlOV
IOIODVOOVODIOOVOVOIOVDDIOVXOIDIVOVOIDXXIODVDVVOVDODVVIVDVXIOOVXOIDIDOIDIVDIOI VVOIVVIVVXIVVDVVDV C /
VDVXOVDDIDVODDIVDDVDI VIIODQIQDIDVVIIIIDIVOVVDIIDIVDVOOVOIVDOIOOOVDIOVDOIVDVVOVIDIQVVOOVVDOVDVV XIDODXODXDDIOOVIIIDOIOIVVVOIOXDOVDOVXDVDOXIOOVOXXODDXXOOIOOIOODDOIVDIVOOVDDOOXXXI VVIOVDOOXDOOX VV v z ot6_∑8soso~ocπ εεi ON αi όas VOIDXIDOODVOXHOXXOVOIDIDVOIVOVVODXXDOOXOOOOIOIVOXIOIVDODIDOIVDVDDOXIV Q/
XXOOXVDOVODOVOIVOXDXDOVDXOOXIDVVOVDDIOOXVOOOVDOIVOXIOOOOVVODVIOVXOIIXDDVVOIVOOVODOOXIDOVOOXOOIV OODDVOVOXVDDXVDVWDVDOOOWVOOIOIHOOOVODWODVIDDDVOIDOWOOIVOIVVDVOIOOIVOVDIVDXIVIVOXXXIOXIVXI VOVODVVDDVOOVOVDDVIODOVOODXIVXOOVVDDXOXODOVDIIIOIODVDOVDDODVOVVOOIVVIOVIDOOVODDDWOIOOXODODOIO
XODOIOOXOVVIXXIDIVOWDXIOIVOVDOVOIVDOIOOOVOIDVDDIVDVVOVIDIOWOOWODVOVVXIODOIDDIDOXDOVXIIDOIOXV WOXDIOOVDOVXDVDOXXDDVOXIODDXXOOIOOIOOOODIVOIVDDVOODDXIXXWIOVOOOXOOOI VVDOIDDIVIOIVVOOVOVDDOVDO
Figure imgf000020_0001
VDDOXDOIOXIDODVODDVDVOVIOIDVOXIOXXIOIVDIVOIVIDOOIOODVDOVODIOIVODVODVDDVODVVDDOVVOVVDOOXXJ VOVDO QC
VOOVDODIVODXODDIV Z OJUO3SO5O DOT lεi OV αi OΗS DVXIODIOVIVVOVIOOIOOXIVIWOIDDIVOXIODVOOOVOVODIDOIDDO
Ot
Figure imgf000020_0002
OIVOVOOOODODODDOODOWDDOOODOIDOIOODVDDOIODDOOIODOVDXXDOODODDOODDIOODOIODDODOIODDDOIIOVVDOODDOO ς£
DDODODODODDODDODOiwDOOOOOiv Z oioiθ3soso~Dθτ 6Ji ON αi όas WIIDOIDIVIOIWIDOWOOIOIWDWIIODIODIOOII
WDODOIDDVDIVOODIVDOIODWODVDVOVODIVOIIVDJLIDIOVOIVVOVDIVVDOVIVOJLIVOIIVDDOODDIIIOIIODWOIVDIDVVD Oi
IIDVVODODDOOVVOlDJXIJLVODVΥOVODODlVDODVDDOJαVDVOOlVIIVVOIDDIVDODIIIVOOIVOIDODOVVOOIIODIIJJOVOIIlJ. IJJJJaVOOJUDJJaDOIIDVDOIVOVVDDIVVOVOIIDOODOOIVVOIVOIVDVVDOIDIDDDIOIIIVDOIVDIIVDOIVDOOOVIOOVODIVD ££
DOT 8Zl OV αi 03S VDIIOIDVDDVOOVODIODDIIIVOVODVOJJ-DDOVOOI VJJOWDVDDVDOIIIVDVDOOIDDVOIVOOIIOVOQDDOI lODODDODOVOODODOOIVDDVDDVDDVDDVDDVDDOJJ.OJUDOVOOOIDOIDOVOOODOVJJOOIOOVDDOOOVOOlVOOVOVODWOVOODO
Figure imgf000020_0003
OIVDWODV >DOVOOUDI VDJJJJ.DVDD DVODIJOVJaOIODOVOIVVIVDDVIDOVOJJOOIVOODIDJOOJLDJaVDOIOOOIOIJJJ-VVVDVOOOVVIDDJJ^IVJJLVIOIDIIIDVDOVDV
DOlOWOOIVDVOVDOOαOIDWVDOJOOWDOODDOlVOIODDOOVDlOIVOVDlVDVJjαVOlWOIOOlVJαOOOVDWDOOUαVIODOV
61
SL6Z00/600ZdΑ/lDd T^^Jl/όOOZ OΛV SEQ ID NO. 136
Figure imgf000021_0001
CCTCCAGGACATCCTCATGTACTGGGGCAAGCCGTTCTGA SEQ ID NO. 137 LOC_Os05g34830 3 ATGGCGCTGTACGGCGAGAAGGAGTGGTAC
CGGTGGGCACGCCGAGGCCGGTGGCCATC AAGAAGGCGCTCGTCTTCTACGCCGGCAAGGCGCCCAAGGGCGACAAGACCAACTGGATCATGC
Figure imgf000021_0002
CTGGGCCAGCTCGACCCCGCCGCCGCCGTCGCCGGCGGCGGCGACCCGCTCCTCCAGGACATCCTCATGTACTGGGGCAAGCCGTTCTGA SEQ I 30 D NO. 138 LOC_Os05g37050 1 ATGGCGTTCTACGGTGGCGAGATGGGTGGCTCGTCGTCGTCGTGGGTGGCGCCGCTGGTGCCGAGCAGCAGGCC
CACAGGTTGTTCCTAGAAGGGCTAGAGAAGTATAGGCGTGGCGATTAG SEQ ID NO. 139 LOC_Os05g37060 1 ATGGCGTTCTACCTCGGCAGCA
CGTGGCAGTGGTGGGGATGAGCGTCGTCGCGGCGTGCCCTGGACTGAGGAGGAGCACAGGCTATTTCTTGAAGGGCTAGAGAAATATGGGCGT 40 ACGCCAGCAGCCGTGGCGACTCCAAGCGTAAGAGCATCCACGACATCACTGCCCCATGA SEQ ID NO. 140 LOC_Os05g39720 1 ATGACCGCCG
TCGCCGATCCTCCTCACGCCCAGTTTATTCCCATCGCCGACGACGACGGGCGCATTGTTCAGCTGGATTArc.ACGGCGλCCGCGACGGCGGCGΛT
Figure imgf000021_0003
GGCGCGCCGACGACGACGCAGCCCGCGAACGGCGGTGGCTTCGCCGCCCTGTCCGGCCGGTTCGACGACGACGCGACGGGAGCGTCTTACTCTT r TTGAGCAGCCGCTGCTGTTTTGA SEQ ID NO. 141 LOC_Os05g39940 1 ATGCCGTTCTCCCTGTTACTCTTCACCGGCGCCGTCGCTGGAGTCGCG
CACAGATTATAGCGACGAAGACGACGACGACGTTGGCGGCGACAATAAGGACGGTTTAACGCCAGACCAGCTGCGGCGGCTGCCGTGGTTCGC r CTGCTCCCACGTATCGGTAG SEQ ID NO. 142 LOC_Os05g40060 1 ATGGCGCTGATTGCCACTGGTGCTACCGCTACTGCTACTGCGGCGCCGGT
CTCCCGCCGGCGCACGGCGGTGCCCACGCCCTCGCCGCCGAGATCCTTCGCTGCTGCGACCGCGCGCTCGCCGCGTTGCGCGCCGGCGGCGATG
/5
LOC_Os05g45020 1 ATGGCGAGCCGAGAGCACCTCCTGCT
?5
Figure imgf000021_0004
SEQ ID NO.
Figure imgf000022_0001
CGACTGCAAGGTCCGGGCAAAACCCACCACCGCCGCCGCCGCCGCCGCCTTCCTCAGCGCGGTGGCCGCCGCCGCCGCGCCGCCACCCGCCGTG SEQ ID NO. 146 LOC_Os05g
Figure imgf000022_0002
AAGGTTGAAGCATTTGAAGATCTAG SEQ ID NO. 148 LOC_Os05g51160 1 ATGCACGCCATCATGGCGAGGCGATGCTCTGGTGACTACTCGACT CCGGCGTCCTACTTGCACAAGAGTTACAGCATGGATTGCCTGCGGCTGCAGGTTTCTTCTCCTTCCTCCTTGCAGTCGTCGTCGTCGTCGCCGTCG
Figure imgf000022_0003
35 TCCATCGGAACCTAG SEQ ID NO. 149 LOC_Os06g03670 1 ATGGAGTACTACGAGCAGGAGGAGTACGCGACGGTGACGTCGGCGCCGCCGAAG
GGTCAGGGAGCCCAACAAGAAGTCCCGCATCTGGCTCGGCACCTTCGCCACCGCCGAGGCCGCCGCGCGCGCCCACGACGTCGCCGCGCTCGCC
Figure imgf000022_0004
GCGGCGACGTCACACTCTGGAGCTACTGA SEQ ID NO. 150 LOC_Os06g06360 1 ATGGACGGAGGAGACATCCACCTGCTGCTGAGCATCCTCGC CGACGGCGAGGAGCAGGCCCGGCAGCTCGGCGAGCCCGCCGCGGrnncrfiArGACGAGTACCACGGCGGCGGCCGCGGGGAGGAGTACTACA
Figure imgf000022_0005
ACTGCTGGCTRGGCGGTTCCTGATACTGAAAATGTTCTTACTGAAGATGGACAATCATCTGAATCTGTGATGACTGCATTAAATTCGGGAAGCTC GCAGGATAATGATGATGGTTCTGATATATCCCTGAAACTAGGGTTGCCTTGA SEQ ID NO. 152 LOC_OS06GL2480 1 ATGGACGACGATCCTACC
55 CAAGAAGACCAAAACCTCTAAGGTATGGGATGAGTTTGAGGAACTTTATGAAACGACCAATGGTAATAGGGTTCGAGTCTCTGCTAAATGCAAT
GCTTTGCCTCAGTCCATGCTRAGATRTAGTGCAGATGGTTCTGTTATTCCATGGGAATATAGTCCTGAAGTTGCTAGGTTTGAATTGTGTAGATTG
ATTGCΓAGAGAGGATCTTCCAATCAGTΓTTGGTCAATCTCCTGCΓTTΓGTGAACTATATTAAGGCTGCTCATAACCCTAGATTTGTTCCTGTCTCTA
GACAAACTACTACCAGAGATTTTΓATAAGTTGTTΓAAGGATCGTCGTΓCTATTATTATTGATCGTCTCAATTCTGCTAGCTCTATTGCTΓTGACATC
/0 TGATATATGGTCTGGTCATGCTAAGGAAGATTATTRGAGTGTTGTAGCTCACTTTGTRAGTTCTGATTGGCAATTAGAAAAGAGGGTCTTGGGTCT
3TTTTCTCTAT ATTTTTGCATCAACGCTGT \TTTCATTCTTGAATGC
/5 AACTTATCTAATGCTΓAAGCATCTCATACCACATAGGGAACCATTCACAGTATΓTATTAGTACACAACATCCTTTTGTTAATGACCATCCATTACT CACAGACTTACATTGGGCATGTGCTGAATCTGTITTGTGTTRCCRTGAACAATTITATGATTCAACTGTRGTTTRGTCTGGTGTTTATTATCCAACA
TCTCCATT AATCATGCATCACATTTTAGAGATTGCTGGACATCT AAACACATATGGC AATGTTCAAAACCTTGCAAATGTTGTTGGTCCCATGAA
AACTAJVGTTrATGAACTACrGGTCTAAAATTCCAATTCTTrATTCATTTGCATTrATCrTGGACCCTAGGGCCAAGATTAGGGGGTTTAGTAAAGT
GCTTCAGATTATGGCTCAACTCATrGGTGATGATTACTCTGCrTATTrAACAACTGTTAGAGCTTCATTGTCTGATACTTTTGCTAAGTATGAAAG s0 AAAGTIΓGGTTCTGTTAGATTGCATAGTTCCACTATTCCAGGCCCITCCACTGGTAAGAAAAGGACTGCATGGGGGAAGATΠTTGGTTCTGTTGT
CCAGGATGACATCTGCTACTGCTTTGCTTCAGGCAGCTTCTTCAACTGCT AATCTCAATCCTTCTGAACTGTCTGCAT ATCTTGACAGTGACACTG
TCAACCAATATGATGATGACTTCAATATCCTTAGTTGGTGGCAACAGCACAAACTAACTTATCATGTTCTTTCAATCTTAGCTAAAGATGTTATGA CTGTTCCTGTTTCTACTATATCGTCCGAGTCTACTTTTAGCTTAACTGGCAGGATCATCGAGGACCGTCGGCGGCGTCTAAACCCTAGGCTGGTGG
GTATCTTGATGATGAAATTGATGTAAACCCTTGA SEQ ID NO. 153 LOC_OS06GL4670 1 ATGGGGAGGCAGCCGTGCTGCGACAAGGTGGGGCT
Figure imgf000023_0001
10 ATTTACTCGGTCCTTGACCATGGAGAATTAAATGAGCAACCTGTTCCATCT AAAGATGATTTTCAGGTAAGTTTTGTTCAAAATATTGTAGGCTTT 1 ATGGACTACTCGACGGTGAAGCAGGAGGAGG
Figure imgf000023_0002
AGCAG ATCGATTGCTTGGCCTCGCCGAGTTCTTGA SEQ ID NO. 157 LOC_Os06g36950 1 ATGGATCCGAACTTTCCATACCAGTCGCCGTCGTTC ACCTTGGGTGATTTCGACCCCAACTACATGTCGGGGTTTAACGATGCCTCCGGATCGGCTCCAACTCCACCATCTGTGGAGGAGGTACCGGTTCA TACGGCrGTCGTTGAGGAGGTACCGGTTCAGGCGGAGACAGCTTCGGAAGGATTTTCCGGAACCGCGAGCGGAAGTGTTTCGACACACACCGGC
AGAATATGTAGGCAAATTTTATCTGCTCGTTCTTCTGGTGGTACAGGTCACCTCAAGCGCCATGCGGAGTCGTGTGCCAAGAAGC AAGGAATAC
AATCGCCAGGC AAGATTTACCCCTGAACTTTGGGGAGTCCCCTGCTTTTGAACATTACATTCAGCAATCTCATAACCCTAGGTTTAAAGCTGTGA GT AGGCAAACATC AACTAGAGATTTAGAGAATGTTTATCACAAGG AAGCAACTGCACTT AAGGAACTGTTTAGTACATGTACTTTCTCTGTTAGT +0 GTTACTTCAGATATATGGAGTAGTAGAGCTAGAGAGGATTATCTTAGCGTAGTTGTTCATTTTGTTGATGATGATTGGCAATTACAAAAGAGAGT
TTTAGGGCTTAGGTTAATAGATGTCTCACATACAGGAGAAAACATAGCTGAAAGAATTAGGGAAGTAATTAATGAATTTAATCTTGCTGATAAA ATATTTGCT-GTCACCCTAGATAATGCATCTGCTAATTCTAGGGCTATTGAAATATTGCAACCTTTATTTTGTGTGTATGCTCAATCTTTTCTACTCC ATCAGCGTTGTGCATGTCATATAATTAATTTGATTGTTAAGACTGGCATGAAGAGGGTAGGTGACC A.C A.TCGATGCTGTTCCTCAAGCAATCGCG TGGTTΛΛCTGCTTCTAACCCGCGGATTGCTGCATGGAAGAGGTTTTGCAATGCGGCCGGTGTGAAAGCTCATCCTAGGTGTAAATTAAGGGGATT t5 GTCTGCTATTTΓATCACTTGTTGGAGATACΓATAGGTGTAGATTATAGTTCTTTTTATACTGAGGTTAGACGTAAATTATATGAGGTTTTTGGAAG
SEQ ID NO. 158 LOC_Os06g40150 1 ATGGGA
Figure imgf000023_0003
CTGGGCAGGAGCGGCCCGGGCTCGCCGTCACATGGGCTGCTGCACGGTGGTGAAGGTAGCCTCGTCATCTGA SEQ ID NO. 159 LOC_Os06g4401 CrAGCTCATGCGCATTTCGGCTCTCGCCTTCTTCGCCTTCTTCTCCTCCTCCTCCTGTTCTTGATTTTCAGTATATTC AATTCATGGATTCGTGGATT AGGAGAACTTCTTGTCCTTCAAGAAGGATCACGAGGTTGAGGCGCTGGAGGCGGAGCTCCGGCGAGCGAGCGAGGAGAACAAGAAGCTGACCG
Figure imgf000023_0004
TTCAAGGCGGCGCTCGTCACGGCGCTCTCCGGCCGGATCCTCGAGCTCTCGCCGACCAAGAACTGA SEQ ID NO. 160 LOC_Os06g51260 1 ATGG CTTCCATGCCGCAGCTGGAGG AAAAGGATTCATCCGATTTGGCAATCAACAAAGGCCCGTCGCTGGATCTTGTCAAATCTCCCTTGATGATGAAT
'5
CAAAGACTGCTGTCCAAATTCGGAGCCATGCCCAGAAGTTTTTCTCAAAGGTGGTGCGTGAGCCCGGTTCCAATAATGCGATTGAGATCCCTCCA
CTCCTGGCTCATCTTCATCTGGCTCTGATCAAGAGAATGGTTCTCCTATATCGGTGCTATCTGCGATGCAGTCAGATGCTTTTGGATCGTCAGTAT
SO
AGTGAGGAGCAGATATCACAGCCTTCCAATG AAGAAATGTTGCAGGCTTCTTCATCGGTTGGGGAGATTCCAGCGGCATATTGTGCACCAAATG
GTTGGT
GTTTTC
»5
TCAGGTTCAAGTTTTGAGCTAAAACCGAGCGCAAATTCAGCGTTTGTAAGAGTG AAGCCAAGCAACAGCGGAGATGAAGAGGT AAT AAGGGGA TTTGTGCCTTATAAAAGATGCAAATTTCAATAA SEQ ID NO. 161 LOC_Os06g512602 ATGGTCGCTCTTGGCGTCAGATACAAGGTGGTGCGTG CTGCGATGCAGTCAGATGCTTTTGGATCGTCAGTATCCAATCCATCAACCAGATGTACCTCCCCAGCGTCATCTGACGATGGAAATAACATTCCC GACGTG AATAATATGTCTG AAGAGGATTCTTCAGAAGAAGAGGTGCAAGAAACAAGCTTG AAGCTATTTGGGAGGACAGTTGTCATCCCAGATC
TGC^KJAGATTCCAGCGGCATATTGTGCACCAAATGGTTGGTTTATGTCATACAATΓCTTTCCCATTCCAATTCGGTGAATCAGCGGCAGATGCTA
GAATTCCCCCRRTACACGTGTGGTGGCCITACTACGGTTTTGCTCCCATTAGCCATCCTAGAGGACTAAGCACAGTGATGCAGCAGACTGAAGGT
ATAGTGGAATCACΓΓGGAGCGATTTACGTCCGAGACTCAGGTTCAAGTTTTGAGCTAAAACCGAGCC^AAATTCAGCGTTTGTAAGAGTGAAGC 10 CAAGCAACAGCGGAGATGAAGAGGTAATAAGGGGATTTGTGCCTTATAAAAGATGCAAATTTCAATAA SEQ ID NO. 162 LOC_OS07G05830 1 A
GCGAGGACGATCATATCCATGGCGAGCCAAGG AAATTTCGGCAAGCAGCAGCAGCAGCAAATACAGGGTAGGGACGATCACCACTACCACCAG GGCGAGAGCAGCAGCGGCGGCGGCGTTTCCACGGCGGCGGCGCGGCACTGCGACGTCGCCGGCAGCAGCAGCAGCCACAGCGGCAGCGGCAGC
EQ ID NO. 163 LOC Os07g07690 1 ATGCCACCGGTTGCGTCCGGCTCCGGCCGGAAGAGGCAGCTGGTGCTGGAGTCCAGCGATTCGGAGGCGG
10 TGGGTAAGAGTGTTTTGCAACCTGATGTGAAGAGGATCAGAACTGAGGCTGCCCATGGTGGCGGCAGCGGAAGCGGTGGGAGTGTATCGAAGG ATGGAACCGGCGGG AAAATGCTGCGCCCGGGGTTCCCCAAGTGGCGATTTGAGAAGCCGGAGGTAAGGGCAGGGCGGGTTCTTGATGAGAAAG
CTGAGAAATCGACGCCATCGAAGACTAACCAAGAGGTTATAAGGGTACAAGGGAAAAGCGGTGTCTTAAAGATCCGTCCGAAGAACAATAAGG 2.5 CAGTGGAGGAAAATGGTGATGGAAAGATTΓTGACCAAGAGTGGTGTΠTAAAGCTCCTCCCAAAGAACAATAAGGTGGCCAAGGAAACCAGTG
ATGATAAGGCACCGAAGAACTGTACGGTGAAT(^AGAAACTAGCGCTGGCAAGATTTTGTCCAGAAACACTAAGGAAGATTTGAAAACCAGCG
TCTCCCCCATCCTATTGAGGAAAAGTGACCCAAGTGTAGTGGGAATTTCTTTGGGCCAGAAAATGAAGCAGCAAAATTCAAAGGCGCAACTGAA 30 GATATCCTCACTAGGCCAACGTCAGCCTTCACTTAATTTGAAAGATGAGAAGAATAAGAAAAAAAGATrGCTTGATCATAAAATGTCACCAGAA
CCTCGTΓACACAATGAAGCAGAAGCTCAGGGGTCAGATAAAGGACATΓCTΓTTAAACAATGGATGGAAAATTGATCTAAGGCGCAGG AAAAAC AAAGATTATG AAGATTCTGTCT ATGTTTCTCCACAAGGAAATGGCTATTGGTCAATCACTAAGGCTT ATGCTGTGTTCCAAGAGCAGTCT AAAAG
35
TGCTGGTAGAAGTTCTGG AAACAAGCATCAAAGCAGTGGAGTTAGGGGATGTGCGCTTCTTGTCCGTGGTAGTACTCATAGCATGGAAGGCAAT GTGGACGGCTATTTTCCTT ATCGATGGAAGCGGACAGTTTT ATCATGGATGATAGAT ATGGGGGTTGTTTCTGAAGATGCAAAGGTCAAATATAT
TTTGAACTTCATGCTGGTTCAAAAGAGCAGCAGCCCTATGAAAACATCTTTCTGGAAGATGGTGGGGCTACGTTGTCACAATGCTTAGTTGATGC +0 GTGGAAGAAGCAATCACAATCTGAAAAGAAAGGGTTTTACAAGGTAGATCCTGGTGATGATCCGGATGATGATACTTGTGGCATTTGTGGTGAT
GGTGGCGATrTGCTCTGCTGCGATAACTGCCCTTCAACTTTTCACTTGGCTTGCTTAGGAATCAAGATGCCTTCTGGTGATTGGCATTGCAGTAGC TGTATATGTAGGTTCTGTGGTrCTACCCAAGAAATAACAACATCGTCTGCTGAGTTACrTTCTTGTTTACAGTGTTCAAGGAAATATCATCAAGTT TGTGCACCTGG AACCATGAAAGACTCTGTTAAAGCTGAATCCAATTCCTCAACTGATTΓ.TTTTTGC AGCCC AXXHTGTΛCΛAACATTTATAAACA
TCTGAUAAAAC I ACTRGGGGTAAAGAACGCTATTGAGGCTGGATTRTCCTGGAGCCTGGTTCGCTGTTTTCCTGATAAACTAGCTGCACCTCCCA
+5 AAGGGAAAGCTCATITGATACATTGCAATΓCCAAGACAGCTGTTGCTTTCTCAGTTATGGATGAGTGCTTTCTGCCACGTATTGATGAGAGAAGT
GGGATTAATATAATCCACAATGTCATATATAACTGTGGGTCAGATTTCAATCGTITAAATTTTAGTAAGTTCTATACATTTATΓCTGGAGCGGGGT
GGATGTGCCATCGGCTACTCAATGCAATTGAATCGGCCCTTTCCTCCCTGAATGTTCGAAGACTAGTAATACCTGCCATACCTGAATTGCAAAAT ACCTGGACTACTGTTITTGGTΓTTAAACCTGTTGAACCTTCCAAGAGACAAAAAATCAAGTCTCTGΛATATCTTGATTATCCATGGCACTGGTCTT
GATCCCGGACACCTGTΓCATΠTTCCTGTGAATTACCAGTGGGTGGTGATCCTGATATTAAGCATCATGATGACTCTCATCCTTTAGTΓGGGAACT
55 TAGTGAACCTTCTGTTGAAGCTATTCTAGTAAGAGACAAACCTGAACCTTCCATCTCTTGCAACGTTACCAACCAAGAAGACAAAAACTCTTCCA GCTAAGGATCAAACTRTTGTTAGTGCTGTAGCTAATAATGTTGCTACTACTGAAGATCCCAGTGATTCTGTAGCTGACTGTGAAGTGCCAATAGT
50
GGACATGGCGATTGAGGTGAAAGTCACAGTTGAGAACTTCAGTGAAGCAGGTAAACCAGCTTCAGCGCTTGTCATGTC AAATGACATT AATGGT CCAGAGAACCTGTTAATGCATGA SEQ ID NO. 164 LOC_Os07g076902 ATGCCACCGGTTGCGTCCGGCTCCGGCCGGAAGAGGCAGCTGGTGCT
55
GACAAGAGCAAGGGAAGTGAGGTGGGTAAGAGTGTTTTGCAACCTGATGTGAAGAGGATCAGAACTGAGGCTGCCCATGGTGGCGGCAGCGGA AGCGGTGGGAGTGTATCGAAGGATGGAACCGGCGGGAAAATGCTGCGCCCGGGGTTCCCCAAGTGGCGATTTGAGAAGCCGGAGGTAAGGGCA GGGCGGGTTCTTGATGAGAAAGGTGGGGTCGAGACGAAGGTAAGCAGTTCCCAAAAGGTTAAGGACCATGCATCGAGTTCGGTTTATGAGAGA
70
AAAGTTCTGCCAAAGAAGACTACAGTGGAGGAAAATGGTGATGGAAAGATTTTGACCAAGAGTGGTGTTTTAAAGCTCCTCCCAAAGAACAATA
AGGCGAATAGGGAAAGTGGTGATGATAAGGCACCGAAGAACTGTACGGTGAATCTAGAAACTAGCGCTGGCAAGATTTTGTCCAGAAACACTA 75 AGAGAATCACAGAAAAACTAGTCTCCCCCATCCTATTGAGGAAAAGTGACCCAAGTGTAGTGGGAATTTCTTTGGGCCAGAAAATGAAGCAGCA
GATCATAAAATGTCACCAGAAAATTTGTCCAAGAAAGCAAAACCAAATGCCATTGATCAGGATACATCTCGTCCTTCTCTTGAGAAGCATGGAA TAAAGAAGGAAAGG AAAGGGCCTCGTTACACAATGAAGCAGAAGCTCAGGGGTCAGATAAAGGACATTCTTTTAAACAATGGATGGAAAATTG ATCTAAGGCGCAGGAAAAACAAAGATTATGAAGATTCTGTCTATGTTTCTCCACAAGGAAATGGCTATTGGTCAATCACTAAGGCTTATGCTGTG
TCATAGCATGG AAGGCAATGTGGACGGCTATTTrCCTTATCGATGGAAGCGGACAGTTTTATCATGGATGATAGATATGGGGGTTGTrTCTGAAG
15 AGATTCTCACAGTTGCTAAGTTTGAACTTCATGCTGGTTCAAAAGAGCAGCAGCCCTATGAAAACATCTTTCTGGAAGATGGTGGGGCTACGTTG
TCACAATGCTTAGTTGATGCGTGGAAGAAGCAATCACAATCTGAAAAGAAAGGGTTTTACAAGGTAGATCCTGGTGATGATCCGGATGATGATA CTTGTGGCATTrGTGGTGATGGTGGCGATTTGCTCTGCTGCGATAACTGCCCTTCAACTTTTCACTTGGCTTGCTTAGGAATCAAGATGCCTTCTG
3TTTACAGTGTT CAAGG AAATATCATCAAGTTTGTGCACCTGG AACCATG AAAGACTCTGTTAAAGCTG AATCCAATTCCTCAACTGATTGTTTTTGCAGCCCAGGA
TGTAGAAAGATTTATAAACATCTGAGAAAACTACITCKMGTAAAGAACCKrrATTGAGGCTGGATTITCCTCKjAGCCTGGTTCGCTGTTITCCTGA TAAACTAGCTC^ACCTCCCAAAGGGAAACKrrCATTrGATACATTGCAATTCCAAGACAGCTGTTGCTTTCTCAGTTATGGATGAGTGCTTTCTGC CACGTATTGATGAGAGAAGTGGGATTAATATAATCCACAATGTCATATATAACTGTGCKJTCAGATTTCAATCGTTTAAATTTTAGTAAGTTCTAT
GGGGCATATAT ACWCGCCAAGGGATGTGCCATCGGCΓACTCAATGCAATTGAATCGGCCCTTTCCTCCCTG AATGTTCGAAGACTAGTAATACCT
GCCATACCTG AATTGC AAAATACCTGGACTACTGTITrrGGTrTTAAACCTGTrGAACCTTCCAAGAGACAAAAAATCAAGTCTCTG AATATCTT
AAACACATGTTGAAGCAACCGGATCCCGGACACCTGTTCATTTTTCCTGTGAATTACCAGTGGGTGGTGATCCTGATATTAAGCATCATGATGAC TCTCATCCTTTA
CAGAAGTATGAAGATAAATCTAATTCCAGTCTTACAGATTCATCTGCTATTCCCATGACAGTGGATCCAGGCTCATGTTCATCCAATGAGACTGT
AAGAAGACAAAAACTCTTCCATGGTTCCTGTTGATACGACAGTTCATTTAGCCACTATAGTTGGG AATCATGATATTCAGAATTCAGTGG AAGTC AAAGGTATGG AACATAATACAGCTAAGGATC AAACTTTTGTTAGTGCTGTAGCTAATAATGTTGCTACTACTGAAGATCCCAGTGATTCTGTAGC
GACGATGTAGCTAATAATTTTGTTGCTACCACTGAAAATGACACTGATTCTACAGCTGAACTTGGAGTGTCAATGGAGAGATGTATCCAGCAAA
GATCTAG SEQ ID NO. 165 LOC_Os07g23450 1 ATGGACGGCGAGGGGGCGCCGGCGAGGCGGGCGCCGGCGGCGTCCTACTACGAGTGCACCTT SEQ ID NO. 166 LOC_Os07g26720 1 ATGAG
Figure imgf000025_0001
CTCAAGCCCGTCCGACCGGCGGACATCTCCCGCATAACCAGCCGGATGCTGCAGTGA SEQ ID NO. 167 LOC_Os07g27770 1 ATGAGCAGGCTA
CAAGTGTGGGTGAGAGATGCTGAAGTTCTGAGGACAGCACTGCTTGAAGCTGG AATAGTCACAGGACCCACAAGTATΠTGC AAGTTGATGCTG
AGAAGGATATAGATGCTG AAGTTCTGAGGGCAGCACTGCTT AAAGCTGG AATAGTGGCAGGACCCACGAGTATTTTGC AAGTTGATGCTGGGGA TTTTCAGACAAAGAGGCACGCGTAAAGGTTTCGAGTTGC AAAAGAAGCAATGTCACCAAAGATTACAACAGATATGAGTTCGCTTGCTATTCTG ATGGTGGTCGTTAAAAGGGCTG AAAAGTGGGTGGTGACAATAGTAGACTTAGATCACAATCATCCTCCTTTGAGCCCCAATTCTCT AAGGTTCCT GAGACATGGCTGAAACCATCAAGTACTTCCAGGAATTGCAAGCAGAAGATCCATCGTTTTTCTATAGCATGGAACTGGACTCGGAT AATACGGT
TGGTAGCTTATTTTGGGTGGATGGTGCCTCAAAAGAAGCATACAAGAAATTTGGTGATTGTATCGTCTTCGACACAACATACTGCACAAATAAGT ATAACCTCCCATTTGCTCCGATAATCGGGGTAAGCAACCATGGCCAGACTGTCCTATTTGGGTGTGTATTCCTG AAAAATGAAAAGATTGAAACT TTTGA-A TGGGTGTTTG AAAC A.TTCTTGAA.ΛGCAATGGΛTGGΛΛΛΛCΛGCCΛC-V'S.TCCATCATGACTGATCAGGACAAAACAATGGAGATTGCAA GAAGGGTTTGAAACAGACTTGAAGTCATGCATTGATAATTCTTTGAACGAAGAAGAATTTGATGCAAGTTGGGATGCAATGATTGATAGACATG
AGTTGTGTGGGAACAAGTATATGCAACACCTCT ATGATAACAGGAAAAAGTGGGTCCCCTGTTTTTTCATGGATTACTTCTTCCCATTCATGAGC AATTTCATCTTCCAATATGAGAAACT AAACAATGAAATCTACAGTTGTGCCTGCAAA 1 ATGGGGCGGGCGCCGTGCTGCGAGAAGAGC
I ATGGAGAGCCCGGACTCGTCGTCCGGC
Figure imgf000025_0002
CAGCTCGCCGCGGCGGCGAGGGCGGCGGCGACACCGTGCGACGCCACCAAGCAGCTTCTTGCTCCGTCTCCAACCCCATTCAACTGGTTCGAGG CCTGTCTGAGGCTGGCGCCGTGGCCATTGACACCGGCGACGCCGCCAATGGCGCAAACACTATGCCTGCATTTATCAATCCTCTCGGCGTGCAGG CCAACTCTCCAGGGTGAATTGGGATTCCTGA SEQ ID NO. 170 LOC_Os07g38030 1 ATGCTCCAGGGAGTCCTGTCGCGAGCTCCCGGCGCCGAC GAAGC AAGGGTT AGTGGTGGTGAGTACGGGGGAGGAGGAGGAGGCGGCGGCGGAGACGCGTGGGCTGCGGCTGCTT AGTTTGTTGCTGAGGTG
TTCCAGGCGCTCGACGGCGAGGACCGCGTCCACGTGATCGACCTCGACATCATGCAGGGGCTGCAGTGGCCGGGCCTCTTCCACATCCTCGCCTC CCGCCCCACCAAGCCGCGCTCGCTCCGGATCACCGGCCTCGGCGCGTCGCTCGACGTCCTCGAGGCCACCGGCCGCCGCCTCGCCGACTTCGCCG CGTCGCTCGGCTTGCCCTTCGAGTTCCGGCCCATCGAGGGGAAGATCGGGCACGTCGCCGACGCCGCCGCGCTCCTCGGCCCGCGCCACCACGG CCATGAGAGCCACGATTCTTGA SEQ ID NO. 171 LOC_Os07g38750 1 ATGGAGCTCAACTTCCAAGTGCAACCTCCAGTGTTCCAGCTGCAAGAC TACTGCTA
CCACAGO CACCTTCC ATCTCGCC
SEQ ID NO. 172 LOC_Os07g41580 1 ATGCCGGATTCG
Figure imgf000026_0001
TTAGTGTTCGG AAAAGTACATCACACAAATCTTCCGG AAATATTACCAAAGTAAGGACTTTTGTTTGCTCAAGGG AAGGTTACAACAGGGACAA
VATACAG \CTTCAGT
CTGGGG AAGCAGAATTGTCAGATGATTCTGTCATGACACCTACAACAAAAGCAACCGGTGATCTTGTTGTGAGACAAATTGGTTTCCTTCGAAGT
GCAGACAATGC AAATGGAAAATCCTGCTTTCTTTTACACCATGCAGATTGATG AAGACGACAAGCTAACCAACTTCTTTTGGGCTGACCCAAAAT
GTGAATCATCACAAACAAACAATTGTTTTrGGTGCAGCTATGCTrTATGATGAATCATTTGAGTCATATAGGTGGCTGTTTGAGAGTTTTAAGATT GCTATGCATGGAAAACAACCAGCGGTAGCTTT AGTAGATCAATCT ATTCCACTTGCTAGTGCAATGGCAGCAGCATGGCCAAAT ACTACTCAAA GAACTTGTGCTTGGCATGTATATCAGAACTCn-CTTAAGCACCTTAATCATGTTTTCCAAGGTTCAAAAACATTTGCAAAGGATTTTAGCAGATGT
TGTTTGATGAAAGGG AAAGATGGGCTTTGGCATATGAGAGACATATATTTTGTGCTGACATAATAAGTGCACTTCAAGCTGAAAGCTTCAGTAGT
ATGATGCAGGTGACTTGAATCTAAACATTATTCCTTC SEQ ID
Figure imgf000026_0002
AGTACATCACACAAATCTTCCGGAAATATrACCAAAGTAAGGACrTTTGTTTGCTCAAGGGAAGGTTACAACAGGGACAAAAAATCATTGGAAG
Figure imgf000026_0003
TGGAAAATCCTGCTTTCTTTT ACACCATGCAGATTGATGAAGACGACAAGCTAACCAACTTCTTTTGGGCTGACCCAAAATCTAGAGAAGACTTC
ACAAACAATTGTTTTTGGTGCAGCTATGCTTTATGATG AATCATTTGAGTCATATAGGTGGCTGTTTGAGAGTTTTAAGATTGCTATGCATGGAAA ACAACCAGCGGTAGCTTTAGTAGATCAATCTATTCCACTTGCTAGTGCAATGGCAGCAGCATGGCCAAATACTACTCAAAGAACTTGTGCTTGGC ATGTATATCAGAACTCTCTTAAGCACCTTAATCATGTTITCCAAGGTTCAAAAACATTTGCAAAGGATTTTAGCAGATGTGTATTTGGCTATGAG GAAGAGG AAGAATTCTTGTTTGCCTGGAGAAGCATGCTAGAAAAGTATGATCTTAGGCATAATGAGTGGCTGTCTAAATTGTTTGATGAAAGGG AAAGATGGGCTTTGGCATATGAGAGACATATATTTTGTGCTGACATAATAAGTGCACTTCAAGCTG AAAGCTTCAGTAGTGTTCTGAAAAAGTTC
TAGTC AAAGTTATCCAAGAATACCCCCAGCCAAGATGTT AAAGCAAGCTGCCCATACAT AT ACCCCAGTGGTGTTTGAGATCTTTCGTAAAGAGT TTTGTTAGATTrGACTCGAGTGACTGCTCCTGTATCTGCACTTGTAGGAAGTTTGAGTTTATGGGTATTCCATGTTGCCATATGTTGAAGGTGCTC 1 ATGTGTGGCGGCGCGATCATTTCCGACT
Figure imgf000026_0004
GCAGGACGCGGGGCTGGAGCTCTGGAGCTTTGATAACATCCACACGGCCGTGCCGATGTGA SEQ ID NO 176 LOC_Os07g477902 ATGTGTGG CGGCGCGATCATTTCCGACTTCATCCCGCAGCGGGAAGCCCACCGCGCGGCCACCGGCAGCAAGCGTGCCCTCTGCGCCTCCGACTTCTGGCCGT
SEQ ID NO 177 LOC_Os07g4
Figure imgf000026_0005
AAGC ATG AGGA ACCTCCCTGTTGGTGC ATCAACTCTCTATAAAAGGAGATCAAACAGCAACGGCAGTTAAATTTGCACCTGATTCCCCACTCTGTAATTCCATGGCCTCTGTGCTGAAAATT
GCTTCCCTGGTCCTCCTTTTGTGTACCCATGGAGTCCAGCATGG AATGGCATΓCCTGCCATGGCACCACCGGTATGCACAGCACCAGCTGAACCA
GCAAATTCTTCAGACAATGG AAGCACAGCTAGTGTTCAGTGGAGCATGCCACCAGTGATGCCGGTACCAGGATACTTTCCGGTAATTCCATCTTC
Figure imgf000027_0001
TCAACCATGTTTGTGAAGGTGAACCTGGAGGGCTATGCTGTCGG AAGG AAGATCGACCTG AAGGCGCACCGCAGCTATGACTCTCTGTCCCAGG CTCTGCAGAGCATGTTCCATGGCTTCTTGTCAGATGGCATTGCAACTAGAGACAATGAGCTGCAGCAGATGGAGGAGGGCAGCAAGAAGAGGTA
CTCAGGATCCTAGAGTTCATGCGAAGCTACGATAA SEQ ID NO. 179 LOC_Os08g017802 ATGAAGAGCTCTTCAGTTGCACCAAGGCTGAAACA GGAGAGACAAGATGACTGTAAGTTTCAGG AAGGTGATGTGAACAGCCTTGAGCTTCGGCTTGGCATATCTTCCGACAATGACCAGATCAGTGGT GGTGGTGCTGCTAGTCCATGGCTTGGTGTGGGAGTGCACCCTTGGAGCCTGGCTGC AAGGCAAGGG AAGGCAGCCTTGGAGC AAGCTCACCAGA
AGGAGGTCATCATCAACCATGTTTGTGAAGGTG AACCTGGAGGGCTATGCTGTCGGAAGGAAGATCGACCTGAAGGCGCACCGCAGCTATGACT
AGGCTCTACATTGCTCAGGATCCTAGAGTTCATGCGAAGCTACGATAA SEQ ID NO. 180 LOC_Os08g09900 1 ATGGAGAATCAATCAGGACAA CCGCAGTACGCCATGGCTGACCAAGGATTCCACCCTTTCTCACCATTCATGTTGGCGCCTTCTACTACCATGCAGCAGCATGTGGGCTCCTCATCC
CAGATGGACAGACCATCGAAACAGTTTGC AAGGGCTGTCACAACCACCCACGACAGTCACTAAGGTGGCTCGGAGATGGTTCAGAGCGATTGG AGCCTATTTCTC AAGAAATTGTGCTACTTGAGGCATCAGATGCCTCAGGAGCTGCTGGTGGACCTTCAGTGCCTGGGACGGGAAATGGGCACGG CCAGTCGTCTGGTTCAAGTGATAGCTGCAGAGACGATGATGGTGATTTAGGAATTGATGGGAATGCTTCTGTTGGTGATGCCAATGCAGTGAAA AGCGGACAGGTCCCAGCTCCAGCCAAAGAGATCACTGTGCACTCTGCATGTGAGGTTGATATTTTGAATAACAGTGTTCGTCATGAAAACCCAC AACCAAGG AAAAAGGTGCGATCTAAGTCCACGGTGTGGGAGGAATTTG AA GTTGTGTTAATTGATGGAAAGGTTCAAACCGCTGAATGTAAGCA
AGTCTCAAACCΓTTGCCCCTTCTCTGCCATGTACAGTGCAAGCTTTGCACAGTTTCTAGCTGGTAGAAATCCGGTTCTTAACATGGTGCAGCAAGC TACCGTTGAGGAAAAGTRTCTTAGTGTTTTTCATAACGAAAAGATGAAGCTGAAGGAGAAAATAACAGCTACACCTGGGGGAGTTTTCCTGTCA
CTAGGCGAGTGGCAGCGGTTATTTTACATTCAAGTAAGAGTTGCTTGTTT AACTGTGCATTTTATAGATGAGGACTGG AAGATCAATAGAAAAAC
AATAAGATGTTCTCTTTCAGTATTTGGCAAGTCTGATATΓTTAAGCTTGTACCCGCATTGGCAATCTGACATTGTTCTTGCTGAGAAGGTGTTAAA
GGAAGTAGTTCAAGATTGGGGTCTTTTGGATAAGCTTTT AGGAGTGACACTACAGCGATCAGTGGAT AAGAAAGCTCCATTACACTTGGAGGAT
GACATΓACAGGAAGGAACTACCTTCTTTCCAAATGCAGGCTATTAAGTATCCCTTGTATGGTAΓ.ATGCCCTTCΛTGΛACTTATGGACTCCACCGT
TTTGGACΛTCCAATCGACATGGTCTCATTACA I GACAAGCTCCCCAGAGCGTAAGCAGAAATATCAGGAAATTCTATCACAGCTGCATCTAGAC
CGTCCCTCTCTCGGATCAAAAGGCTGGTACTΓCACATTCΓATTTTΓCTGAGGCTGCITTGCAGTTCATCAAATCATTTCCACTTCCAGATGCTAAA
CCAAATTGCCAATCAGGTCCTTGGGAGCCATCTTTTGATGATCTCGAAGC AACAGAGAACTATTGC AAGATTGCAAGGTCAGCCTATCGTGTAAT AAAAT ATTGGAAGAGTTTTTGATGTGGCATAT ATGCAGAAGAAATTTGACAGAAATTGG AAGAAGTGGTACTTGTGGCTGTCGATAGCTGTGGT
TCTAGATCCCAGATATAAACTCGGATTCATRGAACTRTGCRTCAGGCAAGCTTTTAGCCATGTTGCTGGAATGTATTTCTCCGAGGTGCGTGCAAA
CTCCATTACATAACAAGGGCCAGAATTCTACCACAGCCCAAGCTGCAGTTGAGGAATTCAAAGAGCTTTATGAATATCTTGGTGGGGGACTCTGT SEQ ID NO. 181 LO
Figure imgf000027_0002
TTGGGGACAGGAGAGTGGCCTGTCACAGATGTGGAACCCCCAATAA SEQ ID NO. 182 LOC_Os08gl5050 1 ATGATGGCAAGCGACGGCAGCGC
AGCCCCAACGACAGCTCGTCGAGCTTCACCAACGACAGCGCCGGCGGCGGCGGCGGCGGCGGCGCCGAGAGGAGCCTCTTTGACCTGCTCTCCG
Figure imgf000027_0003
GCACCACCGCTGCCACCGCGGCCTACGGCGTCGTGCCAACCTTCTAG SEQ ID NO. 183 LOC_Os08g3l580 1 ATGGCAGCTGCTATAGAAGGAAA TCTGATGCGGGCGCTGGGAGAGGCTCCGTCGCCGCAGATGCAGAAGATCGCGCCGCCGCCGTTTCATCCCGGCTTGCCGCCGGCGCCGGCGAAC
SEQ ID NO. 184 LOC_Os08g33150 1
Figure imgf000027_0004
VOOVODaOOOVVOOiIODOOOOUJ-OOOVOIVVOVOIOiXOOVVVaVIaIOVIVOVOVDVVIVVVOaOOJ-VOVVaIOiIOaOVOOiOOVVOVVD
IVVOVOViiOlVOOiiVOiOlVaVOVViOOWVliOiiVlOWDOVOiiDVOϋiVOOVVOOOVDOlOVVDlOOVlDlOVOiiDlOVOiOOVOOV CS
DDVDIVVIVOODVQIDVOJJ.DDOVDOVVWOIVOIVVIIOIDVOJJJ.OODVVDVDVDDIIOVOOIOJJ.OWDOVDDOVVIOIVQQQJJJJ.VODDV
QC I 0668C880SO DOT 881 ON Ql
SL
Figure imgf000028_0001
DlOWDOilOOlϋ VVVOVOlOiOVOl VOlVOVOVOiOlVOlVVDllDVDVaiaillDOllOlVVVDDVODOODOWOOliOOOODOlllODOVDl sς
VVllOllVlOVVOOVDllDVOlliVOOVVODDVOOlOVVOlOOVlDlOVOllOlOVOlOOVOOVaDVaiVVlVOODVOlOVOllOOOVOOVVVVD XVOXWJJ-QXOVOJJaDDDWOVOVOOJJ-OVOOXOJJ-OWOOVDDOVVXDXVOODJJJJ-VDDDVVOJJJDJJOXlVXDXDOX VOXVDDOOVDVWD IVOVVOIDVVVVVVVIODDIVOOIVOOVVVIIOIVVIOVIVOOIVOIIIIIVODOIOVVVOOOIOVOOVIOOIOIIOOVVOVOOIIVODOOVVOO
VXVDXXVVVVOXOOXQXDOJJJJ-DDVOVOOVVDOXODQXVDOVQVDVOXOIDXOXODDXWVOXaQVVOXVVVOVDDVVDOOXODXXXXXOOW OS
VOlVVOlllOVVVVWOOVlDOVOlDOlOVVVOVVOOOOOOVVOilVODlVOlllDOVVVDOVOVVOOOllDVOOlVOOVOlVOVVVOWlOV
DOOlVVl VOlOlOiillVaVOVOlJLUODDlOOODlODVDllVVOVVODVΥOlipillDVOOlOlVOlOVOVVOVVODlOVDODVOlODDllOOlV
OOIIVODVOOIVOIOVOOVDOIVDOVVOVVODVOOODVOOIV I 0668ε880SO DOT LSI OH Ol O3S VOlOlOOVODlOOVODilOVDlllOlV
05
Figure imgf000028_0002
St
30000000OVOOOOVOJJLOOVOIOOOPOOOOOODDOODOOOOXJI1JOOOODIOOVIDIDVODVOOOVOOVODODOOOODDOVOVODOOOVVDO
VDODVODOVVDOOOIV I 09£W380SO DOT 981 ON OI O3S OVIWOVVWOVDOOIOOOOVWVVOIVDIIDIVDIIVVVOVOVVOVWWD
0OVVOVIIVVOIOOOOOIDIIVVIVDOWOVOOVDVDIVIVIVOWDVVDOJJJ-VOVVWOWWOVVVOIiIOIVOWVOVWVVOVDOVOV
Figure imgf000028_0003
OVDOlIiOVVVOl VlOO WWOOIVOOI WVDIVOOVl VWOVDOlOWWOOWDlDilli VDVVDIl VOVOlDDl WDlDOVOVOVDDVlll
DDVl Vl VVVOOlVVDOOVVVVOOOVOllDlOOWVDVlDVOWWVWOVOOlVOVVVOli VJJ. Vl Vl WVWOVDDVlVOWOlVVOOi VVO
10OVOOIDOIWIOWVOIIVIOIVDDOIDOIVIDJJ-DVOOXVOVWOVOIIIOVVVDIDOIJJ-VDOIOWOIiIVOOVDOVWVOOIlDVOOlD Si
JJ.VJJ.OXlDDVXOVVOOVVOVVDVDXVVlOVVDliVlVVVVOlVVOiiVOODiililJJ-OVVOlVJJ.DWWDJJ.DWOVDVlOVVOlVWlVV
VOIiIVOVIOVVDVVOVVVVOIIOVOIIOWDIJJ-OVVDIVDIIDIVVWDODIVVDVIOIWDVOIVVOOVVODVIOVOJJ-VDVIDVIlVOOO
IOOIIIDVWDO WDDWVDVWOVDD WDϋXVDVOlVOlVDiϋOVOWOOliD VVWDJJ. WDVlVODl W1OVOVVVO1V1OVOV1VO1V
DliDWVDVllVDDVOVlOVDVDDlOOliOlWlWOWlilOOWDlOWlOVDOOWOlDVOiOiDOVDVDOVWWlViliVDOlOlOlilV
0IDDOVVDJJJ-VIOIOVDDJJ-VJLUVOVVVVVOVIIVVDIOOIOIVDVDOVVVIDJJJJ-VVDXVIVOOVOIiOVVOIIIDOVDVOIIVOlVVVOV oe
VDOOl VJJJ. VIOVOJJJLVVDWOWOVOVJJ.OVaiaWlVVVlVϋVaVOWOlVlOVDIVOlVlOJJ.OOOWOVWVDD WVDlDOiJLL VWO
OJLDlVlOlWOliiOO VWOWVIOIIVIVaIJJ-DXIOOIIVWOVDVDOVWDOXVVWDIIiVIOWDiOOJLLVVDOVDIVOVOlWDOVDDl
VDOVDlVOXDVJJ.VOXVVDVVVVVODVVOVVVVVOVDXOlVJJDV'VVDiiilJLLOVVOVDllOlDOOlVVVliiVOVVVDVDJJ.DVOVOlVOlV
DOlXXJJ.VDOlOlXDOiiliiOJJ.WDVDVWOOlVDVDDlVlllVVODJJ.OlilDDOlDDliiODODlDOVVDVl VWDWDOVDXXX VXVOVVO
VDVDiiiiOVOlOilOlVOlOOlVlVWOVOlVlOOlOVOOOVODlVOVOOOlVOVDVOOJJJJ.DlDlVWWOiOVWOWDOVDVOlVOOJJ. ςz
IVOiilOVOlVJJJΛDJJLLVOVODlVOVVVVVDVVVVVVOOVVDVDJJJJJ.VVOVlilOVVVVOlVVlVlVOlVVDOVDOVVOVOVOOVVOVVl
IVVOVOOVVOVOlOlVVDOVVlVlVOVVVOVVDOVlVilOOOlilOiiDVOliVODVODVOVVJLDllOlDlVllllVOlOilVOlVDVDOOVVDV
VODVl V1VV101\^ODVVDJJODVOOVΥ1VDJ001VVVVVVOVVOVDVJOV01VDVOVVVOVOV01 VVVDiOJJJLVOVOXOVVDlVOVOVVOO
0IVDVOIiODWIOVOVIDVOIOWOVOOIWDDWWOWDOWDWDVDVDDVIDWOVOiODDOVDIOIIVIDJJJJ-VOOlDOOUOiOlD OZ 0VW0V1D0W0W00VDW01 WDVOVlODiXiXVlWVl VDV0W0W0V1VD1DDVOW0W01VWDWV01D1D WlVOl VWDOl W JJlVVODllVVlVODlVVDOlVOOVOVVOlVVlOVOVOlVOVVOOVDJJJ.VDOlOVVDDXDVOODJJ.OiiiiiViaiOVDVDOVDJJ.VVVVOVV Sl DIVIXWOIVOIVIVDJJ-VIWVOWOOVOVIiVOUDUiVDDWOVOVDIVIDWDOVDIXWXVOOXVXOVWOOWWOVXOVDWOOXV WDWWX VXOVOVDVDXXiIVIOVVVOVVVOIVIWOVOXXVWOVVWDXOVDJJ-VXOVVOVWOVDOWOVDXDJJ. WOXXWOVDXVXO
Ol
VOOJOLVVDVOVDVVVOOVVVaVXVaaXVOVOJJ.OVVVOVOVVOXJJJOVVDVOVVVDXVVVOVVOVVVOOVOViDJLLOVlOVOyyVDlVVOV DlOlWDVlDVDVDVODWDOlVOVDDOlVWOSiVDOVOVWWDVDVOWDVWOVDWOVDDVlDOVOOlV I OLZi&SOSO OOT S8I O N αi OΗS VVJLOϋLLDiaOVOXlDOVVDVVDOXODOVDiiDOVaOVDOOVDOVDOVOiiiOOODOVDOVOVOOVODVDOVlOOlOVDiJLLDOOaVO
Figure imgf000028_0004
LZ
S/.6Z00/600Zd3/X3d ΪW/.ZΪ/600Z OΛV AATGTTCCrTTCTCACACrrcAATGATCTGAGAGATGATCACTCrGAGAAATTTGGTrCCAAGTCTGGTCAGGCCACAGCAACTTCATGGGAGAA TGGACAAACAAGAAGCTGTGGATATCTCATCGACGCTCTCCAATGAAGAGGATGATAGGGTAACGCATCGTGCCCCGCTTTCTCTGGGCTTTGAT
AATGCTG SEQ ID NO. 189 LO€_Os08g38990 3 ATGG ACGGG A AAGAGCAAAGCTTTCATCGATTCAAGCCGGGAAG AAGCTCAAATGGCTGTCTGTCAGAGAGGATGGCTGC AACCCATTTTGGGATCTAAGCCACCAACTTGT
AAATGGACACCTCCAAGATGTCGG AACACAAGAG
1 ATGGTGCCGCCGGCGGCGCACGCGCCGAAGAACCTGG
SEQ ID NO. 191 LOC_OS09GL 1480 1 ATGTGTG
Figure imgf000029_0001
AGAAGAAGCGTGGTGGCGGCGGCGACGACGACTGGGAGGCCGCCTTCCGGGAGTTCATCGCTGGCGACGACGACGACGACGACGGCGGCGTTT TGAGGCGGAGCTACCCGTACCGCGGCGTCCGGCAGCGGCCGTGGGGGCGGTGGGCGTCGGAGATΓΓGCGΛCCCCCTCΛACGGCGCCCGCGTCT
AATGGTTAATT AG SE
SEQ ID NO. 193 LOC_Os09g
SEQ ID NO. 194
Figure imgf000029_0002
GGAACTGA SEQ ID NO. 195 LOC_Os09g35870 1 ATGGCGAGCTACGGCGACGACGGCGTGGAGCTCACCGAGCTGACGCTGGGGCCTCCCGGAG
15
TGGGAGATGTTCGTGTCTTCGTGTAAGAGGATGAGAGTGATGCGAGCTTGTGAGGCGAGAGGCTTGAGCTCAAACGCGTGA SEQ ID NO. 196 L OC_Os09g36730 1
10
ACTACCTCCGGCCTGACCTCAAGCGCGGCAACTTCACCGAGGAGGAGOAIGAGCTGATCATCAAGCTTCACAGCCTTTTAGGCAACAAATGGTC
Figure imgf000029_0003
GGCGTCTGCTTCAGCTGCAGCCTGGGGCTCCCCAAGAGCACAGACTGCAAGTGCAGCAGCTTCCTGGGACTCAGGACAGCCATGCTCGACTTCA GAAGCTTGGAAATGAAATGA SEQ ID NO. 197 LOC_OslOgl l580 1 ATGCCGATCCCGGAAAAGGACGGGGTGGAGGACAATCAAGAGGATGAT ACATTTTCAAGGTTGCAATTGCTTGCACAACAACGACATGCCATGGAGAAGTTCTGGAGGATGAGCCAGGAACAGATCGAAGAATCCGCAGGCA ACGAAGAGCΠTATACTC^CGATTTCCCGTGTCAAGAATATCATCCATGCAAAGGAGGGTGGTATGATGTTATCTGCTGATACCCCAGCTΠTGTA ACAAAACTΓΓGTGAACTTTTCGTCCAGGAGCTCATCCTTCGTGCITGGGTGTGCGCCAACTCACACAATCGTGAAATCATACTTGGCACAGATAT
5 CAATATΓCCTGTTTGTCCTCCTATAGGTCAATCGGGTACTCAGCACACAACATCTACACATGTΠTGATGATGCAAGGAGAATCTATTCACAAGG
Figure imgf000030_0001
CGAGCTACGACACGGCGGGGTTCACCrCCTTCπCGCGCCATCCACCACGCTCACCTCGTCCCTCTCCTTCCCTTCCATGTTCCACGCGTCATCGC 200 LOC_OslOg25230 1 ATGGCGGCGGAGGCGGCGGCGAC
l IC
Figure imgf000030_0002
GGGCATGCACGAGTTCACCAAGATCATTGATGACTCCAAAAACCAAAAACCAGGTAGTCCTTGTTAA SEQ ID NO. 203 LOC_Osl0g28340 1 ATG
CCGCGCGGGCAACAGCTTCGTCGTCTGGGACCCGCACGTCTTCGCCGACCTCCTCCTCCCGCGCCTCTTCAAGCACAACAACTTCTCCAGCTTCGT ) 0 CCGGCAGCl CAACACCTACGGCTTCAGAAAGGTCGATCCTGATAGGTGGGAGTTTGCAAATGAGGGTTTTCTCAGGGGCCAAAGGCATCTCCTG
AGG AAGAAATTGACAGGCTGAAGCGTGATAAGAACATCTTGATCACAGAGGTAGTAAAGCT AAGGCAGGAGCAGCAGGCCACTAAAGATCATG
55 ATGACCCTGGGGAAACAAGTCAGACTGAGCAACTTGATTCGCCGTATTTGTTTGATTCAGGTGTGCTTAATGAGTTAAGTGAACCTGGAATCCCT
CTGGCTCAACAGTTGGGGTATCTGAGCTCTACTAGTCCAAAATAG SEQ ID NO. 204 LOC_Osl0g283402 ATGGACCCGGCGGCGGCGGGCATTG
50
TCAGAAAGGTCGATCCTGATAGGTGGGAGTTTGCAAATGAGGGTTTTCTCAGGGGCCAAAGGCATCTCCTGAAAACGATAAAGAGAAGGAAGC
CCCCGTCCAATGCACCTCCGTCACAACAACAGTCCCTCACATCTTGTCTGGAAGTTGGTGAGTTTGGATTCGAGGAAGAAATTGACAGGCTGAAG
CGTGATAAGAACATCTTC
)5
ACTGAGCAACTTGATTCGCCGTATTTGTTTGATTCAGGTGTGCTTAATGAGTTAAGTGAACCTGGAATCCCTGAGCTGGAGAATCTCGCAGTGAA 70 AGCTCTACTAGTCCAAAATAG SEQ ID NO. 205 LOC_Osl0g283403 ATGGACCCGGCGGCGGCGGGCATTGTGAAGGAGGAGATGCTGGAGTCG
TACGACCTGGTGGAGGACCCGGCCACCGACGGCGTCGTGTCGTGGAGCCGCGCGGGCAACAGCTTCGTCGTCTGGGACCCGCACGTCTTCGCCG ACCTCCTCCTCCCGCGCCTCTTCAAGCACAACAACTTCTCCAGCTTCGTCCGGCAGCTCAACACCTACGGCTTCAGAAAGGTCGATCCTGATAGG
Figure imgf000030_0003
NO. 207 LOC_OslOg30310 ] ATGGTGGTGGTGGTGAGCC
Figure imgf000031_0001
CCATCGACGGCGGCCGGCGCGTCGTCGTCGTCGTCGGGGCAGTCGTCGTTTCCGTTGTTCTACAGCTTCGCTGGACATGAGCTTGGCGGCAACGA 1 ATGGCGGTGCGGAGACGGGGGGCGTCGGCGGTGGCC
Figure imgf000031_0002
TTTGCTCCAAGAGGTACCACTTCATAATTCGCAATGAGAATGAAACTGGCACCTCCAAAACCTGCAGGCGTTGCGGGTTCATGGTGGCACTGCA
55
TTAACTTCTGGGATCGGCTCTGCAGATACCTCAGGGTCAGAAAAGTCTCAGTGATAGATGTTTCGAAGAAGTATGGAGCTGACTACCGAAGCCT CCATGCTGTTGCCACTGGCTGTTCTTGGTATGGCCTGTGGGGATTCAAACTTAGCAGCGGAAGCTTTGG AATCACACCTCAAGACTACTCCAAAG
Figure imgf000031_0003
GTGTGCACCCTAACCCAAGACCACCTATTCCGTGACATCAAGTTCTTGTATGATGCGCTTΓTΓTΛCCCΛTΛCΛCAATGCATCCTTATATGCCAGAA
Γ,A_AAATTATCΛCCATGCCAAGAGGTCTGCAATOA I CCTTTTGGACTGC AAGCAATTCATCAAGCATT ATGATCTGGAAGAAGACTTCTTACCTCA
15 AGGCAGCAACTATCGCTGATCTC AAAGGGGAGGCTGCGAGAGCATTTCGAGACATCTACCT AATGTT ACAGAGTTTTGTAGCTGACCAGCTTCTT
TATCCTGTGACACTTGCCATATGTGGATGCACACTAGGTGTGCTGG AATCAGTGATTTTGATAGGGTTCCAAAGAGATATGTATGTAAATCATGT
50
ATGCGGCTGAAGGATTACTGTGGCCTCAAATCAGCTAA SEQ ID NO. 211 LOC_Osl lg3138O 1 ATGCACCTCCCCGCTGTGGGCATGTCACACCC CACCGAGGGTGAGCTTGTCTTCCACTACCTCTATCGTCGTGCCGTTAACATGCCGCTGCCCTCTGAATTCATTTGTGATGTCAACGTTCTTCCTCA
CCTAACATTTTACTTTGGG AATTCACGGACCGCAGAGCGCACAAAATGGGGTATGCAAGAATTTCGCCTTGCTGGCAATGGTCTTTCGCCTTACC
>5
TTTATTGACTTCCTGCAGCAGGGATCGCACATTGAGTCATCCTCCCCCTGTAGTTGTATAGTTGGCCCCTCTTTGGCAGAGGGAAGTGATGAATCT GCTGGTAGTGTTGACCAAAAGGATTGA SEQ ID NO. 212 LOC_Osl lg47460 1 ATGGTGACAGTGAGAGAGGAGATGCGCAAGGGACCATGGACA
SO GAGCAGGAGGACCTGCAACTGGTATGCACTGTCCGCCTGTTCGGTGACCGCCGTTGGGATTTCGTTGCCAAAGTATCAGGGCTCAATAGGACAG
Figure imgf000031_0004
SEQ ID NO. 215 LOC_Osl 1
ID NO. 216 LOC_Os12g04180 1 ATGCCAAGGAGGAC
Figure imgf000031_0005
ACTATGTGAACCAGTTGGAGAAGTTGTGGAAGTGAGAATGATGAGAGGAAAGGACGATAGCAGGGGATATGCTTTTGTTAATTTTAGAACAAA AGGTTTGGCATTAAAGGCTGTCAAAGAATTG AACAATGC AAAACTGAAGGGAAAGCGGATAAGGGTTTCTTCCTCGCAGGCTAAGAACAAGCTT TTTATTGGAAATGTACCCCATAGTTGGACAGATGATGATTTCAGAAAGGTTGTGGAGG AAGTTGGTCCAGGAGTATTAAAAGCTGATCTCATGA AGGTCTCAAGTGCAAATCGCAATCGGGGTTATGGTTTTGTTGAATACTACAACCATGCATGTGCAGAGTATGCAAGGCAGGAGATGTCTTCCCCA
GAAAAATCTGCCCAAGAATGTTACTCAAGCACAGCTGAAAAGGCT'GTTrGAGCACCATGGTGAAATTGAAAAGGTTGTTCrrTCCTCCrTCAAGA GGAGGTCATGAT AATAGGTATGGTTTTGTTCACTTTAAGGACAGATCCATGGCCATGAGGGCTCTGCAGAACACAGAGAGATATGAGCTTGATG
SEQ ID NO
Figure imgf000032_0001
GCKSATATGCTTTTGTTAATTTTAGAACAAAAGGTTTGGCATTAAAGGCTGTCAAAGAATTGAACAATGC AAAACTGAAGGGAAAGCGGATAAGG
20 GTTTCTTCCTCGCAGGCTAAGAACAAGCTTTTTATTGG AAATGTACCCCATAGTTGGACAGATGATGATTTCAGAAAGGTTGTGGAGG AAGTTGG TCCAGGAGTATTAAAAGCTGATCTCATGAAGGTCTCAAGTGC AAATCGCAATCGGGGTTATGGTTTTGTTGAATACTACAACCATGCATGTGCAG
TTG AAAAGGTTGTTCTTCCTCCTTC AAGAGGAGGTCATGAT AATAGGTATGGTTTTGTTCACTTTAAGGACAGATCCATGGCCATGAGGGCTCTG
25
CAACAGCCTGGTGGACAGTTGCCGCTGGCTTCGCCGCCGCCGCAGC AAGCTGGACATCGTAGCGGCAGTGGAGGACGTCATGGCGGCAGTGGCG
30 GGCCGGCGCCGCCCGTACTGA SEQ ID NO 218 LOC_Osl2g041803 ATGCCAAGGAGGACAGATAATGCTGCTTCTGCCAATTCAGTTGAACCAG
AAAAATCAGAAGAATGTTTGGAGTTTGATGATGATGAGGAGGAGGAGGTAGAAGAGGAGGAAATTGAAT ATGAAGAAATTGAGGAGGAGATA
TGGTTCTG AAGTATATGTTGGAGGCATCTCCAGTGATGTATCTTCTGAAGATCTGAAGAGACT ATGTGAACCAGTTGGAGAAGTTGTGGAAGTGA J 5 GAATGATGAGAGGAAAGGACGATAGCAGGGGATATGCTTTTGTTAATTTTAGAACAAAAGGTTTGGCATTAAAGGCTGTCAAAGAATTGAACAA
TGCAAAACTG AAGGG AAAGCGGATAAGGGTTΓCTTCCTCGCAGGCTAAGAACAAGCTTTTTATTGG AAATGTACCCCATAGTTGGACAGATGAT
TTGTTGAATACTACAACCATGCATGTGCAGAGTATGC AAGGCAGGAGATGTCTTCCCCAACATTC AAACTAGATTCAAATGCTCCTACAGTCAGC tO GAAAAGGCTGTTTGAGCACCATGGTGAAATTGAAAAGGTTGTTCTTCCTCCTTCAAGAGGAGGTCATGATAATAGGTATGGTTTTGTTCACTTTA
TACCAGGTGCCTATGGTGCTGCTCCTGCTAGTACTGCArAr.rrTATGCTCTλTCCTCCAAGAGCTCCTCCAGGTGLAOC AATGGTTCCAATGATG
15
AGACGACAACAGCAGTAGCCGCCACAAAGGCCGGCGCCGCCCGTACTGA SEQ ID NO 219 LOC_Osl2g041804 ATGCCAAGGAGGACAGATA ATGCTGCTTCTGCCAATTCAGTTGAACCAGAAAAATCAGAAGAATGTTTGGAGTTTGATGATGATGAGGAGGAGGAGGT AGAAGAGGAGG AAA
50
TGAACCAGTTGGAGAAGTTGTGG AAGTGAGAATGATGAGAGGAAAGGACGATAGCAGGGGAT ATGCTTTTGTT AATTTT AGAACAAAAGGTTTG GCATTAAAGGCTGTCAAAGAATTGAACAATGCAAAACTGAAGGG AAAGCGGATAAGGGTTTCTTCCTCGCAGGCTAAGAACAAGCTTTTT ATTG
AAGTGC AAATCGCAATCGGGGTTATGGTTTTGTTGAATACTACAACCATGCATGTGCAGAGTATGCAAGGCAGGAGATGTCTTCCCCAACATTCA
>5
CTGCCCAAGAATGTTACTCAAGCACAGCTGAAAAGGCTGTTTGAGCACCATGGTGAAATTGAAAAGGTTGTTCTTCCTCCTTC AAGAGGAGGTC ATGATAATAGGTATGGTTTTGTTCACTTTAAGGACAGATCCATGGCCATGAGGGCTCTGCAGAACACAGAGAGATATGAGCTTGATGGTCAGGT
Figure imgf000032_0002
AGCAGGCCAGGTGCAAAGCGGCAGAGAGGAGACGACAACAGCAGTAGCCGCCACAAAGGCCGGCGCCGCCCGTACTGA SEQ ID NO 220 LOC _Osl2g06010 1 ATGCTAAGAGATATGAACGATCAACCCACAAGGGTGGATGCTTTTGATGGTTTTGATATTAGAGAAGGAAAAGGTGAAGACTCA ATAGAT AGTCAACTTGCTGACCAGACAAATATGCTGCACGTCTCGGAGGTGGCAAGCCTTGGACAGAAGAAGGGCAAGGATTTGGTT AGTAAGG
35 AAACCAGCTCAATACCTTC AATGGAGATGATCCCAGC AATTAGAGACCTGAATGTACAGCAAGTTTCCTTTGGAGATGGCTCTACTGAAGAATTT GGAAGCCCAACAAAGAGG AAAGCTTTGCCGACAACAAAGAGCTCAGGCATTGTCCAGCAGGCTGTTTTGGAGTATGGCCAGAGAGGAGCAGAG
GGCTGCTGGTAAACTGGCGGGACCTATGAGAGGACAAAGTGTGGAGAAGATGAGTCGCTT AAGAGGGAGACTGGGTCTT AGGGGTTTTACTGGT
70 GTATGTGCAATTGTCCCCAGAGG AACCACAGTGGCATGTTACTTTTGTGTATGGTGAACCCCGTGTTGAGAATAGACATCGAATGTGGTCGTTGC TGAGAACAATCCACCAATCTTCGTCCTTGCCCTGGGCCGTCATTGGTGATTTTAATG AAACTATGTGGCAGTTTGAACACTTCTCAAGAACCCCA
CATCTTGTCTCCCCATGTTCTGATCACTGCCCAATTTTGCTG AACCTGGTAGTG AAAGATCCCCACCAACTTCGTCAGAAATGCCTCCATTATGAG
75
CTGCAGCGGTCCAGAGTTAATTGGCT AAAGGATGAGGATCGAAATACGAAATTTTTTCATAGCCGGGCAGT ATGGAGAGCAAAGAAGAATAAA ATCTCCAAACTACGGGATGCAAATGAAACTGTTCACAGTTCGACAATGAAGTTGGAGAGCATGGCAACTGAATATTTTCAGGATGTGTACACTG
50 CTGATCCAAATCTTAATCCTG AAACCGTTACTCGTCTTATCCAGG AAAAGGTTACGΠATATCATGAATGΛGAAGCTTTGTGAGGATTTTACGGAG
GATG AAATTTCTCAGGCAATTTTCCAAATTGGGCCCCTG AAATCACCTGGTCCAGATGGCTTTCCAGCCAGGTTCTATCAGCGCAACTGGGGCAC AATTAAAGCTGATATAATCGGTGCAGTTCGCCGTTTCTTCCAAACTGGACTGATGCCTGAAGGGGTCAATGATACGGCCATTGTTCTTATCCCTA AGAAGGAACAACCAGTAGATTTGCGAGACTTTCGGCCGATAAGCTTATGTAATGTTGTCTACAAAGTGGTATCCAAATGCCTGGTTAACAGATT GAGACCGATCCTAGATGATCTTGTTTCTGTGGAACAAAGTGCCTTTGTGCAGGGAAGAATGATAACTGACAACGCTCTCTTAGCCTTTGAATGTT
55
CTTGGAGATGGCAATGAATAAGTTGGGTTTTGCTCGCCGATGGGTTAACTGGATTATGAAGTGTGTTACCTCGGTGAGATACATGGTAAAATTCA ATGGAACCCTACTTCAATCATTCGCTCCAACTAGAGGTTTAAGGCAAGGAGATCCTCTCTTGCCCTTCCTATTTTTGTTCGTGGCAGATGGACTGT CATTGCTGCTGAAGGAAAAGGTGGCCCAGAATTCTRTGACCCCTTTTAAAGTCTGCAGAGCTGCCCCTGGAATTTCCCACTTACTCTTTGCTGATG CCCAGCCAAATGTΓCTATCCTCATGGGAGGAGCCTCGACCCCGGCTGTCAGTGAGGCTATATCAGAAATΠTACAAGTGGAAAGAGACAGGTTΓ GAAGATAGATATCTGGGATTTCCTACCCCGGACKKIACGGATGCACAAAGGACGTTTTCAGAGTCTGCAAGCTAAGATTRGGAAAAGAGTGATCC
ATTACCTGAATCTGTTATTGATGATCTAACGAAACTAACAAAGAACTTTTGGTGGGATTCCATGAACGGCCAGAGAAAAACGCATTGGAAAGCC TGGGATTCGTTAACGAAACCAAAAAGCTTGGGTGGCCITGGTTTCAGAGACRATCGGCTTTTCAACCAGGCACTTCTGGCCCGGC AAGCATGGA
CGTCCCCAGCATGGAGAAGCATTGAGTATGGCCTAGATTTGTTAAAAAAGGGCATTATTTGGAGAGTGGGTAATGGAAATTCAATTCGGATCTG
AGATGGATCCTGGGATGTGCCGAAAATCCATCAGTATTrcCATAATTTGGATGCAGAGGTTATACTGAACATCTGCATTTCTTCAAGATCGGAGG TTCTAGCTCTGGGACAAATAATATrAACAAAGCATGGGAGATGATrTGGAAATGCAAGGrTCCT-CAAAAGGTCAAAATCTTTGCTrGGAGGGTG
GATGCTCATGCTCTCTGCAGGTGCATTC AAGCTAGCCAGCTTTGGTCATGTATGCATAAATCGGG AAGTGTTTCAGTAGATATAAAGGCCTCTGT TrTAGGAAGGTTTTGCM^GTTrGATTGCCTTGAAAAAATTCCAGAATATGAACAGGCCATGTTCTTGATGACTCTGTGGCGCAACTGGTACGTGA
CCATGCTGGGAGAGACCAAAAGATGGCTGGATGAAATTAAATGTGGATGGATCCTTTGACGCTAGCTCCGGTAAGGGGGGTCTTGG AATGATCC
GGGCTTAAGCTGGCGATCCATTGGACTTTGCTTCCGATTCAGGTGG AAACAGATTGTGCCTCAGTGGTCCAGCTTCTGCAGGGTATCGGTAGAGA TTTTTCTC
CCTTCCAGACGCTT
Figure imgf000033_0001
TTGTTCTAATTAATCTCTTAGTAGTATAA SEQ ID NO. 221 LOC_Osl2g37690 I ATGGCAGCATCGCAGAGGAGCAGGAGCACGGCGGCGCAGCT
CCCGACGTGAAGCGCGGCAACTTCACCGCCGACGAGCAGCTGCTCATCCTCGACCTCCACTCCCGATGGGGCAACCGGTGGTCAAAGATAGCGC
CCTTTATGCAA
ATGTGCAGGACAATGAGATGGTG AATGGTGGGGACTACTGGATGCAGGGAGCAAATAAAGGGTTTTGTAGTAATTATGAGTCAGAGCAACTTCA TCCTCATGAGCATAGCCAGTITCAGGATCCAGATCTTGTrGGTTGGGTTCAGGGCTTrTCTGAGGGCATrTCCGAGAATTTTTGGAGCTTGGAGG ACATTTGGAAGATGTAG SEQ ID NO. 222 LOC_Osl2g39400 1 ATGGCGGTGGAGGCGGTTCTTGAGGCGTCGAGAAGTAGTAGTGAGGAGGAGG
CGGCGACCGCAGCTGCCGCCCTCCGAGGAGGAGT ACCTCGCGCTCTGΓΓTCCTC ATGCTGCCCCGCGGGCGACGCGACGGCGACOACGTGGCGG
Figure imgf000033_0002
CTCGCCTTCAAGAAGCCCAGGCTCATGATCCCGGCATAG SEQ ID NO. 223 LOC_Osl2g41650 1 ATGAACCAGTTCG rCCCTGATTGGAACACCA CCAGCA TGGGCGACGGCTTTGCGCCATTAGGCGAAGACGACGGGCTCGTCGAGCTGCTATGGTGCAATGGCCACGTCGTCATGCAGAGCCAGGC
Figure imgf000033_0003
CTGA SEQ ID NO. 224 LOC_Osl2g41650 2 ATGAACCAGTTCGTCCCTGATTGGAACACCACCAGCATGGGCGACGGCTTTGCGCCATTAGGCGAA GCGGCGGCGGCGGCGGCGATGGCGGAGGATGAGTCGGCGTCGTGGTTTCAGTACCCGGTCGACGACGTGCTTGAGAAGGACCTGTTCACCGAGC
SEQ ID NO. 225 LOC_Osl2g416503 ATGAACCAGTT
Figure imgf000033_0004
Figure imgf000034_0001
A ΓACCTCACTGCΛACAAAGT AAACTACTCT AAATTT AATCTGCAAGCGCCATT ACATAATT ACAACT AG SEQ ID NO. 227 LOC_Osl2g4l650 5 A
RGAACCAGTTCGTCCCTGATTGGAACACCACCAGCATGGGCGACGGCTTTGCGCCATTAGGCGAAGACGACGGGCTCGTCGAGCTGCTARGG RG
Figure imgf000034_0002
ATGATGAGCTTCAACAAGAGCCAAGAAGGAT IT
Figure imgf000034_0003
GCGGGCGAATTCTTATTCCACCΛAA1 AL GCCAGCTGATGCACCAATTT ATGTGAATGCAAAACAGTGTTCAGCCATCATRCGACGTCGCCATGCT
GTGCCCCGCCGCATCTCCCAGCTCGGAGCAGTGCAACCCAAGCAGCΓ.TTTΓCΛGCCTCTCCGGGTCAGAGGTGTCGAGCATΛTA IOAACACGAA CTTCAAG RGGACAGCAGCCTCTGATGGCTGCTGTGACCTCCTCAAAGCATGA SEQ ID NO 230. LOC_OSL2G42400 1 ATGATGAGCTTCΛACAAG
Figure imgf000034_0004
Suφrisingly the invention solves the above technical problem by providing an isolated polynucleotide selected from the group comprising'
(a) polynucleotide consisting of a sequence selected from the group comprising SEQ ID NO. 1 to SEQ ID NO. 4, SEQ ID NO. 35, SEQ ID NO. 36, SEQ ID NO. 38 to SEQ ID NO. 40, SEQ ID NO. 43, SEQ ID NO 49, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 53, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61 to SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 80 to SEQ ID NO 82, SEQ ID NO 90 to SEQ ID NO. 97, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 108, SEQ ID NO 1 1 1 , SEQ ID NO 1 14, SEQ ID NO. 1 16, SEQ ID NO. 1 17, SEQ ID NO. 120, SEQ ID NO. 124, SEQ ID NO. 125. SEQ ID NO. 128, SEQ ID NO. 129, SEQ ID NO. 133, SEQ ID NO 134, SEQ lD NO. 136 to SEQ ID NO. 138, SEQ ID NO. 140, SEQ ID NO. 142, SEQ ID NO. 150, SEQ ID NO. 152, SEQ ID NO. 154 to SEQ ID NO. 156, SEQ ID NO. 161 , SEQ ID NO. 166, SEQ ID NO. 167, SEQ ID NO. 172, SEQ ID NO. 174, SEQ ID NO. 184, SEQ ID NO. 194 to SEQ ID NO. 196, SEQ ID NO. 200 to SEQ ID NO. 206, SEQ ID NO. 210, SEQ ID NO. 212, SEQ ID NO. 214 to SEQ ID NO. 220, SEQ ID NO. 223 to SEQ ID NO. 227,
(b) a polynucleotide consisting of a sequence having at least 70%, preferred 80%, more preferred 90%, especially preferred 98% sequence identity to a sequence selected from the group comprising SEQ ID NO. 1 to SEQ ID NO. 4, SEQ ID NO. 35, SEQ ID NO. 36, SEQ ID NO. 38 to SEQ ID NO. 40, SEQ ID NO. 43, SEQ ID NO. 49, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 53, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61 to SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 80 to SEQ ID NO. 82, SEQ ID NO. 90 to SEQ ID NO. 97, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 108, SEQ ID NO. I l l, SEQ ID NO. 114, SEQ ID
NO. 116, SEQ ID NO. 117, SEQ ID NO. 120, SEQ ID NO. 124, SEQ ID NO. 125, SEQ ID NO. 128, SEQ ID NO. 129, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 136 to SEQ ID NO. 138, SEQ ID NO. 140, SEQ ID NO. 142, SEQ ID NO. 150, SEQ ID NO. 152, SEQ ID NO. 154 to SEQ ID NO. 156, SEQ ID NO. 161, SEQ ID NO. 166, SEQ ID NO. 167, SEQ ID NO. 172, SEQ ID NO. 174, SEQ ID NO. 184, SEQ ID NO. 194 to SEQ ID NO. 196, SEQ ID
NO. 200 to SEQ ID NO. 206, SEQ ID NO. 210, SEQ ID NO. 212, SEQ ID NO. 214 to SEQ ID NO. 220, SEQ ID NO. 223 to SEQ ID NO. 227,
(c) a polynucleotide of (a) and/or (b), wherein said sequence is modified, to alter an abiotic stress tolerance of a plant, preferred drought tolerance.
Polynucleotides of the present invention that are variants of the polynucleotides provided herein will generally demonstrate significant identity with the polynucleotides provided herein. Of particular interest are polynucleotide homologs having at least about 60% sequence identity, at least about 70% sequence identity, at least about 80% sequence identity, at least about 85% sequence identity, and more preferably at least about 90%, 95% or even greater, such as 98% or 99% sequence identity with polynucleotide sequences described herein.
The term "homology" when used in relation to nucleic acids refers to a degree of complementarity. There may be partial homology or complete homology (in other words, identity). "Sequence identity" refers to a measure of relatedness between two or more nucleic acids, and is given as a percentage with reference to the total comparison length. The identity calculation takes into account those nucleotide residues that are identical and in the same relative positions in their respective larger sequences. A partially complementary sequence is one that at least partially inhibits (or competes with) a completely complementary sequence from hybridizing to a target nucleic acid. The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or Northern blot, solution hybridization and the like) under conditions of low stringency. A substantially homologous sequence or probe will compete for and inhibit the binding (in other words, the hybridization) of a sequence which is completely homologous to a target under conditions of low stringency. This is not to say that conditions of low stringency are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (in other words, selective) interaction. The absence of non- specific binding may be tested by the use of a second target which lacks even a partial degree of complementarity (for example, less than about 30% identity); in the absence of non-specific binding the probe will not hybridize to the second non-complementary target.
Depending on the intended use, the polynucleotides of the present invention may be present in the form of DNA, such as cDNA or genomic DNA, or as RNA, for example mRNA. The polynucleotides of the present invention may be single or double stranded and may represent the coding, or sense strand of a gene, or the non-coding, antisense, strand.
The term "isolated" is used herein in reference to purified polynucleotide or polypeptide molecules. As used herein, "purified" refers to a polynucleotide or polypeptide molecule separated from substantially all other molecules normally associated with it in its native state. More preferably, a substantially purified molecule is the predominant species present in a preparation. A substantially purified molecule may be greater than 60% free, preferably 75% free, more preferably 90% free, and most preferably 95% free from the other molecules (exclusive of solvent) present in the natural mixture. The term "isolated" is also used herein in reference to polynucleotide molecules that are separated from nucleic acids which normally flank the polynucleotide in nature. Thus, polynucleotides fused to regulatory or coding sequences with which they are not normally associated, for example as the result of recombinant techniques, are considered isolated herein. Such molecules are considered isolated even when present, for example in the chromosome of a host cell, or in a nucleic acid solution. The terms "isolated" and "purified" as used herein are not intended to encompass molecules present in their native state.
In terms of the invention abiotic stress is the negative impact of non-living factors on the living organisms. The non-living variable influences the environment beyond its normal range of variation to adversely affect the population performance or individual physiology of the organism. Abiotic stress factors, or stressors, are naturally occurring, often intangible, factors such as intense sunlight or wind that may cause harm to the plants and animals in the area affected. Abiotic stress comes in many forms. The stressors include: high winds, extreme temperatures, heat, cold, strong light, water deficit, drought, flood, and other natural disasters, such as tornados and wildfires, poor edaphic conditions like rock content and pH, high radiation, compaction, contamination, non-optimal nutrient or salt levels, non-optimal light levels and other, highly specific conditions like rapid rehydration during seed germination. As used herein, the terms "tolerant" or "tolerance" refers to the ability of a plant to overcome, completely or to some degree, the detrimental effect of an environmental stress or other limiting factor. In embodiments of the present disclosure, the transgenic plants are preferred tolerant to conditions including, but not limited to osmotic stress, particularly water-deficit and/or drought conditions (e.g., prolonged and/or extreme water-deficit).
As used herein, the term "drought" and "water-deficit" refers to environmental conditions where the amount of water (e.g., rainfall or other available water source for plant life) is less than the average water conditions for the particular environment, or the amount of water available is less than the amount of water typically needed by a certain species of plant or by a plant growing in a particular environment. Typically a "drought" indicates a more intense or more prolonged period of reduced water availability than a "water-deficit".
As used herein, the terms "drought-resistance" or "drought-tolerance" refer to the ability of a plant to recover from periods of drought stress (i.e., little or no water for a period of days).
In a preferred embodiment the invention relates to an isolated polynucleotide, wherein the polynucleotide is selected from the group comprising SEQ ID NO 48, SEQ !D NO 43, SEQ ID NO 57, SEQ ID NO 228 to SEQ ID NO 230. It was very surprising that these sequences can be used to alter a plant's tolerance to drought stress. These sequences showed particularly good results in rice.
"Expression" means the production of a protein or nucleotide sequence in the cell itself or in a cell-free system. It includes transcription into an RNA product, post-transcriptional modification and/or translation to a protein product or polypeptide from a DNA encoding that product, as well as possible post-translational modifications.
Further preferred is an isolated polynucleotide selected from the group comprising:
(a) a nucleotide sequence encoding a polypeptide, wherein said nucleotide sequence is selected from the group consisting of SEQ ID NO. 1 to SEQ ID NO. 4, SEQ ID NO. 35, SEQ ID NO.
36, SEQ ID NO. 38 to SEQ ID NO. 40, SEQ ID NO. 43, SEQ ID NO. 49, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 53, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61 to SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 80 to SEQ ID NO. 82, SEQ ID NO. 90 to SEQ ID NO. 97, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 108, SEQ ID NO. I l l , SEQ ID NO. I 14, SEQ ID NO. 1 16, SEQ ID NO. 1 17, SEQ ID NO. 120, SEQ ID NO. 124, SEQ ID
NO. 125, SEQ ID NO. 128, SEQ ID NO. 129, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 136 to SEQ ID NO. 138, SEQ ID NO. 140, SEQ ID NO. 142, SEQ ID NO. 150, SEQ ID NO. 152, SEQ ID NO. 154 to SEQ ID NO. 156, SEQ ID NO. 161, SEQ ID NO. 166, SEQ ID NO. 167, SEQ ID NO. 172, SEQ ID NO. 174, SEQ ID NO. 184, SEQ ID NO. 194 to SEQ ID NO. 196, SEQ ID NO. 200 to SEQ ID NO. 206, SEQ ID NO. 210, SEQ ID NO. 212, SEQ ID NO. 214 to SEQ DD NO. 220, SEQ ID NO. 223 to SEQ ID NO. 227, (b) a nucleotide sequence encoding a polypeptide, wherein said polypeptide is selected from the group consisting of SEQ ID NO. 231 to 234, SEQ ID NO. 265, SEQ ID NO. 266, SEQ ID NO. 268 to SEQ ID NO. 270, SEQ DD NO. 273, SEQ ID NO. 279, SEQ ID NO. 280, SEQ DD NO. 282, SEQ DD NO. 283, SEQ DD NO. 287, SEQ ID NO. 289, SEQ DD NO. 291 to SEQ DD NO. 295, SEQ DD NO. 297, SEQ DD NO. 310 to SEQ DD NO. 312, SEQ DD NO. 320 to SEQ DD NO. 327, SEQ DD NO. 330, SEQ DD NO. 332, SEQ DD NO. 338, SEQ DD NO. 341, SEQ DD
NO. 344, SEQ DD NO. 346, SEQ DD NO. 347, SEQ DD NO. 350, SEQ DD NO. 354, SEQ DD NO. 355, SEQ DD NO. 358, SEQ DD NO. 359, SEQ DD NO. 363, SEQ DD NO. 364, SEQ DD NO. 366 to SEQ DD NO. 368, SEQ DD NO. 370, SEQ DD NO. 372, SEQ DD NO. 380, SEQ DD NO. 382, SEQ DD NO. 384 to SEQ DD NO. 386, SEQ DD NO. 391, SEQ DD NO. 396, SEQ DD NO. 397, SEQ DD NO. 402, SEQ DD NO. 404, SEQ ID NO. 414, SEQ DD NO. 424 to SEQ DD
NO. 426, SEQ DD NO. 430 to SEQ DD NO. 436, SEQ DD NO. 440, SEQ DD NO. 442, SEQ DD NO. 444 to SEQ DD NO. 450, SEQ DD NO. 453 to SEQ DD NO. 457,
(c) a variant of any of the nucleotide sequences of (a) or (b) that has at least 70%, preferred 80%, more preferred 90%, especially 98% sequence identity to a sequence of (a) or (b) (d) a nucleotide sequence that hybridizes to any of the nucleotide sequence of (a) or (b) under stringent conditions
(e) a polynucleotide of (a) and/or (b), wherein said sequence is modified, to alter an abiotic stress tolerance of a plant, preferred drought tolerance.
Especially preferred is an isolated polynucleotide selected from the group comprising SEQ DD NO. 67, SEQ DD NO. 80 to SEQ DD NO. 82, SEQ DD NO. 90 to SEQ DD NO. 97, SEQ DD NO. 100, SEQ DD NO. 102, SEQ DD NO. 108, SEQ DD NO. 111, SEQ ID NO. 114, SEQ DD NO. 116, SEQ DD NO. 117, SEQ DD NO. 120, SEQ DD NO. 124, SEQ DD NO. 125, SEQ DD NO. 128, SEQ DD NO. 129, SEQ DD NO. 133, SEQ DD NO. 134, SEQ DD NO. 136 to SEQ DD NO. 138 and/or SEQ DD NO. 140. Surprisingly these sequences can be used to stabilize the photosynthetic activity during drought stress, which results in a stabilized photosynthetic yield. These sequences were highly responsive and therefore very suitable for transfection.
In an also preferred embodiment the invention relates to an isolated polynucleotide selected from the group comprising SEQ DD NO. 1 to SEQ DD NO. 4, SEQ DD NO. 35, SEQ DD NO. 36, SEQ DD NO. 38 to SEQ DD NO. 40, SEQ DD NO. 43, SEQ DD NO. 49, SEQ DD NO. 50, SEQ DD NO. 52, SEQ DD NO.
53, SEQ DD NO. 57, SEQ DD NO. 59, SEQ DD NO. 61 to SEQ DD NO. 65. These sequences can be used to alter a plants tolerance to drought particularly well. Plants comprising these sequences or modifications thereof showed a better growth during drought stress compared to control plants.
Also preferred is an isolated polynucleotide selected from the group comprising NO. 142, SEQ ID NO. 150, SEQ ID NO. 152, SEQ ID NO. 154 to SEQ ID NO. 156, SEQ ID NO. 161, SEQ ID NO. 166, SEQ ID NO. 167, SEQ ID NO. 172, SEQ ID NO. 174, SEQ ID NO. 184, SEQ ID NO. 194 to SEQ ID NO. 196, SEQ ID NO. 200 to SEQ ID NO. 206, SEQ ID NO. 210, SEQ ID NO. 212, SEQ ID NO. 214 to SEQ ID NO. 220, SEQ ID NO. 223 to SEQ ID NO. 227. Said sequences are especially preferred for the modification of stress tolerance in monocotyledons.
The polynucleotides of the present invention find particular use in generation of transgenic plants to provide for increased or decreased expression of the polypeptides encoded by the polynucleotides provided herein. As a result of such biotechnological applications, plants, particularly crop plants, having improved properties are obtained. Crop plants of interest in the present invention include, but are not limited to soy, cotton, canola, maize, wheat, sunflower, sorghum, alfalfa, barley, millet, rice, tobacco, fruit and vegetable crops, and turf grass.
In another preferred embodiment the invention relates to a nucleotide construct comprising a one of the mentioned polynucleotide, wherein said polynucleotide is operabiy linked to a promoter that drives expression in a plant cell.
By "operabiy linked" is intended a functional linkage between a promoter and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA sequence corresponding to the second sequence. Generally, operabiy linked means that the nucleic acid sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in the same reading frame. The cassette may additionally contain at least one additional gene to be cotransformed into the organism. Alternatively, the additional gene(s) can be provided on multiple expression cassettes.
A construct will generally include a plant promoter to direct transcription of the protein-encoding region or the antisense sequence of choice or gene-specific antisense region of sequence or gene- specific region of sequence appropriate for the design of gene-specific artificial micro RNA. Numerous promoters, which are active in plant cells, have been described in the literature.
Also preferred is the nucleotide construct, wherein said promoter is a constitutive promoter, especially preferred a tissue-preferred promoter. Further preferred is the nucleotide construct, wherein said promoter is an inducible promoter, preferred an stress-inducible promoter.
5 In another preferred embodiment the invention relates to an isolated polypeptide encoded by one of the mentioned polynucleotides and/or nucleotide constructs.
Preferred are polypeptides consisting of a sequences selected from the group comprising SEQ ID NO. 231 to SEQ ID NO. 460.
10 SEQ ID NO. 231: LOC_Os01g07120 1 MLFRFVSCNVQLCGIIELPHWVRKKRTRRKSDGPDSIAETIKWWKEQNQKLQEENSSRKAPAKGSKKGCMAG
KDELESPPFIVANGPAVLYQPDKKDVLERVVPEVQDVKTEGSNGLKRVCQERKNM EVCESEGIVLHKEVNISYDYFNVHEVVEMIIVELSADQKTEVH EEYQEGDDGFSLFSY* SEQ ID NO. 232: LOC_Os01g071202 MERGEGRRGDCSVQVRKKRTRRKSDGPDSIAETIKWWKEQNQKLQEENSSRKAPA
ELSADQKTEVHEEYQEGDDGFSLFSY* SEQ ID NO. 233 LOC_Os01g07430 I MLIARQVIWFLDLTRLALHSFHCAGLRRSGKSCRLRWMNYLRPDL
RAR* SEQ ID NO. 234 LOC_Os01gl l350 1 MAQLPPKIPTMATAWPEFGGGHHHHAAHGHHHQRSPSMGAFLAAPLPPFPLPPPAPANGGAQQQQQQ ZO QQHQPSWVDEFLDFSATKRGAHRRSVSDSV AFLDPVSDDNAGVGAHDFDRLDDDQLMSMFSDDLQPPPPQQQPAAP AASASSPSDHNSMNDEKQDK
FKDGGTEEGDREAAANLPPAKPQERGIPTGGRGPGPRPRQCRPDRQRGGRRGRAMPALVIGRDPDAL* SEQ ID NO. 235 LOC_Os01gl 1910 1 MGSA
25 SEVTTLGGRVRLAFLVSCGSRGGAAAAAMASVRHALQSVLDKASSGFDFAPRAASLLGSKRRKVSTFESSSSSS* SEQ ID NO. 236 LOC_Os01gl9330
WGNRWSRIAQHM PGRTDNEIKNYWRTRVQKHAKQLGCDVNSRQFKDVMRHLWMPRLVERIHAAAASSERAAPPPC AAAPASHSGMCHSPDPSTTTS DIWSQQPY* SEQ ID NO. 237 LOC_Os01g39020 1 MLKPQTPRARRAAHPNSHMASSSSSSSLCRLLIPRPTTRRFSGGGGEGGMAAAAPVKREVKPEA
TPDRWEFANEAFLAGQKHLLKNIKRRRVSKPLVDSQLRNKASVVFGQPEAPGEVVSLKRDRAALRAEVIiViLKQQYNAOICS)QLIAMEEMVRNIERRQQ QTIGFFAKVLTNPAFVQQVLLNYVNKNGLRGAAKRQRLM ENEEQHADSPLNKGMEAASVM EADVSPGSTGCGTVGKVETTPMCNFQNIENMCDDV WEELDALPETGMEQEEKAGIGSFDVEEFVGRPCGWVDDCPYLVEPMQFVEH* SEQ ID NO. 238 LOC_Os01g43590 1 MDGLHTELALGLIGCCGGD
35
GVHQVPELGGGGVMGLTTDGEAKVEPPFPFCLLGQAFF* SEQ ID NO. 239 LOC_Os01g435902 MDGLHTELALGLIGCCGGDGQQQTAPFVAKTYQ CSFGGGAGEHQV AAAAASVGMSGEEEDAAEDVLAKEAALFEEVQRLRHEQTAIGEELARMSQRLQATERRPDQLMSFLAKLADDPNA VTGHLLEQA
AKVEPPFPFCLLGQAFF* SEQ ID NO. 240 LOC_Os01g49830 1 MDSSSCLVDDTNSGGSSTDKLRALAAAAAETAPLERMGSGASAVVDAAEPGAEA DSGSGGRVCGGGGGGAGGAGGKLPSSKFKGVVPQPNGRWGAQIYERHQRVWLGTFAGEDDAARAYDV AAQRFRGRDA VTNFRPLAEADPDAAAE LRFLATRSKAEVVDMLRK HTYFDELAQSKRTF AASTPSAATTTASLSNGHLSSPRSPFAPAAA RDHLFDKTVTPSDVGKLNRLVIPKQHAEKHFPLQ LP
1-5 KAVRLFGVDLLTAPAPVEQMAGCKRARDLAATTPPQAAAFKKQCIELALV* SEQ ID NO. 241 LOC_Os01g53220 1 MMGGECKVHQLQAAGDGGP
KGGAAPGCRELCEEGEEVRGTIEA VQRLREEQRGMEEELQAM DQRLRAAES RPGQMMAFLAKLADEPGVVLRAM LAKKEELAAAGNNGSDPCKRR RIGADTGRGGVATGGDAAEMAQSRGTVPFPFSVLGQVFY* SEQ ID NO. 242: LOC_Os01g53650 1 MAYETSSDHQLAAAAEFLAALQVHLAGAEAS
• SEQ ID NO. 243 LOCJDsO Ig54210 1 MEVTAEFGGAYYGGAAGREKKALQQGCGDHFAVDDLLVLPYGEEDETTREGEATGGKEEAAGFGNASAD
55 GVSPVVSGDDFLIHHHLRTDFRPPI* SEQ ID NO. 244 LOC_OS01G55430 1 MVPWRRSSSSSSAPSSRPARRPARTNARVSPDVSSELSPLAGEEGAGEE
R N MDYRQPLSAFQAFAICLSNFGTKLA* SEQ ID NO. 245 LOC_OS01G55430 2 MVPWRRSSSSSSAPSSRPARRPARTNARVSPDVSSELSPLAGEEGAGE JO
TMDYRQPLSAFQAFAICLSNFGTKLA* SEQ ID NO. 246 LOC_OS01G55750 1 MILGSNQAAAAAAAAAAAEEEAAELARKHTAAVATSRQWSAQTES RIVRVSRVFGGKDRHSKVKTVKGLRDRRVRLSVPTAIQLYDLQDRLGLNQPSKVVDWLLNAARHEIDKLPPLQFPPQDHLCMGHHHHLPSAMPLMHH
NGSVQDSGAGSPQVAAAAAHHTSPFPSLLSLAPGPHHQLVFYSSEAEQFTVDNLGSQGLSLSSARAFHDQTGS* SEQ ID NO. 247 LOC_OS01G557502
GAAHIVGRFPAGGYHRFMGLNNPLGMVNSAAGAAMPFHY AGESWNNGSVQDSGAGSPQV AAAAAHHTSPFPSLLSLAPGPHHQLVFYSSEAEQFTV
70 DNLGSQGLSLSSARAFHDQTGS* SEQ ID NO. 248 LOC_Os01g55750 3 MILGSNQAAAAAAAAAAAEEEAAELARKHTAAVATSRQWSAQTESRIVR
VSRVFGGKDRHSKVKTVKGLRDRRVRLSVPTAIQLYDLQDRLGLNQPSKVVDWLLNAARHEIDKLPPLQFPPQDHLCMGHHHHLPSAMPLMHHHGH
VQDSGAGSPQVAAAAAHHTSPFPSLLSLAPGPHHQLVFYSSEAEQFTVDNLGSQGLSLSSARAFHDQTGS* SEQ ID NO. 249 LOC_Os01g58420 1 MA PRAATVEKVAVAPPTGLGLGVGGGVGAGGPHYRGVRKRPWGRY AAEIRDPAKKSRVWLGTYDTAEEAA RAYDAAAREFRGAKAKTNFPFASQSMV
AVAQSDSDSSSVVDLAPSPPAVTANKAAAFDLDLNRPPPVEN* SEQ ID NO. 250 LOC_Os01g60490 1 MVKRSDNMDSSSECSRGAHKRLLQDSRSY DQEN AM KKVCIGTRTEYTYAPYHDGYQWRKYGQKMIRGNSFPRCYYRCWHQDHGCPASKHVEQHNSEDPPLFRVIYTNEHTCGTSNSASDYM ASS MQIQQIADASLRKAQAAERLRKAEVETPRLMHSPPPRCSGG YNMAMKEEKDVIVSSLLTVIRGCHIAESAGNNSAAALPVNRPPPA V ARSDHYSCSYAI SPELLPASDDLTLDFMLDSVLDPHWVEPLDLAWLKESTHTG* SEQ ID NO. 251 LOC_Os01g60600 1 MQAQSRLAAAASGGSGSGISGSGGISRLGGG ASPYDDGYQWRKYGQKKINNTNFPRSYYRCSYHRERRCPAQKHVQQRDGDDVPALHWVYTHEHTCLQGAPAELPDAATNGGAAAAASPDYFPAG
VMDYDMTDALFWGPFGTDSNSYDGNLTSTRCFDLIN* SEQ ID NO. 252 LOC_Os01g60640 1 MAMLGSSSAVVLELMTMGYQSAAYLGELLRAASP AQAGDEQQELAAEILRCCDRVIAKLNRGGATGATTGKKRKAAES AAAAA VTSPSLP VTPTKRRARGAEAVREVRSGTTTDGFIWRKYGQKEINGCKH APSETSQGWSPSFSSEVELDVVGFDLAGADSSASPVWEFLNGSFDWEFVINSL* SEQ ID NO. 253 LOC_Os01g63980 1 MRMGLRTCSAMEGEVVAA
PVTGSSAQEVTMEEDDEEEDDDDVGEEEMDEWKPMHGGCKVEGDEEQYGEA V ASVEGSSSITAVGDMFGGVGAESGVAMSSRYWIPTPAQILVGPV QFICHVCNKTFNRYNNMQMHMWGHGREYRKGPES LKGTQTLAM LKLPCYCCAAGCKNNVAHPRARP LKDFRTLQTHYKRKHGAKPFRCRRCAKPF AVKGDWRTHEKNCGKRWFCACGSDFKHKRSLNDHVRSFGAHHLPVAESAAAAATTPADKDRIISFQR* SEQ ID NO. 254 LOC_Os01g64020 1 MVQ
LQHHQQQQLHGGGDHDKRKHGSTRKDGKSVDAKTERRLAQNREAARKSRLRKKAYVQNLETSRVRLQQIEQELQRARSQGLFLGGCRAAGDMSSG AAMFDMEYARWLDDDSKRLTDLRGGLQAHLLDTNLGLIVEECMQHYDELFQLKAALARSDVFHLLTGTWATPAERCFLWMGGFRPSDLLKILIQQL DPLTEQQMLG IYSLQQSSEQAEEALAQGLQQLHQSLADTV AAGTLN DG PGVPNYMSLMAIALDKLASLESFYQQ ADNLRQQTLHQLRRILTTRQAAR CFLSIGEYYRRLRALSNLWSSRPRENFIGTESVSPTGTELQPMHNQPQQNQYSGF* SEQ ID NO. 255 LOC-OsOl g640202 MVQGEESSWRMAASTHH
ERAIPLNQALA YGVQAHASPSV AAAPPASFLDFQPAAAAAAYFGELEEALIHGANAGGVVDPGMIRADVHSKS AAAAATAGYLAARPPTLEIFPS WPM RQQQQLHSGNSQSVGSTTDSSSAQNTM PQMELVSPASIRASSEHQHQQQQPGQEVMMVTTDDYSYKPGLAAASPSFQQQHQLQHHQQQQLHGGGDH SEQAEEALAQGLQQLHQSLADTVAAGTLNDGPGVPNYMSLMAIALDKLASLESFYQQVRQQLSIVIPFR* SEQ ID NO. 256 LOC_Os01g643I0 1 MA
ENPGPSMAAAAASPEENDGSGSSMQQLELMDQGGAVDPDWDQWDDLATLTALLYWPRD* SEQ ID NO. 257 LOC_Os01g64360 1 MDLYGAAAGG PWSEDEHRLFLEGLDRYGRGDWRNISRFSVRTRTPTQVASHAQKYFIRQANAGARDSKRKSIHDITTP* SEQ ID NO. 258 LOC_Os01g64730 1 MMAS
RESAARSRERKQAYIAELESLVTQLEEENAKMFKEQEEQHQKRLKELKEMVVPVIIRKTSARDLRRTNSMEW* SEQ ID NO. 259 LOC_Os01g647302 ID NO. 260 LOC_Os01g64790 1 MTVAGASELM SGYYQAQ
LOC_Os01g65080 1 MDSGLGRSSETSLKALPSMASNATR RMHMRCHCDEYKTAAALAK-PiKDSSL
SEQ ID NO. 263 LOC_Os01g650803 MDSGLGRSSETSLKA
Figure imgf000041_0001
EWERTFATVGPINPAASILDPAGSGGLGGLGGGGSDPLLQDILMYWGKPF* SEQ ID NO. 265 LOC_OsOIg66120 2 MSGGQDLQLPPGFRFHPTDEEL
AYYDRPSDSMPRLHADSSCSEQVLSPEFACEVQSQPKISEKMVQLHRVACQCVCIVACT* SEQ ID NO. 266 LOC_Os01g66120 3 MALYGEKEWYFF
TVGPINPAASILDPAGSGGLGGLGGGGSDPLLQDILMYWGKPF* SEQ ID NO. 267 LOC_Os02g08440 1 MDPWISTQPSLSLDLRVGLPATAAVAMVK
PPPPPPPHPHAAPHHMHVMPGAAAAGYADQTECTSGEPCKRIREECKPKISKLYVHADPSDLSLVVKDGYQWRKYGQKVTKDNPCPRA YFRCSFAPA
CPVKKKVQRSAEDNTILV ATYEGEHNHGQPPPPLQSAAQNSDGSGKSAGKPPHAPAAAPPAPVVPHRQHEPVVVNGEQQAAAASEMIRRNLAEQMA MTLTRDPSFKAALVTALSGRILELSPTKD* SEQ ID NO. 268 LOC_Os02g08440 2 MGAENRQLSEMLAAVAAKYEALQSQFSDMVTASANNGGGGG
KYGQKVTKDNPCPRAYFRCSFAPACPVKKKVQRSAEDNTILV ATYEGEHNHGQPPPPLQSAAQNSDGSGKSAGKPPHAPAAAPPAPVVPHRQHEP VV VNGEQQAAAASEM1RRNLAEQM AMTLTRDPSFKAALVTALSGRILELSPTKD* SEQ ID NO. 269 LOC_Os02g084403 MDPWISTQPSLSLDLRVGLP ATAA VAMVKPKVLVEEDFFHQQPLKKDPEV AALEAELKRMGAENRQLSEMLAAVAAKYEALQSQFSDMVTASANNGGGGGNNPSSTSEGGSVSPSR
AYFRCSFAPACPVKKKVT* SEQ ID NO. 270 LOC_Os02g084404 MDPWISTQPSLSLDLRVGLP ATAA VAMVKPKPCKRIREECKPKISKLYVHADPS DLSLVVKDGYQWRKYGQKVTKDNPCPRAYFRCSFAPACPVKKKVQRSAEDNTILV ATYEGEHNHGQPPPPLQSAAQNSDGSGKSAGKPPHAP AAAPP APVVPHRQHEPVVVNGEQQAAAASEMIRRNLAEQMAMTLTRDPSFKAALVTALSGRILELSPTKD* SEQ ID NO. 271 LOC_Os02g09480 1 MGMEAE
LPGFHHDSARSHFQELPSPSRSPSPPPSPP AASPSAYPFNADLVSAMQEMIRTEVRNYMAGVGLRAGCGPGAVAESFMPQLVDG VM RAAAERVGVVTR Q* SEQ ID NO. 272 LϋC_Os02g09830 1 MQHDAISNIAYHPSMDFTSFFLPQTDAYSHDLSALLDMAVVDPYISCNGSSITMIPVTEDEANAQPMNHGN DERKKRRLVSNRESARRSRVRKQRRLDELSSQVSELRDTNQRLLVELNHMISKHARIVRENSQLREEASDLQRKLSEM KMEDAEVAAAAAAAPRTLE VA* SEQ ID NO. 273 LOC_Os02gl3800 I MTTTTAEGGGGVAPFVAKTYRMVDDPATDGVIAWGRDSNSFVVADPFAFSQTLLPAHFKHSNFSSFVRQ LNTYGFRKVDPDRWEFAHVSFLRGQTHLLRRIVRRSSGGGGAKRKEEAGGCGGGGEAAAGDVDEESAVVALEVARLRREQREIEGRV AAMWRRVQ
ETERRPKQMLAFLVKVVGDPQVLRRLVDRDNTN AAASNADDSAVHHQVKRPRLLLDSSSTTTTHGDRHLVTAAA DG FY AGGCGPEAAAAAAFVPD DAVDFTGLYTGGDGFGNAVVDAGVDYPPAYAFPVVDSGY* SEQ ID NO. 274 LOC_Os02gl5100 1 MSLSSSSNSLPYSTDQGGYSTHDTLVLLGIGF FATAVSVLMIVLC ECLCCRRRRRGGGTVVYV AARPFFLGGGGLSASAVATLPSFVYRREEWAEAAPRGDGSGSGRGGGGGWAQCAVCLSIVQEGETV RQLPACKHLFHVGCIDMWLHSHSTCPLCRASVEPLGKETPLKDQAPPV* SEQ ID NO. 275 LOC_Os02gl6680 1 MKKCPSELNFEAFFHGERGEDDA DAAADQKPGGGPHPPPFAM FSAADLSSFGFADSVTSTITGVIPNHIWPQSQSLN ARHPAVYTI ESQSSICAAASPTSATTLNMKESQTLGGTSGSDSDSES LLDIEGGPCEQSTNPLDVKRM RRMVSNRESARRSRKRKQAHLADLETQVDQLRGEN AS LFKQLTDANQQFTTA VTDNRl LKSDVEALRVKVKMAED MVARGALSCGLGHLGGLSPALNPRQGACRVPDVLTGLDYAGDDPFTGLSPPEQVQMPGGGEVGDA WGWDNHSNGAMSK* SEQ ID NO. 276 LOC_ 5 Os02gI6680 2 MKKCPSELNFEAFFHGERGEDDADAAADQKPGGGPHPPPFAMFSAADLSSFGFADSVTSTITGVIPNHIWPQSQSLNARHP AVYTIESQS
SICAASPTSATTLNMKESQTLGGTSGSDSDSESLLDIEGGPCEQSTNPLDVKRM RRMVSNRES ARRSRKRKQAHLADLETQVDQLRGENASLFKQLTD ANQQFTTA VTDNRI LKSDVEALRVKVKMAEDMVARGALSCGLGHLGGLSPALNPRQGACRVPDVLTGLDYAGDDPFTGLSPPEQVQMPGGGEVGDA WGWDNHSNGAMSK* SEQ ID NO. 277 LOC_Os02g26430 1 MADPFPAAARGGEQGGGTAGQLVSTPSRLRTAVASMLNRTGHARFRRAAPWVQEE
10 RIRVPAISSRNADIPADDYSWRKYGQKPIKGSPYPRGYYKCSTVRGCPARKHVERDPGEPAMLIVTYDGDHRHGEPGHRRPDEAATTTEHRTTDQTTG
RLL* SEQ ID NO. 278 LOC_Os02g31890 1 MSHTSEEESLNNLQQQPKLEACAAGSSKGDTVMPVVKKRRGHPGNPDPDVEVVALSPKTLLATNRYIC EVCHKGFQRDQNLQ LH RRGHN LPWKLKQRSSTEAKKK VYVCPEITCPHHDATRA LGDLTGIKK HYSRKHGEKK WKCDRCSKKY AVQSDWKA HTKI
YSDEQEKPQEHIYSYHQSSLDPTALEKPIWDS* SEQ ID NO. 279 LOC_Os02g32590 1 MDHNTDPPPTTMVDAAAALLLEPKLEGYDDDGGGEPLQPA PFVSPLDQ LMQPPRP LEALLQGPQLPPFLSKTYDLVCEPELDGVISWGHAGNSFVVWDPSAFARDVLPHHFKHNNFSSFVRQLNTYGFRKVHADRWEF
10 VQGFDTQEELELGSGVELLEIPPASGPRGQDPTIGRSKGKNVLSPGLDATSSEADCLGSFSDNMGMLSDSMLQTAGKLMDADDDERIWGVDASSALQS SCSGTSQQA YGSLVSDPYLMEMANKPEKFWELDFQALDDGDLQLDKCVIDDPALQQQRGNMNS* SEQ ID NO. 280 LOC_Os02g325902 MDHNTD
QTIEQMSTLNQRLESAEDRQKQMVSFLAKLLQNPTFLRQLKMHRQQKEIDSTRVKRKFLKHVPHGNIDSENIGLDGIEAPDDIGALVQGFDTQEELELG
.5 SGVELLEIPP ASGPRGQDPTIGRSKGKNVLSPGLDATSSEADCLGSFSDNMGMLSDSMLQTAGKLMDADDDERIWGVDASSALQSSCSGTSQQA YGSL
VSDPYLMEMANKPEKFWELDFQALDDGDLQLDKCVIDDPALQQQRGNMNS* SEQ ID NO. 281 LOC_Os02g35600 1 MDEGGGAGAAAAAAGNAA
DAWLLSVAFYFGARFGFDKEARRRLFTM INGLPTVYEVVTGIAKKQTKVSNGSSKSNKSNPKPSKQSNSNSKPAKPPQPKDEEDSGPEGTEDEDQAYM CGACGETY ANGEFWICCDVCEKWFHGKCVRITP AKAEHIKQYKCPGCSSKRSRE* SEQ ID NO. 282 LOC_Os02g36510 1 MASRSPTNKQISSEDRVR
AGAGTSSEGQLEEETPEARCRRKAMLRAQDGVLRHMLKMMEACNARGFVYGVIDEAGQPMSGSSDSLRGWWKDNVSFDRAGPMALIGPAAAGDSP QAGGGGLHRLQDIQDSTLGSVLSALIQHCEP PQ RS FPLERGLAPPWWPTGEEP WWGTQG ETQAHQGAPPYRKPHDLKKA WKVSLLSAVIKHMSPRFD
GGSGGADHHQLA VMLPELAAAADQEGRSPINELMKLYYSCLQQEEGAADGGEAGGEGCDV AAAALAVPPEVLAGVDEV AQDVLFDLIGSYPEVDD 55 VLHFMDE* SEQ ID NO. 283 LOC_Os02g38090 1 MQAQQAMDEPANAQLYGHAHAHSHHHRSKRPSPGGGGGGAATLGADGGGGGGSLSGTRYRG
LHGFYPTRRPHDDAGPAPKLERPYEATSSYRVSSPWGAVEDCDDGDGDGDDDYRGFPMMPQGLLEDVIQCPPYMEVLAAPSAAVGRVSRRG' SEQ I D NO. 284 LOC_Os02g39360 1 MKIQCDACESAAAAVVCCADEAALCAACDVEVHAANKLAGKHQRLPLEALSARLPRCDVCQEKAAFIFCVEDRAL
" SEQ ID NO. 285~ LOC_Os02g39710 1 MEAVEDKAMVGVGGAVAAGYSSSSWGLGTRACDSCGGEAARLYCRADGAFLCARCDARAHGAGSRHAR VWLCEVCEHAPAA VTC RADAAALC AACDADIHSANPLARRHERLPV APFFGPLADAPQPFPFSQAAADAAAARFED* DDDRSNCA CAASW LLPEPUD NSHEDSAAAADAFFADTGAYLGVDLDFARSMDGIK-MGVPVAFFELDLTAGSLhYPEHSMAHSLSSSEVAIVPDALSAGSAAPPMVVVVASKGKEREA \5 RLMRrREK-RKNRRFDKTIRYASRKAYAETRPRIKGRFAKRTADADDDDEAPCSPAFSALAASDGVVPSF* SEQ ID NO.286 LOC_Os02g40530 1 ME
LPGRTDNEIKNYWRTHFKKGKPSKNIERARARFLKQRREMQQQSQLMQTGQQQQLGQDDDATSAVVDDNLAEV APPAATSLTHDGELQIMQEM APD
Y* SEQ ID NO. 287 LOC_Os02g41510 1 MGRAPCCEKMGLKRGPWTAEEDRILVAHIERHGHSNWRALPRQAGLLRCGKSCRLRWINYLRPDIKRGNF
)0 TREEEDAIIHLHDLLGNRWSAIAARLPGRTDNEIKNVWHTHLKKRLEPKPSSGREAAAPKRKATKKAAA VA VAIDVPTTVPVSPEQSLSTTTTSAATTE
EYSYSMASSADHNTTDSFTSEEEFQIDDSFWSETLAMTVDSTDSGMEMSGGDPLGAGGASPSSSNDDDMDDFWLKLFIQAGGMQNLPQI* SEQ ID NO
. 288 LOC_Os02g42380 1 MSSRDAAATFHVYQPVQIPTATVAPAAAVSAAPAEAVAQLVPAPSKKAAGAAGGKDRHSKVNGRGRRVRMPIVCAARVF
AQPTYVPMAQAHHHHLNLLAALSGAARRAEEESR* SEQ ID NO. 289 LOC Os02g43170 1 MKVQCDVCAAEAASVFCCADEAALCDACDHRVHRA )5
ASPASRERWVPQMYADQLAAGSKRSRTSTASSYSYW* SEQ ID NO. 290 LOC_Os02g43790 1 MLLNPASREVAALDSIRHHLLEEEEETPATAPAPTR RP VYCRSSSFGSLVADQWSESLPFRPNDAEDM VVYGALRDAFSSGWLPDGSFAAVKPESQDSYDGSSIGSFLASSSSEAGTPGEVTSTEATVTPGIREGE
50 ASSGSSSPSSSSSSSSSSSSGSPKRRKRGEAAAASMAMALVPPPPPPAQAPVQLALPAQPWFAAGPIQQLVS* SEQ ID NO. 291 LOC_Os02g45200 1 M
DAAHWHQGLGLVKPMEEM LMGANPNPNGSSNQPPPPPSSAASAQRPIAPPAAGAAAGAGAAGAGAGTERRARPQKEKALNCPRCNSTNTKFCYYNN YSLQQPRYFCKTCRRYWTEGGSLRNVPVGGGSRKNKRSSSSVVPSAAASASTS AAVSGSVPVGLAAKNPKLMHEGAQDLNLAFPHHHGRALQPPEFT AFPSLESSSVCNPGGNLAAANGAGGRGSVGAFSAMELLRSTGCYVPLPQMAPLGMPAEY AAAGFHLGEFRMPPPPQQQQQQQAQTVLGFSLDTHGA GAGGGSGVFGACSAGLQESAAGRLLFPFEDLKPVVSAAAGDANSGGDHQYDHGKNQGGGGGVIGGHEAPGFWNSSMIGNGSSNGGGGGGSW' SEQ
)5 ID NO. 292 LOC_Os02g45200 2 MWGLGLVKPMEEMLMGANPNPNGSSNQPPPPPSSAASAQRPIAPPAAGAAAGAGAAGAGAGTERRARPQKEKAL
NCPRCNSTNTKFCYYNNYSLQQPRYFCKTCRRYWTEGGSLRNVPVGGGSRKNKRSSSSVVPSAAASASTSAAVSGSVPVGLAAKNPKLMHEGAQDL NLAFPHHHGRALQPPEFTAFPSLESSSVCNPGGNLAAANGAGGRGSVGAFSAMELLRSTGCYVPLPQMAPLGMPAEY AAAGFHLGEFRMPPPPQQQQ
NGSSNGGGGGGSW* SEQ ID NO. 293 LOC_Os02g45200 3 MEEMLMGANPNPNGSSNQPPPPPSSAASAQRPIAPPAAGAAAGAGAAGAGAGTERRA
/U RPQKEKALNCPRCNSTNTKFCYYNNYSLQQPRYFCKTCRRYWTEGGSLRNVPVGGGSRKNKRSSSSVVPSAAASASTSAAVSGSVPVGLAAKNPKLM
HEGAQDLNLAFPHHHGRALQPPEFTAFPSLESSSVCNPGGNLAAANGAGGRGSVGAFSAMELLRSTGCYVPLPQMAPLGMPAEY AAAGFHLGEFRMP
WNSSMIGNGSSNGGGGGGSW* SEQ ID NO. 294 LOC_Os02g452004 MEEMLMGANPNPNGSSNQPPPPPSSAASAQRPIAPPAAGAAAGAGAAGAG AGTERRARPQKEKALNCPRCNSTNTKFCYYNNYSLQQPRYFCKTCRRYWTEGGSLRNVPVGGGSRKNKRSSSSVVPSAAASASTSAA VSGSVPVGLA / 5 AKNPKLMHEGAQDLNLAFPHHHGRALQPPEFTAFPSLESSSVCNPGGNLAAANGAGGRGSVGAFSAMELLRSTGCYVPLPQMAPLGMPAEY AAAGF
HLGEFRMPPPPQQQQQQQAQTVLGFSLDTHGAGAGGGSGVFGACSAGLQES AAGRLLFPFEDLKPVVSAAAGDANSGGDHQYDHGKNQGGGGGVIG GHEAPGFWNSSMIGNGSSNGGGGGGSW* SEQ ID NO. 295 LOC_Os02g45420 1 MADLTEHPSPTAPPQVQTAGLPAAASPGPASPHSPSEQGDKTAP
IRAAAAAAAAAAAHLERPHGPTGTAYPAT AAAEHHQQQQQQQYGSGSPAADDVSGYPPMEGGIGNDDFMDEEAIFELPQLLRNMAAGMMMSPPRLS >0 PTTSDVSPEPSEAGESLWSYRDP* SEQ ID NO. 296 LOC_Os02g45780 1 MGFPLVCYCMAIPKPLIALAKLLAAIREALQLMLFWGICHHPERSGRPA
RGRLGRLATRLTGVVW' SEQ ID NO. 297 LOC_Os02g46030 1 MEMACLPGNAMATDENGADDRAGGESTVDHLRSHMNYGDMDLSGEEHVPKAR KPYTITKQREKWTDEEHRLFLEALQLHGRA WRRIQEHIGTKTA VQIRSHAQKFFSKVVRESSGSNTGSGGASAAAAAAAIQIPPPRPKRKPAHPYPRKV DGAAKKHVPALRQLEKPPLWMQSLSEQEEGSPTSVLTAAQIGTEALGGGFSNNSSGSGSLAPSAAGTDEHVDGGGSPASSVDREDGCLSPSIPTAELAM >5 QAPNTKMSIATTDAKEASSEASVFRLFGKSVVVKDSDQLHLLNGSNIATSGSVERATRNILVPSFAAAPEGSSSNPWPSSMQQFLYFLPRSDGFAAQPV
MPWLS YNGSLPCALFYPAAAAAANQQCHRDSEGVEFRVSQREGSLTGSNTASSVVLGSSAAVPAAAAAAQNSDVAESRGQGNSREAAASPRLTKCES SASVTLLQRGFMPYKRCAAESELLRSEAAGGEEA VADGELTRLCL* SEQ ID NO. 298 LOC_Os02g51670 1 MAAAIDMYKYNTSTHQIASSDQELMK ALEPFIRSASSSSASSPCHHYYSSSPSMSQDSYMPTPSYPTSSITTAAATTTSSFSQLPPLYSSQYHAASPAASATNGPMGLTHLGPAQIQQIQAQFLAQQQ QQRALAGAFLRPRGQPMKQSGSPPRAGPFAA V AGAAQSKLYRGVRQRHWGKWVAEIRLPKNRTRLWLGTFDTAEDAALA YDKAAFRLRG DLARLN FPTLRRGGAHLAGPLHASVDAKLTAICQSLATSSSKNTPAESAAS AAEPESPKCSASTEGEDSVSAGSPPPPTPLSPPVPEMEKLDFTEAPWDESETFHLR KYPSWEIDWDSILS* SEQ ID NO. 299 LOC_Os02g52780 1 MDFPGGSGRQQQLPPMTPLPLARQGSVYSLTFDEFQSTLGGVGKDFGSMNMDELLRSI WTAEESHAVGAATTTTATTASVAAAEHAA VGAPPVQRQGSLTLPRTLSQKTVDEVWRDMMCFGGGG ASTAPAAAEPPPPAHRQQTLG EITLEEFLVR
VPYVFKGGLRGRKAPGIEKVVERRQRRMIKNRES AARSRQRKQAYMMELEAEV AKLKELNDELQKKQDEM LEQQKNEVLERMSRQVGPTAKRICLR RTLTGPW* SEQ ID NO. 300 LOC_Os02g527802 MDFPGGSGRQQQLPPMTPLPLARQGSVYSLTFDEFQSTLGGVGKDFGSMNMDELLRSIWTAEES HA VGAATTTTATTASVAAAEHAA VGAPPVQRQGSLTLPRTLSQKTVDEVWRDMMCFGGGGASTAP AAAEPPPPAHRQQTLGEITLEEFLVRAGVVRE DMSVPPVPPAPTPTAAA VPPPPPPQQQTPMLFGQSNVFPPMVPPLSLGNGLVSGA VGHGGGG AASLVSPVRPVSSNGFGKM EGGDLSSLSPSPVPYVFK 10 GGLRGRKAPGIEKVVERRQRRMIKNRESAARSRQRKQAYMMELEAEV AKLKELNDELQKKQVLSMFCLHF* SEQ ID NO. 301 LOC_Os02g55380 1
MARPQQRYRGVRQRHWGSWVSEIRHPLLKTRIWLGTFETAEDAARA YDEAARIMCGPRARTNFPLADATAAAAAAAASSSFLS AALVAKLHRFNLAS VQATQRQREAAATAAAASSASATΓPPLGNAAAADDDARTΠTYGAEWSGRFLEEQHVEQMIDELLDSNFSMEICY* SEQ ID NO. 302 LOC_Os02g56
VKVKKEGDAIGRKVDLALHSSYDELAATLARMFPTNDHQGEKKMANDDHGDAAGPVVTYEDGDGDWMLVGDVPWDDFARSVKRLKILG' SEQ ID 1 5 NO. 303 LOC_Os02g561202 MELELGLAPPNSGHLVVDELSSSSSSGGGSGSAPVSASSAGKRGFREAFQETLLLFDDGSCCNTSDDDCRRRKKTVVG
ARSVKRLKILG* SEQ ID NO. 304 LOC_Os02g56120 3 MELELGLAPPNSGHLVVDELSSSSSSGGGSGSAPVSASSAGKRGFREAFQETLLLFDDGSCC DGDWMLVGDVPWE* SEQ ID NO. 305 LOC_Os03g04900 1 MDEIRSLMLQQGWRKGPWTALEDRLLTEYVQQHGEGSWNSVAKLTGLRRSGKSCR
QQQLQQQQQQQQQQMMLLQEQEQQSPQEEAADDSMVMMMMNDLQSKERCCTAVSVVPDDCVLP ADDDAIWDSLWRLVDGDGSCGEGSSGGEYW ATS* SEQ ID NO. 30« LOC_Os03g05590 1 MEDDKSKEGKSSSSYRGVRKRPWGKFAAEIRDPERGGARVWLGTFDTAEEAARAYDRAAFAMKGATA MLNFPGDHHHGAASRMTSTGSSSSSFTΓPPPANSSAAAGRGGSDRTTDKVELECLDDKVLEDLLAETNYRDKNY* SEQ ID NO. 307 LOC_Os03g0663 0 1 MEKMMPGMVKEEWPPSSPEEGEAPRPMEGLHEVGPPPFLTKTFDLVADPATDGVVSWGRAGSSFVVWDPHVFAA VFLPRFFKHNNFSSFVRQLN 25 TYFLVRTNYLNKRSHFYSLRFQGFRKIDPDRWEFANDGFLRGQRHLLKMIKRRRPLSYLPGSQQALGTCLEVGQFGLDEEIDRLKRDKNILLAEVVKLR
HKQQSTKANMRAMEERLQHAEQKQVQMMGFLARAMQNPDFFHQLIHQQDKMKGLEDTFSKKRTRSIDIVPFLNPGEVSQG DQLESTLLFDPRPFAEL NDEPAKSELENLALNIQGLGKGKQDVNRTRNQPRNQASNETELTDDFWEELLNEGARDDAGIPGMERRRPRYVDALAQKLGYLSNSSQK* SEQ ID N
RFFKHNN FSSFVRQLNTYGFRKIDPDRWEF AN DGFLRGQRHLLKMIKRRRPLSYLPGSQQALGTCLEVGQFGLDEEIDRLKRDKNILLAEVVKLRHKQ 30 QSTKANMRAMEERLQHAEQKQVQMMGFLARAMQNPDFFHQLIHQQDKMKGLEDTFSKKRTRSIDIVPFLNPGEVSQGDQLESTLLFDPRPFAELNDE
PAKSELENLALNIQGLGKGKQDVNRTRNQPRNQASNETELTDDFWEELLNEGARDDAGIPGMERRRPRYVDALAQKLGYLSNSSQK* SEQ ID NO. 30 9 LOC_Os03g07360 1 MGECKVGGGGGGGDCLIKLFGKTIPVPEPGACAAGDVDKDLQHSGSSTTEPKTQENTVQDSTSPPPQPEVVDTEDSSADKNSS ENQQQQGDTANQKEKLKKPDKILPCPRCSSMDTKFCYYNNYNINQPRHFCKNCQRYWTAGG AMRNVPVGAGRRKSKSVSAASHFLQRVRAALPGDP PLYAPVKTNGTV LSFGSDLSTLDLTEQMKHLKDKFIPTTGIKNTDEMPVGLCAEGLSKTEESNQTNLKEKVSADRSPNV AQHPCMNGGAM WPFGV AP
ARSSIWSLIGIKGDKVGADHGRGCKLAKVFESKDEAKASTHTAISSLPFMQGNPAALTRSVTFQEGS* SEQ ID NO.310 LOC_Os03g08310 1 MASTDP MTRRFA V ACGVLSQYVKANSSQPSTAAPV AQGVSGLM AAAAAAAAAPVVQEPGCEVDGGGQQFTIFY AGKVVVIDRCTP AM AAELMRFASAAQGG GGAPEAPPALVDMPIARKASLKRFLAKRKATPASARSSYVVRAAAAEEEQPPAKKAKAAVERREDWLALGSLGHMHSR* SEQ ID NO. 311 LOC_OsO 3gO832O 1 MAGSSEQQLV ANAAATTVAGNGSRFA VTCGLLRQYMKEHSGSNGGGGFLPA VTAMSLMTGGADAEEEAPEVRKTMELFPQQAGTLKDT +0 QERKEITEKAQLTIFYGGSVVVFDDFPAEKAGELMKLAGSRDSTAAAAVSDAGAAAGQPCLPDMPIARKVSLQRFLEKRKNRIWAEPLPESEKKEAES
SKRAKKDDGGASWLQVNPTLSL* SEQ ID NO. 312 LOC_Os03g08330 1 MAMEGKSRRFAVACGVLSQYVRAEQKMAAAAGAAPARA VTTLSLMPG
PYARPSPAETKASEPEEKKTPTSWLDLAASASAAARRDSLTIAL* SEQ ID NO. 313 LOC_Os03g08470 1 MrGCULAEFIP AΓSRAAΛATXRV I ASHL
WPAGSKN AARGKSKSKRQORSFADVnnFEΛ A.FEQFDDDSDFDDΛEEEDtOHFVFASKSRVV AGHDGRAAARAASKKKRGRHFRGIRQRPWGKW AA
45
WSFDDFPIDGALF* SEQ ID NO.314 LOC_OS03G08470 2 MCGGAILAEFIPAPSRAAAATKRVTASHLWPAGSKNAARGKSKSKRQQRSFADVDDFEA AFEQFDDDSDFDDAEEEDEGHFVFASKSRVVAGHDGRAAARAASKKKRGRHFRGIRQRPWGKWAAEIRDPHKGTRVWLGTFNTPEEAA RA YDVEAR
50 ARSDDVDSSEGSVGGGSDTLGFTDELEFDPFMLFQLPYSDGYESIDSLFAAGDANSANTDMNAGVNLWSFDDFPIDGALF* SEQ ID NO. 315 LOC_OS O3GO847O 3 MCGGAILAEFIPAPSRAAAATKRVTASHLWPAGSKNAARGKSKSKRQQRSFADVDDFEAAFEQFDDDSDFDDAEEEDEGHFVFASKSRV
FMLFQLPYSDGYESIDSLFAAGDANSANTDMNAGVNLWSFDDFPIDGALF* SEQ ID NO.316 LOC_OS03G09170 1 MATTVDWCGRGSNLPAAMYD 55 MVVDSKELMGALAPSMVSFSYPCSEQSASSLLAGANYLTPAQVLHVQAQLQRLRRPGAASGCLAAAPPLPMKRHGAV A V AAAAAARAPVKLYRGV RQRHWGKWVAEIRLP RNRTRLWLGTFDTAEEAALAYDSAAFRLRGESARLNFPELRRGGAHLGPPLHAAVDAKLHAICHGMDLPQPQPQTQSNATTT TMSTTATNTPSPFFSSESPVVKSEPVCSASESSSSADGDVSSTGSSDVVPEMQLLDFSEAPWDESESFLLHKYPSLEIDWDAILS* SEQ ID NO. 317 LOC_ OS03GL2370 1 MGSKKRSPQHPAAAAPPPAVGGGGGGEVSGDGGASTANGPVVPKPSEVAPFLTKVYDMVSDPATDNVISWAEGGGSFVIWDSHAFER DLHRHFKHSNFTSFIRQLNTYGFRKVHPDRWEW ANEGFIMGQKHLLKTIKRRKKSSQESPSEIQKAPVKTAPGTENIEIGKYGGLEKEVETLKRDKALL 50 MQQLVDLRHYQQTSNLEVQNLIERLQVMEQNQQQMMALLAIVVQNPSFLNQLVQQQQQQRRSNWWSPDGSKKRRFHALEQGPVTDQETSGRGAHI
DYDFPQLEQDCLMEAQYNSNNPQYADVITEA* SEQ ID NO. 318 LOC_OS03GL2370 2 MGSKKRSPQHPAAAAPPPAVGGGGGGEVSGDGGASTANG
RRKKSSQESPSEIQKAPVKTAPGTENIEIGKYGGLEKEVETLKRDKALLMQQLVDLRHYQQTSNLEVQNLIERLQVMEQNQQQMMALLAIVVQNPSFL
J5 NQLVQQQQQQRRSNWWSPDGSKKRRFHALEQGPVTDQETSGRGAHIVEYLPPVPETSGQVNPVEGAICSANSQPVPSPA VATPMDMQTSNVADTLGS
SEEPFADNSTLHEWDDNDMQLLFDDNLDPILPPFENDGQMGPPLSVQDYDFPQLEQDCLMEAQYNSNNPQYGND* SEQ ID NO. 319 LOC_OS03GL23
KHSNFTSFIRQLNTYGFRKVHPDRWEWANEGFIMGQKHLLKTIKRRKKSSQESPSEIQKAPVKTAPGTENIEIGKYGGLEKEVETLKRDKALLMQQLVD LRHYQQTSNLEVQNLIERLQVMEQNQQQMMALLAIVVQNPSFLNQLVQQQQQQRRSNWWSPDGSKKRRFHALEQGPVTDQETSGRGAHIVEYLPPV
EQDCLMEAQYNSNNPQYVLR* SEQ ID NO. 320 LOC_OS03GL2760 1 MGQTGGRPGGGGGPALQRLRRHAAGKVASRSLARCREGARRRGRQAAGQ RHSGRQGSNESTTQSQPTVTVIEDLKLEIDCQHVKKNIAHSPGQQCSPSERFDEWKSSSRRRPKCDV ATNLHWCHLHPFQMSTLSNKVSLSSNLLNLQT GLAEEPEELTYMYHQEEHARMQEQFAGTPLVEQPVRFDQFYP ASMAPNQFHPSHCSSFPAFGGSSALPSLAFGAVATTKKEQVQQPSPSSSNVLSFAGQ VQGSTTTLDFSGRGWQQDDGVGVFQQPPERRSRPPANAQEHVIAERKRREKLQQQFVALATIVPGLKKTDKISLLGSTIDYVKQLEEKVKALEEGSRRT
YS* SEQ ID NO.321 LOC_OS03GI7150 1 MAYGKRPRQQAEEAAFSLFDSSDMARIMLLFSGAHGGGGGAAAASPPERMFECKTCNRQFPSFQALGGH
PAIEEEPDRARPAGLAVEFPVVVDFPC* SEQ ID NO. 322 LOC_OS03GL7570 1 MGSACEAGTDEPSRDDVKGTGNGILENGHSHKPEEEEWRNGMGE DLPNGHSTPPEPQQTDEQKEHQVQIVRWERFLPVKTLRVLLVENDDSTRQVVSALLRKCCYEVIPAENGLHA WQCLEDLQNHIDLVLTEVVMPRLSGI
EIGAPRNSSMEYQSSPREMSVNPTEKQHETLMPQSKTTRETDSRNTQNEPTTQTVDLISSIARSTDDKQVVRINN APDCSSKVPDGNDKNRDSLIDMTSE
TKPSSNRGKVISPSAVKATQHTSAFHPVQRQTSPANVVGKDKVDEGIANGVNVGHPVDVQNSFMQHHHHVHYYVHVMTQQQQQPSIERGSSDAQCG 55 SSNVFDPPIEGHAANYSVNGSFSGGHNGNNGQRGPSTAPNVGRPNMETVNGIVDENGAGGGNGSGSGSGNDLYQNGVCYREAALNKFRQKRKVRNF GKKVRYQSRKRLAEQRPRIRGQFVRQSGQEDQAGQDEDR* SEQ ID NO. 323 LOC_OS03GL7570 2 MGSACEAGTDEPSRDDVKGTGNGILENGHSH KPEEEEWRNGMGEDLPNGHSTPPEPQQTDEQKEHQVQIVRWERFLPVKTLRVLLVENDDSTRQVVSALLRKCCYEVIPAENGLHA WQCLEDLQNHID LVLTEVVMPRLSGIGLLSKITSHKICKDIPVIMMSSNDSMGTVFKCLSKGAVDFLVKPIRKNELKNLWQHVWRRCHSSSGSGSESGIRTQKCTKPKVDD EYENNSGSNNDNEDDDDNDEDDDDLSVGHNARDGSDNGSGTQSSWTKRAVEIDSPQQMSPDQPSDLPDSTCAQVIHPTSEICSNRWLPTANKRSGKK HKENNDDSMGKYLEIGAPRNSSMEYQSSPREMSVNPTEKQHETLM PQSKTTRETDSRNTQNEPTTQTVDLISSIARSTDDKQVVRINNAPDCSSKVPDG NDKNRDSLIDMTSEELGLKRLKTTGSATEIHDERNILKRSDLS AFTRYHTTVASNQGGAGFGGSCSPQDNSSEALKTDSNCKVKSNSDAAEIKQGSNGS SNNNDMGSSTKNAITKPSSNRGKVISPSA VKATQHTSAFHPVQRQTSPANVVGKDKVDEGIANGVNVGHPVDVQNSFMQHHHHVHYYVHVMTQQQ QQPSIERGSSDAQCGSSNVFDPPIEGHAANYSVNGSFSGGHNGNNGQRGPSTAPNVGRPNMETVNGIVDENGAGGGNGSGSGSGNDLYQNGVCYREA
ALNKFRQKRKVRNFGKKVRYQSRKRLAEQRPRIRGQFVRQSGQEDQAGQDEDR* SEQ ID NO. 324 LOC_Os03gl7570 3 MGSACEAGTDEPSRDDV KGTGNGILENGHSHKPEEEEWRNGMGEDLPNGHSTPPEPQQTDEQKEHQVQIVRWERFLPVKTLRVLLVENDDSTRQVVSALLRKCCYEVIPAENGLH AWQCLEDLQNHIDLVLTEVVMPRLSGIGLLSKITSHKICKDIPVIMMSSNDSMGTVFKCLSKGA VDFLVKPIRKNELKNLWQHVWRRCHSSSGSGSESG IRTQKCTKPKVDDEYENNSGSNNDNEDDDDNDEDDDDLSVGHNARDGSDNGSGTQSSWTKRAVEIDSPQQMSPDQPSDLPDSTCAQVIHPTSEICSNR WLPTANKRSGKKHKENNDDSMGKYLEIGAPRNSSMEYQSSPREMSVNPTEKQHETLMPQSKTTRETDSRNTQNEPTTQTVDLISSIARSTDDKQVVRI
SDAAEIKQGSNGSSNNNDMGSSTKNAITKPSSNRGKVISPSAVKATQHTS AFHPVQRQTSPANVVGKDKVDEGIANGVNVGHPVDVQNSFMQHHHHV HYYVHVMTQQQQQPSIERGSSDAQCGSSNVFDPPIEGHAANYSVNGSFSGGHNGNNGQRGPSTAPNVGRPNMETVNGIVDENGAGGGNGSGSGSGN DLYQNGVCYREAALNKFRQKRKVRNFGKKVRYQSRKRLAEQRPRIRGQFVRQSGQEDQAGQDEDR* SEQ ID NO. 325 LOC_Os03gl75704 MGSA CEAGTDEPSRDDVKGTGNGILENGHSHKPEEEEWRNGMGEDLPNGHSTPPEPQQTDEQKEHQVQIVRWERFLPVKTLRVLLVENDDSTRQVVSALLR
KCCYEVIPAENGLHA WQCLEDLQNHIDLVLTEVVMPRLSGIGLLSKITSHKICKDIPVIMMSSNDSMGTVFKCLSKGAVDFLVKPIRKNELKNLWQHV WRRCHSSSGSGSESGIRTQKCTKPKVDDEYENNSGSNNDNEDDDDNDEDDDDLSVGHNARDGSDNGSGTQSSWTKRAVEIDSPQQMSPDQPSDLPDS TCAQVIHPTSEICSNRWLPTANKRSGKKHKENNDDSMGKYLEIGAPRNSSMEYQSSPREMSVNPTEKQHETLMPQSKTTRETDSRNTQNEPTTQTVDLI SSIARSTDDKQWRINNAPDCSSKVPDGNDKNRDSLIDMTSEELGLKRLKTTGSATEIHDERNILKRSDLSAFTRYHTTV ASNQGGAGFGGSCSPQDNSS
AGGGNGSGSGSGNDLYQNGVCYREAALNKFRQKRKVRNFGKKV ACFQLHA YQSHES* SEQ ID NO. 326 LOC_Os03gl7570 5 MGSACEAGTDEPS RDDVKGTGNGILENGHSHKPEEEEWRNGMGEDLPNGHSTPPEPQQTDEQKEHQVQIVRWERFLPVKTLRVLLVENDDSTRQVVSALLRKCCYEVIPA ENGLHA WQCLEDLQNHIDLVLTEVVMPRLSGIGLLSKITSHKICKDIPVIMMSSNDSMGTVFKCLSKGAVDFLVKPIRKNELKNLWQHVWRRCHSSSG SGSESGIRTQKCTKPKVDDEYENNSGSNNDNEDDDDNDEDDDDLSVGHNARDGSDNGSGTQSSWTKRAVEIDSPQQMSPDQPSDLPDSTCAQVIHPTS
QVVRINNAPDCSSKVPDGNDKNRDSLIDMTSEELGLKRLKTTGSATEIHDERNILKRSDLS AFTRYHTTVASNQGGAGFGGSCSPQDNSSEALKTDSNC KGKSDITISCQSYPTYISIPSCAASNVTC* SEQ ID NO.327 LOC_Os03gl7570 6 MGSACEAGTDEPSRDDVKGTGNGILENGHSHKPEEEEWRNGMGE GLLSKITSHKICKDIPVIMMSSNDSMGTVFKCLSKGA VDFLVKPIRKNELKNLWQHVWRRCHSSSGSGSESGIRTQKCTKPKVDDEYENNSGSNNDNE
ELGLKRLKTTGSATEIHDERNILKRSDLSAFTRCKK* SEQ ID NO. 328 LOC_Os03g20780 1 MMGGGLVMDQGMMFPGVHNFVDLLQQNGGDKNLG
FGALVPQTSSGEQCVMGEGDLVDPPPESFPDAGEDDSDDDVEDIEELERRMWRDRMKLKRLKELQLSRGKDPAGGVVGDPSKPRQSQEQARRKKMS RAQDGILKYMLKMMEVCRAQGFVYGIIPEKGKPVSGASDNLRGWWKEKVRFDRNGPAAIAKYQADNA VPGFESELASGTGSPHSLQELQDTTLGSLL
RSASGAEPELMLNNRVYTCHNVQCPHSDYGYGFLDRNARNSHQYTCKYNDPLQQSTENKPSPPAIFPATYNTPNQALNNLDFGLPMDGQRSITELMN NMSGAVEYPGAMQGQQKNDGASEFEELE* SEQ ID NO. 329 LOC_Os03g207802 MMGGGLVMDQGMMFPGVHNFVDLLQQNGGDKNLGFGALV
PQTSSGEQCVMGEGDLVDPPPESFPDAGEDDSDDDVEDIEELERRM WRDRMKLKRLKELQLSRGKDPAGGVVGDPSKPRQSQEQARRKKMSRAQDG ILKYM LKMMEVCRAQG FVYGIIPEKGKPVSG ASDNLRGWWKEKVRFDRNGP AAIAKYQADNA VPGFESELASGTGSPHSLQELQDTTLGSLLSALMQ HCDPPQRRYPLEKGVPPPWWPTGDEEWWPELGIPKDQGPPPYKKPHDLKKA WKVSVLTAVIKHMSPDIEKIRRLVUQSKCLQDMVI 1 AKEISTWLAVV KQEEELYLKLNPGARPPAPTGGITSAISFMASSSEYDVDVVDDCK.GUbAGNQKAVVVADPTAFNLGAAMLNDKFLMPASMKEEATDVEFIQKRSASG
VEYPGAMQGQQKNDGASEFEELE* SEQ ID NO. 330 LOC_Os03g21030 1 MSEVSVMAEVEETAAAAPLDLPPGFRFHPTDEEIVSHYLTPKALNHRFS
FRLEGKLPSQLPRSAKDQWA VCKVFNKELALAAKNGPMAVTEATADDAGIERVGSFSFLSDFIDP AELPPLMDPSFV ADIDGVDDAKVSASTSGQAAI AAGFHVASQVMSYQQVKMEEPLPLPYLHQQPPRMLHSGQYFSLPAVHPGDLTPSAIRRYCKAEQVSGQTSALSASRDTGLSTDPNAAGCAEISSAPTS
QPFPEFDDGILGLDDFWN* SEQ ID NO. 331 LOC_Os03g28940 1 MASAKSGERGSSSFAMACSLLSRYVRQNGAAAGELGLGIRGEADANKGKETME LFPQNSGFGSEAAA VKETPDAREQEKRQLTIFYGGKVLVFDDFPAEKAKD LMQMASKSSSTAQNCVLLPSSATATVADNTKVSA VPAPASALPV AQA NAPKPVRPNAADLPQARKASLHRFLEKRKDRLQAKAPYQGSPSDASPVKKELQESQPWLGLGPQV AAPDLSLRQESSQ* SEQ ID NO. 332 LOC_Os03 g289402 MSYHFSGEADANKGKETMELFPQNSGFGSEAAAVKETPDAREQEKRQLTIFYGGKVLVFDDFPAEKAKDLMQMASKSSSTAQNCVLLPSSA TATV ADNTKVSAVPAPASALPV AQANAPKPVRPNAADLPQARKASLHRFLEKRKDRLQAKAPYQGSPSDASPVKKELQESQPWLGLGPQVAAPDLSL
RQESSQ* SEQ ID NO. 333 LOC_Os03g32220 1 MVTNMTHDDYVSLCLMALAQAGVGGQWPAQKQQIDMAPPAPERELLRFRCSVCGKAFPSHQALG GHKASHRKPPTAALPMHVIDAPPPPSAEDTASSSTTTTTSGGGRHRCSVCHRTFATGQALGGHKRCHYWDGLS VVSVTASASGSGSSSVRNFDLNLKP VPETVAAGVRRWGEEEEVQSPLPFKKRRLSSPSLELNL* SEQ ID NO. 334 LOC_Os03g32230 1 MTAALQALLDPTALSLGLPTPAINKEEYLAICLAA STGPHRCTICRRSFATGQALGGHKRCHYWDGTSVSVSVSASASAASSAVRNFDLNLMPLPESTAAAGIKRWAEEEEVQSPLPVKKLRMSN* SEQ ID N
O. 335 LOC_Os03g53340 1 MNPLRVIVKEEELDFAAAAAAAAAGEGSPSSWAVGVMDLPRPMEGLGEAGPPPFLCKTYEVVDDPGTDTVISWGFAGN SFVVWDANAFAAVLLPRYFKHSNFSSFVRQLNTYGFRKVDPDRWEFANEGFLRGKKELLKTIKRRRPPPSSPPSSSSSSSSSQHQQQPAAACLEVGQFG RDGVVNRLQRDKSVLIAEVVKLRQEQQTTRAQMQAMEERISAAEQKQQQMTVFLARAMKNPGFLQMLVDRQAGQHGARNRVLEDALSKKRRRPIE VQSIYHLSPK* SEQ ID NO. 336 LOC_Os03g533402 MNPLRVIVKEEELDFAAAAAAAAAGEGSPSSWAVGVMDLPRPMEGLGEAGPPPFLCKTYEV
HQQQPAAACLEVGQFGRDGVVNRLQRDKSVLIAEVVKLRQEQQTTRAQMQAM EERISAAEQKQQQMTVFLARAMKNPGFLQMLVDRQAGQHGAR NRVLEDALSKKRRRPIEYLLTRNGETCAAGES AAMLAA DGVAEP DGDTTPRGDGGGGGGGDTESFWMQLLSLGLEEKQREDGV AGGVQESNSGGAD VDNDEEDDDDDVDVLVQSIYHLSPK* SEQ ID NO.337 LOC_Os03g533403 MNPLRVIVKEEELDFAAAAAAAAAGEGSPSSWAVGVMDLPRPMEG LGEAGPPPFLCKTYEVVDDPGTDTVISWGFAGNSFVVWDANAFAAVLLPRYFKHSNFSSFVRQLNTYGFRKVDPDRWEFANEGFLRGKKELLKTIKRR
RPPPSSPPSSSSSSSSSQHQQQPAAACLEVGQFGRDG VVNRLQRDKSVLIAEVVKLRQEQQTTRAQMQAM EERISAAEQKQQQMTVFLARAMKNPGFL QMLVDRQAGQHGARNRVLEDALSKKRRRPIEYLLTRNGETCAAGESAAM LAADGVAEPDGDTTPRGDGGGGGGGDTESFWMQLLSLGLEEKQRED GVAGGVQESNSGGADVDNDEEDDDDDVDVLVQSIYHLSPK* SEQ ID NO. 338 LOC_Os03g533404 MRSPPCSSRATSSTATSPASSASSTPTKVDPD
GGDTESFWMQLLSLGLEEKQREDGVAGGVQESNSGGADVDNDEEDDDDDVDVLVQSIYHLSPK* SEQ ID NO. 339 LOC_Os03g53340 5 MGVRER
HRELLDAAAQPRPGGEAARGRRRRRRPGE* SEQ ID NO. 340 LOC_Os03g55550 1 MAVDWIWERRRREEEYNHQMSQDELQQPGQVQWTPAPEEK
GVVLRDAAPQAKRRTQAGHGGDLGRQKKKARVSDKRNQESMQSGSCSDNESNCSQ VNRRKVDRV AGGGNGKVPARRRSATIAQSLYARRRRERIN GRLRILQKLVPNGTKVD]STMLEEAVHYVKFLQLQIKVEVQIVCHDQMLSSDELWMYAPIVYNGMDLGIDLNISPPR* SEQ ID NO. 341 LOC_Os03g60 080 1 MGMGMRRERDAEAELNLPPGFRFHPTDDELVEHYLCRKAAGQRLPVPIIAEVDLYKFDPWDLPERALFGAREWYFFTPRDRKYPNGSRPNRAA GNGYWKATGADKPVAPRGRTLGIKKALVFY AGKAPRGVKTDWIMHEYRLADAGRAAAGAKKGSLRLDDWVLCRLYNKKNEWEKMQQGKEVKEE ASDMVTSQSHSHTHSWGETRTPESEIVDNDPFPELDSFPAFQPAPPPATAMMVPKKESMDDATAAAAAAATIPRNNSSLFVDLSYDDIQGMYSGLDML
PPGDDFYSSLFASPRVKGTTPRAGAGMGMVPF* SEQ ID NO. 342 LOC_Os03g60560 1 MKHPRQEEEVSLALALSTDCSSTASDSSAAAAGGAARRK RARRRS VV ATSGEGEFVCKTCSRAFPTFQALGGHRTSHLRGRSNGLDLGAIGDKAIRLHRAADKEHRDKHECHICGLGFEMGQALGGHMRRHREEMA AAGGGSSADDWVWRCDARPEGIAAEPPVLLELFA* SEQ ID NO. 343 LOC_Os03g60630 1 MPPHHGGLMAPRPDMVAAAVAASGGGGGGGGPTGG TAVIy1GSMTERARLAIaPQPEPGLKCPRCESTNTKFCYFNNYSLSQPRHFCKTCRRYWTRGGALRNVPVGGGCRRNKRTKSSKSSSSTS AAGSASATG GTSSSTSSTATGGSSSAAAAAAMMPPQAQLPFLASLHHPLGGGDHYSSG ASRLGFPGLSSLDPVDYQLGGG AAAAAAIGLEQWRLPQIQQFPFLSRND
AMPPPMSGΓYPFDAEAAADAAGFAGQLLAGTKVPGSSGLITQLASVKM EDSNAQSAAMNSSPREFLGLPGNLQFWGGGNGAGPGGNGDGATGGSGA GVAPGGGGSGGGWADLSGFNSSSSGNIL* SEQ ID NO. 344 LOC_OS03G64260 I MHCCMSLHPHRRHGDGDVDGSASGSGSARLTAGLINFLESRRA
EQVRRSMDMSLLQEGASPW ALKRRHSMRAAAAGRRRKSAAPAPADQEGGGGVMELEDLGPDYLEELLAASQPIDITCCTSPSHHSI* SEQ ID NO.34 5 LOC_OS04G23550 I MDAEMAMGESFAYYWETQRYLESEELDSMYLPTQDDSNYESSSPDGSHSSSAPAPAA VGGDAAAA V AGSGGGMTTMMMG
10 FVEVDHMDSVQMKQMVEAALSQLVATGSPLSSMSY* SEQ ID NO. 346 LOC_OS04G23550 2 MDKASIIKDAIEYIQRLQAEEQQMLREVAALESAAA RLRVITANITSVAGCLMHTLFVEVDHMDSVQMKQMVEAALSQLVATGSPLSSMSY* SEQ ID NO. 347 LOC_OS04G32790 1 MMNFSSYFYSSSAAA
AGGGGGGGEKKSSSSSASKKKQQQAAAAEGGNNQTRYLGVRRRPWGRY AAEIRDPATKERHWLGTFDTAEEAA VAYDRAARSLRGARARTNFA YP
DLPPGSSVTPYLSPDLSADASDQLLQPFY ANPSAAAALPTPAA VMAGGGGVEFGGEYMYGGGVDMSSLMDDIAAMPDDLPPSVTGGGGGFASSDEYS
1 5 SGGGGMVDDVSMYCGGNGGGSSWCDASDFASYSSSSPAAAAAAGSHGMYFEEGYVHSPLFSPMPAVDDAGADGFQLGGSSSSYYY* SEQ ID NO.3
48 LOC_Os04g34970 1 MALSEPDLAAETEAIVSALTHVVAYGGGGPPPSEETAASAVTRTAPWRADGARQGA VP AARKYRGVRRRPWGKW AAEIRD
VPDGFFGGGGNGRFLHSWSIGTSPSPSGSGSGGAGGGGGGGGGGAPVRPLFHGGNGWEQRGDSAYNGF* SEQ ID NO. 349 LOC_Os04g38770 1 MG
RGKiviRRiDNSTSRQVTFSKRRNGiFKKAKELAiLCDAEVGLviFssTGRLYEY ASTSMKSVIDRYGRAKEEQQHVANPNSELKEFCSVFΓYΠΈN* SEQ
20 ID NO.350 LOC_Os04g42020 1 MEGDDKSAVVGGAYWGLAARACDACGGEAARLFCRADAAFLCAGCDARAHGPGSRHARVWLCEVCEHAPAAV
PYLDLDFARSMDDIKAIGVQNGPPELDΓTGGKLFYSDHSMNHSVSSSEAAVVPDAAAGGG APMPVVSRGREREARLMRYREKRKSRRFEKTIRYASRK AYAETRPRIKGRFAKRTKGGAGADADADADADGEDEEMYSSAAAAVAALMAPGGSDADYGVDGVVPTF* SEQ ID NO. 351 LOC_Os04g42950 1 M AAAEVQSAAGWGRQLQQDGGG WRKGPWTSQEDALLVEHVRQHGEGRWNSVSKLTG LK RSG KSCRLR WVNYLRPDLKRGKITPQEESIIVQLHALW
SSSLSMGGGEAEDLIMHQDAMDDLMMCPAMSTTSSSTAPPSPGIS* SEQ ID NO.352 LOC_Os04g45810 1 MNGRTQLASWARIAMDRGDHHHLQQ QHQFLMPPPAPVVPPQLCMPAMMADEQYMDLGGGG AAAAPGRGGAGERKRRFTEEQIRSLESMFHAHHAKLEPREKAELARELG LQPRQVAIWFQN KRAR WRSKQLEHDY AALRSKYDALHSRVES LKQEKLALTVQLHELRERLREREERSGNGG AATTAASSSSCNGSGSEEVDDDDDKRN AAAGCLDLEP PESCVLGGATCATPADVSVESDQCDDQLDYDEGLFPESFCATPELWEPWPLVEWNAVA* SEQ ID NO.353 LOC_Os04g48030 1 MASPAAGTPPFLT 30 KTYAMVEDPSTDETISWNDSGTAFVVWRPAEFARDLLPKHFKHSNFSSFVRQLNTYGFKKVVADRWEFANDCFRRGEKHLLGGIQRRKGSGTGGAG
SEQ ID NO. 354 LOC_Os04g49450 1 MARFQETKARNDQGPVADHVGHQNLMENLTDPLDSSGMDMMDEARIPKARKPYTITKQREKWTEDEHKLF LEALQLHGRA WRRIQEHIGTKTA VQIRSHAQKFFSKVIKESSGDNCNSLG AASSIQIPPPRPKRKPVHPYPRNLGSTASKNVPALKQLEKPQLQVQSLYD 35 QDNGSPTSVLTVPQIRADTLGSESGGSPTSTIDIEERCPTPSIATAELAMELPPTNDEEVKGNGDHEEVTCDRSGVPVLRLFGKRVMVNDLHQMSAPDA
GNLQTV ADMEVDASAETPTSGTGKFSSHGAAEANTWNPWLTNTQQFLYYLPNGQIFSVHSALPCFTY HNEGVTCTQFSNPQVV ASDQQHQHQTSEAV
SEQ ID NO.355 LOCJ>s04g494502 MDCVACKVIKESSGDNCNSLGAASSIQIPPPRPKRKPVHPYPRNLGSTASKNVPALKQLEKPQLQVQSLYDQD
W
GIQREGSWTESNTSSSSVPETATHNSETTESYRNGNRNEDEMVPSPDSRKCVSPGSNCRRGFVPYKRCVADSEALLKSQAPQEEADG EMTRLCL* SEQ ID NO.356 LOC_Os04g56150 1 MTKYKGVRQRHWGSWVAEIRHPLLKTRIWLGTYGTAEDAARAYDEAARLMSGPAARTNFPLSSSGGNARSCLSPT LRARLEKCCGAGSSAQAQQGA V AGQDNDDAAAAAAAMGVDDGDEYVEEM IQELTFYGSIEIVQP* SEQ in NO 35' LOC_Os05g04210 i MEMMK Λ C MAMSPAMSSATAAAASEDFCnLRJJGPwn^/EEDMLLVDYlANHGEGRWNSLARCAGLRRTGKSCRLRWLNYLRPDVRRGNITADEQLLILDLHSRW
QIPLAAGAM VV APAVSSEAYHHHGCGGGGDTSCSEPSQAA VTMSPDDASSTLRSSSAAAENDTIHGDVLSGSWSELLATTTTTIAATAGLPDFDELGDF EDNLWSLEDIWLHQQC* SEQ ID NO 358 LOC_Os05g07010 1 MAAMAAAAAGTKKKARKPYTITRPRERWSAEEHERFLDALILFGRDWKRIEAFV
50 GERRPVEAHLRRLQGMDPAISETILLVLKNLEANLSA* SEQ ID NO. 359 LOC_Os05g070102 MAAMAAAAAGTKKKARKPYTITRPRERWSAEEHE
RFLDALILFGRDWKRIEAFV ATKTAIQIRSHAQKHFLKARKFGLAGGLPPPLHPRRATLLRANAAAADMMPPPWLPSAGGGSIGCSAPPSGVQQSMAG
LVLKNLEANLSA* SEQ ID NO. 360 LOC_Os05g07120 1 MAACQQQIWQEGKQQQHLHHGGYDDLSSVYRGTVVLPRRQGGLAPEPPPPRPSSSSGRS AAAQATAMTIHSEAERRRRERINAHLATLRRILPDAKQMDKATLLASVVNQVKHLKTRATEATTPSTAATIPPEANEVTVQCYAGGEHTAAARTYVR
TAVVHTHVDPQYCWYNSR* SEQ ID NO. 361 LOC_Os05g071202 MAACQQQIWQEGKQQQHLHHGGYDDLSSVYRGTVVLPRRQGGLAPEPPPPR
MESRYSTAVVHTHVDPQYCWYNSR* SEQ ID NO 362 LOC_Os05g27930 1 MTVDQRTTAKAIMPPVEMPPVQPGRKKRPRRSRDGPTSVAETIKRW
RTNFGQHHAPAASVQVALAAVKCALPGGGLTASKSRTSTQGASADVQDVLTGGLSACESTTTTINNQSDVVSTLHKPEEVSEISSPLRAPPA VLEDGSN EDKAES VTYDENIVSQQRAPPEAEASNGRGEEVFEPLEPIASLPEDQGDYCFDIDEM LRMMEADPTNEGLWKGDKDGSDAILELGQDEPFYYEGVDPG MLDNLLRSDEPAWLLADPAMFISGGFEDDSQFFEGL* SEQ ID NO. 363 LOC_Os05g27930 2 MKGKGGPENTRCDFRGVRQRTWGKWVAEIREPNQ
QSRLWLGTFPTAEAAACAYDEAARAMYGPMARTNFGQHHAP AASVQVALAAVKCALPGGGLTASKSRTSTQGASADVQDVLTGGLSACESTTTΠN
NEGLWKGDKDGSDAILELGQDEPFYYEGVDPGMLDNLLRSDEPAWLLADPAMFISGGFEDDSQFFEGL* SEQ ID NO. 364 LOC_Os05g27930 3 MKG
SKSRTSTQGASADVQDVLTGG LSACESTTTTINNQSDVVSTLHKPEEVSEISSPLRAPPAVLEDGSNEDKA ES VTYDENIVSQQ RAPPEA EASNGRGEEV
70 EGL* SEQ ID NO.355 LOC_Os05g34830 1 MSGGGEGAAAAERQELQLPPGFRFHPTDEELVMHYLCRRCAGLPIAVPIIAEVDLYKFDPWHLPRMALY
VQSQPKIAEWERTFAGAAAPAGAVSTAGPILGQLDPAAAVAGGGDPLLQDILMYWGKPF* SEQ ID NO. 366 LOC_Os05g348302 MALYGEKEWYF
75
AEWERTFAGAAAPAGAVSTAGPILGQLDPAAAVAGGGDPLLQDILMYWGKPF* SEQ ID NO. 367 LOC_Os05g34830 3 MALYGEKEWYFFSPRDRK
AGAAAPAGAVSTAGPILGQLDPAAAVAGGGDPLLQDILMYWGKPF* SEQ ID NO.368 LOC_Os05g37050 1 MAFYGGEMGGSSSSWV APLVPSSRP
LFLEGLEKYRRGD* SEQ ID NO. 369 LOC_Os05g37060 1 MAFYLGSMGGSPSSWGVAEVPVPbSRPWSKAEDKVFESALVAFPEHTHNRWALVASRL PGRSAHEVWEHYQVLVDDVDLIERGMVASPGCWDDDNNSAGHGRGSGGDERRRGVPWTEEEHRLFLEGLEKYGRGDWRNISRWSVKTRTPTQVAS HAQKFFIRQANASSRGDSKRKSIHDITAP* SEQ ID NO.370 LOC_Os05g39720 1 MTAAPGSLPLVNSRPVSLSLAASRSSFSSLLSGGAGSSLNLMTPP SSLPPSSPSSYFGGVSSSGFLDSPILLTPSLFPSPTTTGALFSWITTATATAA]APESQVQGGVKDEQQQYSDFTFLPTASTAPATTMAGATATTSNSFMQD 55 SMLMAPLGGDPYNGEQQQPWSYQEPTMDADTRPAEFTSSAAAGDV AGNGSYSQV AAP AAAGGFRQQSRRSSDDGYNWRKYGQKQMKGSENPRSY
YKCTFPGCPTKKKVEQSPDGQVTEIVYKGAHSHPKPPQNGRGRGGSGYALHGGAASDA YSSADALSGTPV ATP ENSSASFGDDEA VNGVSSSLRV ASS VGGGEDLDDDEPDSKRWRRDGG DGEGVSLV AGNRTVREPRVVVQTMSDIDILDDGYRWRKYGQKVVKGNPNPRS YYKCTTAGCPVRKHVERASND LRAVITTYEGKHNHDVPAARGSAAAALYRATPPPQASNAGMMPTTAQPSSYLQGGGGVLPAGGYGASYGGAPTTTQPANGGGFAALSGRFDDDATG ASYSYTSQQQQQPNDAVYYASRAKDEPRDDGIMSFFEQPLLF* SEQ ID NO. 371 LOC_Os05g39940 1 MPFSLLLFTGA VAGV AMLVLPWWCA VGE
RTCPCCRELVLVPPAARLAAPTYR* SEQ ID NO. 372 LOC_Os05g40060 1 MALIATGATATATAAPVASPAASSMASELMAQGRESAA VLEALLHGA SIJ1PAHGGAHALAAEILRCCDRAI-AALRAGGDAESSSADTKRKPATAQPSTRRRRRATASGGGAAAAAEPARVEKARTSEDGFLWRKYGQICEIKNSK
5 HPRLYYRCSYKDDHGCTATKQVQQSEEDPSLYVΠΎFGDHTCSCQTAAAAAMDDDDDDENSQHFVINFGPATASRSGSPPLLYDDGDDGDVWRETA ATPPSSRQSRCSPEGDGEESGVKMSKEEPVDSCPGPSAVSSPADVVSCSSPAMEPDLLGCLNWDDDFGDSSFVDADEFMNFDEIDLFQΓYS* SEQ ID NO . 373 LOC_OS05G41760 1 MELDMGAGGGGGVVGGGRAEAHYRGVRKRPWGRYAAEIRDPWKKTRVWLGTYDTPVEAALAYDRAAVALRGVKART
NFGSGSSGGGGVGGHGHGHSHAQLPQLHHRM HPPRPPQGPGHFGGLDISHPSPWHYVYFP ARVQAMAPAAAGHV AAHV AASLPSTTLELRTGPSAG ELPFDLNEPPPALLFGS* SEQ ID NO. 374 LOC_Os05g45020 1 MASREHLLLDPAALAVSWADPAAVEIPPELLAALGEYLSARRSDGEAEADAEAEA
VSELVM* SEQ ID NO.375 LOC_Os05g47650 1 MDSTSCLLDDASSGASTGKKAAAAAASKALQRVGSGASAVMDAAEPGAEADSGGERRGGGGGK LPSSKYKGVVPQPNGRWGAQIYERHQRVWLGTFTGEAEAARA YDVAAQRFRGRDA VTNFRPLAESDPEAAVELRFLASRSKAEVVDMLRKHTYLEE LTQNKRAFAAISPPPPKHPASSPTSSSAAREHLFDKTVTPSDVGKLNRLVIPKQHAEKHFPLQLPPPTTTSSVAAAADAAAGGGDCKGVLLNFEDAAGK
APELQDAGGAAMTKSKRAMDAMAESQAHVVFKKQCIELALT* SEQ ID NO. 376 LOC_Os05g49310 1 MQYTVEGSGGGGVQTVEAA VRKGPWTM EEDLSLVNYIAANGEGA WNTLARAAGLNRTGKSCRLRWLNYLRPDVRRGNITPEEHTLIVELQ ARWGNRWSKIARYLPGRTDNEVKNFWRTKIQKKH RKSTDGIYATTTSESIMPAATVHQNTVAEDQGSSSVSGRTTTATV AVTQEYATEAPPPSGMSSGSYLDQLQPGYASSIHGGQDGGAAAAAAGDVVVSD EFLAASSDNFWALEDLWPTVQSLHGNC* SEQ ID NO. 377 LOC_Os05g50340 1 MAQQARAQWPQKQNKLFEQALAVYDKETPDRWHNIARAVGGG 20 KSAEDVKRYYEMLEEDIKHIESGKVPFPAYRCPAAAGYQAERLKHLKI' SEQ ID NO.378 LOC_Os05g5U60 1 MHAIMARRCSGDYSTAGQRAGEE
EQEHRLFLAGLEKLGKGDWRGISRSFVTTRTPTQVASHAQKFFLRHNSAAKKTNNKRRSSLFDMVQDCDSGGRS LASSDPATRCNNNISASLS LQVSH HKSGDSAWPSSETPSVSEAQQGHGYGTSHHCSPLDLELGMSLSTTPSIGT* SEQ ID NO.379 LOC_Os06g03670 1 MEYYEQEEYATVTSAPPKRPAG
25
LWSY* SEQ ID NO. 380 LOC_Os06g06360 1 MDGGDIHLLLSILADGEEQARQLGEPAAAADDEYHGGGRGEEYYRGVARQLQGTLARAMGIARAIE AAAFAGGGGGGGASGSRGTTGDRSDSPRS ADESSGRTARDAA VAQQERHHDTIKRRKGLPRWTEKFRVPDASLEATPDDGFSWRKYGQKDILGAKFP RGYYRCTYRNAQGCPATKQVQRSDADLAVFDVTYQGAHTCHQKQRJIAAAAGDQPPPPPPQADPSVELLVNFRHGLKVETNGIJU3PPPPPPTTTTNFH
30 GFDYPLYHGEVDPHLPFPPLFGHASMYGQYRDA* SEQ ID NO. 381 LOC_Os06gl 1330 1 MARERREIRRIESAAARQVTFSKRRRGLFKKAEELAVLC
DADVALVVFSSTGKLSQFASSNMNEIIDKYTTHSKNLGKTDKQPSIDLNLEHSKCSSLNEQLAEASLQLRQMRGEELEGLSVEELQQMEKNLEAGLQR VLCTKDQQFMQEISELQRKGIQLAEENMRLRDQMPQVPTAGLA VPDTENVLTEDGQSSESVMTALNSGSSQDNDDGSDISLKLGLP* SEQ ID NO. 382
ELYETrNGNRVRVSAKCNYCHKTLSARSSAGTGHLLRH]KSCKPRKLGSNALPQSMLRFSADGSVIPWEYSPEVARFELCRLIAREDLPISFGQSPAFVN 35 YIKAAHNPRFVPVSRQTTTRDFYKLFKDRRSIIIDRLNSASSIALTSDIWSGHAKEDYLSVVAHFVSSDWQLEKRVLGLRLINESHTGANIAERVIAVAEE
PMKTKFMNYWSKIPILYSFAFILDPRAKIRGFSKVLQIMAQLIGDDYSAYLTTVRASLSDTFAKYERKFGSVRLHSSTIPGPSTGKKRTA WGKIFGSVVA
40 PVSTISSESTFSLTGRIIEDRRRRLNPRLVEILAVIKDWELADAKSQHTTENVELQNAYENMYLDDEIDVNP* SEQ ID NO.383 LOC_Os06gl4670 1 MG
RQPCCDKVGLKKGPWTAEEDQKLVAFLLTHGHCCWRVVPKLAGLLRCGKSCRLR WTNYLRPDLKRGLLSDDEERLVIDLHAQLGNRWSKIAARLPG
SASAASAVDVAEWPEPMYMFGMDGIMDVGWNGLISGAGVDVDVDVDPFnHYVHnΔSFDDQDVV/Ii- SEQ ID NO 384 LUL_Os06g24850 1 MFRE
K'RΛΛSSAQLVGWFFVRTFkl^NLM FKPADADDLMNKMKPCSDEGHGSRDAAQERRPSSTMFVKVNLEGYA VGRKIDLKAHRSYDSLSQALQSMFHG
+5 FLSDGIATRDNELQRMEEGSKKRYVLVYEDNEGDRMLVGDVPWEYVCLL* SEQ ID NO. 385 LOC_Os06g32720 1 MMQILCECCNSDHRSSSTPMA
HEKWDGSLQTNQISSGVNIYSVLDHGELNEQPVPSKDDFQVSFVQNIVGFNFYiWCDPELAP* SEQ ID NO 386: LOC_Os06g36930 1 MDYSTVKQEE
50
EQCTEFLARALRSPDVLDNIARRHAAAVERKKRRM LAAAADDDGLTFEA LA LAAAADTSHSTGGAVTTDMIWYELLGEEQAEIDIEVDQLVASASAA ADTASEAEPWEEMGEEEVQELVQQIDCLASPSS* SEQ ID NO. 387 LOC_Os06g36950 1 MDPNFPYQSPSFTLGDFDPNYMSGFNDASGSAPTPPSVEE
RQQQLMVNPDGTVRSWEYDPMVARESLVRLIARQDLPLNFGESPAFEHYIQQSHNPRFKAVSRQTSTRDLENVYHKEATALKELFSTCTFSVSVTSDI 55
RPPPIPTTGKKKIQWGRIWGGSSSSSIQGGGSSSATSGDASSHVVAEELSGYLDSDAIHHEAQDFNVLGWWNDHKITYPVLSKLARDVLTVPVSTVPVS TVSSESAFSLCGRIIEDRRTTLRSDHVEMLLSVKDWELARQHAQYTADNQELAAQFEQLYLDPDQPQ* SEQ ID NO 388 LOC_Os06g40150 1 MGQS
50 GGNSLSQILSAKLRKCCKTPSPSLTCLRLDPEKSHIGVWQKRAGARADSSWVMTVELNKDTA VSSAATV AAATAVSSSDQPTPSDSTVTTTSTSTTGSP
SPPPPAMDDEERIALQMIEELLGRSGPGSPSHGLLHGGEGSLVI* SEQ ID NO 389 LOC_Os06g44010 1 MAKMLPPPSQSVPSRPPSWLYIPPRRRHGT
REDCKPKVSKRFVHADPSDLSLVVKDGYQWRKYGQKVTKDNPCPRAYFRCSFAPACPVKKKVQRSADDNTVL VATYEGEHNHAQPPHHDAGSKTA
)5 AAAKHSQHQPPPSAAAAVVRQQQEQAAAAGPSTEV AARKNLAEQMAATLTRDPGFKAAL VTALSGRILELSPTKN* SEQ ID NO. 390 LOC_Os06g51
260 1 MASMPQLEEKDSSDLAINKGPSLDLVKSPLMMNDASATVTAMQPNEGMEEFPVKVRKPYTITKQREKWTEEEHDKFLEALKLYGRSWRQIQE
EMLQASSSVGEIPAAYCAPNGWFMSYNSFPFQFGESAADARIPPLHVWWPYYGFAPISHPRGLSTVMQQTEGSDESDGVKSHSSESSSDSGENVQMTA 70 PQSSRIVESLGAIYVRDSGSSFELKPSANSAFVRVKPSNSGDEEVIRGFVPYKRCKFQ* SEQ ID NO.391 LOC_Os06g5I2602 MVALGVRYKVVREPG
SNNAIEIPPPRPKRKPLHPYPRKCANSGSDANP ATAQLKLAPGSSSSGSDQ ENGSPISVLS AMQSDAFGSSVSNPSTRCTSPASSDDGNNIPTFTSGEDNN VPCEPTVIDPSQSHKEIDQDRKD VNNMSEEDSSEEEVQETS LKLFGRTVVIPDPRKRSSSDPKHESEEQISQPSNEEM LQASSSVGEIPAA YCAPNGWFMS YNSFPFQFGES AADARIPPLHVWWPYYGFAPISHPRGLSTVMQQTEGSDESDG VKSHSSESSSDSGENVQMTAPQSSRIVESLGAIYVRDSGSSFELKPS ANSAFVRVKPSNSGDEEVIRGFVPYKRCKFQ* SEQ ID NO 392 LOC_Os07g05830 1 MAEERRRDDGGDVEVELSLRLRTGDDSTSADPAPATVAAE
75 ARRNLTiFYNGRMCA VNVTELQARTIISMASQGNFGKQQQQQIQGRDDHHYHQGESSSGGGVSTAAARHCDV AGSSSSHSGSGSGSATPPRPALVSPR
AGLQAAAAAAPTMNQPPAASGLSMKRSLQRFLEKRKTRAAAPLYARR* SEQ ID NO 393 LOC_Os07g07690 1 MPPVASGSGRKRQLVLESSDSEA GGKM LRPGFPKWRFEKPEVRAGRVLDEKGGVETKVSSSQKVKDHASSSVYERRRPEPLKPEKSTPSKTNQEVIRVQGKSGVLKIRPKNNKV ASETGDG
10 LETSAGKILSRNTKEDLKTSDVCRQDKEKSDAIDVSQKQGADGEKRITEKLVSPILLRKSDPSVVGISLGQKMKQQNSKAQLKISSLGQRQPSLNLKDEK
NKKKRLLDHKMSPENLSKKAKPNAIDQDTSRPSLEKHGIKKbRKGPRYTMKQKLRGQIKDILLNNGWKIDLRRRKNKDYEDSVYVSPQGNGYWSITK AYAVFQEQSKSGKHTGKSSKHKAGVADAACNAISENDLAM LQRNVVKRRTKKELGASKKKYEDSSSRNSKDNNAGRSSGNKHQSSGVRGCALLVR GSTHSMEGNVDGYFPYRWKRTVLS WMIDMGVVSEDAKVKYMNKKGTRARLEGRITRDGIHCGCCSKILTV AKFELHAGSKEQQPYENIFLEDGGATL SQCLVDA WKKQSQSEKKGFYKVDPGDDPDDDTCGICGDGGDLLCCDNCPSTFHLACLGIKMPSGDWHCSSCICRFCGSTQEITTSSAELLSCLQCSRKY
>5 HQVCAPGTMKDSVKAESNSSTDCFCSPGCRKIYKHLRKLLGVKNAIEAGFSWSLVRCFPDKLAAPPKGKAHLIHCNSKTA VAFSVMDECFLPRIDERS
GINllHNVIYNCGSDFNRLNFSKFYTFILERGDEVISAAAVRIHGTDLA EMPFIGTRGIYRRQGMCHRLLNAIESALSSLNVRRLVIPAIPELQNTWTTVFGF KPVEPSKRQKIKSLNILIIHGTGLLEKRLLATGTINQENTTVNDMMDAQTHVEATGSRTPVHFSCELPVGGDPDIKHHDDSHPLVGNSKGLTLNLPCVPE EKTAELTSPVLDVVQCMPESENTQEMKNGETDATLTSEDIIAEQKYEDKSNSSLTDSSA[PMTVDPGSCSSNETVKGEHHTSSEPSVEAILVRDKPEPSIS CNVTNQEDKNSSMWVDTTVHIJVTIVGNHDIQNSVEVKGMEHOT-AKDQTFVSAVANKVATrEDPSDSVADCEVPIVRSIQQKDEVIADKNACATIDQ TA VDDV ANNFVATTENDTDSTAELGVSMERCIQQKVEVIKDKSDSPLRTSISKVM LEKSDQMKSTESDSVKM KDMAIEVKVTVENFSEAGKPASALV MSNDINGEVMAKPNLTCGDDQLHGGDGTYKNSMEDDLASREPVNA' SEQ ID NO.394 LOC_Os07g07690 2 MPPVASGSGRKRQLVLESSDSEADE FFVSTRRKEDDDDDAGNAGGGSGGGGDQGGEK VVTVSPEKVSGAKSTDEGGGSDKSKGSEVGKSVLQPDVKRIRTEAAHGGGSGSGGSVSKDGTGG
KKKRLLDHKMSPENI^ICKAKPNAIDQDTSRPSLEKHGIKKERKGPRYTMKQKLRGQIKDILLNNGWiαDLRRRKNKDYEDSVYVSPQGNGYWSITKA YAVFQEQSKSGKHTGKSSKHKAGVADAACNAISENDLAM LQRNVVKRRTKKELG ASKKKYEDSSSRNSKDNNAGRSSGNKHQSSGVRGCALLVRGS 10 THSMEGNVDGYFPYRWKRTVLSWMIDMGVVSEDAKVKYMNKKGTRARLEGRITRDGIHCGCCSKILTV AKFELHAGSKEQQPYENIFLEDGGATLSQ
CLVDAWKKQSQSEKKGFYKVDPGDDPDDDTCGICGDGGDLLCCDNCPSTFHLACLGIKMPSGDWHCSSCICRFCGSTQEITTSSAELLSCLQCSRKYH QVCAPGTMKDSVKAESNSSTDCFCSPGCRKIYKHLRKLLGVKNAIEAGFSWSLVRCFPDKLAAPPKGKAHLIHCNSKTA V AFSVMDECFLPRIDERSGI
PVEPSKRQKIKSLNILIIHGTGLLEKRLLATGTINQENTΓVNDMMDAQTHVEATGSRTPVHFSCELPVGGDPDIKHHDDSHPLVGNSKGLTLNLPCVPEE
NVTNQEDKNSSMVPVDTTVHLATIVGNHDIQNSVEVKGMEHNTAKDQTFVSAVANNVATTEDPSDSVADCEVPIVRSIQQKDEVIADKNACATIDQT AVDDVANNFVATTENDTDSTAELGVSMERCIQQKVEVIKDKSDSPLRTSISKVM LEKSDQMKSTESDSVKMKDMAIEVKVTVENFSEAVSRAMGGTI* SEQ ID NO.395 LOC_OS07G23450 1 MDGEGAP ARRAP AASYYECTFCKRGFTNAQALGGHMNIHRKDRSAGGKSQGGGQHHEGGGSGSGGGGGQQ HGRDVHLGLTLGRNEEERDGVDLELRLGHAHYP* SEQ ID NO. 396 LOC_OS07G26720 1 MRVPAAVTGGCGCGVDGGGGCCRGGGKLADWEEGK
NVSMIITDYWMPEMTGYDLLKKIKESSELKQIPVVIMSSENVPTRISRCLEEGAEDFLLKPVRP ADISRITSRMLQ* SEQ ID NO. 397 LOC_OS07G27770 i MSRLQVWVRDAEVLRTALLEAGIVTGPTSILQVDAGDGFEIEPVNRTGGSEMEAETSVNEQATSVGEKDIDAEVLRAALLKAGΓV AGPTSILQVDAG
DGLEIEPATTTEGSEMEGVQSQPVVPFVGMEFFSDKEARVKVSSCKRSNVTKDYNRYEFACYSERTSKEQNAKSSIGSRSRKCNSIRKTDCKARMVVV
25 FQELQAEDPSFFYSMELDSDNTVGSLFWVDGASKEAYKKFGDCIVFDTTYCTNKYNLPFAPIIGVSNHGQTVLFGCVFLKNEKIETFEWVFETFLKAMD
GKEPQCIMTDQDKTMEIAIAKVLPRTIHRRCMWHVHRNASTN LGVLLNGKEGFETDLKSCIDNSLNEEEFDASWD AMIDRHELCGNKYMQHLYDNRK
RATKYKTINGPEPGSYFVQLILDDDNKKFLVHYDINNEIYSCACKKFQRDKILKIYV* SEQ ID NO. 398 LOC_Os07g37210 1 MGRAPCCEKSGLKKGP WTPEEDEKLIA YIKEHGQGNWRTLPKNAGLSRCGKSCRLR WTNYLRPDIKRGRFSFEEEEAIIQLHSILGNKWSAIAARLPGRTDNEIKNYWNTHIRKRL
TPPPPPPPQAAATEQFLQATSTACHQMPGLVHASPTQQLAQQPQDHM AAATCHRRGAVQHPSYDNQLDYVPALMQMASDASNLQQWSSTVSSSNNH NVNSGVSTPSSSPAAAGQINSSSTTTTΠΎGLNASGDVDDAGLLINMHLSELLDVSDYM* SEQ ID NO. 399 LOC_Os07g37920 1 MESPDSSSGSAPPR VLRRQQQQPGSAPELPPGFRFHPTDEELVVHYLKKKAASVPLP VTIIAEVDLYKFDPWDLPEKANFGEQEWYFFSPRDRKYPNGARPNRAATSG YWKA
35 MECEDSVEDA V AAY APSSQQHATAAAGMAGSDGAGGVAAAHGGDYSSLLHHDSHEDTFLVNGLLTAEDAAGLSTGASSLSQLAAAARAAATPCDA
TKQLLAPSPTPFNWFEAFLPRAKEFPSGLSRSSRDIGDMSLSSTVDRSLSEAGA VAIDTGDAANGANTMPAFINPLGVQGATYQQHQAIMGASLPSESA AAAAACNFQHPFQLSRVNWDS* SEQ ID NO. 400 LOC_Os07g38030 1 MLQGVLSRAPGADAAAMKAKRAADDEEEGGERERARGKRLAAEGKQG
FQAYNALSPLVKFSHFTANQAIFQALDGEDRVHVIDLDIMQGLQWPGLFHILASRPTKPRSLRITGLGASLDVLEATGRRLADFAASLGLPFEFRPIEGKI
DADVAVAGDTHHESHDS* SEQ ID NO. 401 LOC_Os07g38750 1 MELNFQVQPPVFQLQDYCYYYSQEVAAAASPAAKPTKPRGRKKGSTSHSKFVG VRQRPSGRWVAEIKDTTQKIRM WLGTF ETADAAARA YDEAARLLRGAEARTNFAPRISPDCPI AVRΪRGILHHKKLKKARSAΛAATAO&PG AASKKRS TTAAAAAATPTnTTSNSNSDGAGSACCCSSSSSSSTDSCDGAVKQGGGGGGAPTDASEVYRPDFVHAGAEEFDSWMFDTAFGPFPELDSFAAVDAVT +_} PPPATASPEESSAGTPPVEMAEFERIKVERRISASLY AMNGLQEYFDKVFDASACDPFWDFSPLCH* SEQ ID NO.402 LOC_Os07g41S80 1 MPDSDNE
SGGPSNAGEY ASAREQDRFLPIANVSRIMKRA LP ANAKISKDAKETVQECVSEFISFITGEASDKCQREKRKTINGDDLL WAMTTLGFEDYIDPLKLYLH
YGHGGGGGGGPSPSSGYGRQDRL* SEQ ID NO. 403 LOC_Os07g42400 1 MRVWLGRVGGGDAMMHMLVAPDGGGGGEMPPPYGGAAAAPPPPME
50
AELSDDSVMTPTTKATGDLVVRQIGFLRSISLLPADYKNYLRSKRM KAMQLG DGGAILKYLQTMQMENPAFFYTMQIDEDDKLTNFFWADPKSREDF YQNSLKHLNHVFQGSKTFAKDFSRCVFGYEEEEEFLFA WRSMLEKYDLRHNEWLS KLFDERERWALAYERHIFCADIISALQAESFSSVLKKF LG PQLD
55 CICTCRKFEFMGIPCCHMLKVLDYRNIKELPQRYLLKRWRRTAKSANEENQGTLLFLICMRIHFAEAHDAGDLNLNIIPSARCLLHDTGVEA VRTGHAE
LPRIKVSNL* SEQ ID NO. 404 LOC_Os07g424002 MRVWLGRVGGGDAMMHMLVAPDGGGGGEMPPPYGGAAAAPPPPMEQELELHRDNADDGL
ATGDLVVRQIGFLRSISLLPADYKNYLRSKRMKAMQLGDGGAILKYLQTMQMENPAFFYTMQIDEDDKLTNFFW ADPKSREDFNYFGDVLCLDTTYK
J0 INGYGRPLSLFLGVNHHKQTIVFGAAMLYDESFESYRWLFESFKIAMHGKQP A VALVDQSIPLASAMAAA WPNTTQRTCAWHVYQNSLKHLNHVFQ
EHRYAELQADFQASQSYPRIPPAKMLKQAAHTYTPVVFEIFRKEFELFM DSVLFSCGEAGATS EYKVAPSEKPKEHFVRFDSSDCSCICTCRKFEFMGIP CCHMLKVLDYRNIKELPQRYLLKRWRRTAKSANEENQGYV ANGNGSSLNSIVPPANHHGLQGFSAMIQDTPVSNMHENSFRRSS* SEQ ID NO. 405 L OC_OS07G47790 1 MCGGAIISDFIPQREAHRAATGSKRALCASDFWPSASQEAADFDHLTAPCTFTPDQAAEEPTKKRERKTLYRGIRRRPWGKWAAEI
APTVAYVHHHLPPQPQQDAGLELWSFDNIHTAVPM* SEQ ID NO. 406 LOC_OS07G47790 2 MCGGAIISDFIPQREAHRAATGSKRALCASDFWPSAS
AADGHSHGGAAIPCREFMDYDA VMAGFFHQPYVVADGVPAVPAEEAPTV AYVHHHLPPQPQQDAGLELWSFDNIHTA VPM* SEQ ID NO. 407 LOC _Os07g48570 1 MDDLAAASPPHPPPPPPESHVPPPPQTPEKDSCEDTGDMRISEEKPCTDQELDADQMNSSSFNSSSECENQTPSNDEMTGSESKSEAAQ
QLSIKGDQTATAVKFAPDSPLCNSMASVLKIGEQSKNAKPTSTAQPRNGETQTCPASGTTSDSPRNEPVNGAVSGHQNGIVGHSGVPPMHPIPCFPGPPF
LGKHSRDSKPQGDDKAEKNLWIPKTLRIDDPDEAAKSSIWTTLGIEPGDRSMFRSFQSKPESREQISGAARVLQANPAALSRSQSFQETT* SEQ ID NO. 4 08 LOC_Os08g01780 1 MKSSSVAPRLKQERQDDCKFQEGDVNSLELRLGISSDNDQISGGGAASPWLGVGVHPWSLAARQGKAALEQAHQRPNECAV
75 QRENRAASSAQLVGWPPVRAFRKNLSTPKPADADDLMNKVKLCSDEGHGSRCAAQERRSSSTMFVKVNLEGYA VGRKIDLKAHRSYDSLSQALQSM
FHGFLSDGIATRDNELQQMEEGSKKRYVLVYEDNEGDRMLVGDVPWELFIASVKRLYIAQDPRVHAKLR* SEQ ID NO.409 LOC_Os08g017802 M KSSSVAPRLKQERQDDCKFQEGDVNSLELRLGISSDNDQISGGG AASPWLGVGVHPWSLAARQGKAALEQAHQRPNECA VQRENRAASSAQLVGWP PVRAFRKN LSTPKP ADADDLMNKVKLCSDEGHGSRCAAQERRSSSTMFVKVNLEGY A VGRKIDLKAHRSYDSLSQALQSMFHGFLS DGIATRDNELQ QMEEGSKKRYVLVYEDNEGDRMLVGDVPWELFIASVKRLYIAQDPRVHAKLR* SEQ ID NO.410 LOC_Os08g09900 1 MENQSGQPQYAMADQGF
50 HPFSPFMLAPSTTMQQHVGSSSSTPVIQVAALPSHAYYGNIDV ADDGFHWRMCGQSTIQGGLCPTVFSYQCALPNCGVRKSITRSADCQTIETVCKGCH
VDILNNSVRHENPQPRKKVRSKSTVWEEFEVVLI DGKVQTAECKHCKKGLSAKTSGGTSHLIRHLKICPAQHGTSRVQKKCSSLADLPIVKSWKDDQE SSLDEIIRSIVSNLCPFSAMYSASFAQFLAGRNPVLNMVQQATVEEKFLSVFHNEKMKLKEKITATPGGVFLSLGEWQRLFYIQVRV ACLTVHFIDEDW
35 TVLDMESTWSHYMTSSPERKQKYQEILSQLHLDRPSLGSKGWYFTFYFSEAALQFIKSFPLPDAKPNCQSGPWEPSFDDLEATENYCKIARSAYRVIKV
SAFDQCDQRAELFDGKLRPETTEALICAQSWIKSSGTADADDGNKNTSF* SEQ ID NO. 411 LOC_Os08g 10080 1 MSFIGMVEARMPPGFRFHPRDDE ;VGG
PSSSAAAAAVGMRKTLVFYRGRAPKGRKTEWVM HEFRLEPQPLHUCEDWVLCRVFYKTRQTIPSPSSEEA VTLPNELDLPATPSLPPLIDAYIAFDSAPT TTPSMVGSYEQVSCFSGLPALPMKGSISFGDLLAMDTSAEKKAIRVLHNSNTAKLELSPDWGQESGLSQMWNPQ* SEQ ID NO. 412 LOC_Os08gl 505 GAAVQGQGOGSPNDSSSSFTNDSAGGGGGGGAERSLFDLLSDVDIMSCGGGGLASSFDGAAAPPLWLHPGQLAALTPWSPADSVVVPTSAAGAVAA
GFYMDSTTAATAAYGVVPTF* SEQ ID NO. 413 LOC_Os08g31580 1 MAAAIEGNLMRALGEAPSPQMQKIAPPPFHPGLPPAPANFSSAGVHGFHYM GPAQLSPAQIQRVQAQLHMQRQAQSGLGPRAQPMKPASAAAPAAAAARAQKLYRGVRQRHWGKWV AEIRLPRNRTRLWLGTFDTAEEAALTYDQA AYRLRGDAARLNFPDNAASRGPLDAA VDAKLQAICDTIAASKNASSRSRGGAGRAMPINAPLVAAASSSSGSDHSGGGDDGGSETSSSSAAASPLAEM EQLDFSEVPWDEAEGFALTKYPSYEIDWDSLLNNNN* SEQ ID NO. 414 LOC_Os08g33150 1 MGRQPCCDKVGLKKGPWTAEEDQKLITFLLTNGQC
CWRAVPKIJVGLLRCGKSCRLRWTNTYLRPDLKRGLLSDAEEiavrVDLHAQI^NRWSKJASHLPGRTDNEIK^IHWNTHIKKKLKKMGIDPLTHRPLQPP PSPSPEKKHAERKNTAAAAA V AEQHQHDELWEEESPGFCTDEVPMIHPDEIMVPLRDHPPPVCTAAGASTPTTSSSSSSSSVASSTTSCDEVDAAALLPV LEWPDDAMCLMELDELIAAAAPPSLL WDDDYRLPLPPPPLSPPAMYEELDAFQCYDQQRSAFEQEAAASA WNKLELF* SEQ ID NO. 415 LOC_Os08g 33270 1 MELGEEKEERKRGSKSQMEGESTMSESKSSSRGKKKSKTTFEQKVEIHTKETQNLENTKKKQEEGKIKRNKKAPVQGVIQKDKECKSSKEIEG KNIGGIQKEKQSKSSMEIEEKESDIKKHFKALTEMDTEIISQSNLTEINTAMLSSGITIELSEGERSIQSKQIQNMKQSILTEYKTTFVNSGIIGNEVGRSNAL
EDAMDNWNLDIFNLLDGEKEPSSMDNHRCTSVQGTRDDDNNPNDNSETNQQELIEEDINIFVENEQEEATKGNNAAIDSRYIPRVGTQFKNITEAHEFF NFYALLAGFSIVRAHNYHTTSKKRNGEVTRVTFRCNRQGKPTSQSKSRNEIWNISRVQLDHNHQLSPRDEVRFLKSHKHMTTEEKMLIRTLKECNIPTR HMIVILSVLRGGLTS LPYTKKDISNVRTTINKETSSNDIMKTLEFFRRKKEKDPHFFYEFDLDES KKVKN LFWTDGRSREWYEKYGDVVSFDTTYFTNK YNLPFAPFVGIYGHGNTIVFGCAFLHDETSETFKWLFRTFLKAMSQKEPKTIITDQDGAMRSAIAQVFQNAKHRNCFFHIVKKAFNLSGNLLKAKEGLY
DEYEDIINNSVTEEEFEYLWQEMIDSFEVQHINFLKHMWSIRKRFIPVYFKGDFCPFIKSTALSEGTNSRFKNNVGPQYSITNFMIEYERVMDTIQNLEQF
HV LKVM LH LN AMKIPEKYIIERWTKKEYKGLEGKGNGNIP LAQSSILRFNILSRKS AEIASNGSKSYETFQFVVEEMDKIAKQLELLCSNKDAEQEINDS DPNAEDNLNSHEKGNQQSEENIDEILLDLDIAKSKGRPTQRYKTIREEIQQKELYHCSHCQRTDHTFPTCPLKHVEFDLPRKKRRKVKNTREQDGVEQK KKDVSNKRKDLQQDISQEKHNSGAELEGKKKRNSSSSKRGGTKE4 SEQ ID NO^Ia LOC_Os08g34360 1 MAKRRSNGETAAASSDDSSSGVCGGG
GGGEVEPRRRQKRPRRS APRDCPSQRSSAFRGVTRHRWTGRFEAHLWDKNTWNESQSKKGRQVYLGA YDGEEAAARAYDLAALKYWGHDTVLNFP
IRWYHGSCRSSSAAAATTIEDDDFAEAIAAALQGVDEQPSSSPATTRQLQTADDDDDDLVAQLPPQLRPLARAASTSPIGLLLRSPKFKEIIEQAAAAAA SSSGSSSSSSTDSPSSSSSSSLSPSPLPSPPPQQQPTVPKDDQYNVDMSSVAAARCSFPDDVQTYFGLDDDGFGYPEVDTFLFGDLGAYAAPMFQFELDV* SEQ ID NO. 417 LOC_Os08g38990 1 MDGTNNHGALMDDWMLPSPSPRTLMSSFLNEEFSSGPFSDIFCDNGSNKHQDGLGKSKAFIDSSREETAQLAK
KFESNLFGANQKSSSNGCLSERM AARTGFGVLKIDTSRVGYSTPIRSPVTIPPGVSPRELLESPVFLPNAIAQPSPTTGKLPFLMHSNVKPSIPKKTEDETR HDRVFFFQPILGSKPPTCPV AEKGFSVNHQNQPSVTDNHQELSLQSSSTAAKDFTSATIVKPKTSDSMLDNDDHPSPANDQEENATNKNEEYSSDLIITP
AANGHLQDVGSEVLTKLSASLTTTEHAEKSVMDKQEA VDISSTLSNEEDDRVTHRAPLS LGFDANDDYVEHKRRKMDVYAATSTSTNAIDIGA VASR AIREPRVVVQTTSEVDILDDGYRWRKYGQKVVKGNPNPRSYYKCTHPGCSVRKHVERSSHDLKSVITTYEGKHNHEVPAARNSGHPSSGSAAAPQAT
NGLLHRRPEPAQGGGGGSLAQFGYGSAGHRPAEQFGAAAAGFSFGMLPRSIATPAPSPAIAVPAMQGYPGLVLPRGEMKVNLLPQSGNAGAAASQQL
MGRLPKQHPQM* SEQ ID NO.418 LOC_Os08g389902 MDGTNNHGALMDDWMLPSPSPRTLMSSFLNEEFSSGPFSDIFCDNGSNKHQDGLGKSKA
VKPSIPKKTEDETRHDRVFFFQPILGSKPPTCPV AEKGFSVNHQNQPSVTDNHQELSLQSSSTAAKDFTSATIVKPKTSDSMLDNDDHPSPANDQEENAT NKNEEYSSDLIITPAEDGYNWRKYGQKQVKNSEHPRSYYKCTFTNCAVKKVERSQDGQITEIVYKGSHNHPLPPSNRRPNVPFSHFNDLRDDHSEKFGS
KSGQATATS WEN AANGHLQDVGSEVLTKLSASLTTTEHAEKSVMDKQEAVDISSTLSNEEDDRVTHRAPLS LGFDANDDYVEHKRRKMDVY AATST
STNAIDIGA VASRAIREPRVVVQTTSEVDILDDGYRWRKYGQKVVKGNPNPRSYYKCTHPGCSVRKHVERSSHDLKSVITTYEGKHNHEVPAARNSGH
PSSGSAAAPQATNGLLHRRPEPAQGGGGGSLAQFGYGSAGHRPAEQFGAAAAGFSFGMLPRSIATP APSPAIA VPAMQGYPCLVLrRGEMkVNLLPQS
GNAGAAASQQLMGRLPKQHPQM* SEQ ID NO. 419 LOC_OsOSg38990 3 iviDGTNNHGALMDDWMLPSPSPRTLMSSFLNEEFSSGPFSDIFCDNGSN K.HQDGLGKSKAFiDSSKbbrAQLAKKFESNLFGANQKSSSNGCLSERMAARTGFGVLKIDTSRVGYSTPIRSPVΗPPGVSPRELLESPVFLPNAIAQPSPT
LRDDHSEKFGSKSGQATATSWEN AANGHLQDVGSEVLTKLSASLTTTEHAEKSVMDKQEAVDISSTLSNEEDDRVTHRAP LS LGFDANDDYVEHKRR
KMDVY AATSTSTNAIDIGAVASRAIREPRVVVQTTSEVDILDDGYRWRKYGQKVVKGNPNPRSYYKCTHPGCSVRKHVERSSHDLKSVIΓΓYEGKHN
GEMKVNLLPQSGNAGAAASQQLMGRLPKQHPQM* SEQ ID NO. 420 LOC_Os08g41030 1 MVPPAAHAPKNLGLRGVRRRLWGRWAAEIRVPRGH
PAPPMAPAPANHAADPYYCNEPDTTTDEDVMAAADRLLSMDIEEVAALIAIVQQGE* SEQ ID NO.421 LOC_Os09gl 1480 1 MCGGALIPNDYGDKP PPPPSESSEWDATTKMKKKKKRGGGGDDDWEAAFREFIAGDDDDDDGGVSMFPSGAGTMETTTEV APAAA VVERPRRRRRVRRSYPYRGVRQRPW GRWASEIRDPVKGARVWLGTFDTAVEAARAYDAEARRIHGHKARTNFPPDEPPLPAPSQAPFCFLLDDDDDDDGVARGNSPASSSAPDRASACTTSST
VASGERGDELILLECCSDDVMDSLLAGFDVSSEPRSVLGMVN* SEQ ID NO.422 LOC_Os09g28210 1 MDFDLFNSYPESQLDLMSTMLQLEQLTALS DQSLFM AAPTSPPVSPMGTPSPQFSPPPQMSVTTTTAGGGYQDQ YNSMPATYGAGAGVHQLDFAMSSPGSDSG APQGSSSSSSSEAMREMIFHIAALQP VEIDPEAVRPPKRRNVRISKDPQSV AARLRRERISERIRILQRLVPGGTKM DTASMLDEAIHYVKFLKSQVQSLERAAAATGAAAHRAAAFGAA YP AAL PMQHHAPW* SEQ ID NO. 423 LOC_Os09g28440 1 MTKKVIP AMAAARQDSCKTKLDERGGSHQAPSSARW[SSEQEHSIIVAALRYVVSGCTTPPPEI
TFDTAEEAARAYDRAALEFRGARAKLNFPCSEPLPMPSQRNGNGGDA VTAATTTAEQMTPTLSPCSADAEETTTPVDWQMGADEAGSNQLWDG LQD LMKLDEADTWFPPFSGAASSF* SEQ ID NO. 424 LOC_Os09g29460 1 MKRPGGAGGGGGSPSLVTMANSSDDGYGGVGMEAEGDVEEEMMACGGG GEKKRRLSVEQVRALERSFEVENKLEPERKARLARDLGLQPRQV A VWFQNRRARWKTKQLERDY AALRHSYDSLRLDHDALRRDKDALLAEIKELK DETGFLDDDEPCGGFFADDQPPPLSSWWAEPTEHWN* SEQ ID NO. 425 LOC_Os09g35870 1 MASYGDDGVELTELTLGPPGASARRARRGRKNGH
RACEARGLSSNA* SEQ ID NO. 426 LOC_Os09g36730 1 MGRSPCCEKAHTNKGAWTKEEDDRLIAYIKAHGEGCWRSLPKAAGLLRCGKSCRLRWI
HPHQPKAVTVAQEQQAAADWGHGKPLKCPDLNLDLCISLPSQEEPMMMKPVKRETGVCFSCSLGLPKSTDCKCSSFLGLRTAMLDFRSLEMK4 SEQ I D NO. 427 LOC_OslOgl l580 1 MPIPEKDGVEDNQEDDTFSRLQLLAQQRHAMEKFWRMSQEQIEESAGNEELILPISRVKN]IHAKEGGMMLSADTPAF
VTKLCELFVQELILRA WVCANSHNREIILGTDIAEAITTTESYHFLANVVHGHQALGSNIPEIGVSAWKRHKLDEM TS LCHPPQA VQVTDLANHPPNIPV CPPIGQSGTQHTTSTHVLMMQG ESIHKASKEKSPLKEVMVPTNKVGMTNSSYGVPNGGGATSSKVVIDSPKGETAQVFSSQHACPSLEDNYVIPIPAGH GDSFRTLDEANIPQLHQEQKNFISQDAIVGENIPLNESLEKSKHKDEDLLFPDKDLPE* SEQ ID NO. 428 LOC_Osl0g23090 1 MKRPSCRGSSMAIIHD TSDQQEDNMRSYMDGGGAAAYEEEEEEVEDDDGGGGGGGGGGGGGLGEKKRRLAAEQVRALERSFEADNKLDPERKARIARDLRLHPRQVAVWF QNRRARWKTKQIERDFAALRSRHDALRLECDALRRDKDALAAEIADLRDRVDGQMSVKLEA V AADEHQPPPPPPPPPLA YNSKVVDGSTDSDSSAVF
NEEASPYSG AAIDHHHHQTP ASYDTAGFTSFFAPSTTLTSSLSFPSMFHASSHFDGHQELL VGGGGAGA VADADLGGAGFFAGDEHAGGLS WYGAEG W* SEQ ID NO. 429 LOC_Osl0g230902 MRSYMDGGGAAAYEEEEEEVEDDDGGGGGGGGGGGGGLGEKKRRLAAEQVRALERSFEADNKLDPER KARJARDLRLHPRQV AVWFQNRRARWKTKQIERDFAALRSRHDALRLECDALRRDKDALAAEIADLRDRVDGQMSVKLEA V AADEHQPPPPPPPPPL AYNSKVVDGSTDSDSSAVFNEEASPYSGAAIDHHHHQTPASYDTAGFTSFFAPSTTLTSSLSFPSMFHASSHFDGHQELLVGGGGAGAVADADLGGAG FFAGDEHAGGLSWYGAEGW* SEQ ID NO. 430 LOC OslOg25230 1 MAAEAAATSRFAAACGALSQYVRAADNVHRARTAAAAAAVRPLPLMPGA
DV AGDEREEEGGG AAASSAAAQMTI FYGGRVLVLDECPADRAAALLRLAASSRGVPRDDLAST AAAAGESADLPVARKASLQ RFMEKRKGRLAARG QPYRRHDAAAAARGDHLALAL* SEQ ID NO. 431 LOC_OslOg25290 1 MAAAGSSSRFAVTCGLLSQYMRERQQPQPPVTVLEAVAEEEEEEDARTM QLFPPRAAAADGVATPSAGTAPLTIFY DG RMVVVDDVPVEKAAELMRLAGSACSPPQPAHAAALPEMPIARKASLQRFLQKRKHRITTTS EPYKKAAV ASPAPEKSFAVAPVKDEPATWLGL* SEQ ID NO. 432 LOC_Osl0g26240 1 MGSGRGRRRWCPSTARTGTACLSAATSSPRTLELFAILRCKLVCGQLP GALNNVFEHIRILEFHPALLHETYIGKEEDGYIYFFNRWQFATKAGNKRRPTQV AKGGTWKASSGSKTVRSKKVGGIDIGQKLTMMFYERRFEGDRNPI
KTNWGMHEFTKIIDDSKNQKPGSPC* SEQ ID NO.433 LOC_OslOg28340 1 MDPAAAGIVKEEMLESQQQQRQEDGGAAPRPMEGLHEVGPPPFLTK TYDLVEDPATDGVVSWSRAGNSFVVWDPHVFADLLLPRLFKHNNFSSFVRQLNTYGFRKVDPDRWEFANEGFLRGQRHLLKTIKRRKPPSNAPPSQQ QSLTSCLEVGEFGFEEEIDRLKRDKN[LITEVVKLRQEQQATKDHVKAMEDRLRAAEQKQVQMMGFLARAMRNPEFFQQLAQQKEKRKELEDAISKK RNPEFFQQLAQQICEICRKELEDAISKKRRRPIDN
SEQ ID SEQ ID NO. 438 LOC_Osl0g42130 1 MGTMTLPPGFRF AAAAPLL ASPPGPRLPRLAGAGGEEEEEEAAAGMLSRHGQAREMS SEQ ID NO. 440 LOC_ VPASEAGEL YIMELATGKSVHKEKMAYDANYQEEFPEEELQRATNIALKI LSCDTCHM WM HTRCAGISDFDRVPKRYVCKSCKL LG31380 1 MHLPA VGMSHPTEGELVFHYLYRRA VNMPL
SEQ ID NO.443 LOC OS
WEEVGPGVLKΛDLMKVSSANRNRGΪGFVTYYNHACA APRAPPGAAMVPMMLPDGRLVYVVQQ SEQ ID NO. 447 LOC_OSL2G04180 2 MPRRT
SEQ ID NO. 449 LOC_Osl2g041804 MPRRTDNAASANSVEP
WRSIEY
LACPHGEQ MAASQRSRSTAAQLDVDDQAAADQLMTMMRRP AAVLQD LDLHSRWGNR SEQ ID NO.452 LOC_Osl2g39 AASASAAAAAVEHR SEQ ID NO. 453 LOC_Osl2g41650 1 MNQFVPDWNTT
Figure imgf000049_0001
WFQYPVDDVLEKDLFTELFGEMTAAGGGGGDVRRAACK VGMGPPHMASLPRMPPFM APPP AA VQSSPVVSMADPYA SEQ ID NO. 454: LOC_Osl2g41650.2: MNQFVPDWNTTSM AHDT ATV ID NO. 455: LOC_Osl2g41650.3: MNQFVPDWNTTSMGDG
456: LOC Osl2g41650.4: MNQFVPDWNTTSMGDGFAPL 5
SEQ ID NO. 458: LOC_Osl2g42400.1 : M AMDRGVPEILNFSMVPGKGEKCSEHSTTIALQSPFA
5 ADQHYGLLSPYGVRPTPSGRILIPPNMPADAPIYVNA VMDIIIPPLCPAASPSSEQCNPSSVSSLSGSEVS ID NO. 460: LOC_Osl2g42400.3: MMSFNKSQEGFGQVAA AEYNGCFELGLGQSVV
U
Figure imgf000050_0001
VEHGAGNPFK WTAASDGCCDLLKA'
Especially preferred is an isolated polypeptide selected from the group comprising:
(a) a polypeptide consisting of a sequence selected from the group comprising SEQ ID NO. 231 5 to 234, SEQ ID NO. 265, SEQ ID NO. 266, SEQ ID NO. 268 to SEQ ID NO. 270, SEQ ID NO. 273,
SEQ ID NO. 279, SEQ ID NO. 280, SEQ ID NO. 282, SEQ ID NO. 283, SEQ ID NO. 287, SEQ ID NO. 289, SEQ ID NO. 291 to SEQ ID NO. 295, SEQ ID NO. 297, SEQ ID NO. 310 to SEQ ID NO. 312, SEQ ID NO. 320 to SEQ ID NO. 327, SEQ ID NO. 330, SEQ ID NO. 332, SEQ ID NO. 338, SEQ ID NO. 341 , SEQ ID NO. 344, SEQ ID NO. 346, SEQ ID NO. 347, SEQ ID NO. 350, SEQ ID
0 NO. 354, SEQ ID NO. 355, SEQ ID NO. 358, SEQ ID NO. 359, SEQ ID NO. 363, SEQ ID NO. 364, SEQ ID NO. 366 to SEQ ID NO. 368, SEQ ID NO. 370, SEQ ID NO. 372, SEQ ID NO. 380, SEQ ID NO. 382, SEQ ID NO. 384 to SEQ ID NO. 386, SEQ ID NO. 391, SEQ ID NO. 396, SEQ ID NO. 397, SEQ ID NO. 402, SEQ ID NO. 404, SEQ ID NO. 414, SEQ ID NO. 424 to SEQ ID NO. 426, SEQ ID NO. 430 to SEQ ID NO. 436, SEQ ID NO. 440, SEQ ID NO. 442, SEQ ID NO. 444 to SEQ
5 ID NO. 450, SEQ ID NO. 453 to SEQ ID NO. 457,
(b) a polypeptide consisting of a sequence having at least 70%, preferred 80%, more preferred 90%, especially preferred 98% sequence identity to a sequence selected from the group comprising SEQ ID NO. 231 to 234, SEQ ID NO. 265, SEQ ID NO. 266, SEQ ID NO. 268 to SEQ ID NO. 270, SEQ ID NO. 273, SEQ ID NO. 279, SEQ ID NO. 280, SEQ ID NO. 282, SEQ ID NO. 283, SEQ ID
0 NO. 287, SEQ ID NO. 289, SEQ ID NO. 291 to SEQ ID NO. 295, SEQ ID NO. 297, SEQ ID NO. 310 to SEQ ID NO. 312, SEQ ID NO. 320 to SEQ ID NO. 327, SEQ ID NO. 330, SEQ ID NO. 332, SEQ ID NO. 338, SEQ ID NO. 341 , SEQ ID NO. 344, SEQ ID NO. 346, SEQ ID NO. 347, SEQ ID NO. 350, SEQ ID NO. 354, SEQ ID NO. 355, SEQ ID NO. 358, SEQ ID NO. 359, SEQ ID NO. 363, SEQ ID NO. 364, SEQ ID NO. 366 to SEQ ID NO. 368, SEQ ID NO. 370, SEQ ID NO. 372, SEQ ID NO.
■5 380, SEQ ID NO. 382; SEQ ID NO. 384 to SEQ ID NO. 386, SEQ ID NO. 391 , SEQ ID NO. 396, SEQ ID NO. 397, SEQ ED NO. 402, SEQ ED NO. 404, SEQ ED NO. 414, SEQ ED NO. 424 to SEQ ED NO. 426, SEQ ED NO. 430 to SEQ ED NO. 436, SEQ ID NO. 440, SEQ ED NO. 442, SEQ ED NO. 444 to SEQ ED NO. 450, SEQ ED NO. 453 to SEQ ED NO. 457, (c) a polypeptide of (a) and/or (b), wherein said sequence is modified, to alter an abiotic stress tolerance of a plant, preferred drought tolerance.
As used herein, the term "polypeptide" means an unbranched chain of amino acid residues that are covalently linked by an amide linkage between the carboxyl group of one amino acid and the amino group of another. The term polypeptide can encompass whole proteins (i.e. a functional protein encoded by a particular gene), as well as fragments of proteins. Of particular interest are polypeptides of the present invention which represent whole proteins or a sufficient portion of the entire protein to impart the relevant biological activity of the protein. The term "protein" also includes molecules consisting of one or more polypeptide chains. Thus, a polypeptide of the present invention may also constitute an entire gene product, but only a portion of a functional oligomeric protein having multiple polypeptide chains.
Of particular interest in the present invention are polypeptides involved in one or more important biological properties in plants. Such polypeptides may be produced in transgenic plants to provide plants having improved phεnotypic properties and/or improved response to stressful environmental conditions. Ln some cases, decreased expression of such polypeptides may be desired, such decreased expression being obtained by use of the polynucleotide sequences provided herein, for example in antisense or cosuppression methods
Polypeptides of the present invention that are variants of the polypeptides provided herein will generally demonstrate significant identity with the polypeptides provided herein. Of particular interest are polypeptides having at least about 35% sequence identity, at least about 50% sequence identity, at least about 60% sequence identity, at least about 70% sequence identity, at least about 80% sequence identity, and more preferably at least about 85%, 90%, 95% or even greater, sequence identity with polypeptide sequences described herein. Of particular interest in the present invention are polypeptides having amino acid sequences provided herein (reference polypeptides) and functional homologs of such reference polypeptides, wherein such functional homologs comprises at least 50 consecutive amino acids having at least 90% identity to a 50 amino acid polypeptide fragment of said reference polypeptide.
The terms "protein(s)", "peptide(s)" or "oligopeptide(s)", when used herein refer to amino acids in a polymeric form of any length. Said terms also include known amino acid modifications such as disulphide bond formation, cysteinylation, oxidation, glutathionylation, methylation, acetylation, farnesylation, biotinylation, stearoylation, formylation, lipoic acid addition, phosphorylation, sulphation, ubiquitination, myristoylation, palmitoylation, geranylgeranylation, cyclization (e.g. pyroglutamic acid formation), oxidation, deamidation, dehydration, glycosylation (e.g. pentoses, hexosamines, N-acetylhexosamines, deoxyhexoses, hexoses, sialic acid etc.), acylation and radiolabels (e.g. S35, C14, P32, P33, 3H3) as well as non-naturally occurring amino acid residues, L-amino acid residues and D-amino acid residues.
Helping plants to tolerate stressful growth conditions results in a yield improvement resulting from improved plant growth and development. Polypeptides useful for improved stress tolerance under a variety of stress conditions include polypeptides involved in involved in gene regulation, such as ion antiporters, ion transporters, H+ pyrophosphatases, H+ ATPases, aquaporines, CNGCs, glutamate receptors, Ca2+-ATPases, transcription factors, serine/threonine-protein kinases, MAP kinases, MAP kinase kinases, and MAP kinase kinase kinases; polypeptides that act as receptors for signal transduction and regulation, such as receptor protein kinases; intracellular signaling proteins, such as protein phosphatases, GTP binding proteins, and phospholipid signaling proteins; polypeptides involved in arginine biosynthesis; polypeptides involved in ATP metabolism, including for example ATPase, adenylate transporters, and polypeptides involved in ATP synthesis and transport; polypeptides involved in glycine betaine, proline, jasmonic acid, flavonoid or steroid biosynthesis; and hemoglobin. Enhanced or reduced activity of such polypeptides in transgenic plants will provide changes in the ability of a plant to respond to a variety of environmental stresses, such as chemical stress, drought stress and pest stress.
Also preferred is the polypeptide, wherein said polypeptide is a transcription factor.
Transcription factors play a key role in plant growth and development by controlling the expression of one or more genes in spatial, temporal and physiological specific patterns. Enhanced or reduced activity of such polypeptides in transgenic plants will provide significant changes in gene transcription patterns and provide a variety of beneficial effects in plant growth, development and response to environmental conditions. Transcription factors of interest include, but are not limited to ABI3VP1, C3H, HRT, SBP, Alfin-like, CAMTA, HSF, Sigma70-like, AP2-EREBP, CCAAT, LFY, SRS, ARF, CPP, LIM, TAZ, ARR-B, CSD, MADS, TCP, BBR/BPC, DBP, MYB, Trihelix, BESl, E2F-DP, MYB-related, TUB, bHLH, EIL, NAC, ULT, bZIP, FHA, Orphans, VOZ, C2C2-CO-like, G2-like, PBF-2-like, WRKY, C2C2-Dof, GeBP, PLATZ, zf-HD, C2C2-GATA, GRAS, Pseudo ARR-B, ZM, C2C2-YABBY, GRF, RWP-RK, C2H2, HB, SlFa-like, ARID, HMG, MBFl, SET, AUX/IAA, Jumonji, PHD, SNF2, DDT, LUG, RB. It will readily be appreciated by those of skill in the art, that any of a variety of polynucleotide sequences are capable of encoding the transcription factors and transcription factor homologue polypeptides of the invention. Due to the degeneracy of the genetic code, many diffident polynucleotides can encode identical and/or substantially similar polypeptides in addition to those sequences illustrated in the Sequence Listing. Nucleic acids having a sequence that differs from the sequences shown in the Sequence Listing, or complementary sequences, that encode functionally equivalent peptides (i.e., peptides having some degree of equivalent or similar biological activity) but differ in sequence from the sequence shown in the sequence listing due to degeneracy in the genetic code, are also within the scope of the invention.
Further preferred is a polypeptide consisting of a sequence selected from the group comprising SEQ ID NO. 231 to 234, SEQ ID NO. 265, SEQ ID NO. 266, SEQ ID NO. 268 to SEQ ID NO. 270, SEQ ID NO. 273, SEQ ID NO. 279, SEQ ID NO. 280, SEQ ID NO. 282, SEQ ID NO. 283, SEQ ID NO. 287, SEQ ID NO. 289, SEQ ID NO. 291 to SEQ ID NO. 295, SEQ ID NO. 297, SEQ ID NO. 310 to SEQ ID NO. 312, SEQ ID NO. 320 to SEQ ID NO. 327, SEQ ID NO. 330, SEQ ID NO. 332, SEQ ID NO. 338, SEQ ID NO. 341, SEQ ID NO. 344, SEQ ID NO. 346, SEQ ID NO. 347, SEQ ID NO. 350, SEQ ID NO. 354, SEQ ID NO. 355, SEQ ID NO. 358, SEQ ID NO. 359, SEQ ID NO. 363, SEQ ID NO. 364, SEQ ID NO. 366 to SEQ ID NO. 368, SEQ ID NO. 370, SEQ ID NO. 372, SEQ ID NO. 380, SEQ ID NO. 382, SEQ ID NO. 384 to SEQ ID NO. 386, SEQ ID NO. 391, SEQ ID NO. 396, SEQ ID NO. 397, SEQ ID NO. 402, SEQ ID NO. 404, SEQ ID NO. 414, SEQ ID NO. 424 to SEQ ID NO. 426, SEQ ID NO. 430 to SEQ ID NO. 436, SEQ ID NO. 440, SEQ ID NO. 442, SEQ ID NO. 444 to SEQ ID NO. 450, SEQ ID NO. 453 to SEQ ID NO. 457.
As well-known to those skilled in the art, some amino acids have analogous physicochemical properties so that these amino acids advantageously can be replaced by each other. For example, these include the group of nonpolar (hydrophobic) amino acids (a) glycine, alanine, valine, leucine and/or isoleucine; or the hydroxy amino acids (b) serine, threonine and/or tyrosine, the amides of amino dicarboxylic acids (c) asparagine and glutamine, the amino dicarboxylic acids (d) aspartic acid and glutamic acid; the basic amino acids (e) lysine, arginine and/or ornithine as well as the group of aromatic amino acids (f) phenylalanine, tyrosine and/or tryptophan. The replacement of amino acids by structural similar amino acids is also possible. For example this is the case in the group with a β- functional group (g) cysteine, methionine, serine, α- aminobutyric acid and selenocysteine as well as the turn-inducing group (h) proline, 1 -amino-2-carboxy cyclohexane, pipecolic acid and an ortho- aminobenzoic acid. The skilled artisan knows that amino acids within one and the same group (a-h) can be replaced with one another. In all cases, peptide sequences will have a sufficient homology to be an analogous to an amino acid sequence of the peptides of the invention. Furthermore, the amino acids can be replaced by modified amino acids or specific enantiomers. In an also preferred embodiment the invention relates to a vector comprising one of the polynucleotides and/or the nucleotide construct.
With "vector" is meant a DNA sequence, which can be introduced in an organism by transformation and can be stably maintained in said organism. Vector maintenance is possible in e.g. cultures of
Escherichia coli, Agrobacterium tumefaciens, Saccharomyces cerevisiae or Schizosaccharomyces pombe. Other vectors such as phagemids and cosmid vectors can be maintained and multiplied in bacteria and/or viruses. Vector sequences generally comprise a set of unique sites recognised by restriction enzymes, the multiple cloning site (MCS), wherein one or more non-vector sequence(s) can be inserted.
"Expression vectors" form a subset of vectors which, by virtue of comprising the appropriate regulatory sequences enabling the creation of an expressible format for the inserted non-vector sequence(s), thus allowing expression of the protein encoded by said non-vector sequence(s). Expression vectors are known in the art enabling protein- (gene-) expression in organisms including bacteria (e.g. Escherichia coli), fungi (e.g. Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris), insect cells (e.g. baculoviral expression vectors), animal cells (e.g. COS or CHO cells) and plant cells. The current invention clearly includes any vector or expression vector comprising a non- vector DNA sequence encoding a polypeptide of the invention, homologue and/or derivative.
Vectors may also include a screenable marker. Screenable markers may be used to monitor transformation. Exemplary screenable markers include antibiotic resistant genes, genes expressing a colored or fluorescent protein such as a luciferase or green fluorescent protein (GFP), a beta- glucuronidase or uidA gene (GUS), which encodes an enzyme for which various chromogenic substrates are known or an R-locus gene, which encodes a product that regulates the production of anthocyanin pigments (red color) in plant tissues. Other possible selectable and/or screenable marker genes will be apparent to those of skill in the art.
Also preferred is the vector, wherein the vector is a viral expression vector, a phage display vector, a bacterial expression vector, a yeast expression vector, a vector for expression in insects cells, a vector for in-vitro expression, a mammalian expression vector, a fungus expression vector, an algae expression vector or a plant expression vector.
In another preferred embodiment the invention relates to a host cell comprising at least one of the mentioned polynucleotides, nucleotide constructs, polypeptides and/or vectors. Also preferred is the host cell, wherein the host cell is selected from the group comprising a bacterial cell, a yeast cell, a fungus cell, a mammalian cell, an insect cell, an algae cell and/or a plant cell.
In an also preferred embodiment the invention relates to a transgenic plant cell having stably 5 incorporated into its genome at least one nucleotide construct comprising at least one of the mentioned polynucleotides, operably linked to a promoter that drives expression in said cell.
As used herein a "transgenic" organism is one whose genome has been altered by the incorporation of foreign genetic material or additional copies of native genetic material, e.g. by transformation or 10 recombination.
A "transgenic plant" refers to a plant that contains genetic material not found in a wild type plant of the same species, variety or cultivar. The genetic material may include a transgene, an insertional mutagenesis event (such as by transposon or T-DNA insertional mutagenesis), an activation tagging 15 sequence, a mutated sequence, a homologous recombination event or a sequence modified by chimeraplasty. Typically, the foreign genetic material has been introduced into the plant by human manipulation, but any method can be used as one of skill in the art recognizes.
A transgenic plant may contain an expression vector or cassette. The expression cassette typically
-0 comprises a polypeptide-encoding sequence operably linked (i.e., under regulatory control of) to appropriate inducible or constitutive regulatory sequences that allow for the expression of polypeptide.
The expression cassette can be introduced into a plant by transformation or by breeding after transformation of a parent plant. A plant refers to a whole plant as well as to a plant part, such as seed, fruit, leaf, or root, plant tissue, plant cells or any other plant material, e.g., a plant explant, as well as to
.5 progeny thereof, and to in vitro systems that mimic biochemical or cellular components or processes in a cell.
"Transgenic plant" in terms of the invention does also relate to cisgenic plants.
50 In terms of the invention "Plant" or "Plants" comprise all plant species which belong to the superfamily Viridiplantae. The present invention is applicable to any plant, in particular monocotyledonous plants and dicotyledonous plants including a fodder or forage legume, ornamental plant, food crop, tree, or shrub selected from the list comprising Acacia spp., Acer spp., Actinidia spp., Aesculus spp., Agathis australis, Albizia amara, Alsophila tricolor, Andropogon spp., Arachis spp,
55 Areca catechu, Astelia fragrans, Astragalus cicer, Baikiaea plurijuga, Betula spp., Brassica spp., Bruguiera gymnorrhiza, Burkea africana, Butea frondosa, Cadaba farinosa, Calliandra spp., Camellia sinensis, Canna indica, Capsicum spp., Cassia spp., Centroema pubescens, Chaenomeles spp., Cinnamomum cassia, Coffea arabica, Colophospermum mopane, Coronillia varia, Cotoneaster serotina, Crataegus spp., Cucumis spp., Cupressus spp., Cyathea dealbata, Cydonia oblonga, Cryptomeria japonica, Cymbopogon spp., Cynthea dealbata, Cydonia oblonga, Dalbergia monetaria, Davallia divaricata, Desmodium spp., Dicksonia squarosa, Diheteropogon amplectens, Dioclea spp, 5 Dolichos spp., Dorycnium rectum, Echinochloa pyramidalis, Ehrartia spp., Eleusine coracana, Eragrestis spp., Erythrina spp., Eucalyptus spp., Euclea schimperi, Eulalia villosa, Fagopyrum spp., Feijoa sellowiana, Fragaria spp., Flemingia spp, Freycinetia banksii, Geranium thunbergii, Ginkgo biloba, Glycine javanica, Gliricidia spp., Gossypium hirsutum, Grevillea spp., Guibourtia coleosperma, Hedysarum spp., Hemarthia altissima, Heteropogon contortus, Hordeum vulgare,
10 Hyparrhenia rufa, Hypericum erectum, Hyperthelia dissoluta, Indigo incamata, Iris spp., Leptarrhena pyrolifolia, Lespediza spp., Lettuca spp., Leucaena leucocephala, Loudetia simplex, Lotonus bainesii, Lotus spp., Macrotyloma axillare, Malus spp., Manihot esculenta, Medicago sativa, Metasequoia glyptostroboides, Musa sapientum, Nicotianum spp., Onobrychis spp., Ornithopus spp., Oryza spp., Peltophorum africanum, Pennisetum spp., Persea gratissima, Petunia spp., Phaseolus spp., Phoenix
15 canariensis, Phormium cookianum, Photinia spp., Picea glauca, Pinus spp., Pisum sativum, Podocarpus totara, Pogonarthria fleckii, Pogonarthria squarrosa, Populus spp., Prosopis cineraria, Pseudotsuga menziesii, Pterolobium stellatum, Pyrus communis, Quercus spp., Rhaphiolepsis umbellata, Rhopalostylis sapida, Rhus natalensis, Ribes grossularia, Ribes spp., Robinia pseudoacacia, Rosa spp., Rubus spp., Salix snn ; Schyzaehyriuni sanguineum, Sciadopitys verticillata, Sequoia
ZO sempervirens, Sequoiadendron giganteum, Sorghum bicolor, Spinacia spp., Sporobolus fimbriatus, Stiburusi alopecuroides, Stylosanthos humilis, Tadehagi spp, Taxodium distichum, Themeda triandra, Trifolium spp., Triticum spp., Tsuga heterophylla, Vaccinium spp., Vicia spp., Vitis vinifera, Watsonia pyramidatai, Zantedeschia aethiopica, Zea mays, amaranth, artichoke, asparagus, broccoli, brussel sprout, cabbage, canola, carrot, cauliflower, celery, collard greens, flax, kale, lentil, oilseed
.5 rape, okra, onion, potato, rice, soybean, straw, sugarbeet, sugar cane, sunflower, tomato, squash, and tea, amongst others, or the seeds of any plant specifically named above or a tissue, cell or organ culture of any of the above species.
Polynucleotides or DNA constructs of the invention may be introduced into the genome of the desired
50 plant host by a variety of conventional techniques. For example, the DNA construct may be introduced directly into the genomic DNA of the plant cell using techniques such as electroporation and microinjection of plant cell protoplasts, or the DNA constructs can be introduced directly to plant tissue using ballistic methods, such as DNA particle bombardment. Alternatively, the DNA constructs may be combined with suitable T-DNA flanking regions and introduced into a conventional
S 5 Agrobacterium tumefaciens host vector. The virulence functions of the Agrobacterium tumefaciens host will direct the insertion of the construct and adjacent marker into the plant cell DNA when the cell is infected by the bacteria. Microinjection techniques are known in the art and well described in the scientific and patent literature. The introduction of DNA constructs using polyethylene glycol precipitation is described in Paszkowski et al. Embo J. 3:2717-2722 (1984). Electroporation techniques are described in Frornm et al Proc. Natl. Acad. Sci. USA 82:5824 (1985). Ballistic transformation techniques are described in Klein et al. Nature 327:70-73 (1987).
Agrobacterium tumefaciens-mediated transformation techniques, including disarming and use of binary vectors, are well described in the scientific literature. See, for example Horsch et al. Science 233:496-498 (1984), and Fraley et al. Proc. Natl. Acad. Sci. USA 80:4803 (1983).
Transformed plant cells which are derived by any of the above transformation techniques can be cultured to regenerate a whole plant which possesses the transformed genotype and thus the desired phenotype.
A person skilled in the art will recognize that after the expression cassette is stably incorporated in transgenic plants and confirmed to be operable, it can be introduced into other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed.
Preferred is a transgenic plant having an altered tolerance to abiotic stress, preferred drought stress, compared to a wild-type plant, wherein the transgenic plant comprises at least one modified polynucleotide of claim 1 , wherein the modified polynucleotide is selected from the group comprising an overexpressed polynucleotide, a suppressed polynucleotide and/or a knocked out polynucleotide.
Also preferred is a transgenic plant having an altered tolerance to abiotic stress compared to a control plant, wherein the transgenic plant comprises at least one of said polynucleotides, and the control plant does not overexpress a polypeptide encoded by the polynucleotide.
Also preferred is a transgenic plant having an altered tolerance to abiotic stress compared to a control plant, wherein the transgenic plant comprises at least one of said polynucleotides foreign DNA and the gene including the polynucleotide is not knocked out in the control plant.
Also preferred is a transgenic plant having an altered tolerance to abiotic stress compared to a control plant, wherein the expression of at least one of said polynucleotides is suppressed in transgenic plants and the gene including the polynucleotide is not suppressed in the control plant. Further preferred is a transgenic plant comprising at least one said polypeptides.
Drought resistance can assayed according to any of a number of well-know techniques. For example, plants can be grown under conditions in which less than optimum water is provided to the plant. Drought resistance can be determined by any of a number of standard measures including turgor pressure, growth, yield, yield of photosynthesis, stomatal conductivity, transpiration rate, etc.
Further preferred is the transgenic plant, wherein the transgene comprises a polynucleotide sequence that hybridizes under stringent conditions to one of the complement polynucleotides.
The term "hybridize" refers to the pairing of complementary nucleic acids. Hybridization and the strength of hybridization (in other words, the strength of the association between the nucleic acids) is impacted by such factors as the degree of complementary between the nucleic acids, stringency of the conditions involved, the Tn, of the formed hybrid, and the G:C ratio within the nucleic acids.
The term "Tm" refers to the "melting temperature" of a nucleic acid. The melting temperature is the temperature at which a population of double-stranded nucleic acid molecules becomes half dissociated into single strands. The equation for calculating the Tn, of nucleic acids is well known in the art.
As used herein the term "stringent conditions" refers to the conditions of temperature, ionic strength, and the presence of other compounds such as organic solvents, under which nucleic acid hybridizations are conducted.
Also preferred is the transgenic plant, wherein the plant is selected from the group consisting of poales, preferred poaceae, more preferred ehrhartoideae and/or panicideae, especially preferred rice and/or maize.
Further preferred is the transgenic plant, wherein said plant is a crop plant or a monocot or a cereal, such as maize, wheat, barley, millet, rye, sorghum, oats preferred rice; or a plant cell derived from said transgenic plant.
Rice is one of the most important alimentary corps. The tolerance to abiotic stress, preferred drought stress is particularly important for rice. Thus, it was meaningful and important to find out transcription factor associated with tolerance to drought for culturing a rice plant with tolerance to drought and thereby increasing rich production.
Also preferred is the transgenic plant, wherein the abiotic stress is drought stress. Jo
Also preferred is the transgenic plant, wherein the transgenic plant is a cultured host cell.
The invention also relates to a seed produced from the transgenic plant, preferred a transformed seed.
The invention also relates to a method for producing one of said plants, said method comprising the steps of transforming a target plant with an expression vector comprising a polynucleotide, encoding a transcription factor polypeptide.
Also preferred is a method for producing one of said plants, said method comprising the step of suppressing the expression level of at least one of said polynucleotides or at least one of said polypeptides.
Also preferred is the method of the preceding claim, wherein the transformed plant has a morphology that is substantially similar to a control plant.
Also preferred is a method for altering a plant stress response, said method comprising stably introducing into the genome of a plant at least one nucleotide construct comprising a polynucleotide operably linked to a promoter that drives expression in a piant ceil, wherein said polynucleotide is selected from the group comprising:
(a) polynucleotide consisting of a sequence selected from the group comprising SEQ ID NO. 1 to SEQ ID NO. 4, SEQ ID NO. 35, SEQ ID NO. 36, SEQ ID NO. 38 to SEQ ID NO. 40, SEQ ID NO. 43, SEQ ID NO. 49, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 53, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61 to SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 80 to SEQ ID NO. 82, SEQ ID NO. 90 to SEQ ID NO. 97, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID
NO. 108, SEQ ID NO. 1 1 1 , SEQ ID NO. 1 14, SEQ ID NO. 1 16, SEQ ID NO. 1 17, SEQ ID NO. 120, SEQ ID NO. 124, SEQ ID NO. 125, SEQ ID NO. 128, SEQ ID NO. 129, SEQ ID NO. 133, SEQ lD NO. 134, SEQ ID NO. 136 to SEQ ID NO. 138, SEQ ID NO. 140, SEQ ID NO. 142, SEQ ID NO. 150, SEQ ID NO. 152, SEQ ID NO. 154 to SEQ ID NO. 156, SEQ ID NO. 161, SEQ ID NO. 166, SEQ ID NO. 167, SEQ ID NO. 172, SEQ ID NO. 174, SEQ ID
NO. 184, SEQ ID NO. 194 to SEQ ID NO. 196, SEQ ID NO. 200 to SEQ ID NO. 206, SEQ ID NO. 210, SEQ ID NO. 212, SEQ ID NO. 214 to SEQ ID NO. 220, SEQ ID NO. 223 to SEQ ID NO. 227.
(b) a polynucleotide consisting of a sequence having at least 70%, preferred 80%, more preferred 90%, especially preferred 98% sequence identity to a nucleotide sequence of (a),
(c) a polynucleotide of (a) and/or (b), wherein said sequence is modified. Also preferred is a the method, wherein the method improves the plant stress tolerance.
Also preferred is the method for improving the yield of a plant, comprising stably incorporating into the genome of said plant at least one nucleotide construct comprising a polynucleotide operably linked to a promoter that drives expression in a plant cell, wherein said polynucleotide is selected from the group comprising:
(a) polynucleotide consisting of a sequence selected from the group comprising SEQ ID NO. 1 to SEQ ID NO. 4, SEQ ID NO. 35, SEQ ID NO. 36, SEQ ID NO. 38 to SEQ ID NO. 40, SEQ ID NO. 43, SEQ ID NO. 49, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 53, SEQ ID NO. 57,
SEQ ID NO. 59, SEQ ID NO. 61 to SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 80 to SEQ ID NO. 82, SEQ ID NO. 90 to SEQ ID NO. 97, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 108, SEQ ID NO. 1 1 1, SEQ ID NO. 1 14, SEQ ID NO. 1 16, SEQ ID NO. 1 17, SEQ ID NO. 120, SEQ ID NO. 124, SEQ ID NO. 125, SEQ ID NO. 128, SEQ ID NO. 129, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 136 to SEQ ID NO. 138, SEQ lD NO. 140, SEQ ID
NO. 142, SEQ ID NO. 150, SEQ lD NO. 152, SEQ ID NO. 154 to SEQ ID NO. 156, SEQ ID NO. 161 , SEQ ID NO. 166, SEQ ID NO. 167, SEQ ID NO. 172, SEQ ID NO. 174, SEQ ID NO. 184, SEQ ID NO. 194 to SEQ ID NO. 196, SEQ ID NO. 200 to SEQ ID NO. 206, SEQ ID NO. 210, SEQ ID NO. 212, SEQ ID NO. 214 to SEQ iD NO. 220, SEQ ID NO. 223 to SEQ ID NO. 227,
(b) a polynucleotide consisting of a sequence having at least 70%, preferred 80%, more preferred 90%, especially preferred 98% sequence identity to a sequence of (a),
(c) a polynucleotide of (a) and/or (b), wherein said sequence is modified.
"Yield" refers to increased plant growth, increased crop growth, increased biomass, and/or increased plant product production, and is dependent to some extent on temperature, plant size, organ size, planting density, light, water and nutrient availability, and how the plant copes with various stresses, such as through temperature acclimation and water or nutrient use efficiency.
The teachings of the present invention are characterised by the following features:
departure from the beaten track a new perception of the problem satisfaction of a long-felt need or want - hitherto all efforts of experts were in vain the simplicity of the solution, which proves inventive action, especially since it replaces a more complex doctrine the development of scientific technology followed another direction the achievement forwards the development misconceptions among experts about the solution of the according problem (prejudice) technical progress, such as: improvement, increased performance, price-reduction, saving of time, material, work steps, costs or resources that are difficult to obtain, improved reliability, remedy of defects, improved quality, no maintenance, increased efficiency, better yield, augmentation of technical possibilities, provision of another product, opening of a second way, opening of a new field, first solution for a task, spare product, alternatives, possibility of rationalisation, automation or miniaturisation or enrichment of the pharmaceutical fund - special choice; since a certain possibility, the result of which was unforeseeable, was chosen among a great number of possibilities, it is a patentable lucky choice error in citations young field of technology combined invention; a combination of a number of known elements, with a surprising effect - licensing praise of experts and commercial success
Said advantages are shown especially in the preferential embodiments ot the invention.
Examples
Example 1: Physiological analysis of plants with reduced expression level of the gene Os02g41510
To determine the effect of drought stress on photosynthetic performance of plants with reduced expression level of gene Os0241510 (ps02g41510-l), chlorophyll fluorescence was measured in plants grown under normal and drought stress conditions (Figure 1). During the initial ten days of the experiment, both transgenic and wild-type plants maintained a constant photosynthetic yield under control and drought stress conditions. However, when the stress was prolonged to 15 days, the transgenic plants displayed only a slight reduction in the photosynthetic yield (/. e., approximately 95% of the initial yield), whereas photosynthetic activity in the wild-type was reduced to 65% of that observed in non-treated plants. Further exposure to stress increased this difference. At day 22 after start of drought stress no chlorophyll fluorescence could be measured in wild-type plants, whereas the reduction in plants with reduced expression level of gene Os0241510 was only about 15%. These results indicated that the photosynthetic machinery remained largely unaffected by drought stress in the plants with reduced expression level of gene Os0241510 mutant.
Plants in Figure 1 were grown for 22 days at stress (S) and non-stress (C) conditions. Data are means±SE obtained from eight biological replicates.
Example 2: Cell membrane stability in plants with increased expression level of gene Os05g37050
The cell membrane is one of the main cellular targets affected by different stresses (Levitt, 1980). Drought stress induces membrane deterioration leading to severe metabolic dysfunction (Buttrose and Swift, 1975). Removal of water from the membrane disrupts the normal bilayer structure and results in the membrane becoming exceptionally porous when desiccated (Mahajan and Tuteja, 2005).
Thus, keeping cell integrity in the presence of damaging molecules such as free radicals and reactive oxygen species, which are usually produced under abiotic stresses (Reddy et al, 2004), could help the cell to tolerate adverse effects of the stress. In the experiments performed here, one of the observed phenotypic effects of drought stress was a change in the stability of the leaf blade when wild-type plants were compared with the plants with increased expression level of gene Os05g37050
(35S::Os05g37050). Therefore, cell membrane stability was determined to explore the possible reason for this effect. Around 13 days after depriving from water supply a reduction in cell membrane integrity was observed in wild-type plants (Figure 2). In contrast cell membrane integrity remained high during stress in the plants with increased expression level of gene Os05g37050. Figure 2 shows the cell membrane integrity in wild-type (blue bars) and transgenic plants 35SxOsOSgSTOSO (gray bars) seedlings upon application of drought stress for up to 13 days. Data are means±SE of four biological replicates.
Example 3: Gas exchange parameters in plants with reduced expression level of gene Osl0g28340
Stomata impose a diffusion resistance to CO2 entry into the leaf (Farquhar and Sharkey, 1982). Generally, under drought stress, plant water and osmotic potential become more negative and, as a primary response to minimize water loss, stomata close result in a reduction of the transpiration rate. Such physiological responses can be observed within hours after the onset of drought stress (Chaves et al., 2002). Thus there is a trade-off between opening the stomata to take up the CO2 and its closing to prevent more water loss. (Griffith and Parry, 2002).
To identify possible differences between the plants with reduced expression level of gene Osl0g28340 and wild-type plants, and getting an insight into stomatal management under drought stress, gas exchange parameters were determined at days zero, 6, 11, 13 and 18 after imposing drought stress
The measurements were normalized based on the wild-type values immediately before stress onset. As shown in Figure 3, drought stress led to a serious decline of stomatal conductance and transpiration rates in both the plants with reduced expression level of gene Osl0g28340 and wild-type plants. However, eleven days after stress application, mutant plants exhibited a transpiration rate that was 25% higher than that of the wild-type. Short term (six days) drought stress did not affect CO2 assimilation rates in both the mutant and the wild-type. However, under long term stress, a significant reduction in CO2 assimilation was observed with a more sever effect on the wild-type. At the 13th day of stress treatment, no net CO2 exchange was detectable in the wild-type, whereas the mutant still reached -50% of the original photosynthetic activity (Figure 4). Increased stomatal aperture under extended drought stress resulted in higher water loss. However, the mutant plants showed a better maintenance of photosynthesis than the wild-type (Figure 4).
Figure 3 shows the response of transpiration and stomatal conductance in wild-type (blue bars) and transgenic (gray bars) seedlings upon drought stress for up to 18 days. The data were normalized based on the measurements performed for wild-type plants immediately before stress onset. S and C indicate stress and control condition, respectively. Data are means±SE of four biological replicates. Figure 4 shows the photosynthetic rate analysed in wild-type and osl0g28340-l mutant plants grown at control (C) and drought stress (S) conditions. The data were normalized based on measurements performed on the wild-type immediately before stress onset. Data are means±SE of four biological replicates.

Claims

Claims
1. An isolated polynucleotide selected from the group comprising:
(a) polynucleotide consisting of a sequence selected from the group comprising SEQ ID 5 NO.1 to SEQ ID NO.4, SEQ ID NO.35, SEQ ID NO.36, SEQ ID NO.38 to SEQ ID
NO.40, SEQ ID NO.43, SEQ ID NO.49, SEQ ID NO.50, SEQ ID NO.52, SEQ ID NO.53, SEQ ID NO.57, SEQ ID NO.59, SEQ ID NO.61 to SEQ ID NO.65, SEQ ID NO.67, SEQ ID NO.80 to SEQ ID NO.82, SEQ ID NO.90 to SEQ ID NO.97, SEQ ID NO.100, SEQ ID NO.102, SEQ ID NO.108, SEQ ID NO.111 , SEQ ID NO.
0 114, SEQIDNO.116, SEQIDNO.117, SEQIDNO.120, SEQIDNO.124, SEQ ID
NO. 125, SEQ ID NO. 128, SEQ ID NO. 129, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 136 to SEQ ID NO. 138, SEQ ID NO. 140, SEQ ID NO. 142, SEQ ID NO. 150, SEQ ID NO.152, SEQ ID NO.154 to SEQ ID NO.156, SEQ ID NO. 161, SEQIDNO.166, SEQIDNO.167, SEQIDNO.172, SEQIDNO.174, SEQIDNO.
5 184, SEQ ID NO. 194 to SEQ ID NO. 196, SEQ ID NO.200 to SEQ ID NO.206,
SEQ ID NO.210, SEQ ID NO.212, SEQ ID NO.214 to SEQ ID NO.220, SEQ ID NO.223 to SEQ ID NO.227,
(b) a polynucleotide consisting of a sequence having at least 70%, preferred 80%, more preferred 90% especially preferred 98% sequence identity to a sequence selected from
!0 the group comprising SEQ ID NO.1 to SEQ ID NO.4, SEQ ID NO.35, SEQ ID NO.
36, SEQ ID NO.38 to SEQ ID NO.40, SEQ ID NO.43, SEQ ID NO.49, SEQ ID NO.50, SEQ ID NO.52, SEQ ID NO.53, SEQ ID NO.57, SEQ ID NO.59, SEQ ID NO.61 Io SEQ ID NO.65, SEQ ID NO.67, SEQ ID NO.80 to SEQ ID NO.82, SEQ IDNO.90toSEQIDNO.97, SEQIDNO.100, SEQIDNO.102, SEQIDNO. 108,
:5 SEQIDNO.111,SEQIDNO.114, SEQIDNO.116, SEQIDNO.117, SEQIDNO.
120, SEQIDNO.124, SEQIDNO.125, SEQIDNO.128, SEQIDNO.129, SEQID NO.133, SEQ IDNO. 134, SEQIDNO. 136 to SEQ ID NO.138, SEQ IDNO.140, SEQ ID NO. 142, SEQ ID NO. 150, SEQ ID NO. 152, SEQ ID NO. 154 to SEQ ID NO. 156, SEQ lD NO. 161, SEQ ID NO. 166, SEQ IDNO. 167, SEQ IDNO. 172,
0 SEQ ID NO. 174, SEQ ID NO. 184, SEQ ID NO. 194 to SEQ ID NO. 196, SEQ ID
NO.200 to SEQ ID NO.206, SEQ ID NO.210, SEQ ID NO.212, SEQ ID NO.214 to SEQ ID NO.220, SEQ ID NO.223 to SEQ ID NO.227,
(c) a polynucleotide of (a) and/or (b), wherein said sequence is modified, to alter an abiotic stress tolerance of a plant, preferred drought tolerance. 5
2. A nucleotide construct comprising a polynucleotide of claim 1, wherein said polynucleotide is operably linked to a promoter that drives expression in a plant cell.
3. The nucleotide construct of the preceding claim, wherein said promoter is a constitutive promoter.
5 4. The nucleotide construct of at least one of the preceding claims, wherein said promoter is a tissue-preferred promoter.
5. The nucleotide construct of any of the preceding claims, wherein said promoter is an inducible promoter.
10
6. The nucleotide construct of at least one of the preceding claims, wherein said promoter is a stress-inducible promoter.
7. A polypeptide encoded by a polynucleotide and/or a nucleotide construct of at least one of the 15 preceding claims.
8. The polypeptide of the preceding claim, wherein said polypeptide is a transcription factor.
9. A vector comprising the polynucleotide and/or the nucleotide construct of any of the preceding 10 claims.
10. The vector of the preceding claim, wherein the vector is a viral expression vector, a phage display vector, a bacterial expression vector, a yeast expression vector, a mammalian vector, an vector for expression in insects cells, a vector for in-vitro expression, a fungus expression
.5 vector, an algae expression vector or a plant expression vector.
1 1. A host cell comprising a polynucleotide of claim 1 , a nucleotide construct of at least one of the claims 2 to 6, a polypeptide of the claim 7 or 8 and/or a vector of claim 9 or 10.
$0 12. The host cell of the preceding claim, wherein the host cell is selected from the group comprising a bacterial cell, a yeast cell, a fungus cell, an algae cell, an mammalian cell, an insect cell and/or a plant cell.
13. A transgenic plant cell having stably incorporated into its genome at least one nucleotide 55 construct comprising a polynucleotide according to claim 1 , operably linked to a promoter that drives expression in said cell.
14. A transgenic plant comprising at least one polypeptide of claim 7.
15. A transgenic plant having an altered tolerance to abiotic stress, preferred drought stress, compared to a wild-type plant, wherein the transgenic plant comprises at least one modified polynucleotide of claim 1, wherein the modified polynucleotide is selected from the group comprising an overexpressed polynucleotide, a suppressed polynucleotide and/or a knocked out polynucleotide.
16. The transgenic plant of claim 15, wherein the transgene comprises a polynucleotide sequence that hybridizes under stringent conditions to the complement polynucleotide of claim 1.
17. The transgenic plant according to any of the preceding claims, wherein said plant is a crop plant or a monocot or a cereal, such as maize, wheat, barley, millet, rye, sorghum, oats, preferred rice.
18. The transgenic plant according to any of the preceding claims, wherein the transgenic plant is a cultured host cell.
19. A seed produced from the tiarisgenic plant according to any of the preceding claims.
20. A transformed seed of the transgenic plant of any of the preceding claims.
21. A method for producing a plant according to any of the preceding claims, said method comprising the steps of: transforming a target plant with an expression vector comprising a polynucleotide of claim 1, encoding a transcription factor polypeptide.
22. A method for producing a plant according to any of the preceding claims, said method comprising the step of: suppressing a the expression level of polynucleotide of claim 1 or a polypeptide of claim 7 or
23. The method of the preceding claim, wherein the transformed plant has a morphology that is substantially similar to a control plant.
24. A method for altering a plant stress response, said method comprising stably introducing into the genome of a plant at least one nucleotide construct comprising a polynucleotide operably linked to a promoter that drives expression in a plant cell, wherein said polynucleotide is selected from the group comprising:
(a) polynucleotide consisting of a sequence selected from the group comprising SEQ ID NO. 1 to SEQ ID NO. 4, SEQ ID NO. 35, SEQ ID NO. 36, SEQ ID NO. 38 to SEQ ID NO. 40, SEQ ID NO. 43, SEQ ID NO. 49, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 53, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61 to SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 80 to SEQ ID NO. 82, SEQ ID NO. 90 to SEQ ID NO. 97, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 108, SEQ ID NO. 1 1 1 , SEQ ID NO. 1 14, SEQ ID NO. 1 16, SEQ ID NO. 1 17, SEQ ID NO. 120, SEQ ID NO. 124, SEQ ID NO. 125, SEQ ID NO. 128, SEQ ID NO. 129, SEQ ID NO. 133, SEQ ID NO. 134, SEQ ID NO. 136 to SEQ ID NO. 138, SEQ ID NO. 140, SEQ ID NO. 142, SEQ ID NO. 150, SEQ ID NO. 152, SEQ ID NO. 154 to SEQ ID NO. 156, SEQ ID NO. 161 , SEQ ID NO. 166, SEQ ID NO. 167, SEQ ID NO. 172, SEQ ID NO. 174, SEQ ID NO. 184, SEQ ID NO. 194 to SEQ ID NO. 196, SEQ ID NO. 200 to SEQ ID NO. 206, SEQ ID NO. 210, SEQ ID NO. 212, SEQ ID NO. 214 to SEQ ID NO. 220, SEQ ID NO. 223 to SEQ ID NO. 227,
(b) a polynucleotide consisting of a sequence having at least 70%, preferred 80%, more preferred 90% especially preferred 98% sequence identity to a nucleotide sequence of
(a),
(c) a polynucleotide of (a) and/or (b), wherein said sequence is modified.
25. A method of any of the preceding claims, wherein the method improves the plant stress tolerance, preferred drought tolerance.
26. A method for improving the yield of a plant, comprising stably incorporating into the genome of said plant at least one nucleotide construct comprising a polynucleotide operably linked to a promoter that drives expression in a plant cell, wherein said polynucleotide is selected from the group comprising:
(a) polynucleotide consisting of a sequence selected from the group comprising SEQ ID NO. 1 to SEQ ID NO. 4, SEQ ID NO. 35, SEQ ID NO. 36, SEQ ID NO. 38 to SEQ ID NO. 40, SEQ ID NO. 43, SEQ ID NO. 49, SEQ ID NO. 50, SEQ ID NO. 52, SEQ ID NO. 53, SEQ ID NO. 57, SEQ ID NO. 59, SEQ ID NO. 61 to SEQ ID NO. 65, SEQ ID NO. 67, SEQ ID NO. 80 to SEQ ID NO. 82, SEQ ID NO. 90 to SEQ ID NO. 97, SEQ ID NO. 100, SEQ ID NO. 102, SEQ ID NO. 108, SEQ ID NO. 1 1 1 , SEQ ID NO. 1 14, SEQ lD NO. 1 16, SEQ ID NO. 1 17, SEQ ID NO. 120, SEQ ID NO. 124, SEQ ID NO. 125, SEQ ID NO. 128, SEQ ID NO. 129, SEQ ID NO. 133, SEQ ID NO. 134,
SEQ ID NO. 136 to SEQ ID NO. 138, SEQ ID NO. 140, SEQ ID NO. 142, SEQ ID
NO. 150, SEQ ID NO. 152, SEQ ID NO. 154 to SEQ ID NO. 156, SEQ ID NO. 161,
SEQ ID NO. 166, SEQ ID NO. 167, SEQ ID NO. 172, SEQ ID NO. 174, SEQ ID NO. 184, SEQ ID NO. 194 to SEQ ID NO. 196, SEQ ID NO. 200 to SEQ ID NO. 206,
SEQ ID NO. 210, SEQ ID NO. 212, SEQ ID NO. 214 to SEQ ID NO. 220, SEQ ID
NO. 223 to SEQ ID NO. 227,
(b) a polynucleotide consisting of a sequence having at least 70%, preferred 80%, more preferred 90% especially preferred 98% sequence identity to a sequence of (a), (c) a polynucleotide of (a) and/or (b), wherein said sequence is modified.
PCT/EP2009/002975 2008-04-16 2009-04-16 Transcription factors involved in drought stress in plants WO2009127441A2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP08007453.7 2008-04-16
EP08007453 2008-04-16
EP08075780 2008-09-23
EP08075780.0 2008-09-23
EP09075022.5 2009-01-15
EP09075022 2009-01-15

Publications (2)

Publication Number Publication Date
WO2009127441A2 true WO2009127441A2 (en) 2009-10-22
WO2009127441A3 WO2009127441A3 (en) 2010-03-11

Family

ID=41050412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/002975 WO2009127441A2 (en) 2008-04-16 2009-04-16 Transcription factors involved in drought stress in plants

Country Status (1)

Country Link
WO (1) WO2009127441A2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064934A1 (en) * 2008-12-01 2010-06-10 Vialactia Biosciences (Nz) Limited Methods and compositions for the improvement of plant tolerance to environmental stresses
WO2012049663A1 (en) * 2010-10-15 2012-04-19 Genoplante-Valor Production of plants having improved water-deficit tolerance
EP2907376A1 (en) * 2014-02-14 2015-08-19 Biogemma Method for plant improvement
EP3027009A1 (en) * 2013-07-29 2016-06-08 China Agricultural University Compositions and methods for improving abiotic stress tolerance
EP3169785A4 (en) * 2014-07-15 2018-04-04 Ceres Inc. Methods of increasing crop yield under abiotic stress
US9938536B2 (en) 2011-11-02 2018-04-10 Ceres, Inc. Transgenic plants having increased tolerance to aluminum
CN108034654A (en) * 2018-01-22 2018-05-15 中国农业科学院作物科学研究所 SNP marker relevant with rice seedling root long and its application
CN110592100A (en) * 2019-10-08 2019-12-20 海南大学 Cassava CAMTA gene and construction and disease-resistant application of suppression expression vector thereof
CN110628935A (en) * 2019-10-24 2019-12-31 中国农业科学院作物科学研究所 Molecular marking method and application of salt-tolerant gene LOC _ Os02g49700 of rice in adult stage
CN112625102A (en) * 2021-01-08 2021-04-09 中国农业科学院作物科学研究所 Rice heading stage gene OsPRR73 and application thereof
US11203765B2 (en) * 2016-05-12 2021-12-21 University Of Florida Research Foundation, Incorporated Drought tolerant plants
CN113880927A (en) * 2020-07-01 2022-01-04 中国科学院植物研究所 Method for enhancing low-temperature tolerance of rice by over-expressing zinc finger protein OsCIP3
US11299523B2 (en) * 2016-07-06 2022-04-12 Colorado State University Research Foundation Modulation of rice MPG1 activity to increase biomass accumulation, grain yield, and stress tolerance in plants
CN114591981A (en) * 2022-03-25 2022-06-07 江苏师范大学 Application of TPPI gene in regulating and controlling plant root system development and promoting plant jasmonic acid accumulation
CN114940994A (en) * 2022-04-29 2022-08-26 宁波大学 Application of rice transcription factor OsNF-YA in rice antivirus
CN114940996A (en) * 2022-05-30 2022-08-26 南京农业大学 Application of tomato SlULT1 gene in improving drought resistance of tomato

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1491960A (en) * 2002-08-29 2004-04-28 清华大学 Rice DREB transcription factor and its encoding gene and use
WO2004085641A1 (en) * 2003-03-24 2004-10-07 Japan International Research Center For Agricultural Sciences Stress-induced promoter and method of using the same
US20070039076A1 (en) * 1999-07-20 2007-02-15 Boukharov Andrey A Plant genome sequence and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070039076A1 (en) * 1999-07-20 2007-02-15 Boukharov Andrey A Plant genome sequence and uses thereof
CN1491960A (en) * 2002-08-29 2004-04-28 清华大学 Rice DREB transcription factor and its encoding gene and use
WO2004085641A1 (en) * 2003-03-24 2004-10-07 Japan International Research Center For Agricultural Sciences Stress-induced promoter and method of using the same

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DATABASE MEDLINE [Online] US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; 1 December 2002 (2002-12-01), XP002545377 retrieved from NCBI Database accession no. AY064403 *
DUBOUZET J G ET AL: "OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression" PLANT JOURNAL, BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD, GB, vol. 33, no. 4, 1 February 2003 (2003-02-01), pages 751-763, XP002264239 ISSN: 0960-7412 *
ITO YUSUKE ET AL: "Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice" PLANT AND CELL PHYSIOLOGY, vol. 47, no. 1, January 2006 (2006-01), pages 141-153, XP002545375 ISSN: 0032-0781 *
QIU-LIN QIN ET AL: "Isolation, optimization, and functional analysis of the cDNA encoding transcription factor OsDREB1B in Oryza Sativa L" MOLECULAR BREEDING, KLUWER ACADEMIC PUBLISHERS, DO, vol. 19, no. 4, 21 November 2006 (2006-11-21), pages 329-340, XP019482985 ISSN: 1572-9788 *
TIAN XIU-HONG ET AL: "OsDREB4 genes in rice encode AP2-containing proteins that bind specifically to the dehydration-responsive element" JOURNAL OF INTEGRATIVE PLANT BIOLOGY, vol. 47, no. 4, April 2005 (2005-04), pages 467-476, XP002545376 ISSN: 1672-9072 *
ZHU ET AL: "Regeneration of transgenic rice plants using high salt for selection without the need for antibiotics or herbicides" PLANT SCIENCE, ELSEVIER IRELAND LTD, IE, vol. 174, no. 5, 15 February 2008 (2008-02-15), pages 519-523, XP022572029 ISSN: 0168-9452 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064934A1 (en) * 2008-12-01 2010-06-10 Vialactia Biosciences (Nz) Limited Methods and compositions for the improvement of plant tolerance to environmental stresses
AU2011315102B2 (en) * 2010-10-15 2015-08-20 Genoplante-Valor Production of plants having improved water-deficit tolerance
WO2012049663A1 (en) * 2010-10-15 2012-04-19 Genoplante-Valor Production of plants having improved water-deficit tolerance
US9404120B2 (en) 2010-10-15 2016-08-02 Genoplants-Valor Production of plants having improved water-deficit tolerance
US9938536B2 (en) 2011-11-02 2018-04-10 Ceres, Inc. Transgenic plants having increased tolerance to aluminum
US10557143B2 (en) 2011-11-02 2020-02-11 Ceres, Inc. Transgenic plants having increased tolerance to aluminum
US11339403B2 (en) 2011-11-02 2022-05-24 Ceres, Inc. Transgenic plants having increased tolerance to aluminum
US10472646B2 (en) 2011-11-02 2019-11-12 Ceres, Inc. Transgenic plants having increased tolerance to aluminum
US11254948B2 (en) 2011-11-02 2022-02-22 Ceres, Inc. Transgenic plants having increased tolerance to aluminum
EP3027009A1 (en) * 2013-07-29 2016-06-08 China Agricultural University Compositions and methods for improving abiotic stress tolerance
EP3027009A4 (en) * 2013-07-29 2017-05-03 China Agricultural University Compositions and methods for improving abiotic stress tolerance
US10190133B2 (en) 2013-07-29 2019-01-29 China Agricultural University Compositions and methods for improving abiotic stress tolerance
WO2015121396A1 (en) * 2014-02-14 2015-08-20 Biogemma Method for plant improvement
EP2907376A1 (en) * 2014-02-14 2015-08-19 Biogemma Method for plant improvement
EP3169785A4 (en) * 2014-07-15 2018-04-04 Ceres Inc. Methods of increasing crop yield under abiotic stress
AU2015289691B2 (en) * 2014-07-15 2020-12-24 Ceres, Inc. Methods of increasing crop yield under abiotic stress
US10907169B2 (en) 2014-07-15 2021-02-02 Ceres, Inc. Methods of increasing crop yield under abiotic stress
US11629352B2 (en) 2014-07-15 2023-04-18 Ceres, Inc. Methods of increasing crop yield under abiotic stress
US11001849B2 (en) 2014-07-15 2021-05-11 Ceres, Inc. Methods of increasing crop yield under abiotic stress
US10480000B2 (en) 2014-07-15 2019-11-19 Ceres, Inc. Methods of increasing crop yield under abiotic stress
US11203765B2 (en) * 2016-05-12 2021-12-21 University Of Florida Research Foundation, Incorporated Drought tolerant plants
US11299523B2 (en) * 2016-07-06 2022-04-12 Colorado State University Research Foundation Modulation of rice MPG1 activity to increase biomass accumulation, grain yield, and stress tolerance in plants
CN108034654A (en) * 2018-01-22 2018-05-15 中国农业科学院作物科学研究所 SNP marker relevant with rice seedling root long and its application
CN110592100A (en) * 2019-10-08 2019-12-20 海南大学 Cassava CAMTA gene and construction and disease-resistant application of suppression expression vector thereof
CN110592100B (en) * 2019-10-08 2022-08-02 海南大学 Cassava CAMTA gene and construction and disease-resistant application of suppression expression vector thereof
CN110628935B (en) * 2019-10-24 2022-05-10 中国农业科学院作物科学研究所 Molecular marking method and application of salt-tolerant gene LOC _ Os02g49700 of rice in adult stage
CN110628935A (en) * 2019-10-24 2019-12-31 中国农业科学院作物科学研究所 Molecular marking method and application of salt-tolerant gene LOC _ Os02g49700 of rice in adult stage
CN113880927A (en) * 2020-07-01 2022-01-04 中国科学院植物研究所 Method for enhancing low-temperature tolerance of rice by over-expressing zinc finger protein OsCIP3
CN113880927B (en) * 2020-07-01 2024-04-23 中国科学院植物研究所 Method for enhancing low-temperature tolerance of rice by over-expressing zinc finger protein OsCIP3
CN112625102A (en) * 2021-01-08 2021-04-09 中国农业科学院作物科学研究所 Rice heading stage gene OsPRR73 and application thereof
CN114591981A (en) * 2022-03-25 2022-06-07 江苏师范大学 Application of TPPI gene in regulating and controlling plant root system development and promoting plant jasmonic acid accumulation
CN114940994A (en) * 2022-04-29 2022-08-26 宁波大学 Application of rice transcription factor OsNF-YA in rice antivirus
CN114940994B (en) * 2022-04-29 2023-07-07 宁波大学 Application of rice transcription factor OsNF-YA in antiviral of rice
CN114940996A (en) * 2022-05-30 2022-08-26 南京农业大学 Application of tomato SlULT1 gene in improving drought resistance of tomato
CN114940996B (en) * 2022-05-30 2023-09-08 南京农业大学 Application of tomato SlULT1 gene in improving drought resistance of tomatoes

Also Published As

Publication number Publication date
WO2009127441A3 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
WO2009127441A2 (en) Transcription factors involved in drought stress in plants
RU2463351C2 (en) Plants with increased yield, and method of their obtaining
ZA200504994B (en) Plants having modified growth characteristics and a method for making the same
WO2009127443A2 (en) Transcription factors involved in salt stress in plants
RU2384621C2 (en) Plants with higher crop capacity and method of their production
AU2005225561B2 (en) Plants having improved growth characteristics and method for making the same
AU2005219582B2 (en) Plants having improved yield and method for making the same
US8598411B2 (en) Plants having improved growth characteristics and a method for making the same
ZA200501356B (en) Plants having changed development and a method for making the same
CN102586276A (en) Protection against environmental toxicity through manipulation of the processing of messenger rna precursors
ZA200603980B (en) &#34;Seedy 1&#34; nucleic acids for making plants having changed growth characteristics
US7919678B2 (en) Method for modifying plant growth characteristics
US20070067875A1 (en) Plants having improved growth characteristics and a method for making the same
ZA200607867B (en) Plants having improved growth characteristics and method for making the same
US20060288454A1 (en) Plants having modified growth characteristics and method for making the same
EP1580275A1 (en) Plants having improved growth characteristics and method for making the same
MXPA06005774A (en) “seedy1”nuceic acids for making plants having changed growth characteristics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731711

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09731711

Country of ref document: EP

Kind code of ref document: A2