CN114940994B - Application of rice transcription factor OsNF-YA in antiviral of rice - Google Patents

Application of rice transcription factor OsNF-YA in antiviral of rice Download PDF

Info

Publication number
CN114940994B
CN114940994B CN202210465028.7A CN202210465028A CN114940994B CN 114940994 B CN114940994 B CN 114940994B CN 202210465028 A CN202210465028 A CN 202210465028A CN 114940994 B CN114940994 B CN 114940994B
Authority
CN
China
Prior art keywords
osnf
rice
seq
dna
unknown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210465028.7A
Other languages
Chinese (zh)
Other versions
CN114940994A (en
Inventor
孙宗涛
谭小香
张合红
魏中艳
李雁军
陈剑平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN202210465028.7A priority Critical patent/CN114940994B/en
Publication of CN114940994A publication Critical patent/CN114940994A/en
Application granted granted Critical
Publication of CN114940994B publication Critical patent/CN114940994B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/002Culture media for tissue culture
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/008Methods for regeneration to complete plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8283Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention relates to a rice nuclear transcription factor OsNF-YA gene and application thereof in resisting southern rice black-streaked dwarf virus and rice stripe virus, and stable inheritance RNAi-OsNF-YA transgenic plants are obtained by knocking out OsNF-YA in plant rice in an siRNA mode. Experimental data indicate that: RNAi-OsNF-YA transgenic plants can enhance the resistance of rice to rice stripe virus and southern rice black-streaked dwarf virus.

Description

Application of rice transcription factor OsNF-YA in antiviral of rice
Technical Field
The invention relates to the technical field of transgenosis and the field of plant disease control, in particular to a transcription factor OsNF-YA gene of rice and application thereof in rice virus disease resistance and plant breeding.
Background
Rice stripe virus (Rice stripe virus, RSV) is a typical representation of the genus Tenivirus. RSV is a envelope-coated filar negative-strand multi-split RNA virus, the virions are in the form of fine filaments of varying lengths, about 3-8nm in diameter. RSV infects 50 grasses such as rice, corn, etc. under natural conditions and has a broad host range. Obvious dwarfing, chlorosis and curling of leaves, serious withered hearts and even death occur in the early stage of infected rice plants, and yellow spots appear on leaves along veins in the later growth stage, so that heading is reduced or not. The transmission medium of the RSV is mainly Laodelphax striatellus, and can be vertically transmitted through eggs, and the larvae and adults of the Laodelphax striatellus, and female worms and male worms can be used as the medium of the RSV. In 2003-2010, large-scale outbreaks of rice stripe disease occur in the eastern China rice area, the general incidence rate of the rice stripe disease field is about 5%, the yield is reduced by 3% -5%, and the yield is reduced by 20% -30% in severe cases, even up to 70% or the harvest is stopped; in 2004 and 2005, the areas affected by rice stripe virus in Jiangsu regions only reached 153 and 187 ten thousand hectares, respectively (Zhang Hengmu et al, 2007; zhou Yijun, 2010). At present, rice stripe disease is spread in 18 provincial rice areas in China, wherein the incidence of japonica rice fields in Jiangsu, zhejiang, shandong, henan, yunnan and other places is more common (Zhou Yijun, 2010), and the grain safety of rice is seriously affected. Taking the gold mountain town in Lufeng county of Yunnan province as an example, the onset of the disease is increased year by year from 2018 to 2021, and the onset area in 2018 reaches 12.8 hectares; the area of onset with a slight exacerbation in 2019 was 30 hectares; the attack area in 2020 is 136.93 hectare; early preliminary investigation of the occurrence of leaf blight of full town rice in 2021 was carried out, with an occurrence area of 304 hectare (Ma Liqiong et al, 2022). Directly causes serious yield reduction of rice and brings serious negative influence to agricultural production.
Southern rice black streaked dwarf virus (Southern rice black-streaked dwarf virus, SRBDV) was found in Yangjiang, guangdong province in 2001 in China. The virus particles are in regular icosahedral sphere structure according to the particle structure of fijivirus genus, the diameter is 75-80nm, and the host range is mainly in Gramineae plants. The transmission medium of SRBSDV is mainly the plant hopper which can carry viruses for life once the viruses are obtained but does not transmit through eggs. The long wing type of the sogatella furcifera has the capability of long-distance migration, so that the SRBSDV can burst and prevail in a large area in a short time. Plants developed after SRBSDV infection show symptoms similar to RBSDV, SRBSDV can be infected in each growth period of rice, and the symptoms are different due to different periods. Typical symptoms of plants infected with SRBSDV are dwarfing, darkening of leaf color to greenish, curling of leaf tips, and uneven folds on the basal leaf surface of the upper portion She Jin. The stem node of the disease plant in the jointing stage has the fibrous root and high-joint branch; the surface of the stalk is provided with milky white tumor-shaped protrusions which are longitudinally arranged in a wax dot shape with the size of about 1-2 mm, the later period of the tumor is brown-black, the later the disease sensing period is, the higher the position generated by the tumor is (Zhou Guohui et al, 2008), and the yield of the economic crops of rice, corn, wheat and barley is seriously affected. In the later 90 s of the 20 th century, the disease has large outbreaks in Jiangsu, zhejiang and other areas, the occurrence of the disease is over 90 percent in the rice field with serious disease occurrence, and serious economic loss is caused (Wang Huadi and the like, 2007), so that the research on the reason of the rice disease caused by the SRBSDV virus has extremely important practical significance.
SRBSDV is one of the important members of the Reoviridae (Reoviridae) Fijivirus genus, and recently phylogenetic tree analysis has shown that SRBSDV has high homology to the gene sequence of Rice black-streaked dwarf virus (RBSDV). The analogous RBSDV researchers found that SRBSDV P5-1, P6, P9 was an important component of viral replication virulence. Wherein the P6 protein can coordinate virus infection and transmission through interaction with an ethylene signal pathway key transcription factor OsRTH 2. P7-2 interacts with S-phase kinase-associated protein 1 (OsSKP 1) to form SCF complex. The P8 protein codes for inner capsid protein of virus, has the function of inhibiting transcription activity, and inhibits antiviral defense reaction mediated by the protein through interaction with rice auxin pathway transcription factor OsARF 17. P10 encodes a coat protein that is capable of stimulating endoplasmic reticulum stress.
Nuclear Factor Y (NF-Y) is a class of genes whose transcription is regulated by binding to the CCAAT-box cis-acting element of the downstream gene promoter region. Unlike animals, higher plants have 10 or more family genes, the genomes found in studies of model organism Arabidopsis have 10 NF-YA genes, 13 NF-YB genes and 13 NF-YC genes altogether, while in studies on rice have been found to encode 11 NF-YA genes, 11 NF-YB genes and 12 NF-YC genes (Yang et al, 2017).
Researches show that NF-Ys has important biological functions in the growth and development process of plants, and is mainly involved in the development of plant embryos, the regulation of seed germination, plant flowering and the like. NF-Y was first found to be involved in regulating plant growth and development in Arabidopsis, where the first identified and widely studied NF-Y subunit plays a role in embryogenesis and seed maturation as NF-YB9, which was identified as LEAFY COTYLIDOON 1 (LEC 1) regulating the transformation of plants from embryos to adults (Lotan et al, 1998; huang et al, 2015).
However, the role of rice virus infection of rice NF-YA gene family members is still not clear, and based on the defects of the prior art, the inventor of the invention obtains transgenic rice capable of stably inheriting by constructing an interference vector of OsNF-YAs and introducing the interference vector into rice varieties by using an agrobacterium-mediated method. Experiments of artificially inoculating southern rice black-streaked dwarf virus (SRBSDV) and Rice Stripe Virus (RSV) show that RNAi-OsNF-YAs gene in rice can obviously enhance the resistance of the rice to RSV and SRBSDV infection, and the diseases are reduced in plant morbidity, incidence, virus content and the like. The invention provides a new idea for breeding and breeding new rice antiviral varieties by using southern rice black-streaked dwarf virus and rice stripe virus resistant plants, and provides technical guarantee and scientific basis for ensuring continuous yield increase of agricultural rice crops in China.
Disclosure of Invention
The invention relates to a rice coding gene OsNF-YA family gene and a coding protein thereof;
the nucleotide sequence of the OsNF-YA gene is shown as SEQ ID NO.1-11, and the amino acid sequence of the protein corresponding to the OsNF-YA gene encoded by the rice transcription factor is the amino acid encoded by SEQ ID NO. 1-11.
In some specific embodiments, the CDS nucleotide sequence (SEQ ID NOS: 1-11) for an OsNF-YA family gene is as follows:
OsNF-YA1
ATGCTCCCTCCTCATCTCACAGAAAATGGCACAGTAATGATTCAGTTTGGTCATAAAATGCCTGACTACGAGTCATCAGCTACCCAATCAACTAGTGGATCTCCTCGTGAAGTGTCTGGAATGAGCGAAGGAAGCCTCAATGAGCAGAATGATCAATCTGGTAATCTTGATGGTTACACGAAGAGTGATGAAGGTAAGATGATGTCAGCTTTATCTCTGGGCAAATCAGAAACTGTGTATGCACATTCGGAACCTGACCGTAGCCAACCCTTTGGCATATCATATCCATATGCTGATTCGTTCTATGGTGGTGCTGTAGCGACTTATGGCACACATGCTATTATGCATCCCCAGATTGTGGGCGTGATGTCATCCTCCCGAGTCCCGCTACCAATAGAACCAGCCACCGAAGAGCCTATTTATGTAAATGCAAAGCAATACCATGCGATTCTCCGAAGGAGACAGCTCCGTGCAAAGTTAGAGGCTGAAAACAAGCTGGTGAAAAACCGCAAGCCGTACCTCCATGAATCCCGGCATCAACACGCGATGAAGAGAGCTCGGGGAACAGGGGGGAGATTCCTCAACACAAAGCAGCAGCCTGAAGCTTCAGATGGTGGCACCCCAAGGCTCGTCTCTGCAAACGGCGTTGTGTTCTCAAAGCACGAGCACAGCTTGTCGTCCAGTGATCTCCATCATCGTCGTGCGAAAGAGGGCGCTTGA
OsNF-YA2
ATGATAATGCTGTTGCAAGAAATGGAGAATCATCCTGTCCAATGCATGGCCAAGACCAACTATGATTTTCTTGCCAGGAATAACTATCCAATGAAACAGTTAGTTCAGAGGAACTCTGATGGTGACTCGTCACCAACAAAGTCTGGGGAGTCTCACCAAGAAGCATCTGCAGTAAGTGACAGCAGTCTCAACGGACAACACACCTCACCACAATCAGTGTTTGTCCCCTCAGATATTAACAACAATGATAGTTGTGGGGAGCGGGACCATGGCACTAAGTCGGTATTGTCTTTGGGGAACACAGAAGCTGCCTTTCCTCCTTCAAAGTTCGATTACAACCAGCCTTTTGCATGTGTTTCTTATCCATATGGTACTGATCCATATTATGGTGGAGTATTAACAGGATACACTTCACATGCATTTGTTCATCCTCAAATTACTGGTGCTGCAAACTCTAGGATGCCATTGCCTGTTGATCCTTCTGTAGAAGAGCCCATATTTGTCAATGCAAAGCAATACAATGCGATCCTTAGAAGAAGGCAAACGCGTGCAAAATTGGAGGCCCAAAATAAGGCGGTGAAAGGTCGGAAGCCTTACCTCCATGAATCTCGACATCATCATGCTATGAAGCGAGCCCGTGGATCAGGTGGTCGGTTCCTTACCAAAAAGGAGCTGCTGGAACAGCAGCAGCAGCAGCAGCAGCAGAAGCCACCACCGGCATCAGCTCAGTCTCCAACAGGTAGAGCCAGAACGAGCGGCGGTGCCGTTGTCCTTGGCAAGAACCTGTGCCCAGAGAACAGCACATCCTGCTCGCCATCGACACCGACAGGCTCCGAGATCTCCAGCATCTCATTTGGGGGCGGCATGCTGGCTCACCAAGAGCACATCAGCTTCGCATCCGCTGATCGCCACCCCACAATGAACCAGAACCACCGTGTCCCCGTCATGAGGTGA
OsNF-YA3
ATGCTGAGCTTCAAGCAGAGCCACGAGGGGTTCGGCCATGTCGCCGCCGCTGGAGCTGGACCGCAGCAGCAGCAGCAGCCGTGGTGGGCGGGGTCGCAGCTGCTGTACGGGGAGGCGTCGCCGGAGGAGGCGGCGCTGCGCGACGGCGGCCAGTTCCAGGTCGTGCCCGGAGGCCGCGCCGCGCTGGATCCGGCGGCGCCGGAGCCGGAGAAGACGGCGGTGCCGGCGATGCCCAAGAGAGGAGGAGGAGGAGGGGCTCCTGAGGTGCTGAAATTCTCGGTGTTTTCAGGTAATTTGGAGCCGGGAGATACAGGAGAGAAGAACAGAGAGCACTCTGCCACTATTGCAATGCAATCGCCGTTGCCAGAATACAACGGCCATTTCGAGCTTGGTCTTGGTCAATCCATGGTCTCTCCCAATTATCCTTGTATTGACCAATGCTATGGTCTTATGACCACCTACGCGATGAAATCAATGAGTGGCGGGCGAATGCTACTGCCGCTGAACGCGCCAGCCGATGCGCCGATCTATGTCAACGCGAAGCAGTACGAAGGCATCCTCCGCCGTCGCCGTGCCCGCGCCAAGGCCCAGAGGGAGAACAGGCTGGTCAAAGGCAGGAAGCCCTACCTCCACGAGTCGCGCCACCGCCACGCCATGCGCCGGGCCAGAGGCTCCGGCGGCCGCTTCCTCAACACCAAGAAAGAAGCCACCGCCGCCGGATGCGGCGGCAGCAGCAAGACGCCCCTCGCGTCCCTCGTCAGCCCCGCCGACGTAGCCCATCGTCCAGGCTCCGGCGGCCGCGCGTCCAGCCTCTCCGGCTCCGACGTGTCGTCGCCGGGAGGCGTCATGTACGACCACCACCGCCACGACGACGCCGACGCGGCGGACCACTACAACAGCATCGACCACCACCTCCGCACGCCGTTCTTCACCCCGCTCCCGATCATCATGGACAGCGGCGGCGGCGGCGGCGACCACGCCTCACACTCCGCCGCCGCCGTCGCCGCCCCCTTCAGGTGGGCGACGGCGGCCGGCGACGGCTGCTGCGAGCTCCTCAAGGCGTGA
OsNF-YA4
ATGGAGTCGAGGCCGGGGGGAACCAACCTCGTGGAGCCGAGGGGGCAGGGCGCGCTGCCGTCCGGCATACCGATCCAGCAGCCGTGGTGGACGACCTCCGCCGGGGTCGGGGCGGTGTCGCCCGCCGTCGTGGCGCCGGGGAGCGGTGCGGGGATCAGCCTGTCGGGCAGGGATGGCGGCGGCGACGACGCGGCAGAGGAGAGCAGCGATGACTCACGAAGATCAGGGGAGACCAAAGATGGAAGCACTGATCAAGAAAAGCATCATGCAACATCGCAGATGACTGCTTTGGCATCAGACTATTTAACACCATTTTCACAGCTGGAACTAAACCAACCAATTGCTTCGGCAGCATACCAGTACCCTGACTCTTACTATATGGGCATGGTTGGTCCCTATGGACCTCAAGCTATGTCCGCACAGACTCATTTCCAGCTACCTGGATTAACTCACTCTCGTATGCCGTTGCCTCTTGAAATATCTGAGGAGCCTGTTTATGTAAATGCTAAGCAATATCATGGAATTTTAAGACGGAGGCAGTCACGTGCGAAGGCTGAACTTGAGAAAAAAGTTGTTAAATCAAGAAAGCCCTATCTTCATGAGTCTCGTCATCAACATGCTATGCGAAGGGCAAGAGGAACGGGTGGACGCTTCCTGAACACAAAGAAAAATGAAGATGGTGCTCCCAGTGAGAAAGCCGAACCAAACAAAGGAGAGCAGAACTCCGGGTATCGCCGGATCCCTCCTGACTTACAGCTCCTACAGAAGGAAACATGA
OsNF-YA5
ATGAGAAGTGCAGCTCTGAGCTTCCAAGATCACGGCCATGGGCTTCAGGCGATCACCGGCCGTGGCGGCAATGGCGGCGCCGCCGCTCACGCATTGCCATGGTGGGCTGGAGCCGGAGCCGGAGCTGGATCCCAAACACTGCTTGGAACAGGAGGAGGAGAAGAATCATTCTGCCAATTAAGCAACACAATCATGGAGGACACCCGAATCCTGCAAAACCACCACCACCAGATCCTCGCCGCCGGCCGGCAGCTGCAGCAGCGCCACCACTTCCCGGCAATGCCGCCGGAGCGACACCACCACCCTCCTCCTCCAGCTCCTGGAAGCCCTGCCATGAAGTTCCCAATCATCTCAGGTGACTCTGATCTTGGCAAAGATCTGAAGTTCCATGAGTCCTCCGCGCCGACCATCGCCGCGTACTCGCCATTGCAGGAGTACCAAGGACACTTTGAGCTAGCCCTTGGCCACTCCATGGTTTGCACCAACTTCTGCAACTCTGAACAAAGCTATGGTGTTTACTCCCCCTATGGAGCTCAAACCATGGCTGGGAGGATGCTGCTGCCGCCGGCGATCGCCACCGACGTGGGTCCGATCTACGTCAACGCGAAGCAGTTCAACGGCATCATCCGGCGGCGGCTGGCGCGCGCCAAGGCGGAGCGGGAGCACCGGGTTTCCCGGAGCCGGAAGCCGTACCTCCACGAGTCGCGCCACCGCCACGCCATGCGCCGCGCGCGGGGCAGCGGCGGCCGCTTCCTCAACACCAAGAACGCCTCCTCCGCCGCCGCCGCGGCCGCCGACGCGGCGCCGGTGAGCTCCGGTGGCGGCGACCACGGGGCGAGCAACAAGAGCTCGTCGGCGTCGGAGGCGACGCGCGTGTACGACGACGACGACGACATGGGCGCGGGCGGCGGCGGCGACGGCGGCGACTTCCACCACGCGATGGGTCACCTCCGCTCGCCGGCGTTCTTCCCGTCGCTGGCCGCGATGATGGACGGCGGCGGCGGCGGCGGCGAGGGGAAGTGGGCGACCGCGACGCCTCACCATGGCTGCCGCGTCGACCTCCTCAAGGTGTGA
OsNF-YA6
ATGCTAATGCTTTTGCGACAAATGGAAGATCATCGAGCCCATACTACGCCCAACTATGATTTTTTCTCTGGAGATTATCAGATGAAGCAGTTAGGTCATAAGATGTATGATCAAGATTCCCCGTCAAGCGATTCTGGACAGTCACACCAAGAAGAATCTGCCATGAATGATAGCAGTCCAAATGAGCGACATACCTCAACACAATCTGACAATGATGATGGTCATCAGATGCCAGATCAGGACAAAACAAAGTCAGTATCATCGTTGGGGAATCCAGGAGCTTTGCCTCCAAAGCTCAACTATAGCCAATCCTTTGCTTGTATTCCTTATACAGCTGATGCATACTATGGTGGGGTCTTGACTGGATATTCTTCACATGCAATTGTTCATCCCCAGCAAAATGGTACAGCTAACTCCCGGGTGCCGTTGCCTGTTGAGCCTGCAGCAGAAGAGCCAATATTTGTAAACGCAAAGCAGTACCATGCAATTCTTAGGAGGAGACAGATACGAGCTAAATTGGAGGCCCAAAATAAGTTGGTGAAAGGTCGGAAGCCATACCTCCATGAATCTCGGCATCGCCATGCCATGAAGCGAGCTCGTGGATCTGGAGGGCGCTTCCTCAACACAAAGCAGCTCGAGGAGCAGAAGCAGCAACAGGAGGAGGAGGCCGCATCCGGTGGCGCGAGCTCTGGCAATAGGACATGCCTTCAGAATGGCACCGGTAGCGCGCCTTCAGCTTCCTCTCCCTCTGAAATCGCGAGCGTCTCAACCAGCAGAGAATTCCTTGGTAACCATGAGCAGAGCCACTTCCCCTCAGCTGGCTTCCTTCCCACAATGAGCTTCAGAGCGCAGAATGGCGGAGATGGGAAGCTGGTCGCGAACGCCATTCACCAGCGCGTTTCCATGATGAGGTGA
OsNF-YA7
ATGAAGCCAGATGGTGAAACTCAGCTTCGTCCTACAGCTGCTGGACATCCAGATCCTGGTTTGGGCACATCATCTGCAGAATACGTGGCCTCTCTAGGACCAGCTACAGCTCCAGTATCTTATCCATATATCAGTACCTATTATGGAGGCACTTATGGTGCTTATAGTGGACAACCTCTGGTTAACGCTGCTTTAATGGCAATGCCTCCGCATTCTGTGCCCTTGGTGACCGATGCTGTTGTAGAGCCCATATATGTCAATGCAAGGCAGTATCATGGTATATTAAGGCGGCGCCAATCTCGTGCAAAAGCTGAATCAGAAAATAAGGCCAACAAAATCCGCAAGCCTTACCTACATGAGTCCCGCCATCTGCATGCTTTGAAAAGGGCAAGGGGGTCCGGTGGTCGATTTCTCAACTCTAAGGCTGTGGAGGGGAAGCAAGACACTAAATCTGTAGATAAAAAGGATGGAGCTGTGCCATCTGAGGAGAAGAGAGACAAGAAGTTGGCAAATAGCATTATCAAATTGGAGAACTCGAGCCCAACAACACAACCAGGTGCAGATGCGTCCGATGTTGTATGA
OsNF-YA8
ATGGGTTTTGGTGAAAGCACCCAGGGCAATCAACGTAAGCTTGATGGTCCTGGGAAAGTGTCAACTGAATTATCCCTAGTCAATCTAGAAGCTAAAAATTTGCATCCTAAACCTGAGTGCAACCAACCTATTGAACACATACCTACCAAGGGTATGAAGTGTACTCCACTGCTACCACTACCTACAGAACATGCTGATGATGAGCCTATATATGTGAATGCAAAGCAGTACCATGCAATTATCCGAAGGAGACAACGTCGAAAAATTGTTGGATCAGAAGATAAAGTAGCAGCAATTCGAAAGAGGATCCTTGTTGAGGCTCGCCAAAAGCAAGCAAAATTGAGGCATAGAGGAAAAGGCGGACGGTTTATTAGCATAGAACATCCCCTTGAACTTTCTATGGATGATCAGATATCGAAAAACGGAGGAAGTGCCTCGCCTTCTTCATCTACAGTGTCAGAAAACTCTAGCAATGTGAACGGTTTTACAGGAGATCTCTAA
OsNF-YA9
ATGACGTCTGTAGTTCATGATGTTTCAGGCAACCATGGAGCTGATGAGCGGCAAAAACAGCAAAGGCAAGGTGAACCTGAGGACCAGCAAGAAGCCTCAGTTACTAGTACAGATAGCCATACAATGGTAGCAACACCTTCAACAGATTATGCGACACCCTATGCCCATCACGATATGGCCCATGCAATGGGCCAAATTGCTTACGCAAATATTGATCCATATTACGGAAGCCTTTATGCAGCTTATGGTGGACAGCCTATGATGCATCCACCATTGGTCGGGATGCATCCAGCTGGACTACCACTGCCTACCGATGCAATTGAAGAGCCTGTCTATGTTAATGCAAAACAGTACAATGCCATATTAAGGCGTCGACAATCTCGAGCCAAAGCTGAGTCTGAAAAGAAGCTTGTCAAGGGCCGTAAGCCATATCTCCATGAGTCACGGCATCAACATGCCCTGAAAAGGGCTAGGGGAGCTGGAGGCCGATTTCTTAATTCAAAATCGGATGACAAGGAAGAGCATTCTGATTCCAGTTCCAGAGATAAACAGGATGGAGTTGCACCCCGTGATAGTGGCCAACCGTCTACCTCTCCGTCT
OsNF-YA10
ATGATGAGCTTCAACAAGAGCCAAGAAGGATTTGGGCAGGTTGCTGCTGTGGCCACCCTGGCCTCCAATGGAGGAGGCTCTCTACCATGGCTGCTGTACGGCGAGCCACTGGGGCAGGGGAAGCCGGCCATGTCGCCGGAGGGCGTGGTGCCGAGAGCACAGACTCCTCTGGATCCTCCTCAGGTTCCAGCCATGGACAGGGGTGTCCCTGAAATTCTGAACTTCTCCATGGTTCCAGGTAAAGGAGAAAAATGTTCTGAGCACTCAACTACTATTGCTCTGCAGTCACCATTTGCAGAATATAATGGCTGTTTTGAGCTGGGCCTTGGTCAATCTGTGGTTCCCTCTAATTATCCTTATGCTGACCAGCACTATGGCCTACTTTCTCCTTATGGAGTGAGACCAACGCCTAGCGGGCGAATTCTTATTCCACCAAATATGCCAGCTGATGCACCAATTTATGTGAATGCAAAACAGTGTTCAGCCATCATTCGACGTCGCCATGCTCGTGCCAAGGCAGAGAGGGAGAATAGGCTGGTCAAAGCTAGAAAACCATATCTTCACGAATCACGCCATCTTCATGCAATGCGTCGTGCAAGAGGCTCTGGTGGGCGCTTCCTCAACACGAAGAAAGAGACCAATGGGAAAACCACTGGTGGAGGCAGGAAGGTGATGGACATCATCATCCCGCCTCTGTGCCCCGCCGCATCTCCCAGCTCGGAGCAGTGCAACCCAAGCAGCGTTTCCAGCCTGTCCGGGTCAGAGGTGTCGAGCATATATGAACACGAAGACATGGACCACTTCCATAGCTTTGATCATCTCCGGACACACTTCTTCACCCCGCTCCCGAGCCTCATGGATGTCGAGCACGGGGCTGGTAACCCCTTCAAGTGGACAGCAGCCTCTGATGGCTGCTGTGACCTCCTCAAAGCATGA
OsNF-YA11
ATGCTTCTCCCCTCATCGTCTTCTTATTCCTACGCCTCCAAAGGTGACTCCTTCAGGAGAACTGTTGATGGTCCTATGAGGTCAACGTTGACTTTTGATAATAATCATTCTGTAGTGCCAAGTCAAAACATTGATTACGGCCAGCCAATGGCTTGCATTTCATACCCATACAACGATTCTGGTTCAGGAGTTTGGGCATCCTACAGTTCACGCTCGGTGTTCCATCCTCAAATTGTGGGAGGAGGCACATCGCCAAGAGTTCCCTTGCCCTCCCTGGAGATAGCAGATGATGGGCCCATATATGTCAATCCCAAACAATATCATGGAATTCTTCGCAGAAGACAACTGCGTGCTAAGTTAGAGGCCCAGAATAAGCTCGTCAAAACCCGAAAGCCTTACCTTCACGAATCTCGGCATCGCCATGCAATGAAGAGGGCTAGGGGCACTGGTGGGCGATTCCTGAATACCAAGCAGCTCCAGCTGCAGCAACAGTCTCACACTACCTCCACCAAGACCACCACAGACAGCCAAAATTCTTCAGGTTCAGTCCATCTACGGCTAGGTGGTGGCGCAATCGGAGATCAAACTCCATTTCCGTTCAAAGCAATGGATTCACAAGCTAACATCAAGAGAGCTGCAGCTTCTGCTTCCACCTTCACTGTAACTTCTGCGGCACAGAAAGACGACGCCTTCTTCGACCGCCATGGCCACCATCTCAGTAGCTTCTCCGGCCATTTTGGCCAGGCAAGCGCACAAGGTGGCGTCGGCAGCATGCATAACGGGTCACAGCAGAGGGTTCCTGCTATGAGATGA
on the other hand, the invention relates to the application of the rice transcription factor protein coding gene OsNF-YA in the breeding of gramineous grain crops of anti-Tenuivirus and Fijivirus;
in some embodiments, the genus Tenuivirus (Tenuivirus) comprises rice stripe virus (Rice stripe virus, RSV), maize stripe virus (Maize stripe virus, MSpV); fijivirus (Fijivirus) includes Maize Rough dwarf virus (Maize Rough DwarfVirus, MRDV), rice black-streaked dwarf virus (Rice black streaked dwarf virus, RBSDV), southern rice black-streaked dwarf virus (Southern rice black streaked dwarf virus, RBSDV);
in some embodiments, the gracilis is most preferably rice stripe virus and the fijis is most preferably southern rice black-streaked dwarf virus and rice black-streaked dwarf virus.
In some embodiments, the gramineous food crop is preferably rice, maize, wheat, oats, and barley; more preferably rice, most preferably Nippon Temminck;
in another aspect, the invention relates to a method for preparing a rice OsNF-YA plant expression interference vector, which comprises the following steps: designing a primer according to the recombination sequence of the OsNF-YA shown in SEQ ID No. 44, recovering a PCR product, connecting a pTCK303 vector, selecting and cloning, and carrying out measurement to obtain a pTCK303-OsNF-YA recombination plasmid; then, the pTCK303 vector is digested by BamHI, kpnI, speI, sacI, and the PCR products are respectively connected with the vector; selecting positive clones, and carrying out sequencing to confirm that the pTCK303-OsNF-YA expression vector is successfully constructed;
in some embodiments, the primer sequences are set forth in SEQ ID Nos. 45-48;
in another aspect, the present invention relates to a method for preparing a resistant transgenic plant comprising the steps of:
1) Construction of rice OsNF-YA plant expression interference vector
Designing a primer according to the recombination sequence of the OsNF-YA shown in SEQ ID No. 34, recovering a PCR product, connecting a pTCK303 vector, picking and cloning, and carrying out measurement to confirm that a correct recombinant plasmid of the pTCK303-OsNF-YA is obtained; then, the pTCK303 vector is digested by BamHI, kpnI, speI, sacI, and the PCR products are respectively connected with the vector; selecting positive clones, and carrying out sequencing to confirm that the pTCK303-OsNF-YA expression vector is successfully constructed;
2) Genetic transformation of rice
Agrobacterium transformation and callus induction culture: agrobacterium transformation: the plasmid containing the target vector is transformed into Agrobacterium tumefaciens GV3101 by the following steps: adding 2 mu L of plasmid into 50 mu L of competent cell, mixing, adding into electrode cup which is cooled in advance, transforming by 220V voltage electric shock method, adding 600 mu L of non-resistant LB liquid culture medium, shake culturing in shaking table at 28deg.C for about 3 hr, spreading on KR solid plate containing 50 mu g/ml Kan and 50 mu g/ml Rif, culturing in incubator at 28deg.C for 3d;
callus induction culture: selecting plump rice seeds (Japanese sunny) and removing glume, selecting high-quality seeds, soaking in 75% ethanol solution for 10min, washing with sterile water for 5-10 times, soaking in 30% sodium hypochlorite solution for 20-30min, and washing with sterile water for 5-10 times; then placing the cleaned seeds on sterile filter paper to absorb water, placing the seeds into an induction culture medium by using sterile forceps, culturing the seeds in a 28 ℃ illumination incubator for 3 weeks until callus grows out, selecting optimal callus into a secondary culture medium by using the sterile forceps, and carrying out secondary culture in the 28 ℃ illumination incubator for 1 week;
screening and culturing agrobacterium transfected callus and resistant callus: selecting a monoclonal from a single colony plate for mature culture and performing PCR verification, inoculating positive clones into 100mL of LB liquid medium containing 50 mug/mL Kan and 50 mug/mL Rif, and culturing in a constant temperature shaking table at 28 ℃ and 220r/min until the OD600 = 0.5; soaking the induced callus in agrobacterium suspension culture solution, taking out, and culturing in co-culture medium for 2.5d; the callus is placed on a culture medium containing 50mg/L hygromycin for 30-45d screening, the screened callus is placed in a differentiation culture medium for differentiation culture, and light culture is carried out for 22d after dark culture for 3d. After green buds grow out, transferring the green buds into a rooting culture medium for culturing for about 15 days to obtain transgenic plants;
3) Positive identification of transgenic plants
Extracting positive transgenic plant total RNA, performing reverse transcription to obtain cDNA, and taking UBQ gene of rice as an internal reference; the quantitative primers are shown as SEQ ID No. 12-15 and SEQ ID No. 30-33, and the relative expression levels of the four genes, namely OsNF-YA1, osNF-YA2, osNF-YA10 and OsNF-YA11, in the transgenic strain interfering the OsNF-YA genes are obviously lower than that of a control group, so that the construction of the transgenic rice strain is proved to be successful;
in some embodiments, the induction medium comprises: 24.1g/L of N6 culture medium, 2.5mg/L2,4-D, PH =5.8;
in some embodiments, the secondary medium comprises: 24.1g/L of N6 culture medium, 2.5mg/L of 2,4-D, 50mg/L of hygromycin, 300mg/mL of cephalosporin, and PH=5.8;
in some embodiments, the rooting medium comprises: 1/2MS 39.45g/L, 0.5mg/L NAA, 50mg/L hygromycin, pH=5.8;
in some embodiments, the co-culture medium comprises: 24.1g/L of N6 medium, 2.5mg/L of 2,4-D, 200 mu mol/L of acetosyringone and PH=5.8;
in another aspect, the invention is directed to a transgenic plant having both a gracilis and a fijis virus resistance;
in some embodiments, the genus Tenuivirus (Tenuivirus) comprises rice stripe virus (Rice stripe virus, RSV), maize stripe virus (Maize stripe virus, MSpV); fijivirus (Fijivirus) includes maize rough dwarf virus (Maize Rough Dwarf Virus, MRDV), rice black-streaked dwarf virus (Rice black streaked dwarf virus, RBSDV), southern rice black-streaked dwarf virus (Southern rice black streaked dwarf virus, RBSDV);
in some embodiments, the gracilis is most preferably rice stripe virus and the fijis is most preferably southern rice black-streaked dwarf virus and rice black-streaked dwarf virus.
Description of the drawings:
fig. 1: after RSV and SRBSDV infest rice, the experimental result of up-regulating expression of OsNF-YA genes is induced;
fig. 2: experimental results of the relative expression level of OsNF-YA in RNAi-OsNF-YA transgenic rice;
fig. 3: schematic representation of the onset symptoms of RNAi-OsNF-YA transgene and control NIP following RSV infection;
fig. 4: RNAi-OsNF-YA transgene after RSV infection and virus content detection result of control NIP;
fig. 5: schematic representation of the onset symptoms of RNAi-OsNF-YA transgenes and control NIP following SRBSDV infection;
fig. 6: after SRBSDV infection, RNAi-OsNF-YA transgenesis and a virus content detection result of a control NIP; mock is healthy rice; NIP: paddy rice in Nipponbare; SRBSDV in the SRBSDV infected rice; RSV infection: RSV-infected rice; SRBSDV: SRBSDV infected rice; RSV infected rice
Examples:
Detailed Description
The rice varieties selected in the series of experiments are as follows: nippon sunny day
The relevant medium components are as follows:
induction medium: n6 Medium (manufacturer: haibo Biotechnology Co., ltd., product number: HBZ 0601) 24.1g/L, 2.5mg/L2,4-D, PH =5.8.
Subculture medium: n6 Medium (manufacturer: haibo Biotechnology Co., ltd., product number: 15HBZ 0601) 24.1g/L, 2,4-D, 50mg/L hygromycin, 300mg/mL cephalosporin, pH=5.8.
Co-culture medium: n6 Medium (manufacturer: haibo Biotechnology Co., ltd., product number: HBZ 0601) 24.1g/L, 2.5mg/L2,4-D, 200. Mu. Mol/L acetosyringone, pH=5.8.
Rooting medium: :1/2MS (manufacturer: haibo Biotechnology Co., ltd., product number: HB 8469-6) 39.45g/L, 0.5mg/L NAA, 50mg/L hygromycin, pH=5.8.
Example 1: induction of OsNF-YA gene expression changes after infection of rice by RSV and SRBSDV
(1) Extraction of total RNA of rice plant and synthesis of first-strand cDNA sequence
Extraction of inoculated RSV 20d with TRIzol reagent, inoculation of SRBSDV 30d and healthy Total RNA of rice, and use of reverse transcription kit 5. Times. HiScript
Figure BDA0003623580800000111
III qRT Super Mix (manufacturer: northenan, cat. No. R323-01) reverse transcribes the extracted RNA into cDNA and reverse transcribes the extracted RNA into cDNA.
(2) qRT-PCR detection of expression change of OsNF-YA gene
The cDNA sample was used, and the UBQ gene of rice was used as an internal reference. The quantitative primers are qRT-OsNF-YA1, qRT-OsNF-YA2, qRT-OsNF-YA3, qRT-OsNF-YA4, qRT-OsNF-YA5, qRT-OsNF-YA6, qRT-OsNF-YA7, qRT-OsNF-YA8, qRT-OsNF-YA9, qRT-OsNF-YA10, qRT-OsNF-YA11, and the relative expression amounts of the OsNF-YA are shown in figure 1, and the quantitative primer sequences are as follows:
qRT-OsNF-YA1-F tgaagtgtctggaatgagcg(SEQ ID No:12);
qRT-OsNF-YA1-R cagcaccaccatagaacgaa(SEQ ID No:13);
qRT-OsNF-YA2-F atcaggtggtcggttcctta(SEQ ID No:14);
qRT-OsNF-YA2-R gttctggttcattgtggggt(SEQ ID No:15);
qRT-OsNF-YA3-F ggtgctgaaattctcggtgt(SEQ ID No:16);
qRT-OsNF-YA3-R tgatttcatcgcgtaggtgg(SEQ ID No:17);
qRT-OsNF-YA4-F tgccgttgcctcttgaaata(SEQ ID No:18);
qRT-OsNF-YA4-R tgtttggttcggctttctca(SEQ ID No:19);
qRT-OsNF-YA5-F tgccatgaagttcccaatca(SEQ ID No:20);
qRT-OsNF-YA5-R tttgagctccatagggggag(SEQ ID No:21);
qRT-OsNF-YA6-F ctgcagcagaagagccaata(SEQ ID No:22);
qRT-OsNF-YA6-R aaggcatgtcctattgccag(SEQ ID No:23);
qRT-OsNF-YA7-F atacgtggcctctctaggac(SEQ ID No:24);
qRT-OsNF-YA7-R cagcttttgcacgagattgg(SEQ ID No:25);
qRT-OsNF-YA8-F cctgagtgcaaccaacctat(SEQ ID No:26);
qRT-OsNF-YA8-R atgctaataaaccgtccgcc(SEQ ID No:27);
qRT-OsNF-YA9-F atgcagcttatggtggacag(SEQ ID No:28);
qRT-OsNF-YA9-R ttaagaaatcggcctccagc(SEQ ID No:29);
qRT-OsNF-YA10-F gccttggtcaatctgtggtt(SEQ ID No:30);
qRT-OsNF-YA10-R tgcatgaagatggcgtgatt(SEQ ID No:31);
qRT-OsNF-YA11-F aggagtttgggcatcctaca(SEQ ID No:32);
qRT-OsNF-YA11-R aacttagcacgcagttgtct(SEQ ID No:33);
OsUBQ-F accacttcgaccgccactact(SEQ ID No:34);
OsUBQ-R acgcctaagcctgctggtt(SEQ ID No:35);
the experimental results are shown in figure 1, and the expression of the OsNF-YA gene can be obviously induced after the infection of RSV and SRBSDV, which indicates that the OsNF-YA participates in the antiviral defense reaction of rice.
Example 2: construction of rice OsNF-YA plant expression vector
(1) Cloning of Rice OsNF-YA Gene
Based on the test results in example 1, we selected four genes, namely OsNF-YA1, osNF-YA2, osNF-YA10, osNF-YA11, for subsequent experiments, and designed primer sequences based on their sequences (SEQ ID No:1,2, 10, 11) as follows:
OsNF-YA1-F atgctccctcctcatctca(SEQ ID No:36);
OsNA-YA1-R ttaagcgccctctttcgca(SEQ ID No:37);
OsNF-YA2-F atgataatgctgttgcaagaa(SEQ ID No:38);
OsNF-YA2-R ttacctcatgacggggaca(SEQ ID No:39);
OsNF-YA10-F atgatgagcttcaacaagagc(SEQ ID No:40);
OsNF-YA10-R ttatgctttgaggaggtcac(SEQ ID No:41);
OsNF-YA11-F atgcttctcccctcatcgt(SEQ ID No:42);
OsNF-YA11-R ttatctcatagcaggaac(SEQ ID No:43);
PCR amplification system: the total volume was 50. Mu.L, which contained 10 XKOD buffer 25. Mu.L, 1.5. Mu.L each of the upstream and downstream primers (10. Mu.M), 5. Mu.L of dNTP Mix (2.5 mM), 1. Mu.L of cDNA template, 1. Mu.L of KOD Taq enzyme (5U/. Mu.L), and 15. Mu.L of ddH 2O.
PCR amplification procedure: pre-denaturation at 94℃for 4min; denaturation at 94℃for 30s, renaturation at 58℃for 30s, extension at 72℃for 1min,35 cycles; finally, the extension is carried out for 5min at 72 ℃.
The PCR products of the above genes were recovered, ligated with pMD18-T vector (Takara, cat. No. D101A), picked, cloned, sequenced, and confirmed to obtain the recombinant plasmids of PMD18-T-OsNF-YA1, pMD18-T-OsNF-YA2, pMD18-T-OsNF-YA10, pMD18-T-OsNF-YA11 of the above four genes, which were confirmed to be sequenced correctly by Hangzhou Kangshengmbh. Respectively obtaining pMD18-T-OsNF-YA1 recombinant plasmid with CDS sequence size of 720bp and encoding 239 amino acids; CDS sequence size is 954bp, and pMD18-T-OsNF-YA2 recombinant plasmid of 317 amino acids is encoded; CDS sequence size is 936bp, and codes pMD18-T-OsNF-YA10 recombinant plasmid of 311 amino acids; CDS sequence size is 813bp, and encodes pMD18-T-OsNF-YA11 recombinant plasmid of 270 amino acids.
(2) Construction of interference vectors
According to the conserved structural domains of OsNF-YA1, osNF-YA2, osNF-YA10 and OsNF-YA11 sequences SEQ ID No.1, 2, 10 and 11, a section of conserved sequence SEQ ID No. 44 with higher homology is designed as an interference vector sequence, and the sequence is specifically as follows:
cacatgctattatgcatccccagattgtgggcgtgatgtcatcctcccgagtcccgctaccaatagaaccagccaccgaagagcctatttatgtaaatgcaaagcaataccatgcgattctccgaaggagacagctccgtgcaaagttagaggctgaaaacaagctggtgaaaaaccgcaagccgtacctccatgaatcccggcatcaacacgcgatgaagagagctcggggaacaggggaccaacgcctagcgggcgaattcttattccaccaaatatgccagctgatgcaccaatttatgtgaatgcaaaacagtgttcagccatcattcgacgtcgccatgctcgtgccaaggcagagagggagaataggctggtcaaagctagaaaaccatatcttcacgaatcacgccatcttcatgcaatgcgtcgtgcaagaggctctggtgggcgcttcctcaacacgaagaaagagaccaa
primers for interfering the vector fragments and connecting enzyme cutting sites are designed according to the conserved domains of the OsNF-YA1, 2, 10 and 11 and are used for constructing the expression vector RNAi-OsNF-YA. The pTCK303 vector is digested with KpnI and BamHI, and then is connected with PCR products of primers SEQ ID No. 45 and SEQ ID No. 46 to obtain a positive recombinant plasmid. The positive recombinant plasmid was double digested with Spel I and Sac I and ligated with the PCR products of primers SEQ ID No. 47 and SEQ ID No. 48, and positive clones were selected for sequencing. The primer sequences used were as follows:
RNAi-OsNF-YA-KpnI-F ctgtcgacctcgagggtacccacatgctattatgcat
(SEQ ID No:45);
RNAi-OsNF-YA-BamHI-R tcgcccgctaggcgttggtcccctgttccccgagctctct
(SEQ ID No:46);
RNAi-OsNF-YA-Spel I-F agagagctcggggaacaggggaccaacgcctagcgggcga
(SEQ ID No:47);
RNA-OsNF-YA-Sac I-R caggtcgactctagaggatccttggtctctttcttcgtgtt
(SEQ ID No:48);
the RNAi-OsNF-YA expression vector was confirmed to have been successfully constructed by sequencing.
Example 3 Rice genetic transformation analysis experiment
(1) Agrobacterium transformation: the plasmid containing the target vector is transformed into Agrobacterium tumefaciens GV3101 by the following steps: adding 2 μl of plasmid into 50 μl of competent cell, mixing, adding into electrode cup with early cooling, transforming with 220V voltage shock method, adding 600 μl of non-resistant LB liquid medium, shake culturing at 28deg.C for about 3 hr, spreading on KR solid plate containing 50 μg/ml Kan and 50 μg/ml Rif, and culturing at 28deg.C for 3d.
(2) Callus induction culture: selecting plump rice seeds (Japanese sunny) and removing glume, selecting high-quality seeds, soaking in 75% ethanol solution for 10min, washing with sterile water for 5-10 times, soaking in 30% sodium hypochlorite solution for 20-30min, and washing with sterile water for 5-10 times; then placing the cleaned seeds on sterile filter paper to absorb water, placing the seeds into an induction culture medium by using sterile forceps, culturing the seeds in a 28 ℃ illumination incubator for 3 weeks until the calli grow out, selecting the optimal calli into a secondary culture medium by using the sterile forceps, and subculturing the calli in the 28 ℃ illumination incubator for 1 week.
(3) From cultureThe mature single colony plate is picked up and subjected to PCR verification, positive clones are inoculated in 100mL of LB liquid medium containing 50 mug/mL Kan and 50 mug/mL Rif, and cultured to OD in a constant temperature shaker at 28 ℃ and 220r/min 600 =about 0.5; soaking the induced callus in agrobacterium suspension culture solution, taking out, and culturing in co-culture medium for 2.5d; the callus is placed on a culture medium containing 50mg/L hygromycin for 30-45d screening, the screened callus is placed in a differentiation culture medium for differentiation culture, and light culture is carried out for 22d after dark culture for 3d. After green buds grow out, transferring the green buds into a rooting culture medium for culturing for about 15 days to obtain transgenic plants. And obtaining 20 positive plants through transgenic positive identification.
Example 4 Positive identification of transgenic plants
Positive transgenic plants were extracted for total RNA, reverse transcribed to cDNA, and rice UBQ gene was used as an internal reference as in example 1. The quantitative primers are shown as SEQ ID No. 12-35, and 2 strains RNAi-OsNF-YA#7 and RNAi-OsNF-YA#8 with the expression level significantly lower than that of NIP are selected from 20 strains obtained before, and the RNAi-OsNF-YA#8 with the (# relative expression level) is significantly lower than that of the NIP in a control group (see figure 2), so that the construction of the transgenic rice strain is proved to be successful.
EXAMPLE 5 Artificial Vaccination with RSV
(1) The control NIP, RNAi-OsNF-YA #7 and RNAi-OsNF-YA #8 transgenic rice seeds are placed in a constant temperature 37 ℃ incubator for seed soaking for 2-3d, water is changed in the morning and evening every day, after the seeds bud, the seeds are sown in a 1L glass beaker, 30 seedlings are planted in each cup, 3 biological repeats are designed, and the seeds are placed in a climatic chamber for culturing at 30 ℃ for 16 hours under illumination for 8 hours.
(2) And (3) carrying out a virus inoculation test on the 1-2-year-old Laodelphax striatellus with the population area toxicity rate of more than 50% according to the proportion of 3 heads/plant seedling grafting, and sweeping out all insects after 3 days of virus inoculation.
(3) After transplanting the rice seedlings subjected to virus inoculation to a field for 20d, observing plant disease symptoms and determining the disease condition of the rice through qRT-PCR.
Example 6 RNAi-OsNF-YA transgene resistance analysis to RSV infection
qRT-PCR detection of viral content in infected plants
After 20d of rice transplanting into the field, the disease symptoms were observed, and RNAi-OsNF-YA#7 and RNAi-OsNF-YA#8 showed significant resistance to infection with RSV, as shown in FIG. 3. Further, qRT-PCR is used for detecting the expression quantity of the genes of the virus RSV CP and RSV P2, as shown in figure 4, and the expression quantity of the genes of the virus CP and P2 in the transgenic line is obviously lower than that of NIP; the results show that inhibiting the expression of the OsNF-YA gene can enhance the resistance of rice to RSV infection.
The quantitative primer sequences were as follows:
qRSV-CP-F aggcaatcaatgacatctcc(SEQ ID No:49);
qRSV-CP-R atctctcacaaagccagtgc(SEQ ID No:50);
qRSV-P2-F acgggtttcagtttgctaca(SEQ ID No:51);
qRSV-P2-R cactcatgtgctccaaccaa(SEQ ID No:52);
EXAMPLE 7 Artificial inoculation of SRBSDV
(1) The control NIP, RNAi-OsNF-YA #7 and RNAi-OsNF-YA #8 transgenic rice seeds are placed in a constant temperature 37 ℃ incubator for seed soaking for 2-3d, water is changed in the morning and evening every day, after the seeds bud, the seeds are sown in a 1L glass beaker, 30 seedlings are planted in each cup, 3 biological repeats are designed, and the seeds are placed in a climatic chamber for culturing at 30 ℃ for 16 hours under illumination for 8 hours.
(2) The 1-2-year-old nontoxic sogatella furcifera is transferred to the insect-raising seedling for a transition and recycling period of about 10d after being subjected to 3-5d of toxicity acquisition on the rice seedling infected by the SRBSDV (the time required by the SRBSDV to complete the infection cycle in the sogatella furcifera).
(3) The sogatella furcifera in the transitional period is inoculated on the test seedling in the three-four leaf period (about 15 d) according to the proportion of 3 heads/plant seedling for virus inoculation test, and all insects are swept out after 3d of virus inoculation.
(4) After transplanting the rice seedlings subjected to virus inoculation to a field for 30d, observing plant disease symptoms and determining the disease condition of the rice through qRT-PCR.
Example 8 RNAi-OsNF-YA transgene resistance analysis to SRBSDV infection
qRT-PCR detection of viral content in infected plants
After transplanting the rice into the field for 20 days, the disease symptoms were observed, and RNAi-OsNF-YA#7 and RNAi-OsNF-YA#8 showed significant resistance to infection by SRBSDV, as shown in FIG. 5. Further, the qRT-PCR is used for detecting the expression quantity of the genes of the viruses SRBSDV S2, SRBSDV S4 and SRBSDV S6, as shown in figure 6, the expression quantity of the genes of the viruses S2, S4 and S6 in the transgenic strain is obviously lower than NIP; the results show that inhibiting the expression of the OsNF-YA gene can enhance the resistance of rice to SRBSDV infection.
The quantitative primer sequences were as follows:
qSRBSDV-S2-F catcgaccaagttcaacccg(SEQ ID No:53);
qSRBSDV-S2-R aagaagtctgcgggtgaaga(SEQ ID No:54);
qSRBSDV-S4-F aaagtgaacccgttgctgac(SEQ ID No:55);
qSRBSDV-S4-R tgcaacgctagatcctatgc(SEQ ID No:56);
qSRBSDV-S6-F atctgcttttccccttccga(SEQ ID No:57);
qSRBSDV-S6-R gattccgcgtttgaagagtca(SEQ ID No:58);
the test results above are combined to show that: inhibiting the expression of the OsNF-YA gene in rice significantly enhances rice resistance to RSV and SRBSDV infection (including phenotypic symptoms, morbidity, and viral content of the diseased plant) compared to control NIP. Therefore, the invention successfully obtains double-resistance transgenic rice with SRBSDV resistance and RSV infection resistance in a transgenic mode, has important significance on agricultural development and national grain safety, and obtains unexpected technical effects.
SEQUENCE LISTING
<110> university of Ningbo
Application of rice transcription factor OsNF-YA in resisting viruses of rice
<130> 1
<160> 58
<170> PatentIn version 3.3
<210> 1
<211> 720
<212> DNA
<213> Artificial sequence (unknown)
<400> 1
atgctccctc ctcatctcac agaaaatggc acagtaatga ttcagtttgg tcataaaatg 60
cctgactacg agtcatcagc tacccaatca actagtggat ctcctcgtga agtgtctgga 120
atgagcgaag gaagcctcaa tgagcagaat gatcaatctg gtaatcttga tggttacacg 180
aagagtgatg aaggtaagat gatgtcagct ttatctctgg gcaaatcaga aactgtgtat 240
gcacattcgg aacctgaccg tagccaaccc tttggcatat catatccata tgctgattcg 300
ttctatggtg gtgctgtagc gacttatggc acacatgcta ttatgcatcc ccagattgtg 360
ggcgtgatgt catcctcccg agtcccgcta ccaatagaac cagccaccga agagcctatt 420
tatgtaaatg caaagcaata ccatgcgatt ctccgaagga gacagctccg tgcaaagtta 480
gaggctgaaa acaagctggt gaaaaaccgc aagccgtacc tccatgaatc ccggcatcaa 540
cacgcgatga agagagctcg gggaacaggg gggagattcc tcaacacaaa gcagcagcct 600
gaagcttcag atggtggcac cccaaggctc gtctctgcaa acggcgttgt gttctcaaag 660
cacgagcaca gcttgtcgtc cagtgatctc catcatcgtc gtgcgaaaga gggcgcttga 720
<210> 2
<211> 954
<212> DNA
<213> Artificial sequence (unknown)
<400> 2
atgataatgc tgttgcaaga aatggagaat catcctgtcc aatgcatggc caagaccaac 60
tatgattttc ttgccaggaa taactatcca atgaaacagt tagttcagag gaactctgat 120
ggtgactcgt caccaacaaa gtctggggag tctcaccaag aagcatctgc agtaagtgac 180
agcagtctca acggacaaca cacctcacca caatcagtgt ttgtcccctc agatattaac 240
aacaatgata gttgtgggga gcgggaccat ggcactaagt cggtattgtc tttggggaac 300
acagaagctg cctttcctcc ttcaaagttc gattacaacc agccttttgc atgtgtttct 360
tatccatatg gtactgatcc atattatggt ggagtattaa caggatacac ttcacatgca 420
tttgttcatc ctcaaattac tggtgctgca aactctagga tgccattgcc tgttgatcct 480
tctgtagaag agcccatatt tgtcaatgca aagcaataca atgcgatcct tagaagaagg 540
caaacgcgtg caaaattgga ggcccaaaat aaggcggtga aaggtcggaa gccttacctc 600
catgaatctc gacatcatca tgctatgaag cgagcccgtg gatcaggtgg tcggttcctt 660
accaaaaagg agctgctgga acagcagcag cagcagcagc agcagaagcc accaccggca 720
tcagctcagt ctccaacagg tagagccaga acgagcggcg gtgccgttgt ccttggcaag 780
aacctgtgcc cagagaacag cacatcctgc tcgccatcga caccgacagg ctccgagatc 840
tccagcatct catttggggg cggcatgctg gctcaccaag agcacatcag cttcgcatcc 900
gctgatcgcc accccacaat gaaccagaac caccgtgtcc ccgtcatgag gtga 954
<210> 3
<211> 1065
<212> DNA
<213> Artificial sequence (unknown)
<400> 3
atgctgagct tcaagcagag ccacgagggg ttcggccatg tcgccgccgc tggagctgga 60
ccgcagcagc agcagcagcc gtggtgggcg gggtcgcagc tgctgtacgg ggaggcgtcg 120
ccggaggagg cggcgctgcg cgacggcggc cagttccagg tcgtgcccgg aggccgcgcc 180
gcgctggatc cggcggcgcc ggagccggag aagacggcgg tgccggcgat gcccaagaga 240
ggaggaggag gaggggctcc tgaggtgctg aaattctcgg tgttttcagg taatttggag 300
ccgggagata caggagagaa gaacagagag cactctgcca ctattgcaat gcaatcgccg 360
ttgccagaat acaacggcca tttcgagctt ggtcttggtc aatccatggt ctctcccaat 420
tatccttgta ttgaccaatg ctatggtctt atgaccacct acgcgatgaa atcaatgagt 480
ggcgggcgaa tgctactgcc gctgaacgcg ccagccgatg cgccgatcta tgtcaacgcg 540
aagcagtacg aaggcatcct ccgccgtcgc cgtgcccgcg ccaaggccca gagggagaac 600
aggctggtca aaggcaggaa gccctacctc cacgagtcgc gccaccgcca cgccatgcgc 660
cgggccagag gctccggcgg ccgcttcctc aacaccaaga aagaagccac cgccgccgga 720
tgcggcggca gcagcaagac gcccctcgcg tccctcgtca gccccgccga cgtagcccat 780
cgtccaggct ccggcggccg cgcgtccagc ctctccggct ccgacgtgtc gtcgccggga 840
ggcgtcatgt acgaccacca ccgccacgac gacgccgacg cggcggacca ctacaacagc 900
atcgaccacc acctccgcac gccgttcttc accccgctcc cgatcatcat ggacagcggc 960
ggcggcggcg gcgaccacgc ctcacactcc gccgccgccg tcgccgcccc cttcaggtgg 1020
gcgacggcgg ccggcgacgg ctgctgcgag ctcctcaagg cgtga 1065
<210> 4
<211> 777
<212> DNA
<213> Artificial sequence (unknown)
<400> 4
atggagtcga ggccgggggg aaccaacctc gtggagccga gggggcaggg cgcgctgccg 60
tccggcatac cgatccagca gccgtggtgg acgacctccg ccggggtcgg ggcggtgtcg 120
cccgccgtcg tggcgccggg gagcggtgcg gggatcagcc tgtcgggcag ggatggcggc 180
ggcgacgacg cggcagagga gagcagcgat gactcacgaa gatcagggga gaccaaagat 240
ggaagcactg atcaagaaaa gcatcatgca acatcgcaga tgactgcttt ggcatcagac 300
tatttaacac cattttcaca gctggaacta aaccaaccaa ttgcttcggc agcataccag 360
taccctgact cttactatat gggcatggtt ggtccctatg gacctcaagc tatgtccgca 420
cagactcatt tccagctacc tggattaact cactctcgta tgccgttgcc tcttgaaata 480
tctgaggagc ctgtttatgt aaatgctaag caatatcatg gaattttaag acggaggcag 540
tcacgtgcga aggctgaact tgagaaaaaa gttgttaaat caagaaagcc ctatcttcat 600
gagtctcgtc atcaacatgc tatgcgaagg gcaagaggaa cgggtggacg cttcctgaac 660
acaaagaaaa atgaagatgg tgctcccagt gagaaagccg aaccaaacaa aggagagcag 720
aactccgggt atcgccggat ccctcctgac ttacagctcc tacagaagga aacatga 777
<210> 5
<211> 1074
<212> DNA
<213> Artificial sequence (unknown)
<400> 5
atgagaagtg cagctctgag cttccaagat cacggccatg ggcttcaggc gatcaccggc 60
cgtggcggca atggcggcgc cgccgctcac gcattgccat ggtgggctgg agccggagcc 120
ggagctggat cccaaacact gcttggaaca ggaggaggag aagaatcatt ctgccaatta 180
agcaacacaa tcatggagga cacccgaatc ctgcaaaacc accaccacca gatcctcgcc 240
gccggccggc agctgcagca gcgccaccac ttcccggcaa tgccgccgga gcgacaccac 300
caccctcctc ctccagctcc tggaagccct gccatgaagt tcccaatcat ctcaggtgac 360
tctgatcttg gcaaagatct gaagttccat gagtcctccg cgccgaccat cgccgcgtac 420
tcgccattgc aggagtacca aggacacttt gagctagccc ttggccactc catggtttgc 480
accaacttct gcaactctga acaaagctat ggtgtttact ccccctatgg agctcaaacc 540
atggctggga ggatgctgct gccgccggcg atcgccaccg acgtgggtcc gatctacgtc 600
aacgcgaagc agttcaacgg catcatccgg cggcggctgg cgcgcgccaa ggcggagcgg 660
gagcaccggg tttcccggag ccggaagccg tacctccacg agtcgcgcca ccgccacgcc 720
atgcgccgcg cgcggggcag cggcggccgc ttcctcaaca ccaagaacgc ctcctccgcc 780
gccgccgcgg ccgccgacgc ggcgccggtg agctccggtg gcggcgacca cggggcgagc 840
aacaagagct cgtcggcgtc ggaggcgacg cgcgtgtacg acgacgacga cgacatgggc 900
gcgggcggcg gcggcgacgg cggcgacttc caccacgcga tgggtcacct ccgctcgccg 960
gcgttcttcc cgtcgctggc cgcgatgatg gacggcggcg gcggcggcgg cgaggggaag 1020
tgggcgaccg cgacgcctca ccatggctgc cgcgtcgacc tcctcaaggt gtga 1074
<210> 6
<211> 915
<212> DNA
<213> Artificial sequence (unknown)
<400> 6
atgctaatgc ttttgcgaca aatggaagat catcgagccc atactacgcc caactatgat 60
tttttctctg gagattatca gatgaagcag ttaggtcata agatgtatga tcaagattcc 120
ccgtcaagcg attctggaca gtcacaccaa gaagaatctg ccatgaatga tagcagtcca 180
aatgagcgac atacctcaac acaatctgac aatgatgatg gtcatcagat gccagatcag 240
gacaaaacaa agtcagtatc atcgttgggg aatccaggag ctttgcctcc aaagctcaac 300
tatagccaat cctttgcttg tattccttat acagctgatg catactatgg tggggtcttg 360
actggatatt cttcacatgc aattgttcat ccccagcaaa atggtacagc taactcccgg 420
gtgccgttgc ctgttgagcc tgcagcagaa gagccaatat ttgtaaacgc aaagcagtac 480
catgcaattc ttaggaggag acagatacga gctaaattgg aggcccaaaa taagttggtg 540
aaaggtcgga agccatacct ccatgaatct cggcatcgcc atgccatgaa gcgagctcgt 600
ggatctggag ggcgcttcct caacacaaag cagctcgagg agcagaagca gcaacaggag 660
gaggaggccg catccggtgg cgcgagctct ggcaatagga catgccttca gaatggcacc 720
ggtagcgcgc cttcagcttc ctctccctct gaaatcgcga gcgtctcaac cagcagagaa 780
ttccttggta accatgagca gagccacttc ccctcagctg gcttccttcc cacaatgagc 840
ttcagagcgc agaatggcgg agatgggaag ctggtcgcga acgccattca ccagcgcgtt 900
tccatgatga ggtga 915
<210> 7
<211> 582
<212> DNA
<213> Artificial sequence (unknown)
<400> 7
atgaagccag atggtgaaac tcagcttcgt cctacagctg ctggacatcc agatcctggt 60
ttgggcacat catctgcaga atacgtggcc tctctaggac cagctacagc tccagtatct 120
tatccatata tcagtaccta ttatggaggc acttatggtg cttatagtgg acaacctctg 180
gttaacgctg ctttaatggc aatgcctccg cattctgtgc ccttggtgac cgatgctgtt 240
gtagagccca tatatgtcaa tgcaaggcag tatcatggta tattaaggcg gcgccaatct 300
cgtgcaaaag ctgaatcaga aaataaggcc aacaaaatcc gcaagcctta cctacatgag 360
tcccgccatc tgcatgcttt gaaaagggca agggggtccg gtggtcgatt tctcaactct 420
aaggctgtgg aggggaagca agacactaaa tctgtagata aaaaggatgg agctgtgcca 480
tctgaggaga agagagacaa gaagttggca aatagcatta tcaaattgga gaactcgagc 540
ccaacaacac aaccaggtgc agatgcgtcc gatgttgtat ga 582
<210> 8
<211> 501
<212> DNA
<213> Artificial sequence (unknown)
<400> 8
atgggttttg gtgaaagcac ccagggcaat caacgtaagc ttgatggtcc tgggaaagtg 60
tcaactgaat tatccctagt caatctagaa gctaaaaatt tgcatcctaa acctgagtgc 120
aaccaaccta ttgaacacat acctaccaag ggtatgaagt gtactccact gctaccacta 180
cctacagaac atgctgatga tgagcctata tatgtgaatg caaagcagta ccatgcaatt 240
atccgaagga gacaacgtcg aaaaattgtt ggatcagaag ataaagtagc agcaattcga 300
aagaggatcc ttgttgaggc tcgccaaaag caagcaaaat tgaggcatag aggaaaaggc 360
ggacggttta ttagcataga acatcccctt gaactttcta tggatgatca gatatcgaaa 420
aacggaggaa gtgcctcgcc ttcttcatct acagtgtcag aaaactctag caatgtgaac 480
ggttttacag gagatctcta a 501
<210> 9
<211> 600
<212> DNA
<213> Artificial sequence (unknown)
<400> 9
atgacgtctg tagttcatga tgtttcaggc aaccatggag ctgatgagcg gcaaaaacag 60
caaaggcaag gtgaacctga ggaccagcaa gaagcctcag ttactagtac agatagccat 120
acaatggtag caacaccttc aacagattat gcgacaccct atgcccatca cgatatggcc 180
catgcaatgg gccaaattgc ttacgcaaat attgatccat attacggaag cctttatgca 240
gcttatggtg gacagcctat gatgcatcca ccattggtcg ggatgcatcc agctggacta 300
ccactgccta ccgatgcaat tgaagagcct gtctatgtta atgcaaaaca gtacaatgcc 360
atattaaggc gtcgacaatc tcgagccaaa gctgagtctg aaaagaagct tgtcaagggc 420
cgtaagccat atctccatga gtcacggcat caacatgccc tgaaaagggc taggggagct 480
ggaggccgat ttcttaattc aaaatcggat gacaaggaag agcattctga ttccagttcc 540
agagataaac aggatggagt tgcaccccgt gatagtggcc aaccgtctac ctctccgtct 600
<210> 10
<211> 936
<212> DNA
<213> Artificial sequence (unknown)
<400> 10
atgatgagct tcaacaagag ccaagaagga tttgggcagg ttgctgctgt ggccaccctg 60
gcctccaatg gaggaggctc tctaccatgg ctgctgtacg gcgagccact ggggcagggg 120
aagccggcca tgtcgccgga gggcgtggtg ccgagagcac agactcctct ggatcctcct 180
caggttccag ccatggacag gggtgtccct gaaattctga acttctccat ggttccaggt 240
aaaggagaaa aatgttctga gcactcaact actattgctc tgcagtcacc atttgcagaa 300
tataatggct gttttgagct gggccttggt caatctgtgg ttccctctaa ttatccttat 360
gctgaccagc actatggcct actttctcct tatggagtga gaccaacgcc tagcgggcga 420
attcttattc caccaaatat gccagctgat gcaccaattt atgtgaatgc aaaacagtgt 480
tcagccatca ttcgacgtcg ccatgctcgt gccaaggcag agagggagaa taggctggtc 540
aaagctagaa aaccatatct tcacgaatca cgccatcttc atgcaatgcg tcgtgcaaga 600
ggctctggtg ggcgcttcct caacacgaag aaagagacca atgggaaaac cactggtgga 660
ggcaggaagg tgatggacat catcatcccg cctctgtgcc ccgccgcatc tcccagctcg 720
gagcagtgca acccaagcag cgtttccagc ctgtccgggt cagaggtgtc gagcatatat 780
gaacacgaag acatggacca cttccatagc tttgatcatc tccggacaca cttcttcacc 840
ccgctcccga gcctcatgga tgtcgagcac ggggctggta accccttcaa gtggacagca 900
gcctctgatg gctgctgtga cctcctcaaa gcatga 936
<210> 11
<211> 813
<212> DNA
<213> Artificial sequence (unknown)
<400> 11
atgcttctcc cctcatcgtc ttcttattcc tacgcctcca aaggtgactc cttcaggaga 60
actgttgatg gtcctatgag gtcaacgttg acttttgata ataatcattc tgtagtgcca 120
agtcaaaaca ttgattacgg ccagccaatg gcttgcattt catacccata caacgattct 180
ggttcaggag tttgggcatc ctacagttca cgctcggtgt tccatcctca aattgtggga 240
ggaggcacat cgccaagagt tcccttgccc tccctggaga tagcagatga tgggcccata 300
tatgtcaatc ccaaacaata tcatggaatt cttcgcagaa gacaactgcg tgctaagtta 360
gaggcccaga ataagctcgt caaaacccga aagccttacc ttcacgaatc tcggcatcgc 420
catgcaatga agagggctag gggcactggt gggcgattcc tgaataccaa gcagctccag 480
ctgcagcaac agtctcacac tacctccacc aagaccacca cagacagcca aaattcttca 540
ggttcagtcc atctacggct aggtggtggc gcaatcggag atcaaactcc atttccgttc 600
aaagcaatgg attcacaagc taacatcaag agagctgcag cttctgcttc caccttcact 660
gtaacttctg cggcacagaa agacgacgcc ttcttcgacc gccatggcca ccatctcagt 720
agcttctccg gccattttgg ccaggcaagc gcacaaggtg gcgtcggcag catgcataac 780
gggtcacagc agagggttcc tgctatgaga tga 813
<210> 12
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 12
tgaagtgtct ggaatgagcg 20
<210> 13
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 13
cagcaccacc atagaacgaa 20
<210> 14
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 14
atcaggtggt cggttcctta 20
<210> 15
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 15
gttctggttc attgtggggt 20
<210> 16
<211> 20
<212> DNA
<213> artificial sequence
<400> 16
ggtgctgaaa ttctcggtgt 20
<210> 17
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 17
tgatttcatc gcgtaggtgg 20
<210> 18
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 18
tgccgttgcc tcttgaaata 20
<210> 19
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 19
tgtttggttc ggctttctca 20
<210> 20
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 20
tgccatgaag ttcccaatca 20
<210> 21
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 21
tttgagctcc atagggggag 20
<210> 22
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 22
ctgcagcaga agagccaata 20
<210> 23
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 23
aaggcatgtc ctattgccag 20
<210> 24
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 24
atacgtggcc tctctaggac 20
<210> 25
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 25
cagcttttgc acgagattgg 20
<210> 26
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 26
cctgagtgca accaacctat 20
<210> 27
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 27
atgctaataa accgtccgcc 20
<210> 28
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 28
atgcagctta tggtggacag 20
<210> 29
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 29
ttaagaaatc ggcctccagc 20
<210> 30
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 30
gccttggtca atctgtggtt 20
<210> 31
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 31
tgcatgaaga tggcgtgatt 20
<210> 32
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 32
aggagtttgg gcatcctaca 20
<210> 33
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 33
aacttagcac gcagttgtct 20
<210> 34
<211> 21
<212> DNA
<213> Artificial sequence (unknown)
<400> 34
accacttcga ccgccactac t 21
<210> 35
<211> 19
<212> DNA
<213> Artificial sequence (unknown)
<400> 35
acgcctaagc ctgctggtt 19
<210> 36
<211> 19
<212> DNA
<213> Artificial sequence (unknown)
<400> 36
atgctccctc ctcatctca 19
<210> 37
<211> 19
<212> DNA
<213> Artificial sequence (unknown)
<400> 37
ttaagcgccc tctttcgca 19
<210> 38
<211> 21
<212> DNA
<213> Artificial sequence (unknown)
<400> 38
atgataatgc tgttgcaaga a 21
<210> 39
<211> 19
<212> DNA
<213> Artificial sequence (unknown)
<400> 39
ttacctcatg acggggaca 19
<210> 40
<211> 21
<212> DNA
<213> Artificial sequence (unknown)
<400> 40
atgatgagct tcaacaagag c 21
<210> 41
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 41
ttatgctttg aggaggtcac 20
<210> 42
<211> 19
<212> DNA
<213> Artificial sequence (unknown)
<400> 42
atgcttctcc cctcatcgt 19
<210> 43
<211> 18
<212> DNA
<213> Artificial sequence (unknown)
<400> 43
ttatctcata gcaggaac 18
<210> 44
<211> 480
<212> DNA
<213> Artificial sequence (unknown)
<400> 44
cacatgctat tatgcatccc cagattgtgg gcgtgatgtc atcctcccga gtcccgctac 60
caatagaacc agccaccgaa gagcctattt atgtaaatgc aaagcaatac catgcgattc 120
tccgaaggag acagctccgt gcaaagttag aggctgaaaa caagctggtg aaaaaccgca 180
agccgtacct ccatgaatcc cggcatcaac acgcgatgaa gagagctcgg ggaacagggg 240
accaacgcct agcgggcgaa ttcttattcc accaaatatg ccagctgatg caccaattta 300
tgtgaatgca aaacagtgtt cagccatcat tcgacgtcgc catgctcgtg ccaaggcaga 360
gagggagaat aggctggtca aagctagaaa accatatctt cacgaatcac gccatcttca 420
tgcaatgcgt cgtgcaagag gctctggtgg gcgcttcctc aacacgaaga aagagaccaa 480
<210> 45
<211> 37
<212> DNA
<213> Artificial sequence (unknown)
<400> 45
ctgtcgacct cgagggtacc cacatgctat tatgcat 37
<210> 46
<211> 40
<212> DNA
<213> Artificial sequence (unknown)
<400> 46
tcgcccgcta ggcgttggtc ccctgttccc cgagctctct 40
<210> 47
<211> 40
<212> DNA
<213> Artificial sequence (unknown)
<400> 47
agagagctcg gggaacaggg gaccaacgcc tagcgggcga 40
<210> 48
<211> 41
<212> DNA
<213> Artificial sequence (unknown)
<400> 48
caggtcgact ctagaggatc cttggtctct ttcttcgtgt t 41
<210> 49
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 49
aggcaatcaa tgacatctcc 20
<210> 50
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 50
atctctcaca aagccagtgc 20
<210> 51
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 51
acgggtttca gtttgctaca 20
<210> 52
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 52
cactcatgtg ctccaaccaa 20
<210> 53
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 53
catcgaccaa gttcaacccg 20
<210> 54
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 54
aagaagtctg cgggtgaaga 20
<210> 55
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 55
aaagtgaacc cgttgctgac 20
<210> 56
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 56
tgcaacgcta gatcctatgc 20
<210> 57
<211> 20
<212> DNA
<213> Artificial sequence (unknown)
<400> 57
atctgctttt ccccttccga 20
<210> 58
<211> 21
<212> DNA
<213> Artificial sequence (unknown)
<400> 58
gattccgcgt ttgaagagtc a 21

Claims (2)

1. A preparation method of a transgenic plant resistant to rice stripe virus and southern rice black-streaked dwarf virus comprises the step of simultaneously inhibiting OsNF-YA1, osNF-YA2, osNF-YA10 and OsNF-YA11 by RNAi, wherein the nucleotide sequences of OsNF-YA1, osNF-YA2, osNF-YA10 and OsNF-YA11 are SEQ ID NO.1, 2, 10 and 11 respectively.
2. The method of manufacturing according to claim 1, characterized in that: SEQ ID NO. 44 is used as the interfering vector sequence.
CN202210465028.7A 2022-04-29 2022-04-29 Application of rice transcription factor OsNF-YA in antiviral of rice Active CN114940994B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210465028.7A CN114940994B (en) 2022-04-29 2022-04-29 Application of rice transcription factor OsNF-YA in antiviral of rice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210465028.7A CN114940994B (en) 2022-04-29 2022-04-29 Application of rice transcription factor OsNF-YA in antiviral of rice

Publications (2)

Publication Number Publication Date
CN114940994A CN114940994A (en) 2022-08-26
CN114940994B true CN114940994B (en) 2023-07-07

Family

ID=82906874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210465028.7A Active CN114940994B (en) 2022-04-29 2022-04-29 Application of rice transcription factor OsNF-YA in antiviral of rice

Country Status (1)

Country Link
CN (1) CN114940994B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101220364A (en) * 2008-01-25 2008-07-16 北京未名凯拓农业生物技术有限公司 Rice HAP3 and application of the same in improving stress tolerance of plants
WO2009127441A2 (en) * 2008-04-16 2009-10-22 Universität Potsdam Transcription factors involved in drought stress in plants
WO2009127443A2 (en) * 2008-04-17 2009-10-22 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V Transcription factors involved in salt stress in plants
CN102304520A (en) * 2010-01-26 2012-01-04 中国科学院遗传与发育生物学研究所 Regulation and control loci of small molecular ribonucleic acid (RNA) and application thereof
WO2014130922A1 (en) * 2013-02-25 2014-08-28 Trustees Of Boston University Compositions and methods for treating fungal infections
CN104619843A (en) * 2012-05-24 2015-05-13 A.B.种子有限公司 Compositions and methods for silencing gene expression
CN109400688A (en) * 2018-12-04 2019-03-01 中国农业科学院作物科学研究所 The application of OsHAP2C and its encoding gene in adjusting and controlling rice bacterial leaf spot resistance
CN112280790A (en) * 2020-11-23 2021-01-29 宁波大学 Application of rice receptor protein-like coding gene OsRLP1 in resisting rice black-streaked dwarf virus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR122019015761B1 (en) * 2009-08-04 2021-04-20 Evogene Ltd method for increasing tolerance to abiotic stress, yield, biomass, growth rate, vigor, oil content, fiber yield, fiber quality and / or nitrogen use efficiency of a plant, isolated polynucleotide, isolated nucleic acid construct, and isolated polypeptide
US20170058288A1 (en) * 2014-02-19 2017-03-02 Snu R&Db Foundation Osnf-ya7 gene for increasing drought stress resistance of plant and use thereof
US11041168B2 (en) * 2016-08-11 2021-06-22 Peking University Application of OsAO gene for improving resistance of rice against rice stripe virus, rice black-streaked dwarf virus, or virus of same family

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101220364A (en) * 2008-01-25 2008-07-16 北京未名凯拓农业生物技术有限公司 Rice HAP3 and application of the same in improving stress tolerance of plants
WO2009127441A2 (en) * 2008-04-16 2009-10-22 Universität Potsdam Transcription factors involved in drought stress in plants
WO2009127443A2 (en) * 2008-04-17 2009-10-22 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V Transcription factors involved in salt stress in plants
CN102304520A (en) * 2010-01-26 2012-01-04 中国科学院遗传与发育生物学研究所 Regulation and control loci of small molecular ribonucleic acid (RNA) and application thereof
CN104619843A (en) * 2012-05-24 2015-05-13 A.B.种子有限公司 Compositions and methods for silencing gene expression
WO2014130922A1 (en) * 2013-02-25 2014-08-28 Trustees Of Boston University Compositions and methods for treating fungal infections
CN109400688A (en) * 2018-12-04 2019-03-01 中国农业科学院作物科学研究所 The application of OsHAP2C and its encoding gene in adjusting and controlling rice bacterial leaf spot resistance
CN112280790A (en) * 2020-11-23 2021-01-29 宁波大学 Application of rice receptor protein-like coding gene OsRLP1 in resisting rice black-streaked dwarf virus

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Genome-Wide Characterization of Rice Black Streaked Dwarf Virus-Responsive MicroRNAs in Rice Leaves and Roots by Small RNA and Degradome Sequencing;Sun Zongtao等;Plant Cell Physiol;56(4);第688–699页 *
NF-YA transcription factors suppress jasmonic acid-mediated antiviral defense and facilitate viral infection in rice;Tan Xiaoxiang等;PLOS PATHOGENS;第18卷(第5期);第1-21页 *
水稻对水稻黑条矮缩病毒的反应和抗性转基因水稻培育研究;水稻对水稻黑条矮缩病毒的反应和抗性转基因水稻培育研究;博士电子期刊库(第12期);第1-171页 *

Also Published As

Publication number Publication date
CN114940994A (en) 2022-08-26

Similar Documents

Publication Publication Date Title
CN106868021B (en) Gene OsNAC1 for controlling rice seed size and application thereof
CN110628808B (en) Arabidopsis AtTCP5 gene and application thereof in regulating plant height
CN110819607A (en) Application of CsLYK gene and coding protein thereof in improving citrus canker resistance
CN104450711B (en) OsmiR156f genes are increasing paddy rice effective tillering and the application in improving paddy rice single plant yield
CN102485897A (en) Method for changing petal colors by using cotton gene GbF3H
CN111593058B (en) Bna-miR169n gene and application thereof in controlling drought resistance of brassica napus
CN111440804A (en) Application of corn ZmBES1/BZR1-5 gene in cultivation of large-grain plants
CN110656113A (en) Rice stress resistance related gene OsERF65 and encoding protein and application thereof
CN112795588B (en) Application of OsSGD1 protein in regulation of rice grain size
CN114214358B (en) Inducible expression vector and application thereof in culturing sentry crops
CN111253480B (en) Rice transcription factor OsARF17 gene and application thereof in black-streaked dwarf virus resistant plant breeding
CN112280786B (en) Herbicide-tolerant corn even HH2823 transformation event with high nutrient utilization efficiency and specificity identification method and application thereof
CN112111510B (en) Application of Oscpy and encoded protein thereof in improving rice quality
CN114940994B (en) Application of rice transcription factor OsNF-YA in antiviral of rice
CN110684088B (en) Protein ZmbZIPa3 and application of coding gene thereof in regulating and controlling plant growth and development and stress tolerance
CN114752607B (en) Banana MtLUT5 gene, cloning method, expression vector and application
CN114231540B (en) Application of Chinese wild rice ZLRc gene in improving content of procyanidine in rice seeds
CN112279904B (en) Application of protein GL12.2 in regulation and control of rice yield
CN114085854A (en) Rice drought-resistant and salt-tolerant gene OsSKL2 and application thereof
CN112608938A (en) Application of OsAO2 gene in controlling drought resistance of rice
KR101351265B1 (en) Method for preparing transgenic alfalfa plant with increased anthocyanin content and the plant thereof
CN112143744B (en) Application of OsPLDdelta 3 gene in controlling drought resistance of rice
CN110194791B (en) Application of SPL3 protein in regulation and control of plant inflorescence or carpopodium development
CN114524868B (en) Sweet potato leaf development and flavonoid enhancement related protein IbBBX29 and coding gene and application thereof
CN118086378A (en) Application of rice lipoxygenase encoding gene OsLOX to rice virus resistance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant