WO2004085641A1 - Stress-induced promoter and method of using the same - Google Patents

Stress-induced promoter and method of using the same Download PDF

Info

Publication number
WO2004085641A1
WO2004085641A1 PCT/JP2004/002563 JP2004002563W WO2004085641A1 WO 2004085641 A1 WO2004085641 A1 WO 2004085641A1 JP 2004002563 W JP2004002563 W JP 2004002563W WO 2004085641 A1 WO2004085641 A1 WO 2004085641A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
stress
promoter
plant
rice
Prior art date
Application number
PCT/JP2004/002563
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuko Shinozaki
Koji Katsura
Yusuke Ito
Original Assignee
Japan International Research Center For Agricultural Sciences
Incorporated Administrative Agency, National Agriculture And Bio-Oriented Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan International Research Center For Agricultural Sciences, Incorporated Administrative Agency, National Agriculture And Bio-Oriented Research Organization filed Critical Japan International Research Center For Agricultural Sciences
Priority to CA2519997A priority Critical patent/CA2519997C/en
Priority to US10/550,584 priority patent/US7339050B2/en
Priority to JP2005503987A priority patent/JP4219928B2/en
Priority to CN2004800143175A priority patent/CN1795267B/en
Publication of WO2004085641A1 publication Critical patent/WO2004085641A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8237Externally regulated expression systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01041Glutamate-5-semialdehyde dehydrogenase (1.2.1.41)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
    • C12Y113/110519-Cis-epoxycarotenoid dioxygenase (1.13.11.51)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01123Inositol 3-alpha-galactosyltransferase (2.4.1.123), i.e. galactinol-synthase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/02Phosphotransferases with a carboxy group as acceptor (2.7.2)
    • C12Y207/02011Glutamate 5-kinase (2.7.2.11)

Definitions

  • the present invention relates to a rice-derived stress-inducible promoter and a method of using the same. Background technology
  • Plants have resistance mechanisms to respond to various environmental stresses in nature, such as drying, high temperature, freezing, and salt. Recently, as these stress-tolerant mechanisms have been elucidated at the molecular level, stress-tolerant plants using biotechnological techniques have also been created. For example, stress proteins such as LEA proteins, water channel proteins, and compatible solute synthases are induced in stressed cells, and protect cells from stress. Therefore, research was conducted to introduce genes such as barley LEA protein, tobacco detoxification enzyme, and osmotic pressure regulator (sugar, proline, glycine betaine, etc.) synthase genes into plants.
  • stress proteins such as LEA proteins, water channel proteins, and compatible solute synthases are induced in stressed cells, and protect cells from stress. Therefore, research was conducted to introduce genes such as barley LEA protein, tobacco detoxification enzyme, and osmotic pressure regulator (sugar, proline, glycine betaine, etc.) synthase genes into plants.
  • Non-Patent Document 1 a study was also conducted to enhance the stress tolerance of plants by introducing a gene for a transcription factor that simultaneously activates their expression by linking it to a constitutive promoter (Non-patent Document 2).
  • Non-patent Document 2 a study was also conducted to enhance the stress tolerance of plants by introducing a gene for a transcription factor that simultaneously activates their expression by linking it to a constitutive promoter.
  • the energy of the host plant is directed to the production of the gene product and intracellular metabolism caused by the gene product, so that the growth of the plant itself is reduced. There was a problem of being late or dwarfing.
  • the present inventors have proposed genes that bind to stress-responsive elements from Arabidopsis thaliana and encode transcription factors that specifically activate the transcription of genes downstream of the element, DREB1A, DREB1B, DREB1C, DREB2A, and DREB2B were isolated (Patent Document 1). Then, they reported that by linking these genes to a stress-inducible rd29A promoter and introducing them into plants, a dwarf-resistant stress-tolerant plant can be produced (Patent Document 2). However, the rd29A promoter from the dicotyledon Arabidopsis thaliana functions in monocotyledonous plants but has weak activity. Therefore, a stress-inducible promoter having a strong activity in monocotyledonous plants has been desired.
  • Non-Patent Document 1 S inozaki K, Yamaguchi-Shinozaki K., Plant Physiol. (1997) Oct; 115 (2) p327-334
  • An object of the present invention is to find a stress-inducible promoter that can function effectively in monocotyledonous plants such as rice, and to provide a novel environmental stress-tolerant plant using the promoter.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, have succeeded in isolating a strong stress-inducible promoter from a rice genome. Then, they found that it is possible to remarkably improve the environmental stress tolerance of monocotyledonous plants by using the promoter, and completed the present invention.
  • the present invention relates to a rice-derived stress-inducible promoter.
  • the promoter is specifically composed of the following DNA (a) or (b).
  • the stress is a drought stress, a low-temperature stress, or a salt stress.
  • the present invention also provides a recombinant vector containing the promoter.
  • the vector may contain another structural gene or a regulatory gene under the control of the promoter of the present invention, and particularly preferably contains a structural gene for improving stress tolerance and a Z or regulatory gene.
  • Preferable examples of structural genes that improve stress tolerance include the P5CS gene, a key enzyme for proline synthesis (Yoshiba Y. et al (1999) BBRC261), and the galactinol synthesis gene AtGolS3 gene (Taj i T. et al (2002). ) Plant J. 29: 417-426).
  • the regulatory gene for improving stress resistance include a transcription factor DREB gene derived from Arabidopsis thaliana (Japanese Patent Application Laid-Open No. 2000-60558) and a rice transcription factor OsDREB gene (Japanese Patent Application No. 2001-358268, Dubouzet et al Plant J. in press), and the NCED gene (Iuchi S. et al (2001) Plant J. 27: 325-333) which is a key enzyme for the biosynthesis of the plant hormone ABA.
  • Arabidopsis-derived transcription factor DREB gene and rice-derived transcription factor OsDREB gene are preferred, and rice-derived transcription factor OsDREB gene is most preferred.
  • the present invention provides a transformant obtained by introducing the vector of the present invention into a suitable host.
  • the transformant is a transgenic plant obtained by introducing the vector of the present invention into a host plant.
  • monocotyledonous plants are desirable as host plants, and rice is desirable as monocotyledonous plants.
  • the present invention provides a method for improving stress resistance of a plant by introducing the promoter of the present invention into the plant. Since the promoter of the present invention has an unprecedented strong stress-inducible promoter activity in monocots, it is more suitable for improving stress tolerance of monocots.
  • Figure 1 shows the results of Northern analysis of a0022 (LIP9) under each stress load. You.
  • FIG. 2 shows the nucleotide sequence of the promoter region of a0022 (LIP9).
  • FIG. 3 shows the structure of the Gus expression construct.
  • FIG. 4 is a graph showing the GUS activity under a drought stress load in transgenic Bako or rice transformed by introducing a GUS gene into various promoters.
  • FIG. 5 is a photograph showing the results of GUS staining of a transformed rice plant into which a GUS gene has been linked to the LIP9 promoter and transfected with salt stress.
  • Fig. 6 shows the results of comparison of the expression levels of the transgene and each of the target genes (LIP9 (a0022), WSI724 (a0066), salT (a2660)) in the transformed rice and wild type strains by the Northern method.
  • b and c indicate the lines of the transformant, respectively.
  • FIG. 7 shows the nucleotide sequence of the promoter region of a0066 (WSI724).
  • FIG. 8 is a graph showing the GUS activity of a transformed rice plant into which the GUS gene has been linked to the WSI724 promoter and which has been subjected to drought stress (right: drought stress, left: control).
  • FIG. 9 is a photograph showing the results of GUS staining of a transformed rice plant into which the GUS gene has been linked to the WSI724 promoter and which has been transfected with a drought stress.
  • This description includes part or all of the contents as disclosed in the description of Japanese Patent Application No. 2003-80847, which is a priority document of the present application.
  • the promoter of the present invention is a rice-derived promoter that is specifically induced against environmental stress such as low temperature, drying, and salt.
  • the promoter of the present invention comprises a gene (stress-inducible gene) whose expression is significantly different between stressed and non-stressed plant individuals. It can be identified by screening, and then screening a sequence considered as a promoter of the gene from genomic information.
  • mRNA for screening for a stress-inducible gene is prepared.
  • the source of mRNA may be any part or whole of a plant such as leaves, stems, roots, and flowers.
  • the plant may be seeded on a solid medium such as a GM medium, an MS medium, or a # 3 medium, and the plant may be grown under aseptic conditions, or may be grown under callus or under aseptic conditions.
  • Cultured cells of a plant may be used.
  • mRNA needs to be adjusted for each of the individual plants in order to compare the difference in the gene expression level between a plant individual subjected to stress and a plant individual not subjected to stress.
  • the method of applying stress is appropriately set depending on the plant used. In general, drought stress can be applied by growing without water for 2-4 weeks.
  • low temperature and freezing stress can be applied by growing at 15-10 ° C for 1-10 days.
  • salt stress can be imposed by growing in 100-600 mM NaCl for 1 hour to 7 days.
  • the rice grown by hydroponics is exposed to 10 to -4 t for low-temperature stress, 150 to 250 mM NaCK for salt stress, and dehydrated for dry stress.
  • RNA fraction is extracted by the lithium chloride-urea method, the proteinase K-deoxyliponuclease method, or the like.
  • poly (A) NA (mRNA) is purified from the crude RNA fraction by the affinity column method using oligo dT-cellulose or poly-U-Sepharose using Sepharose 2B as a carrier, or the batch method. obtain. If necessary, the mRNA may be further fractionated and used by sucrose density gradient centrifugation or the like.
  • Screening for stress-inducible genes is based on This is done by comparing the difference in the gene expression level between the body and the unloaded plant individual.
  • the method for comparing the gene expression levels is not particularly limited.
  • the RT-PCR method, the real-time PCR method, the subtraction method, the differential-display method, the differential hybridization method, or the cross-hybridization method A known method such as a method can be used.
  • methods using solid-state samples such as gene chips and cDNA microarrays are capable of qualitatively and quantitatively detecting the expression of thousands to tens of thousands of genes at once. It is suitable for performing the screening.
  • the cDNA microarray used for the screening is not particularly limited as long as the cDNA of the monocotyledonous plant (for example, rice) from which the promoter is to be detected is spotted, and an existing one may be used or a known one may be used. It may be prepared according to a method (for example, see The Plant Cell (2001) 13: 61-72 Seki et al).
  • the cDNA library can be prepared by a known method using the mRNA prepared according to the method (1) as type III.
  • the cDNA to be spotted is not particularly limited as long as it is derived from monocotyledonous plants. However, monocotyledonous plants in which genomic analysis of rice or the like has progressed are preferable from the viewpoint of convenience of analysis of the genome database described later.
  • the plant may be a normal (untreated) plant, but is preferably a plant that has been exposed to stress such as drought, salt, and low temperature.
  • a cDNA library In preparing a cDNA library, first, using a commercially available kit (ZAP-cDNA Synthes is Kit (manufactured by STRATAGENE) etc.), reverse transcribe mRNA to synthesize single-stranded cDNA. Synthesize strand cDNA. Next, an adapter containing an appropriate restriction enzyme cleavage site is added to the obtained double-stranded cDNA, and then inserted into the cloning site of the lambda phage vector. This is packaged in vitro using a commercially available kit (for example, Gigapack III Gold packaging ext tract (manufactured by STRATAGENE)), infected to host Escherichia coli, and amplified to obtain the desired cDNA library. Is obtained.
  • a commercially available kit for example, Gigapack III Gold packaging ext tract (manufactured by STRATAGENE)
  • the gene expression level can be detected by a cDNA microarray by measuring the signal intensity when a sample mRNA (or cDNA) is labeled with an appropriate reagent and hybridized with a cDNA probe on the array. It is usually desirable to calculate the expression level of the gene as a comparison value with an appropriate control or the expression level ratio between two samples to be compared, taking into account the variation in the amount of cDNA probe spotted on the array. . In the case of this screening, the relative expression level of the mRNA derived from the stressed plant may be detected by using the mRNA derived from an untreated plant to which no stress is applied as a control.
  • Detection is performed by labeling the control and sample mRNAs (or their cDNAs) with different fluorescent dyes (eg, Cy3 and Cy5) and hybridizing them with the cDNA probes on the array.
  • fluorescent dyes eg, Cy3 and Cy5
  • mRNA is extracted from an individual subjected to stress and reverse-transcribed in the presence of Cy5-labeled dCTP to prepare a Cy5-labeled cDNA.
  • Cy3-labeled cDNA is prepared in the same manner.
  • the labeling dye Cy3 may be used for the sample and Cy5 may be used for the control, or another appropriate labeling reagent may be used.
  • the obtained fluorescence intensity is read by a fluorescence signal detector and quantified, this value corresponds to the ratio of the gene expression level of the sample to the control. If necessary, the fluorescence intensity read by the scanner may be adjusted for error or normalized for variation in each sample. Normalization can be performed based on genes that are commonly expressed in each sample, such as housekeeping genes. Further, A confidence limit line may be identified to exclude data with low correlation.
  • the stress-inducible gene is identified as a gene whose expression level is significantly different between a plant individual that has been subjected to stress and a plant individual that has not.
  • “significantly different” means that, for example, the expression levels of the two are different by at least three times or more when the intensity is 1000 or more.
  • the gene selected in this manner is further confirmed by Northern analysis or the like to increase the expression of the gene in a stress-inducing manner. For example, exposing plants to various levels of salt, drought, temperature and other stresses in the manner described above. Then, RNA is extracted from the plant and separated by electrophoresis. The isolated RNA is transferred to a nitrocellulose membrane and hybridized with a labeled cDNA probe specific to the gene, whereby the expression level can be detected.
  • examples of the stress-inducing gene selected from the rice cDNA library include a0022 (LIP9: SEQ ID NO: 2) and a0066 (WSI724: SEQ ID NO: 8) according to the present invention.
  • A0022 and a0066 are ID numbers of cDNAs fixed on the microarray.
  • the promoter sequence is selected as a region considered to be a promoter from the upstream region of the genomic gene having high homology with the stress-inducible gene (cDNA) on the genome. Devour. For example, based on the genomic information of the stress-inducible genes, the promoter region is estimated to be located at about l to 2 kb upstream from the estimated start codon of these genes.
  • cis elements involved in the promoter activity are included in the sequence; for example, a drought stress responsive element (DRE), an abscisic acid responsive element (DRE), ABRE; absc is ic ac id respons ive e lement), low temperature stress responsive element
  • DRE drought stress responsive element
  • DRE abscisic acid responsive element
  • ABRE absc is ic ac id respons ive e lement
  • a stress-inducible transcription factor binds to this cis element, the promoter is activated, and a stress-resistance-imparting gene under its control is expressed. Therefore, if the cis element is contained in the searched upstream region, it can be said that the region is very likely to be a stress-inducible promoter.
  • genomic information of a gene highly homologous to the aforementioned 0022 was obtained, and a putative LIP9 promoter sequence (SEQ ID NO: 1) was screened from its 1. kb upstream region.
  • the putative WSI724 promoter sequence was screened from the upstream region of the gene having high homology to a0066 (WSI724: SEQ ID NO: 8).
  • a primer is prepared based on the promoter sequence estimated in the previous section, PCR is performed using genomic DNA as type III, and the promoter is cloned.
  • a reporter plasmid prepared by ligating a reporter gene downstream of the promoter is introduced into a plant, and expression of the reporter during stress loading of the plant (preferably its T, generation) is examined. Find out.
  • reporter include j3 dalcuronidase (GUS: PBI121, Clontech, etc.), luciferase gene, green fluorescent protein gene, and the like. The activity is given numerically, and the expression is expressed by staining. GUS is preferred because it can be visually observed.
  • the LIP9 promoter sequence (SEQ ID NO: 1) derived from the rice genome is a stress-inducible motor that exhibits high expression depending on stress such as drought, low temperature, and salt.
  • LIP9 Promoter is a promoter specifically induced for all stresses.
  • the structural and functional characteristics are listed below.
  • the LIP9 promoter contains two cis-element DREs involved in the induction of drought stress in its structure (see Figure 2).
  • the LIP9 promoter is a rice-derived transcription factor that binds to the cis element DRE and activates transcription of the downstream gene: OsDREBl gene (Japanese Patent Application
  • the LIP9 promoter contains a DRE sequence to which the OsDREBl gene binds, it is predicted that it is the optimal promoter for overexpression of the OsDREB gene.
  • the structure of WSI 724 Promo Yuichi also contains two DRE sequences in its structure, and the expression pattern of a0066 under stress load (dryness, salt, low temperature induction, low temperature induction Therefore, it was expected that the OsDREB gene would be an evening getter.
  • the promoter of the present invention is not limited to ⁇ A having the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 10, but is complementary to the DNA comprising the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 10.
  • DNAs that can hybridize under stringent conditions with DNAs having a unique base sequence are also included in the stress-inducible promoter of the present invention as long as they have a stress-inducible promoter activity.
  • the stringent conditions refer to conditions of formamide concentration of 30 to 50%, 37 to 50 and 6 ⁇ SSC, preferably conditions of formamide concentration of 50%, 42 ° C. and 6 ⁇ SSC.
  • the recombinant vector of the present invention is a vector containing the promoter of the present invention.
  • the vector may contain another structural gene or a regulatory gene downstream of the promoter of the present invention in a manner capable of functioning. Suitable for such genes A good example is a structural gene and / or a regulatory gene that improves stress tolerance.
  • the “functional aspect” means an aspect in which another structural gene or regulatory gene is appropriately expressed under the control of the promoter of the present invention.
  • the structural gene that improves stress tolerance is a gene that encodes a protein that has a function of increasing plant resistance to environmental stress such as drought stress, low temperature stress, or salt stress; for example, LEA protein, Water channel protein, compatible solute synthase, tobacco detoxification enzyme, osmotic pressure regulator (sugar, proline, glycine benzoin, etc.) synthase, w-3 fatty acid desaturase of Arabidopsis thaliana, a cell membrane lipid modifying enzyme, orchid D9desaturase gene, P5CS which is a key enzyme of proline synthesis, and galactinol synthesis gene AtGolS3 gene.
  • LEA protein Water channel protein
  • compatible solute synthase tobacco detoxification enzyme
  • osmotic pressure regulator sucgar, proline, glycine benzoin, etc.
  • w-3 fatty acid desaturase of Arabidopsis thaliana a cell membrane lipid modifying enzyme
  • orchid D9desaturase gene
  • a regulatory gene that improves stress tolerance is a gene that enhances plant stress tolerance by regulating the activity of a stress-inducible promoter or the expression of a gene that imparts stress tolerance; Transcription factors derived from Arabidopsis thaliana: DREB1A, D-Ken A, DREB1B, and DREB1C genes (see Japanese Patent Application Laid-Open No. 2000-60558), rice-derived transcription factors: 0SDREB1A 0SMEB1B, OsDREBl OsDREBID, and 0sDREB2A gene (Japanese Patent Application 200 No. 358268), and the NCED gene, which is a key enzyme in the biosynthesis of the plant hormone ABA.
  • the promoter of the present invention contains a specific cis element
  • the LIP9 promoter according to the present invention contains two DRE sequences in its structure. Therefore, as a gene linked downstream of the LIP9 promoter, a DREB gene or an OsDREB gene (eg, OsDREBIA, OsDREB1B, OsDREBIC, OsDREB ID, 0sDREB2A gene, 0sDREB2B gene) is preferable, and OsDREB gene is particularly preferable.
  • OsDREBIA, OsDREB1B, OsDREBIC, OsDREB ID, 0sDREB2A gene, 0sDREB2B gene is preferable, and OsDREB gene is particularly preferable.
  • the gene to be linked downstream is the DREB gene or the OsDREB gene (eg, OsDREB gene). 1A, OsDREB 1B, OsDREBIC, OsDREBID, OsDREB2A gene, and 0sDREB2B gene) are preferable, and the OsDREB gene is particularly preferable.
  • the vector of the present invention is constructed by ligating (inserting) the promoter of the present invention or the promoter of the present invention and another regulatory gene or structural gene into an appropriate vector.
  • the vector for inserting the promoter is not particularly limited as long as it can be replicated in the host, and examples thereof include plasmid DNA and phage DNA.
  • Plasmid DNA includes plasmids for Escherichia coli host such as pBR322, pBR325, pUC118 and pUC119, plasmids for Bacillus subtilis such as ⁇ 110 and ⁇ 5, plasmids for yeast host such as YEpl3, YEp24 and YCp50, and plant cell hosts such as pBI221 and PBI121 Plasmids for use.
  • examples of diDNA include ⁇ phage.
  • animal viruses such as retrovirus or vaccinia virus, and insect viruses such as baculovirus may be used as vectors.
  • the promoter of the present invention can be inserted into a vector by cutting the purified DNA with an appropriate restriction enzyme and inserting the resulting DNA into a restriction enzyme site or a multicloning site of a vector.
  • the recombinant vector of the present invention may further contain a splicing fern, a polyaddition signal, a selection marker, a ribosome binding sequence (SD sequence), and the like, if desired.
  • a selection marker for example, a dihydrofolate reductase gene, an ampicillin resistance gene, a neomycin resistance gene, and the like can be used.
  • the transformant of the present invention can be constructed by introducing the recombinant vector of the present invention into a host in such a manner that the promoter activity can be expressed.
  • the host is not particularly limited as long as the promoter of the present invention can function, but is preferably a plant, and more preferably a monocotyledon such as rice.
  • a plant or plant cell is used as a host, for example, cells established from rice, corn, wheat, Arabidopsis, tobacco, carrot, etc., or protoplasts prepared from the plant are used.
  • a method for introducing a recombinant vector into a plant a method using polyethylene glycol of Abel et al. [Abel, H. et al.
  • Some examples include the method of the electorotropolpoporation method. . 44 .. Sustotreress resistant totralans suzijeeninicnik plant
  • a structural structural genetic gene and a gene for improving the resistance to storage stress are improved.
  • the genetic genes of the control node are linked in a functionally operable manner and introduced into a plant. Improved resistance to environmental and environmental stresses, especially low- and low-temperature storages, freeze-freezing storages, dry and dry storages, etc. You will be able to create the totoranse sujieniininikku plant that has been raised. .
  • the main host plant particularly preferred is a monocotyledonous cotyledon plant. .
  • a method for introducing and introducing the propromotor motor and the like of the present invention to the host of the plant and plant accommodation host there is a method of faggloropapak teterium
  • the indirect method such as the infectious dyeing method, the indirect method of introduction, the method of papartitikurrugagan, the method of popoliliechirirenren, the method of dadariko,
  • various direct-induction and lead-in laws such as the Mum method and the law of law. .
  • an appropriate linker is ligated if necessary, and Into the cloning vector to produce a recombinant vector for plant introduction.
  • a binary vector-based plasmid such as pBI2113Not, PBI2113, ⁇ ⁇ ⁇ 21, pGA482, pGAH, or pBIG, or an intermediate vector-based plasmid such as pLGV23Neo or pNCAT ⁇ MON200 may be used. it can.
  • Escherichia coli having a plasmid containing a target gene Escherichia coli having a helper plasmid (for example, PRK2013), and agrobacterium are mixed-cultured, and cultured on a medium containing rifampicillin and kanamycin, followed by conjugation for plant introduction.
  • Body agrobacterium can be obtained.
  • a plant terminator In order to express a foreign gene in a plant, it is necessary to arrange a plant terminator after the structural gene.
  • the terminator sequence that can be used in the present invention includes, for example, a terminator derived from a nopaline synthase gene derived from a mosaic virus. However, the terminator is not limited to these as long as it is a terminator known to function in a plant.
  • an effective selection gene in order to efficiently select a desired transformed cell.
  • the selection markers used in this case are kanamycin resistance gene (NPTI I), octagromycin phosphotransferase (litp) gene that confers resistance to the antibiotic hygromycin to plants, and bialaphos (bialaphos). And the like.
  • NPTI I kanamycin resistance gene
  • litp octagromycin phosphotransferase
  • bialaphos bialaphos (bialaphos).
  • One or more genes selected from phosphinothricin acetyltransferase (bar) genes that confer resistance to) can be used.
  • the promoter and the selectable marker gene of the present invention may be integrated together into a single vector, or two types of recombinant DNAs each integrated into separate vectors may be used.
  • a desired transgenic plant By infecting a plant section from which the thus prepared agrobacterium has been collected, a desired transgenic plant can be produced.
  • Transgenic plants are sown on a medium supplemented with an appropriate antibiotic, and individuals with the desired promoter and gene are selected. The selected individuals are replanted in pots containing Bonsol No. 1 or black clay and grown further.
  • a transgene is similarly introduced into the genome of a host plant, but a phenomenon called a position effect in which the expression of the transgene varies depending on the location of the transgene is seen. Therefore, the transgene was more strongly expressed by performing a Northern blot test using the DNA fragment of the transgene as a probe. Transformants can be selected.
  • the promoter of the present invention the confirmation that the structural gene for improving stress tolerance and the Z or regulatory gene have been incorporated into the transgenic plant and its next generation can be carried out from these cells and tissues using a conventional method. By extracting the introduced gene using PCR or Southern analysis or the like.
  • analysis of the expression level and expression site of the transgene in the transgenic plant is performed by extracting RNA from cells and tissues of the plant according to a conventional method, and analyzing the mRNA of the transgene by RT-PCR or Northern analysis. This can be done by detecting Alternatively, the transcript of the introduced gene may be directly analyzed by Western analysis or the like using an antibody.
  • the resistance to environmental stress of a transgenic plant into which the promoter of the present invention has been introduced can be determined by, for example, planting the transgenic plant in a flower pot containing soil containing vermiculite, perlite, bonsol, or the like, or cultivating the water in a water culture. It can be evaluated by examining the survival when various environmental stresses are applied. Environmental stress includes low temperature, drying, salt and the like. For example, resistance to drought stress can be assessed by examining its survival without water for 2-4 weeks. Resistance to low temperature and freezing stress can be evaluated by placing the cells at 15 to -10 for 1 to 10 days, growing them at 20 to 35 ° C for 2 to 3 weeks, and examining their survival rates. .
  • salt stress can be evaluated by placing the cells in 100 to 600 mM NaCl for 1 hour to 7 days, growing them at 20 to 35 ° C for 1 to 3 weeks, and examining the survival rate.
  • the use of the promoter of the present invention makes it possible to significantly improve stress tolerance of plants (particularly monocotyledonous plants) without dwarfing them.
  • a preferred example of the transgenic plant according to the present invention is a transgenic plant obtained by introducing a vector in which the OsDREB gene is operably linked under the control of the LIP9 or WSI724 promoter into a monocot plant such as rice or wheat. Plants can be mentioned. Since the LIP9 promoter contains two DRE regions, the OsDREB gene can effectively exhibit its stress tolerance effect by binding to the cis element. Similarly, since the WSI724 promoter contains two DRE regions per night, the expression of the OsDREB gene can be increased to improve plant stress tolerance.
  • a vector in which the OsDREB gene is operably linked under the control of the LIP9 or WSI724 promoter into a monocot plant such as rice or wheat. Plants can be mentioned. Since the LIP9 promoter contains two DRE regions, the OsDREB gene can effectively exhibit its stress tolerance effect by binding to the cis element. Similarly, since the WSI724 promoter contains two DRE regions per night, the expression of
  • Rice (Nipponbare) cultivated hydroponically for 2-3 weeks was dried, salted and treated at low temperature.
  • the drying treatment was air-dried at room temperature, the salt treatment was cultivated with a 250 mM NaCl solution, and the low-temperature treatment was cultivated at 4 ° C.
  • the rice subjected to each stress treatment was frozen in liquid nitrogen, and total RNA was extracted by the guanidine thiosinate-cesium chloride method, and mRNA was prepared using an Oligo (dt) -cellulose column.
  • the obtained mRNA was transformed into type III, cDNA was synthesized using HybriZAP-2.1 two-hybrid cDNA Gigapack cloning kit (manufactured by STRATAGENE), inserted into the EcoRI-XhoI cleavage site of HybriZAP-2.1 phagemid vector, and cloned. did.
  • the phagemid layer A was packaged using Gigapack III Gold packaging extract (manufactured by STRATAGENE).
  • the obtained lambda phage particles containing cDNA were infected to host Escherichia coli and amplified, and then collected as a phage suspension. Approximately 1500 independent clones were selected by sequencing the above cDNA clones.
  • the selected clones were amplified by PCR, stamped on poly-L-lysine-coated micro slide glass (model S7444; Matsimami) using GTMASS System (Nippon Laser and Electronic Laboratory), and then UV-crossed.
  • a rice cDNA microarray was prepared by linking (The Plant Cell (2001) 13: 61-72 Seki et al). 2.
  • MRNA was purified from each of the rice plants that had been subjected to the same dry, salt, and low-temperature stress treatments as described in the previous section, or 100 xM abscisic acid treatment (5 hours or 10 hours), and untreated rice.
  • CDNA microray analysis was performed using untreated rice-derived mRNA as a control, and mRNA from each stress or abscisic acid-treated rice as a sample, using the dual fluorescent labeling method with Cy3 and Cy5, respectively. .
  • a gene having an intensity of 1: 1000 or more and having an expression level of 3 times or more as compared to the control was selected as a candidate for a stress-inducible gene.
  • a0022 LIP9: SEQ ID NO: 2
  • a0066 WSI724: SEQ ID NO: 8 were selected as stress-inducible genes.
  • the expression characteristics of the gene selected in the previous section were analyzed by Northern hybridization.
  • rice was exposed to abscisic acid, dry, low temperature, and saline stress, and samples were taken at 0, 1, 2, 5, and 10 hours, respectively. Abscisic acid, dryness, low temperature, and salt stress were applied in the same manner as in 1., and water stress was applied by immersion in pure water.
  • Total RNA was prepared from each sample, electrophoresed, and the expression of each gene was observed by the Northern method. The results are shown in Figure 1.
  • expression of a0022 is induced by the stresses of abscisic acid, drought, low temperature, and salt.
  • the expression of abscisic acid, drought, and salt is increased at an early time, and is slow at a low temperature. During the period, the expression increased.
  • the expression pattern of a0066 during stress loading (induced by drought, salt and low temperature, and induced by low temperature is slower than that of dry and salt) is expected to be OsDREB overnight.
  • the cDNA selected as the stress-inducible gene in Example 1: a0022 was analyzed using the DDBJ rice genome database. Was used to search for homologous sites. As a result, a sequence 1 lkb upstream from the start codon of the homologous gene to the 5 'side was selected as a promoter sequence (SEQ ID NO: 1). Similar search was also performed for a0066 (WSI724: SEQ ID NO: 8), and its promoter sequence (SEQ ID NO: 10) was selected.
  • FIG. 2 shows the structure of the promoter region of LIP9.
  • LIP9 has two cis sequences DRE ((A / G) CCGAC) in its structure.
  • Fig. 7 shows the structure of one region of the promoter of WSI724. It was also confirmed that the WSI724 promoter had two cis sequences DRE ((A / G) CCGAC) in its structure.
  • a primer was designed based on the selected motor sequence, and PCR was performed using rice genomic DNA as a type II clone for cloning.
  • the primer sequences and PCR conditions used are as follows.
  • Reverse primer 5'-CCGGATCCTCGATCGATGGATTCAGCTA-3 '(SEQ ID NO: 4)
  • Primer sequence for WSI 724 promoter 5'-CCGGATCCTCGATCGATGGATTCAGCTA-3 '(SEQ ID NO: 4)
  • the G-uM plasmid generated by replacing the promoter site of pBIG29APHSNot with maize ubiquitin promoter overnight was digested with BamHI-HindIII and ligated with the similarly digested LIP9 promoter fragment.
  • a plasmid incorporating the LIP9 promoter was digested with BamHI-EcoRI, and PBI 221 (Clontech) was similarly digested with BamHI-EcoRI and ligated to the excised Gus gene to prepare a Gus expression construct (G_LIP9: GUS). ( Figure 3).
  • Plasmid G-LIP9 GUS was introduced into agrobacterium EHA105, which was washed with 10% glycerol after culturing, by electroporation to produce agrobacterium EHA105 (G-LIP9: GUS). The rice was infected with this agrobacterium EHA105 (G-LIP9: GUS) as follows to prepare a transformant.
  • Rice seeds are immersed in 70% ethanol for 1 minute, sterilized by immersion in 2% sodium hypochlorite for 1 hour, then washed with sterile water, and N6D solid medium (per liter: CHIHN6) Basal Salt Mixture (Sigma) 3.98 g, sucrose 30 g, myo-inositol 100 mg, casamino acid 300 mg, L-proline 2878 mg, glycine 2 mg, nicotinic acid 0.5 mg, pyridoxine hydrochloride 0.5 mg, thiamine hydrochloride lmg, 2,4-D 2 mg Then, 9 seeds were inoculated on a plate of Gelrite 4g, H5.8), and cultured for 24 days to induce callus. The callus of about 20 seeds was transferred to a new N6D solid medium and cultured for another 3 days.
  • N6D solid medium per CHIHN6
  • Basal Salt Mixture Sigma 3.98 g, sucrose 30 g, myo-inositol 100
  • a YEP medium containing 5 ml of rifampicillin 100 mg / l and kanamycin 20 mg / l containing the above-mentioned agrobacterium EHA105 (per liter: Bacto peptone 10 g, Bacto yeast extract 10 g, The cells were cultured with 5 g of NaCl, 0406 mg of MgCl 6 H 2 (pH 7.2) at 28 for 24 hours.
  • AAM medium (1 liters per including Asetoshiringon of this ⁇ glow Park Teri ⁇ beam 20mg / l: MnS0 4 '5H 2 010mg, H 3 B0 3 3mg, ZnS0 4' 7H 2 02mg, NajMoO ⁇ - 2H, 0250 g, CuS0 4 -5H 2 025 g, CoCl 2 -6H 2 025 ig, KI 750 zg, CaCl 2 -2H 2 0150mg, MgS0 4 '7H 2 0250mg, Fe -.
  • EDTA 40mg Na P0 4 2H 2 0150mg, lmg nicotinic acid, Thiamine hydrochloride 10 mg, pyridoxine hydrochloride lmg, myo-inositol 100 mg, L-arginine 176.7 mg, glycine 7.5 mg, L-glucamine 900 mg, aspartic acid 300 mg, KC13 g, pH 5.2) so that 0.D. becomes 0.1.
  • a thin, 20 ml agrobacterium suspension was prepared.
  • the agrobacterium suspension was added to the callus cultured for 3 days as described above, and mixed for 1 minute. Then placed on the callus sterile Bae one Pataoru extra ⁇ Glo Park Teri ⁇ beam suspension after removal of the, 2N6-AS solid medium (1 liters per lined with sterile filter paper: CHU [N S] Basal Salt Mixture 3.98g, sucrose 30g, glucose 10g, myo-inositol 100mg, casamino acid 300 mg, glycine 2 mg, nicotinic acid 0.5 mg, pyridoxine hydrochloride 0.5 mg, thiamine hydrochloride lmg, 2,4-D 2 mg, acetosyringone 10 mg, gellite 4 g, H5.2) at 25 ° C for 3 days, dark Cultured underneath.
  • this callus was regenerated in a regeneration medium (per liter: mixed salt for Murashige-Skoog medium (Nippon Pharmaceutical) 4.6 g, sucrose 30 g, sorbitol 30 g, casamino acid 2 g, myo-inositol 100 mg, glycine 2 mg, nicotinic acid 0.5 mg, pyridoxine hydrochloride 0.5 mg, thiamine hydrochloride 0.1 mg, NAA 0.2 mg, forceinetin 2 mg, carbenicillin 250 nig, hygromycin 50 mg, agarose 8 g, pH 5.8). Every week, transplanted to a new medium, redifferentiated and the shoots grew to about lcm.
  • a regeneration medium per liter: mixed salt for Murashige-Skoog medium (Nippon Pharmaceutical) 4.6 g, sucrose 30 g, sorbitol 30 g, casamino acid 2 g, myo-inositol 100 mg,
  • Hormone-free medium per liter: mixed salt for Murashige-Skoog medium (Nippon Pharmaceutical) 4.6 g, The transplantation was performed on 30 g of sucrose, 2 mg of glycine, 0.5 mg of nicotinic acid, 0.5 mg of pyridoxine hydrochloride, 0.1 mg of thiamine hydrochloride, 50 mg of hygromycin, 2.5 g of gellite, pH 5.8). Plants grown to about 8 cm on a hormone free medium were transferred to a flower pot containing synthetic granular soil bonsol No. 1 (manufactured by Sumitomo Chemical Co., Ltd.) to obtain seeds of transformed plants.
  • rd29A promoter overnight (Nature Bio technology (1999) 17, 287-291) or the 35S promoter and the salT promoter (SEQ ID NO: 5) were linked upstream of the GUS gene, and rice and / Or introduced into tobacco.
  • the salT promoter is a stress-inducible promoter isolated from the rice genome by the same screening as the LIP9 promoter.
  • the ID number of the cDNA on the microarray corresponding to the salT promoter is a2660.
  • the salT promoter has no specific cis sequence in its structure, but its expression has been confirmed to be induced by abscisic acid, drought, low temperature, and salt stress (see Japanese Patent Application No. 2002-377316). ).
  • the generation grows the regenerated plants in plant corn for 3 to 5 weeks, divides the grown leaves into two equal parts, and controls one of them as a control to air-dry at room temperature to dry stress. Exposed.
  • Fig. 4 shows the GUS activity of various promoter-transformed plants under drought stress.
  • the salT promoter and the LIP9 promoter showed stronger stress inducibility than the rd29A promoter overnight.
  • LIP9 Promo overnight showed a strong activity of about 1 times that of salT.
  • the LIP9 promoter also showed one stress-inducible promoter activity in tobacco, a dicotyledon, but its activity was weaker than that of rice.
  • the G-ub i plasmid which was produced by substituting the ubiquitin promoter of maize overnight at the promoter site of pBIG29APHSNot, was digested with BamHI-Hind II, and ligated to the similarly digested WSI 724 promoter fragment.
  • the plasmid containing the WSI 724 promoter was cut with BamHI to blunt the ends, and then ligated to the site cut with Smal of the pBIG vector to prepare a GUS expression construct (WSI724: GUS).
  • the plasmid WSI724: GUS was The glycerol-washed agrobacterium EHA105 was introduced by an electroporation method to prepare an agrobacterium EHA105 (WSI724: GUS). The rice was infected with this agrobacterium EHA105 (WSI724: GUS) to prepare a transformant.
  • the resulting GUS-expressing transformed rice was exposed to drought stress in the same manner as in Example 3, and the GUS activity was measured from the change in fluorescence intensity due to degradation of 4-methylumbel 1 iferyl-j3-D-glucuronide.
  • higher GUS activity was observed in the transformed rice leaves subjected to the drought stress (cut and left for 24 hours) as compared to the control (cut and frozen immediately) leaves.
  • GUS staining of the transformed rice plants after loading with dry stress (24 hours) showed GUS activity in both roots and leaves.
  • Example 3 a transformant in which the OsDREB IA gene (SEQ ID NO: 6) or the DREB 1C gene (SEQ ID NO: 8) was introduced into rice under the control of the maize ubiquitin promoter or the 35S promoter was prepared. . Then, the mRNA levels of transgenic transgenes OsDREBIA and DREB1C and LIP9 (a0022), WSI 724 (a0066), and salT (a2660), which are considered to have altered the expression of the transgene, were examined by Northern analysis. Was.
  • OsDREBIA gene SEQ ID NO: 6
  • DREB 1C gene SEQ ID NO: 7
  • LIP9 gene QQ22 SEQ ID NO: 2
  • WSI724 gene a0066: SEQ ID NO: 8
  • salT gene a2660: SEQ ID NO: 9
  • rice plants transformed with only one vector were similarly prayed.
  • Transformed rice was selected in a 0.1% benzilate solution containing 30 mg / ml hygromycin for 5 days, and then replanted in a pot containing Bonsol No. 1 and grown for 12 days. Wild strains were similarly raised. Prepare total RNA from each plant and run Then, the expression of each gene was observed by the Northern method in the same manner as in Example 1.
  • Figure 6 shows the results. In the figure, a, b and c indicate the lines of the transformants, respectively.
  • a DRE sequence is present on the LIP9 and WSI724 promoters, and the LIP9 gene and WSI724 gene are highly expressed in OsDREBlA gene overexpressors.
  • LIP9 and WSI724 were considered to be target genes for OsDREB genes such as OsDREBlA. Therefore, LIP9 and WSI724 promoters were estimated to be optimal promoters for overexpressing OsDREB gene.
  • G_ubi and G35S-SliA were prepared as follows.
  • pBIG plasmid Nucleic Acids Research 18: 203 (1990)
  • G-ubi and G35S-ShA were each digested with BamHI, and then ligated to a similarly digested OsDREBIA gene fragment encoding a rice transcription factor using ligation high (manufactured by Toyobo Co., Ltd.).
  • E. coli DH5a was transformed with the product.
  • plasmids pBE35S: 0sDREBlA, G-ubi: 0sDREBlA and G35S-ShA: 0sDREBlA were purified from the culture. Next, these nucleotide sequences were determined, and those having the OsDREBIA gene bound in the sense direction were selected.
  • the above-mentioned plasmid pBE35S Escherichia coli DH5a having OsDREBIA, Escherichia coli HB101 having helper plasmid PRK2013, and Agrobacterium C58 were mixedly cultured at 28 ° C. for 24 hours using LB agar medium. The resulting colonies were picked up and suspended in 1 ml of LB medium. This suspension 101 was spread on an LB agar medium containing 100 mg / K of rifampicillin and 20 mg / l of kanamycin, and cultured at 28 ° C for 2 days to obtain a conjugate agrobacterium C58 (pBE35S: OsDREBlA). Was.
  • the plasmids G_ubi: OsDREBIA and G35S-ShA: OsDREBIA described above were introduced into agrobacterium EHA105, which had been cultured and washed with 10% glycerol, by the electroporation method. : OsDREBIA) and Agrobacterium EHA105 (G35S-Sh ⁇ : OsDREBIA) were obtained, respectively. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety. Industrial potential
  • a stress-inducible promoter that can function effectively in monocotyledonous plants.
  • the promoter contains a DRE sequence, and thus, under the control of the OsDREB gene or the like, can be linked to a plant to produce a strong stress-resistant transgenic plant in monocotyledonous plants such as rice. Can be. Sequence listing free text

Abstract

A stress-induced promoter efficaciously acting in monocotyledons such as rice; and an environmental stress-tolerant plant using the promoter. Namely, a rice-origin promoter comprising the following DNA (a) or (b): (a) a DNA consisting of a base sequence represented by SEQ ID NO:1 or SEQ ID NO:10; (b) a DNA hybridizable with a DNA consisting of a base sequence complementary to a base sequence represented by SEQ ID NO:1 or SEQ ID NO:10 under stringent conditions and having a stress-induced promoter activity; and an environmental stress-tolerant plant having the above-described promoter transferred thereinto.

Description

明 細 書 ストレス誘導性プロモーター及びその利用方法 技術 分 野  Description Stress-inducible promoters and methods of using them Technology
本発明は、 イネ由来のス卜レス誘導性プロモーターとその利用方法に関 する。 背 景 技 術  The present invention relates to a rice-derived stress-inducible promoter and a method of using the same. Background technology
植物は、 乾燥、 高温、 凍結、 塩など、 自然界における様々な環境ストレ スに対応するための耐性機構を有している。 最近では、 こうしたス卜レス 耐性機構が分子レベルで明らかになるにつれ、 バイオテクノロジー的手法 を用いたストレス耐性植物も作出されるようになってきた。 例えば、 スト レスを受けた細胞内には LEAタンパク質、 水チャネルタンパク質、 適合溶 質合成酵素などのストレスタンパク質が誘導され、 細胞をストレスから防 御する。 そこで、 ォォムギの LEA タンパク質やタバコの de toxi f icat ion enzyme等の遺伝子、 浸透圧調節物質(糖、 プロリン、 グリシンべタイン等) 合成酵素の遺伝子を植物に導入する研究が試みられた。 また、 細胞膜脂質 の修飾酵素であるシロイヌナズナの w-3 fat ty ac id desaturaseやらん藻 の D9desaturaseの遺伝子等を用いた研究も試みられた。これらの研究では、 いずれも一つの遗伝子が力リフラワーモザイクウィルスの 35Sプロモー夕 一に結合して植物に導入された。 しかし、 組換え植物のス卜レス耐性度が 不安定であったり、導入遺伝子の発現レベルが低い等の問題から実用化に 至ったものはなかった。  Plants have resistance mechanisms to respond to various environmental stresses in nature, such as drying, high temperature, freezing, and salt. Recently, as these stress-tolerant mechanisms have been elucidated at the molecular level, stress-tolerant plants using biotechnological techniques have also been created. For example, stress proteins such as LEA proteins, water channel proteins, and compatible solute synthases are induced in stressed cells, and protect cells from stress. Therefore, research was conducted to introduce genes such as barley LEA protein, tobacco detoxification enzyme, and osmotic pressure regulator (sugar, proline, glycine betaine, etc.) synthase genes into plants. Studies were also conducted using genes such as w-3 fatty acid desaturase of Arabidopsis thaliana, which is a cell membrane lipid-modifying enzyme, and D9 desaturase of cyanobacteria. In each of these studies, one gene was introduced into plants by binding to the 35S promoter overnight of the force reflower mosaic virus. However, none of the transgenic plants has been put to practical use due to problems such as unstable stress resistance and low expression level of the transgene.
一方、 ストレス耐性機構には複数の遺伝子が複雑に関与することがわか つてきた (非特許文献 1 )。そこで、 それらの発現を同時に活性化する転写 因子の遺伝子を恒常的プロモーターに連結して導入し、 植物のストレス耐 性を高める研究も試みられた (非特許文献 2 )。 しかし、 複数の遺伝子が同 時期に活性化されると、 宿主植物のエネルギーが該遺伝子産物の生成や、 該遺伝子産物に起因する細胞内代謝に向けられるため、 植物自体の成長が 遅れたり矮化してしまうという問題があった。 On the other hand, it has been found that multiple genes are involved in the stress tolerance mechanism in a complex manner (Non-Patent Document 1). Thus, a study was also conducted to enhance the stress tolerance of plants by introducing a gene for a transcription factor that simultaneously activates their expression by linking it to a constitutive promoter (Non-patent Document 2). However, when multiple genes are activated at the same time, the energy of the host plant is directed to the production of the gene product and intracellular metabolism caused by the gene product, so that the growth of the plant itself is reduced. There was a problem of being late or dwarfing.
これに対し、 発明者らはシロイヌナズナ(Arabidopsis thaliana)からス トレス応答性エレメントに結合し、 該エレメン卜下流の遺伝子の転写を特 異的に活性化する転写因子をコードする遺伝子、 DREB1A、 DREB1B、 DREB1C, DREB2A, DREB2B を単離した (特許文献 1)。 そして、 これらの遺伝子をス 卜レス誘導性 rd29Aプロモーターに連結して植物に導入することにより、 矮化しないストレス耐性植物が作製できることを報告した (特許文献 2 )。 しかし、双子葉植物であるシロイヌナズナ由来の rd29Aプロモーターは、 単子葉植物中で機能はしてもその活性が弱い。 したがって、 単子葉植物に おいて強い活性を有するス卜レス誘導性プロモーターが望まれていた。  On the other hand, the present inventors have proposed genes that bind to stress-responsive elements from Arabidopsis thaliana and encode transcription factors that specifically activate the transcription of genes downstream of the element, DREB1A, DREB1B, DREB1C, DREB2A, and DREB2B were isolated (Patent Document 1). Then, they reported that by linking these genes to a stress-inducible rd29A promoter and introducing them into plants, a dwarf-resistant stress-tolerant plant can be produced (Patent Document 2). However, the rd29A promoter from the dicotyledon Arabidopsis thaliana functions in monocotyledonous plants but has weak activity. Therefore, a stress-inducible promoter having a strong activity in monocotyledonous plants has been desired.
[特許文献 1 ] 特開 2000-60558号公報  [Patent Document 1] JP-A-2000-60558
[特許文献 2] 特開 2000- 116260号公報  [Patent Document 2] JP-A-2000-116260
[非特許文献 1] S inozaki K, Yamaguchi-Shinozaki K. , Plant Physiol. (1997) Oct; 115 (2) p327-334  [Non-Patent Document 1] S inozaki K, Yamaguchi-Shinozaki K., Plant Physiol. (1997) Oct; 115 (2) p327-334
[非特許文献 2] Liu et al., The Plant Cell, (1998) 10 :pl391-1406 発 明 の 開 示  [Non Patent Literature 2] Liu et al., The Plant Cell, (1998) 10: pl391-1406
本発明は-. ィネ等の単子葉植物において効果的に機能し得るストレス誘 導性プロモー夕一を見出し、 該プロモータ一を用いて新規な環境ストレス 耐性植物を提供することを目的とする。  An object of the present invention is to find a stress-inducible promoter that can function effectively in monocotyledonous plants such as rice, and to provide a novel environmental stress-tolerant plant using the promoter.
本発明者らは、 上記課題を解決するため鋭意検討した結果、 イネゲノム より、 強いストレス誘導性プロモーターを単離することに成功した。 そし て、 該プロモーターを用いれば、 単子葉植物の環境ストレス耐性を著しく 向上させることが可能であることを見出し、 本発明を完成させた。  The present inventors have conducted intensive studies to solve the above problems, and as a result, have succeeded in isolating a strong stress-inducible promoter from a rice genome. Then, they found that it is possible to remarkably improve the environmental stress tolerance of monocotyledonous plants by using the promoter, and completed the present invention.
すなわち、 本発明はイネ由来のストレス誘導性プロモーターに関する。 該プロモーターは、 具体的には以下の(a)又は(b)の DNAからなる。  That is, the present invention relates to a rice-derived stress-inducible promoter. The promoter is specifically composed of the following DNA (a) or (b).
(a) 配列番号 1又は配列番号 1 0で表される塩基配列からなる DNA  (a) DNA consisting of the nucleotide sequence represented by SEQ ID NO: 1 or SEQ ID NO: 10
(b) 配列番号 1又は配列番号 1 0で表される塩基配列からなる DNAに相補 的な塩基配列からなる DNAとストリンジェントな条件下でハイブリダィズ し、 かつストレス誘導性のプロモーター活性を有する DNA ここで、 ストレスとは、 乾燥ストレス、 低温ストレス又は塩ストレスで ある。 (b) DNA that hybridizes with a DNA consisting of a nucleotide sequence complementary to the DNA consisting of the nucleotide sequence represented by SEQ ID NO: 1 or SEQ ID NO: 10 under stringent conditions, and has a stress-inducible promoter activity Here, the stress is a drought stress, a low-temperature stress, or a salt stress.
また、 本発明は前記プロモーターを含む組換えベクターを提供する。 該 ベクタ一は、 本発明のプロモーター支配下に他の構造遺伝子や調節遺伝子 を含んでいてもよく、 特にストレス耐性を向上させる構造遺伝子及び Z又 は調節遺伝子を含んでいることが好ましい。  The present invention also provides a recombinant vector containing the promoter. The vector may contain another structural gene or a regulatory gene under the control of the promoter of the present invention, and particularly preferably contains a structural gene for improving stress tolerance and a Z or regulatory gene.
ストレス耐性を向上させる構造遺伝子の好適な例としては、 プロリン合 成の鍵酵素 P5CS遺伝子 (Yoshiba Y. et al (1999) BBRC 261 )、 ガラクチ ノール合成遺伝子 AtGolS3遺伝子 (Taj i T. et al (2002) Pl ant J. 29 : 417-426) が挙げられる。  Preferable examples of structural genes that improve stress tolerance include the P5CS gene, a key enzyme for proline synthesis (Yoshiba Y. et al (1999) BBRC261), and the galactinol synthesis gene AtGolS3 gene (Taj i T. et al (2002). ) Plant J. 29: 417-426).
また、 ス卜レス耐性を向上させる調節遗伝子の好適な例としては、 シロ ィヌナズナ由来転写因子 DREB遺伝子(特開 2000-60558号公報)、イネ由来 転写因子 OsDREB遺伝子 (特願 2001- 358268、 Dubouzet et al P lant J. in press) ,及び植物ホルモン ABAの生合成の鍵酵素 NCED遺伝子 (Iuchi S. e t al (2001) Plant J. 27 : 325-333) 等が挙げられる。  Preferable examples of the regulatory gene for improving stress resistance include a transcription factor DREB gene derived from Arabidopsis thaliana (Japanese Patent Application Laid-Open No. 2000-60558) and a rice transcription factor OsDREB gene (Japanese Patent Application No. 2001-358268, Dubouzet et al Plant J. in press), and the NCED gene (Iuchi S. et al (2001) Plant J. 27: 325-333) which is a key enzyme for the biosynthesis of the plant hormone ABA.
特に、 シロイヌナズナ由来転写因子 DREB 遺伝子、 イネ由来転写因子 OsDREB遺伝子が好ましく、 イネ由来転写因子 OsDREB遺伝子が最も好まし い。  In particular, Arabidopsis-derived transcription factor DREB gene and rice-derived transcription factor OsDREB gene are preferred, and rice-derived transcription factor OsDREB gene is most preferred.
さらに、 本発明は本発明のベクターを適当な宿主に導入して得られる形 質転換体を提供する。 ある態様において、 該形質転換体は本発明のベクタ 一を宿主植物に導入して得られるトランスジエニック植物である。 この場 合、 宿主植物としては単子葉植物が望ましく、 単子葉植物としてはイネが 望ましい。  Further, the present invention provides a transformant obtained by introducing the vector of the present invention into a suitable host. In one embodiment, the transformant is a transgenic plant obtained by introducing the vector of the present invention into a host plant. In this case, monocotyledonous plants are desirable as host plants, and rice is desirable as monocotyledonous plants.
さらにまた、 本発明は、 本発明のプロモーターを植物に導入することに より、 該植物のス卜レス耐性を向上させる方法を提供する。 本発明のプロ モーターは単子葉植物において従来にない強いストレス誘導性プロモータ 一活性を有するため、単子葉植物のストレス耐性の向上により適している。 図面の簡単な説明  Furthermore, the present invention provides a method for improving stress resistance of a plant by introducing the promoter of the present invention into the plant. Since the promoter of the present invention has an unprecedented strong stress-inducible promoter activity in monocots, it is more suitable for improving stress tolerance of monocots. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 各ストレス負荷時における a0022 (LIP9)のノザン解析結果を示 す。 Figure 1 shows the results of Northern analysis of a0022 (LIP9) under each stress load. You.
図 2は、 a0022 (LIP9)のプロモーター領域の塩基配列を示す。  FIG. 2 shows the nucleotide sequence of the promoter region of a0022 (LIP9).
図 3は、 Gus発現用コンストラクトの構造を示す。  FIG. 3 shows the structure of the Gus expression construct.
: g7 ターミネータ一、 HPT:ハイグロマイシン フォスフォ卜ランス フェラ一ゼ、 PMS: Nos プロモーター、 TTO: Nos ターミネータ一) : G7 terminator one, HPT: hygromycin phospho-Bok lance Blow Ichize, P MS: Nos promoter, T TO: Nos terminator one)
図 4は、 各種プロモーターに GUS遺伝子を連結して導入した形質転換夕 バコ又はイネにおける、 乾燥ストレス負荷時の GUS活性を示すグラフであ る。  FIG. 4 is a graph showing the GUS activity under a drought stress load in transgenic Bako or rice transformed by introducing a GUS gene into various promoters.
図 5は、 LIP9プロモーターに GUS遺伝子を連結して導入した形質転換ィ ネにおける、 塩ストレス負荷時の GUS染色結果を示す写真である。  FIG. 5 is a photograph showing the results of GUS staining of a transformed rice plant into which a GUS gene has been linked to the LIP9 promoter and transfected with salt stress.
図 6は、 形質転換イネと野性株における、 導入遺伝子及び各標的遺伝子 (LIP9 (a0022)、 WSI724 (a0066) , salT (a2660)の発現量をノザン法で比較 した結果である。 図中 a、 b、 cはそれぞれそれぞれ形質転換体のライン を示す。  Fig. 6 shows the results of comparison of the expression levels of the transgene and each of the target genes (LIP9 (a0022), WSI724 (a0066), salT (a2660)) in the transformed rice and wild type strains by the Northern method. b and c indicate the lines of the transformant, respectively.
図 7は、 a0066 (WSI724)のプロモーター領域の塩基配列を示す。  FIG. 7 shows the nucleotide sequence of the promoter region of a0066 (WSI724).
図 8は、 WSI724プロモーターに GUS遺伝子を連結して導入した形質転換 イネにおける、 乾燥ストレス負荷時の GUS活性を示すグラフである (右: 乾燥ストレス負荷、 左:コントロール)。  FIG. 8 is a graph showing the GUS activity of a transformed rice plant into which the GUS gene has been linked to the WSI724 promoter and which has been subjected to drought stress (right: drought stress, left: control).
図 9は、 WSI724プロモーターに GUS遺伝子を連結して導入した形質転換 イネにおける、 乾燥ストレス負荷時の GUS染色結果を示す写真である。 本明細書は、 本願の優先権の基礎である特願 2 0 0 3— 8 0 8 4 7号の 明細書に記載された内容を包含する。 発明を実施するための最良の形態  FIG. 9 is a photograph showing the results of GUS staining of a transformed rice plant into which the GUS gene has been linked to the WSI724 promoter and which has been transfected with a drought stress. This description includes part or all of the contents as disclosed in the description of Japanese Patent Application No. 2003-80847, which is a priority document of the present application. BEST MODE FOR CARRYING OUT THE INVENTION
本発明のプロモーターは、 低温、 乾燥、 塩などの環境ストレスに対して 特異的に誘導されるイネ由来のプロモーターである。  The promoter of the present invention is a rice-derived promoter that is specifically induced against environmental stress such as low temperature, drying, and salt.
1 . 本発明のプロモーターの同定 1. Identification of the promoter of the present invention
本発明のプロモ一夕一は、 ストレスを負荷した植物個体と負荷しない植 物個体間で、 その発現が著しく異なる遺伝子 (ストレス誘導性遺伝子) を スクリーニングし、 次いでゲノム情報から該遺伝子のプロモーターと考え られる配列をスクリーニングすることにより同定することができる。 The promoter of the present invention comprises a gene (stress-inducible gene) whose expression is significantly different between stressed and non-stressed plant individuals. It can be identified by screening, and then screening a sequence considered as a promoter of the gene from genomic information.
以下、 本発明のプロモーターを同定するプロセスについて説明する。 Hereinafter, the process of identifying the promoter of the present invention will be described.
1 . 1 mRNAの調整 1.1 mRNA regulation
まず、 ストレス誘導性遺伝子をスクリーニングするための、 mRNAを調製 する。  First, mRNA for screening for a stress-inducible gene is prepared.
mRNAの供給源としては、 葉、 茎、 根、 花など植物体の一部又は全体のい ずれであってもよい。 また、 植物体は、 その種子を GM培地、 MS培地、 #3 培地などの固体培地に播種し、 無菌条件下で生育させた植物体を用いても よいし、 カルスや無菌条件下で育てた植物体の培養細胞を用いてもよい。 本スクリーニングでは、 ストレスを負荷した植物個体と負荷しない植物 個体との間での遺伝子発現量の相違を比較するため、 mRNAは前記両個体の それぞれについて調整する必要がある。 ストレスの負荷方法は、 用いる植 物によって適宜設定される。 一般には、 乾燥ストレスは、 2〜4週間、 水を 与えず育てることにより負荷することができる。 また低温 ·凍結ストレス は、 15〜- 10°Cで、 1〜10日間育てることにより負荷することができる。 さ らにまた、 塩ストレスは 100〜600mM NaClで 1時間〜 7日間育てることに より負荷することができる。 例えば、. イネの場合であれば、 水耕栽培で生 育させたイネを、 低温ス卜レスなら 10〜- 4t:、塩ストレスなら 150〜250mM NaCK 乾燥ストレスなら脱水状態等に暴露する。  The source of mRNA may be any part or whole of a plant such as leaves, stems, roots, and flowers. The plant may be seeded on a solid medium such as a GM medium, an MS medium, or a # 3 medium, and the plant may be grown under aseptic conditions, or may be grown under callus or under aseptic conditions. Cultured cells of a plant may be used. In this screening, mRNA needs to be adjusted for each of the individual plants in order to compare the difference in the gene expression level between a plant individual subjected to stress and a plant individual not subjected to stress. The method of applying stress is appropriately set depending on the plant used. In general, drought stress can be applied by growing without water for 2-4 weeks. In addition, low temperature and freezing stress can be applied by growing at 15-10 ° C for 1-10 days. In addition, salt stress can be imposed by growing in 100-600 mM NaCl for 1 hour to 7 days. For example, in the case of rice, the rice grown by hydroponics is exposed to 10 to -4 t for low-temperature stress, 150 to 250 mM NaCK for salt stress, and dehydrated for dry stress.
ス卜レスを負荷した植物個体と負荷しない植物個体は、 それぞれ液体窒 素で凍結し、乳鉢などで摩砕後、得られた摩砕物から、ダリオキサール法、 グァニジンチオシァネート—塩化セシウム法、 塩化リチウム一尿素法、 プ 口ティナーゼ K—デォキシリポヌクレア一ゼ法などにより粗 RNA画分を抽 出する。 次いで、 この粗 RNA画分から、 オリゴ dT—セルロースやセファ口 —ス 2Bを担体とするポリ U-セファロースなどを用いたァフィ二ティー力 ラム法、あるいはバッチ法によりポリ(A) NA (mRNA)を得る。必要であれば、 さらにショ糖密度勾配遠心法などにより mRNAを分画して用いてもよい。 1 · 2 ストレス誘導性遺伝子のスクリーニング  The plants loaded with stress and those not loaded were frozen in liquid nitrogen and ground in a mortar or the like, and the resulting ground material was subjected to the dalioxal method, guanidine thiosyanate-cesium chloride method, The crude RNA fraction is extracted by the lithium chloride-urea method, the proteinase K-deoxyliponuclease method, or the like. Next, poly (A) NA (mRNA) is purified from the crude RNA fraction by the affinity column method using oligo dT-cellulose or poly-U-Sepharose using Sepharose 2B as a carrier, or the batch method. obtain. If necessary, the mRNA may be further fractionated and used by sucrose density gradient centrifugation or the like. 1.2 Screening of stress-inducible genes
ストレス誘導性遺伝子のスクリーニングは、 ストレスを負荷した植物個 体と負荷しない植物個体間で、 その遺伝子発現量の相違を比較することに より行う。 遺伝子発現量の比較方法は、 特に限定されず、 例えば、 RT- PCR 法、 リアルタイム PCR法、 サブトラクシヨン法、 ディファレンシャル -デ イスプレイ法、 ディファレンシャル ·ハイブリダィゼ一シヨン法、 又はク ロスハイブリダィゼーシヨン法等の公知の方法を用いることができる。 なかでも、 遺伝子チップ、 cDNAマイクロアレイ等の固相試料を用いた方 法は、 数千〜数万の遺伝子の発現を、 定性的かつ定量的に、 一度で検出す ることが可能という点で、 前記スクリーニングの実施に好適である。 Screening for stress-inducible genes is based on This is done by comparing the difference in the gene expression level between the body and the unloaded plant individual. The method for comparing the gene expression levels is not particularly limited. For example, the RT-PCR method, the real-time PCR method, the subtraction method, the differential-display method, the differential hybridization method, or the cross-hybridization method A known method such as a method can be used. Above all, methods using solid-state samples such as gene chips and cDNA microarrays are capable of qualitatively and quantitatively detecting the expression of thousands to tens of thousands of genes at once. It is suitable for performing the screening.
(1) cDNAマイクロアレイの調製  (1) Preparation of cDNA microarray
前記スクリーニングに用いる cDNAマイクロアレイは、プロモーターの検 出対象である単子葉植物 (例えばイネ)の cDNAがスポットされているもの であれば特に限定されず、 既成のものを用いてもよいし、 公知の方法に基 づいて作製してもよい (例えば、 The Pl ant Ce l l (2001) 13 : 61-72 Seki e t al参照)。  The cDNA microarray used for the screening is not particularly limited as long as the cDNA of the monocotyledonous plant (for example, rice) from which the promoter is to be detected is spotted, and an existing one may be used or a known one may be used. It may be prepared according to a method (for example, see The Plant Cell (2001) 13: 61-72 Seki et al).
cDNAマイクロアレイの作製には、 まず目的とする植物の cDNAライブラ リーの調製が必要である。 cDNA ライブラリ一は、 (1)の方法に従って調製 した mRNAを铸型として、公知の方法により作製することができる。スポッ 卜する cDNAは単子葉植物由来のものであれば特に限定されないが-,後のゲ ノムデータベースの解析の利便性からィネ等のゲノム解析が進んだ単子葉 植物のものが好ましい。 植物は平常状態 (無処理) の植物でもよいが、 好 ましくは乾燥、 塩、 低温等のストレスに暴露した植物である。  To prepare a cDNA microarray, it is necessary to prepare a cDNA library of the target plant first. The cDNA library can be prepared by a known method using the mRNA prepared according to the method (1) as type III. The cDNA to be spotted is not particularly limited as long as it is derived from monocotyledonous plants. However, monocotyledonous plants in which genomic analysis of rice or the like has progressed are preferable from the viewpoint of convenience of analysis of the genome database described later. The plant may be a normal (untreated) plant, but is preferably a plant that has been exposed to stress such as drought, salt, and low temperature.
cDNA ライブラリーの作製では、 まず市販のキット (ZAP-cDNA Synthes i s Ki t (STRATAGENE社製)等)を用いて、 mRNAを逆転写して一本鎖 cDNAを合成 し、 これを铸型として二本鎖 cDNA を合成する。 次いで、 得られた二本鎖 cDNAに適切な制限酵素切断部位を含むアダプターを付加した後、 ラムダフ ァージベクターのクローニング部位に挿入する。 これを市販のキット (例 えば、 Gigapack I I I Gold packaging ext rac t (STRATAGENE 社製) 等) を 用いて in vi t ro パッケージングし、 宿主大腸菌に感染 ·増幅すれば、 目 的とする cDNAライブラリーが得られる。  In preparing a cDNA library, first, using a commercially available kit (ZAP-cDNA Synthes is Kit (manufactured by STRATAGENE) etc.), reverse transcribe mRNA to synthesize single-stranded cDNA. Synthesize strand cDNA. Next, an adapter containing an appropriate restriction enzyme cleavage site is added to the obtained double-stranded cDNA, and then inserted into the cloning site of the lambda phage vector. This is packaged in vitro using a commercially available kit (for example, Gigapack III Gold packaging ext tract (manufactured by STRATAGENE)), infected to host Escherichia coli, and amplified to obtain the desired cDNA library. Is obtained.
cDNAライブラリ一が作製されたら、 この cDNA、 あるいは該 cDNAのうち 特異性の高い部分 (例えば、 3 ' 側の反復配列を含まない UTR領域) を PCR 増幅し、 アレイ固定用プローブを作製する。 この作業を繰り返して目的と する全ての遺伝子のプロ一プが調製できたら、 これらを市販のスポッター (例えば、 Amersham社製など) を用いてスライドグラス上にスポッティン グする。 かくして、 目的とする cDNAマイクロアレイが得られる。 Once a cDNA library has been created, PCR-amplify the highly specific portion (eg, UTR region not containing the 3 'repeat) to prepare an array-immobilization probe. When this procedure is repeated to prepare all the target genes, spot them on a slide glass using a commercially available spotter (for example, Amersham). Thus, the desired cDNA microarray is obtained.
(2) 遺伝子発現量の検出  (2) Detection of gene expression level
cDNAマイクロアレイによる遺伝子発現量の検出は、サンプル mRNA (或い は cDNA) を適当な試薬でラベルし、 これをアレイ上の cDNAプローブとハ ィブリダイズさせたときのシグナル強度として測定することができる。 遺 伝子の発現量は、通常アレイ上にスポットされた cDNAプローブ量のばらつ きを考慮し、 適当なコントロールとの比較値、 あるいは比較する 2サンプ ル間の発現量比として求めることが望ましい。 本スクリーニングの場合で あれば、ストレスを負荷しない無処理の植物由来の mRNAをコントロールと して、ストレスを付加した植物由来の mRNAの相対的発現量を検出すればよ い。  The gene expression level can be detected by a cDNA microarray by measuring the signal intensity when a sample mRNA (or cDNA) is labeled with an appropriate reagent and hybridized with a cDNA probe on the array. It is usually desirable to calculate the expression level of the gene as a comparison value with an appropriate control or the expression level ratio between two samples to be compared, taking into account the variation in the amount of cDNA probe spotted on the array. . In the case of this screening, the relative expression level of the mRNA derived from the stressed plant may be detected by using the mRNA derived from an untreated plant to which no stress is applied as a control.
検出は、 コントロールとサンプルの mRNA (あるいはその cDNA) を、 それ ぞれ異なる蛍光色素 (例えば、 Cy3 と Cy5) でラベルし、 アレイ上の cDNA プロ一ブと共にハイブリダイズさせることにより行う。 例えば、 ストレス を負荷した個体より mRNAを抽出し、 Cy5標識 dCTP存在下逆転写して Cy5 標識 cDNAを調製する。次に、ストレスを負荷しない無処理の個体より mRNA を抽出し、 同様の方法で Cy3標識 cDNAを調製する。 Cy5標識 cDNA (サンプ ル) と Cy3標識 cDNA (コントロール) を等量ずつ混合し、 アレイ上の cDNA とハイブリダィズさせる。 なお、 標識用色素はサンプルに Cy3を、 コント ロールに Cy5を利用してもよいし、 その他の適当な標識試薬を用いてもよ い。  Detection is performed by labeling the control and sample mRNAs (or their cDNAs) with different fluorescent dyes (eg, Cy3 and Cy5) and hybridizing them with the cDNA probes on the array. For example, mRNA is extracted from an individual subjected to stress and reverse-transcribed in the presence of Cy5-labeled dCTP to prepare a Cy5-labeled cDNA. Next, mRNA is extracted from untreated individuals without stress, and Cy3-labeled cDNA is prepared in the same manner. Mix equal amounts of Cy5-labeled cDNA (sample) and Cy3-labeled cDNA (control) and hybridize with the cDNA on the array. As the labeling dye, Cy3 may be used for the sample and Cy5 may be used for the control, or another appropriate labeling reagent may be used.
得られた蛍光強度を蛍光シグナル検出機で読み取り、 数値化すれば、 こ の値はコントロールに対するサンプルの遺伝子発現量比に相当する。 スキ ャナ一で読み取った蛍光強度は必要に応じて、 誤差の調整や各試料毎のば らつきの正規化を行ってもよい。 正規化は、 ハウスキーピング遺伝子等各 サンプルで共通に発現している遺伝子を基準に行うことができる。さらに、 信頼性限界ラインを特定して、 相関性の低いデータを除いてもよい。 If the obtained fluorescence intensity is read by a fluorescence signal detector and quantified, this value corresponds to the ratio of the gene expression level of the sample to the control. If necessary, the fluorescence intensity read by the scanner may be adjusted for error or normalized for variation in each sample. Normalization can be performed based on genes that are commonly expressed in each sample, such as housekeeping genes. further, A confidence limit line may be identified to exclude data with low correlation.
(3) ストレス誘導性遺伝子の選択  (3) Selection of stress-inducible genes
ストレス誘導性遺伝子は、 上記アレイによる解析の結果、 ストレスを負 荷した植物個体と負荷しない植物個体との間で発現量が著しく異なる遺伝 子として特定される。 ここで、 「著しく異なる」 とは、 例えば、 インテンシ ティ一 1 0 0 0以上で、 両者の発現量が少なくとも 3倍以上異なることを 意味する。  As a result of the analysis using the array, the stress-inducible gene is identified as a gene whose expression level is significantly different between a plant individual that has been subjected to stress and a plant individual that has not. Here, “significantly different” means that, for example, the expression levels of the two are different by at least three times or more when the intensity is 1000 or more.
(4) ノザン ·ブロッテイングによる発現解析  (4) Northern blotting expression analysis
こうして選択された遺伝子は、 さらにノザン解析等により、 ストレス誘 導性に当該遺伝子の発現が高まることを確認する。 例えば、 前述した方法 で、 様々なレベルの塩、 乾燥、 温度等のストレスに植物を暴露する。 そし て、 該植物から RNAを抽出し、 これを電気泳動にかけて分離する。 分離さ れた RNAは二トロセルロース膜に転写し、前記遺伝子に特異的な標識 cDNA プローブとハイブリダィゼーションさせれば., その発現量を検出すること ができる。  The gene selected in this manner is further confirmed by Northern analysis or the like to increase the expression of the gene in a stress-inducing manner. For example, exposing plants to various levels of salt, drought, temperature and other stresses in the manner described above. Then, RNA is extracted from the plant and separated by electrophoresis. The isolated RNA is transferred to a nitrocellulose membrane and hybridized with a labeled cDNA probe specific to the gene, whereby the expression level can be detected.
選択された遺伝子が、 ストレス依存的に発現が向上していれば、 該遺伝 子はストレス誘導性であることが確認できる。 こうして、イネ cDNAライブ ラリーより選択されたス卜レス誘導性遣伝子の例として、 本発明にかかる a0022 (LIP9 :配列番号 2 ) 及び a0066 (WSI724:配列番号 8 ) を挙げるこ とができる。 なお、 a0022及び a0066はマイクロアレイ上に固定されてい る cDNAの ID No.である。  If the expression of the selected gene is improved in a stress-dependent manner, it can be confirmed that the gene is stress-inducible. Thus, examples of the stress-inducing gene selected from the rice cDNA library include a0022 (LIP9: SEQ ID NO: 2) and a0066 (WSI724: SEQ ID NO: 8) according to the present invention. A0022 and a0066 are ID numbers of cDNAs fixed on the microarray.
1 . 3 プロモーター配列のスクリーニング 1.3 Screening of promoter sequence
(1) 遺伝子データベースからの推定 (1) Estimation from gene database
次に、 既存の遺伝子データベース (例えば、 DDBJのデータベース等) を 基に検索ソフト (例えば、 Blast 等) を用いてストレス誘導性遺伝子のプ ロモ—夕—配列を検索する。 イネのように、 ほとんどのゲノムが解読され ている植物では、 特定されたストレス誘導性遺伝子を支配するプロモ一夕 一配列の探索は既存のデータベースを用いてすべて可能となる。 プロモー ター配列は、 ゲノム上で前記ストレス誘導性遺伝子 (cDNA) と相同性の高 いゲノム遺伝子の上流領域から、 プロモ一ターと考えられる領域として選 ばれる。 例えば、 ストレス誘導性遺伝子のゲノム情報に基づき、 これらの 遺伝子の開始コドンと推定される位置から約 l〜2 kb 上流付近をプロモ 一ター領域と推定する。 Next, based on the existing gene database (eg, DDBJ database), search for the promoter-sequence of the stress-inducible gene using search software (eg, Blast). In plants where most of the genome has been deciphered, such as rice, searching for the promoter sequence that controls the identified stress-inducible gene is all possible using existing databases. The promoter sequence is selected as a region considered to be a promoter from the upstream region of the genomic gene having high homology with the stress-inducible gene (cDNA) on the genome. Devour. For example, based on the genomic information of the stress-inducible genes, the promoter region is estimated to be located at about l to 2 kb upstream from the estimated start codon of these genes.
ところで、 公知のストレス誘導性プロモーターの中には、 その配列中に 該プロモーター活性に関わるシスエレメント ;例えば、 乾燥ストレス応答 性エレメント(DRE; dehydrat ion-respons ive el ement)、 アブシジン酸応答 性エレメント(ABRE; absc i s ic ac id respons ive e lement)、 低温ストレス 応答性エレメントなど、  By the way, among known stress-inducible promoters, cis elements involved in the promoter activity are included in the sequence; for example, a drought stress responsive element (DRE), an abscisic acid responsive element (DRE), ABRE; absc is ic ac id respons ive e lement), low temperature stress responsive element
を有するものがある。 このシスエレメントにストレス誘導性の転写因子が 結合すると、 前記プロモーターが活性化され、 その支配下にあるス卜レス 耐性付与遣伝子を発現させる。 したがって、 検索した上流領域に前記シス エレメントが含まれていれば、 その領域はストレス誘導性プロモーターで ある可能性が非常に高いといえる。 Some have. When a stress-inducible transcription factor binds to this cis element, the promoter is activated, and a stress-resistance-imparting gene under its control is expressed. Therefore, if the cis element is contained in the searched upstream region, it can be said that the region is very likely to be a stress-inducible promoter.
かくして、 前述の 0022 (LIP9:配列番号 2 ) と相同性が高い遺伝子の ゲノム情報が得られ、その 1. lkb上流領域より推定 LIP9プロモーター配列 (配列番号 1 ) がスクリーニングされた。 同様にして、 a0066 (WSI724:配 列番号 8 )と相同性が高い遺伝子の上流領域より推定 WSI724プロモーター 配列 (配列番号 1 0 ) がスクリーニングされた。  Thus, genomic information of a gene highly homologous to the aforementioned 0022 (LIP9: SEQ ID NO: 2) was obtained, and a putative LIP9 promoter sequence (SEQ ID NO: 1) was screened from its 1. kb upstream region. Similarly, the putative WSI724 promoter sequence (SEQ ID NO: 10) was screened from the upstream region of the gene having high homology to a0066 (WSI724: SEQ ID NO: 8).
(2) ストレス誘導性プロモーターの機能確認  (2) Confirmation of function of stress-inducible promoter
次に推定プロモーター配列について、 ストレス負荷時における該プロモ 一ター活性の変化により、 その機能の確認を行う。  Next, the function of the putative promoter sequence is confirmed by a change in the promoter activity under stress.
まず、 前項で推定されたプロモーター配列を基にプライマーを作製し、 ゲノム DNAを銬型として PCRを行い、プロモーターのクローニングを行う。 次に、 該プロモーターの下流にレポ一ター遗伝子を連結して作製したレポ —タープラスミドを植物に導入し、 該植物 (好ましくはその T,世代) のス トレス負荷時におけるレポーターの発現を調べる。 なお、 レポーターとし ては、 例えば j3ダルクロニダーゼ (GUS: PBI 121, Clontech 社等)、 ルシフ エラーゼ遺伝子、 緑色蛍光タンパク質遺伝子等が挙げられるが、 活性が数 値で与えられること、 染色によつて発現が視覚的に観察できるという点で GUSが好ましい。 1 . 4 本発明のプロモーター First, a primer is prepared based on the promoter sequence estimated in the previous section, PCR is performed using genomic DNA as type III, and the promoter is cloned. Next, a reporter plasmid prepared by ligating a reporter gene downstream of the promoter is introduced into a plant, and expression of the reporter during stress loading of the plant (preferably its T, generation) is examined. Find out. Examples of reporters include j3 dalcuronidase (GUS: PBI121, Clontech, etc.), luciferase gene, green fluorescent protein gene, and the like. The activity is given numerically, and the expression is expressed by staining. GUS is preferred because it can be visually observed. 1.4 Promoter of the Present Invention
以上の結果、イネゲノム由来の LIP9プロモーター配列(配列番号 1 )は、 乾燥、 低温、 塩等の各ストレス依存的に高い発現を示すストレス誘導性プ 口モーターであることが確認された。  As a result, it was confirmed that the LIP9 promoter sequence (SEQ ID NO: 1) derived from the rice genome is a stress-inducible motor that exhibits high expression depending on stress such as drought, low temperature, and salt.
このように、 LIP9プロモー夕一はすべてのストレスに対して特異的に誘 導されるプロモーターである。 以下にその構造的、 機能的特徴を挙げる。 Thus, LIP9 Promoter is a promoter specifically induced for all stresses. The structural and functional characteristics are listed below.
1 ) LIP9プロモーターは、 その構造中に乾燥ストレス誘導に関与するシス エレメント DREを 2つ含む (図 2参照)。 1) The LIP9 promoter contains two cis-element DREs involved in the induction of drought stress in its structure (see Figure 2).
2 ) LIP9プロモーターは、 シスエレメント DREに結合してその下流の遺伝 子の転写を活性化させるイネ由来の転写因子: OsDREBl 遺伝子 (特願 2) The LIP9 promoter is a rice-derived transcription factor that binds to the cis element DRE and activates transcription of the downstream gene: OsDREBl gene (Japanese Patent Application
2001-358268号) の過剰発現体で高発現している。 No. 2001-358268).
3 ) LIP9プロモーターには OsDREB l遺伝子が結合する DRE配列が存在する ことから OsDREB 遗伝子の過剰発現の最適プロモーターであることが予測 される。  3) Since the LIP9 promoter contains a DRE sequence to which the OsDREBl gene binds, it is predicted that it is the optimal promoter for overexpression of the OsDREB gene.
一方、 WSI 724プロモー夕一も、 その構造中に DRE配列が 2つ含まれてい ること、 及び a0066のストレス負荷時の発現パターン (乾燥、 塩、 低温誘 導性で、 低温による誘導性が乾燥、 塩に比べて遅い) から、 OsDREB遺伝子 の夕—ゲッ卜になっていることが予想された。  On the other hand, the structure of WSI 724 Promo Yuichi also contains two DRE sequences in its structure, and the expression pattern of a0066 under stress load (dryness, salt, low temperature induction, low temperature induction Therefore, it was expected that the OsDREB gene would be an evening getter.
なお、 本発明のプロモータ一は配列番号 1又は配列番号 1 0で示される 塩基配列を有する丽 Aに限定されず、 配列番号 1又は配列番号 1 0で表さ れる塩基配列からなる DNAに相補的な塩基配列からなる DNAとストリンジ ェントな条件下でハイブリダイズしうる DNAも、 ストレス誘導性プロモー ター活性を有する限り、本発明のストレス誘導性プロモーターに含まれる。 ここで、 ストリンジェン卜な条件とは、 ホルムアミド濃度が 30〜50 %、 37 〜50で、 6 X SSCの条件、 好ましくはホルムアミド濃度が 50 %、 42°C、 6 x SSCの条件をいう。  The promoter of the present invention is not limited to 丽 A having the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 10, but is complementary to the DNA comprising the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 10. DNAs that can hybridize under stringent conditions with DNAs having a unique base sequence are also included in the stress-inducible promoter of the present invention as long as they have a stress-inducible promoter activity. Here, the stringent conditions refer to conditions of formamide concentration of 30 to 50%, 37 to 50 and 6 × SSC, preferably conditions of formamide concentration of 50%, 42 ° C. and 6 × SSC.
2 . 組換えべクタ一 2. Recombination vector
本発明の組換えべクタ一は、 本発明のプロモーターを含むベクターであ る。 該ベクターは、 本発明のプロモーターの下流に他の構造遺伝子又は調 節遺伝子を機能しうる態様で含んでいてもよい。 そのような遺伝子の好適 な例は、 ストレス耐性を向上させる構造遺伝子及び 又は調節遺伝子であ る。 なお、 「機能しうる態様」 とは、 他の構造遺伝子又は調節遺伝子が本発 明のプロモーターの支配下で適切に発現されるような態様を意味する。 ここで、 ストレス耐性を向上させる構造遺伝子とは、 乾燥ストレス、 低 温ストレス又は塩ストレス等の環境ストレスに対する植物の耐性を高める 機能を担うタンパクをコードする遺伝子であって;例えば、 LEA タンパク 質、 水チャネルタンパク質、 適合溶質合成酵素、 タバコの detoxification enzyme, 浸透圧調節物質(糖、 プロリン、 グリシンべ夕イン等)合成酵素、 細胞膜脂質の修飾酵素であるシロイヌナズナの w-3 fatty acid desaturase, らん藻の D9desaturaseの遺伝子、 プロリン合成の鍵酵素である P5CS、 ガ ラクチノール合成遺伝子 AtGolS3遺伝子を挙げることができる。 The recombinant vector of the present invention is a vector containing the promoter of the present invention. The vector may contain another structural gene or a regulatory gene downstream of the promoter of the present invention in a manner capable of functioning. Suitable for such genes A good example is a structural gene and / or a regulatory gene that improves stress tolerance. Here, the “functional aspect” means an aspect in which another structural gene or regulatory gene is appropriately expressed under the control of the promoter of the present invention. Here, the structural gene that improves stress tolerance is a gene that encodes a protein that has a function of increasing plant resistance to environmental stress such as drought stress, low temperature stress, or salt stress; for example, LEA protein, Water channel protein, compatible solute synthase, tobacco detoxification enzyme, osmotic pressure regulator (sugar, proline, glycine benzoin, etc.) synthase, w-3 fatty acid desaturase of Arabidopsis thaliana, a cell membrane lipid modifying enzyme, orchid D9desaturase gene, P5CS which is a key enzyme of proline synthesis, and galactinol synthesis gene AtGolS3 gene.
また、 ストレス耐性を向上させる調節遺伝子とは、 ストレス誘導性プロ モーターの活性や、 ストレス耐性を付与する遺伝子の発現を調節すること により、 植物のストレス耐性を向上させる遺伝子であって;例えば、 シロ ィヌナズナ由来の転写因子: DREB1A、 D謹 A、 DREB1B、 及び DREB1C遗伝子 (特開 2000-60558号公報参照)、イネ由来の転写因子: 0SDREB1A 0SMEB1B、 OsDREBl OsDREBID, 及び 0sDREB2A遺伝子 (特願 200卜 358268号)、 なら びに植物ホルモン ABAの生合成の鍵酵素である NCED遺伝子等を挙げること ができる。  A regulatory gene that improves stress tolerance is a gene that enhances plant stress tolerance by regulating the activity of a stress-inducible promoter or the expression of a gene that imparts stress tolerance; Transcription factors derived from Arabidopsis thaliana: DREB1A, D-Ken A, DREB1B, and DREB1C genes (see Japanese Patent Application Laid-Open No. 2000-60558), rice-derived transcription factors: 0SDREB1A 0SMEB1B, OsDREBl OsDREBID, and 0sDREB2A gene (Japanese Patent Application 200 No. 358268), and the NCED gene, which is a key enzyme in the biosynthesis of the plant hormone ABA.
特に、 本発明のプロモーターが特定のシスエレメントを含む場合は、 該 シスエレメントに結合し、 そのプロモー夕一活性を向上させる転写因子の 遺伝子を、 プロモーター下流に連結させることが好ましい。  In particular, when the promoter of the present invention contains a specific cis element, it is preferable to link a gene of a transcription factor that binds to the cis element and improves its promoter activity to the downstream of the promoter.
前述のように、 本発明にかかる LIP9 プロモーターはその構造内に DRE 配列を 2つ含む。 したがって、 LIP9プロモーターの下流に連結させる遺伝 子としては、 DREB遺伝子又は OsDREB遺伝子(例えば、 OsDREBIA, OsDREBlB, OsDREBIC, OsDREB ID, 0sDREB2A遺伝子、 0sDREB2B遺伝子) が好ましく、 特 に OsDREB遺伝子が最も好ましい。  As described above, the LIP9 promoter according to the present invention contains two DRE sequences in its structure. Therefore, as a gene linked downstream of the LIP9 promoter, a DREB gene or an OsDREB gene (eg, OsDREBIA, OsDREB1B, OsDREBIC, OsDREB ID, 0sDREB2A gene, 0sDREB2B gene) is preferable, and OsDREB gene is particularly preferable.
また、 WSI724プロモ一夕一も DRE配列を 2つ含み、 OsDREBのターゲット になっていることが予想されていることから、 その下流に連結させる遺伝 子としては、 DREB遺伝子又は OsDREB遺伝子(例えば、 OsDREB 1A、 OsDREB 1B、 OsDREBIC, OsDREBID, OsDREB2A遺伝子、 0sDREB2B遺伝子) が好ましく、 特 に OsDREB遺伝子が最も好ましいと考えられる。 Since the WSI724 promoter overnight also contains two DRE sequences and is expected to be a target for OsDREB, the gene to be linked downstream is the DREB gene or the OsDREB gene (eg, OsDREB gene). 1A, OsDREB 1B, OsDREBIC, OsDREBID, OsDREB2A gene, and 0sDREB2B gene) are preferable, and the OsDREB gene is particularly preferable.
本発明のベクターは、適当なベクターに本発明のプロモーターあるいは、 該プロモーターと他の調節遺伝子や構造遺伝子を機能しうる態様で連結 (挿入)して構築される。 プロモーターを挿入するためのベクターは、 宿主 中で複製可能なものであれば特に限定されず、 例えばプラスミド DNA、 フ ァ一ジ DNAなどが挙げられる。プラスミド DNAとしては、 pBR322、pBR325、 pUC118、 pUC119などの大腸菌宿主用プラスミド、 ρϋΒ110、 ρΤΡ5などの枯草 菌用プラスミド、 YEpl3、YEp24、YCp50などの酵母宿主用プラスミド、 pBI221、 PBI 121などの植物細胞宿主用プラスミドなどが挙げられる。又はジ DNAと しては λファージなどが挙げられる。 さらに、 レトロウイルス又はワクシ ニァウィルスなどの動物ウィルス、 バキュロウィルスなどの昆虫ゥィルス をベクターとして用いてもよい。  The vector of the present invention is constructed by ligating (inserting) the promoter of the present invention or the promoter of the present invention and another regulatory gene or structural gene into an appropriate vector. The vector for inserting the promoter is not particularly limited as long as it can be replicated in the host, and examples thereof include plasmid DNA and phage DNA. Plasmid DNA includes plasmids for Escherichia coli host such as pBR322, pBR325, pUC118 and pUC119, plasmids for Bacillus subtilis such as ρϋΒ110 and ρΤΡ5, plasmids for yeast host such as YEpl3, YEp24 and YCp50, and plant cell hosts such as pBI221 and PBI121 Plasmids for use. Alternatively, examples of diDNA include λ phage. Furthermore, animal viruses such as retrovirus or vaccinia virus, and insect viruses such as baculovirus may be used as vectors.
本発明のプロモーターのベクターへの揷入は、 精製された DNAを適当な 制限酵素で切断し、 これをべクタ一の制限酵素部位又はマルチクローニン グサイトに揷入して連結すればよい。  The promoter of the present invention can be inserted into a vector by cutting the purified DNA with an appropriate restriction enzyme and inserting the resulting DNA into a restriction enzyme site or a multicloning site of a vector.
本発明の組換えベクターは、 さらに、 所望によりスプライシングシダナ ル、 ポリ Α付加シグナル、 選択マーカー、 リボソーム結合配列 (SD配列) などを含有してもよい。 なお、 選択マーカーとしては、 例えばジヒドロ葉 酸還元酵素遺伝子、 アンピシリン耐性遺伝子、 ネオマイシン耐性遺伝子な どを用いることができる。  The recombinant vector of the present invention may further contain a splicing fern, a polyaddition signal, a selection marker, a ribosome binding sequence (SD sequence), and the like, if desired. As a selection marker, for example, a dihydrofolate reductase gene, an ampicillin resistance gene, a neomycin resistance gene, and the like can be used.
3 . 形質転換体 3. Transformants
本発明の形質転換体は、 本発明の組換えベクターを、 プロモーター活性 が発現し得る態様で宿主中に導入することにより構築することができる。 ここで、 宿主は本発明のプロモーターが機能しうるものであれば特に限定 されないが、 植物が好ましく、 特にイネ等の単子葉植物がより好ましい。 植物や植物細胞を宿主とする場合、例えばイネ、 トウモロコシ、コムギ、 シロイヌナズナ、 タバコ、 ニンジンなどから株化した細胞ゃ該植物から調 製したプロトプラストが用いられる。 植物への組換えベクターの導入方法 としては、 Abel らのポリエチレングリコールを用いる方法 [Abel, H. et al. PPllaanntt JJ.. 55 :: 442211-- 442277 ((11999944)) ]]ややエエレレククトトロロポポレレーーシシヨヨンン法法ななどどがが挙挙げげらられれるる。。 44 .. スストトレレスス耐耐性性トトラランンススジジエエニニッックク植植物物 The transformant of the present invention can be constructed by introducing the recombinant vector of the present invention into a host in such a manner that the promoter activity can be expressed. Here, the host is not particularly limited as long as the promoter of the present invention can function, but is preferably a plant, and more preferably a monocotyledon such as rice. When a plant or plant cell is used as a host, for example, cells established from rice, corn, wheat, Arabidopsis, tobacco, carrot, etc., or protoplasts prepared from the plant are used. As a method for introducing a recombinant vector into a plant, a method using polyethylene glycol of Abel et al. [Abel, H. et al. PPllaanntt JJ .. 55 :: 442211--442277 ((11999944))]] Some examples include the method of the electorotropolpoporation method. . 44 .. Sustotreress resistant totralans suzijeeninicnik plant
((11)) トトラランンススジジエエニニッックク植植物物のの作作製製  ((11)) Production and production of totralanthus sujieniininikku plant
本本発発明明ののププロロモモーータターーのの支支配配下下にに、、 スス卜卜レレスス耐耐性性をを向向上上ささせせるる構構造造遺遺伝伝 子子及及びび 又又はは調調節節遺遺伝伝子子をを機機能能ししううるる態態様様でで連連結結ししてて植植物物にに導導入入すするるこことと にによよりり、、 環環境境スストトレレスス、、 特特にに、、 低低温温スストトレレスス、、 凍凍結結スストトレレスス、、 乾乾燥燥スストトレレ ススななどどにに対対ししてて抵抵抗抗性性がが向向上上さされれたたトトラランンススジジエエニニッックク植植物物をを作作出出すするるここ ととががででききるる。。 宿宿主主植植物物ととししててはは、、 特特にに単単子子葉葉植植物物がが好好ままししいい。。  Under the control of the propromotor motor according to the invention of the present invention, a structural structural genetic gene and a gene for improving the resistance to storage stress are improved. Alternatively, the genetic genes of the control node are linked in a functionally operable manner and introduced into a plant. Improved resistance to environmental and environmental stresses, especially low- and low-temperature storages, freeze-freezing storages, dry and dry storages, etc. You will be able to create the totoranse sujieniininikku plant that has been raised. . As the main host plant, particularly preferred is a monocotyledonous cotyledon plant. .
植植物物宿宿主主へへのの本本発発明明ののププロロモモーータターー等等のの導導入入方方法法ととししててはは、、 ァァググロロパパクク テテリリゥゥムム感感染染法法ななどどのの間間接接導導入入法法やや、、 パパーーテティィククルルガガンン法法、、 ポポリリエエチチレレンン ダダリリココーールル法法、、 リリボボソソーームム法法、、 ママイイククロロイインンジジェェククシショョンン法法ななどどのの直直接接導導 入入法法ななどどがが挙挙げげらられれるる。。 従従来来、、 イイネネののよよううなな単単子子葉葉植植物物でではは、、 ァァググロロパパクク テテリリゥゥムム感感染染法法をを用用いいたたトトラランンススジジエエニニッックク植植物物のの作作製製はは困困難難とといいわわれれてて ききたたがが、、 ァァセセ卜卜シシリリンンゴゴンンをを加加ええるるここととにによよつつ
Figure imgf000014_0001
As a method for introducing and introducing the propromotor motor and the like of the present invention to the host of the plant and plant accommodation host, there is a method of faggloropapak teterium The indirect method such as the infectious dyeing method, the indirect method of introduction, the method of papartitikurrugagan, the method of popoliliechirirenren, the method of dadariko, There are various direct-induction and lead-in laws such as the Mum method and the law of law. . Conventionally, in monomonocotyledonous plants such as rice varieties, totraransu suzijeeninich, which uses the infectious infection method of aggloropopaque It has been said that it is difficult and difficult to produce and produce cultivated plants.However, it depends on the fact that it is possible to add acetic acid.
Figure imgf000014_0001
ネに感染可能となり、 単子葉植物においても利用可能となってきた。 It has become infectious and can be used in monocotyledonous plants.
以下にァグロパクテリゥムを用いたトランスジエニック植物の作製につ いて説明する。  The production of transgenic plants using Agrobacterium is described below.
まず、 本発明のプロモーターとストレス耐性を向上させる構造遗伝子及 び Z又は調節遺伝子とを含む DNAを適当な制限酵素で切断後、 必要に応じ て適切なリンカ一を連結し、 植物細胞用のクローニングベクタ一に揷入し て植物導入用組換えべク夕一を作製する。 クローニング用ベクターとして は、 pBI 2113Not、 PBI 2113, ρΒΙ ΙΟ Κ ρΒΠ21、 pGA482、 pGAH、 pBIG等のバ イナリーベクター系のプラスミドや pLGV23Neo、 pNCATゝ MON200などの中 間べクタ一系のプラスミドを用いることができる。  First, after cutting a DNA containing the promoter of the present invention and a structural gene for improving stress tolerance and Z or a regulatory gene with an appropriate restriction enzyme, an appropriate linker is ligated if necessary, and Into the cloning vector to produce a recombinant vector for plant introduction. As a cloning vector, a binary vector-based plasmid such as pBI2113Not, PBI2113, ρΒΙ ΒΠ ΒΠρΒΠ21, pGA482, pGAH, or pBIG, or an intermediate vector-based plasmid such as pLGV23Neo or pNCAT ゝ MON200 may be used. it can.
バイナリーベクター系プラスミドを用いる場合、 上記のバイナリーべク ターの境界配列(LB,RB)間に、 目的遺伝子を挿入し、 この組換えベクターを 大腸菌中で増幅する。 次いで、 増幅した組換えベクターをァグロバクテリ ゥム ·ッメファシエンス C58、 LBA4404. EHA10 K C58C lRi iR、 EHM05等に、 凍結融解法、 エレクト口ポレーシヨン法等により導入して、 植物への形質 導入用に用いる。 上記の方法以外に、 三者接合法 [Nuc l e ic Ac ids Research, 12 : 8711 (1984) ]によっても植物導入用ァグロバクテリゥムを調製することが できる。 すなわち、 目的遺伝子を含むプラスミドを保有する大腸菌、 ヘル パ一プラスミド(例えば PRK2013など)を保有する大腸菌、 及びァグロパク テリゥムを混合培養し、 リファンピシリン及びカナマイシンを含む培地上 で培養して植物導入用の接合体ァグロバクテリゥムを得ることができる。 植物体内で外来遺伝子などを発現させるためには、 構造遺伝子の後に、 植物用のターミネータ一などを配置させる必要がある。 本発明において利 用可能なターミネータ一配列としては、 例えば力リフラヮ一モザイクウイ ルス由来ゃノパリン合成酵素遺伝子由来のターミネータ一などが挙げられ る。 但し、 植物体内で機能することが知られているターミネータ一であれ ばこれらのものに限定されるものではない。 When using a binary vector-based plasmid, insert the target gene between the boundary sequences (LB, RB) of the binary vector and amplify this recombinant vector in E. coli. Then, the amplified recombinant vector into Agurobakuteri ©-time Mmefashiensu C58, LBA4404. EHA10 K C58C lRi i R, EHM05 like, freeze-thaw method, introduced by elect port Poreshiyon method, used for transduction into a plant . In addition to the above method, agrobacterium for plant introduction can also be prepared by a three-way conjugation method [Nuclide Acids Research, 12: 8711 (1984)]. That is, Escherichia coli having a plasmid containing a target gene, Escherichia coli having a helper plasmid (for example, PRK2013), and agrobacterium are mixed-cultured, and cultured on a medium containing rifampicillin and kanamycin, followed by conjugation for plant introduction. Body agrobacterium can be obtained. In order to express a foreign gene in a plant, it is necessary to arrange a plant terminator after the structural gene. The terminator sequence that can be used in the present invention includes, for example, a terminator derived from a nopaline synthase gene derived from a mosaic virus. However, the terminator is not limited to these as long as it is a terminator known to function in a plant.
さらに、 効率的に目的の形質転換細胞を選択するために、 有効な選択マ 一力一遺伝子を使用することが好ましい。 その際に使用する選択マーカー としては、カナマイシン耐性遗伝子(NPTI I)、抗生物質ハイグロマイシンに 対する抵抗性を植物に付与する八ィグロマイシンホスホトランスフェラー ゼ(litp)遺伝子及びビアラホス(bi al aphos)に対する抵抗性を付与するホス フイノスリシンァセチルトランスフエラ一ゼ (bar)遗伝子等から選ばれる 1つ以上の遺伝子を使用することができる。 本発明のプロモーター及び選 択マーカー遺伝子は、 単一のベクターに一緒に組み込んでも良いし、 それ ぞれ別個のベクタ一に組み込んだ 2種類の組換え DNAを用いてもよい。  Further, it is preferable to use an effective selection gene in order to efficiently select a desired transformed cell. The selection markers used in this case are kanamycin resistance gene (NPTI I), octagromycin phosphotransferase (litp) gene that confers resistance to the antibiotic hygromycin to plants, and bialaphos (bialaphos). And the like. One or more genes selected from phosphinothricin acetyltransferase (bar) genes that confer resistance to) can be used. The promoter and the selectable marker gene of the present invention may be integrated together into a single vector, or two types of recombinant DNAs each integrated into separate vectors may be used.
こうして調製したァグロパクテリゥムを採取した植物切片に感染させれ ば、 目的とする卜ランスジエニック植物が作製できる。  By infecting a plant section from which the thus prepared agrobacterium has been collected, a desired transgenic plant can be produced.
卜ランスジエニック植物は、 適切な抗生物質を加えた培地に播種し、 目 的のプロモーターや遺伝子を保有する個体を選択する。選択された個体は、 ボンソル 1号や黒土等の入った鉢に植え替えてさらに生育させる。一般に、 導入遺伝子は宿主植物のゲノム中に同様に導入されるが、 その導入場所が 異なることにより導入遺伝子の発現が異なるポジションイフェク卜と呼ば れる現象が見られる。 そこで、 プローブとして導入遺伝子の DNA断片を用 いたノザン法で検定することによって、 より導入遺伝子が強く発現してい る形質転換体を選抜することができる。 Transgenic plants are sown on a medium supplemented with an appropriate antibiotic, and individuals with the desired promoter and gene are selected. The selected individuals are replanted in pots containing Bonsol No. 1 or black clay and grown further. Generally, a transgene is similarly introduced into the genome of a host plant, but a phenomenon called a position effect in which the expression of the transgene varies depending on the location of the transgene is seen. Therefore, the transgene was more strongly expressed by performing a Northern blot test using the DNA fragment of the transgene as a probe. Transformants can be selected.
(2)ストレス耐性の確認  (2) Confirmation of stress tolerance
本発明のプロモーターゃストレス耐性を向上させる構造遺伝子及び Z又 は調節遺伝子が、 トランスジエニック植物及びその次世代に組み込まれて いることの確認は、これらの細胞及び組織から常法に従つて DNAを抽出し、 PCR法又はサザン分析等を用いて導入した遺伝子を検出することにより行 うことができる。  The promoter of the present invention—the confirmation that the structural gene for improving stress tolerance and the Z or regulatory gene have been incorporated into the transgenic plant and its next generation can be carried out from these cells and tissues using a conventional method. By extracting the introduced gene using PCR or Southern analysis or the like.
また、 トランスジエニック植物における導入遺伝子の発現レベル及び発 現部位の分析は、 該植物の細胞及び組織から常法に従って RNAを抽出し、 RT-PCR法又はノザン解析を用いて導入した遺伝子の mRNAを検出すること により行うことができる。 あるいは、 導入した遺伝子の転写産物を、 抗体 を用いたウエスタン分析等により直接、 分析してもよい。  In addition, analysis of the expression level and expression site of the transgene in the transgenic plant is performed by extracting RNA from cells and tissues of the plant according to a conventional method, and analyzing the mRNA of the transgene by RT-PCR or Northern analysis. This can be done by detecting Alternatively, the transcript of the introduced gene may be directly analyzed by Western analysis or the like using an antibody.
本発明のプロモーターを導入したトランスジエニック植物の環境ストレ スに対する耐性は、 例えばバーミキユライト、 パーライト、 ボンソルなど を含む土を入れた植木鉢にトランスジエニック植物を植え、 或いは水耕栽 培を行い、 各種環境ストレスを負荷した場合の生存を調べることによって 評価することができる。 環境ストレスとしては、 低温、 乾燥、 塩等が挙げ られる。 例えば、 乾燥ストレスに対する耐性は 2〜4週間、 水を与えずそ の生存を調べることにより評価することができる。 また低温 ·凍結ストレ スに対する耐性は、 15〜- 10 に、 1〜10 日間おいた後、 2 日〜 3週間、 20 〜35°Cで生育させその生存率を調べることにより評価することができる。 また、 塩ストレスは 100〜600mM NaC lで 1時間〜 7日間おいた後、 1〜3週 間、 20〜35°Cで生育させその生存率を調べることにより評価することがで きる。 かくして、 本発明のプロモーターを用いれば、 植物 (特に単子葉植 物) を矮化させることなくそのストレス耐性を著しく向上させることがで さる。  The resistance to environmental stress of a transgenic plant into which the promoter of the present invention has been introduced can be determined by, for example, planting the transgenic plant in a flower pot containing soil containing vermiculite, perlite, bonsol, or the like, or cultivating the water in a water culture. It can be evaluated by examining the survival when various environmental stresses are applied. Environmental stress includes low temperature, drying, salt and the like. For example, resistance to drought stress can be assessed by examining its survival without water for 2-4 weeks. Resistance to low temperature and freezing stress can be evaluated by placing the cells at 15 to -10 for 1 to 10 days, growing them at 20 to 35 ° C for 2 to 3 weeks, and examining their survival rates. . In addition, salt stress can be evaluated by placing the cells in 100 to 600 mM NaCl for 1 hour to 7 days, growing them at 20 to 35 ° C for 1 to 3 weeks, and examining the survival rate. Thus, the use of the promoter of the present invention makes it possible to significantly improve stress tolerance of plants (particularly monocotyledonous plants) without dwarfing them.
(3) トランスジエニック植物の好適な例  (3) Suitable examples of transgenic plants
本発明にかかるトランスジエニック植物の好適な例として、 LIP9あるい は WSI724プロモーター支配下に OsDREB遺伝子を機能しうる態様で連結し たベクターをイネ、 コムギ等の単子葉植物に導入したトランスジエニック 植物を挙げることができる。 LIP9プロモーターには DRE領域が 2つ含まれ ているため、 OsDREB遺伝子は該シスエレメントに結合することにより、 効 果的にそのストレス耐性効果を示すことができる。 同様に、 WSI724プロモ 一夕一にも DRE領域が 2つ含まれているため、 OsDREB遺伝子の発現を高め て、 植物のストレス耐性を向上させることができる。 実 施 例 A preferred example of the transgenic plant according to the present invention is a transgenic plant obtained by introducing a vector in which the OsDREB gene is operably linked under the control of the LIP9 or WSI724 promoter into a monocot plant such as rice or wheat. Plants can be mentioned. Since the LIP9 promoter contains two DRE regions, the OsDREB gene can effectively exhibit its stress tolerance effect by binding to the cis element. Similarly, since the WSI724 promoter contains two DRE regions per night, the expression of the OsDREB gene can be increased to improve plant stress tolerance. Example
以下、 実施例により本発明について具体的に説明するが、 本発明の範囲 はこれらに限定されるものではない。  Hereinafter, the present invention will be described specifically with reference to Examples, but the scope of the present invention is not limited thereto.
〔実施例 1〕 イネのストレス誘導性遺伝子の同定  [Example 1] Identification of rice stress-inducible gene
cDNAマイクロアレイとノザン解析により、イネのストレス誘導性遺伝子 を探索した。  We searched rice stress-inducible genes by cDNA microarray and Northern analysis.
1. イネ cDNAマイクロアレイの作製  1. Preparation of rice cDNA microarray
2〜 3週間水耕栽培したイネ (日本晴) をそれぞれ乾燥、 塩、 低温処理 を行った。乾燥処理は室温で風乾し、塩処理は 250mMの NaCl溶液で栽培し、 低温処理は 4°Cで栽培した。 各ストレス処理を行ったイネは液体窒素で凍 結後、グァニジンチオシァネート—塩化セシウム法により全 RNA を抽出し、 Oligo(dt)- cellulose カラムを用いて mRNA を調製した。 得られた mRNA を铸型にして、 HybriZAP-2.1 two-hybrid cDNA Gigapack cloning kit (STRATAGENE 社製) を用いて cDNA を合成し、 HybriZAP-2.1 ファージミ ドベクタ一の EcoRI-XhoI 切断部位に挿入し、 クローニングした。 このフ ァ一ジミド 層 A を Gigapack III Gold packaging extract (STRATAGENE 社 製) を用いてパッケージングした。 得られた、 cDNAを含むラムダファージ 粒子を宿主大腸菌に感染させ増幅した後、ファージ懸濁液として回収した。 上記 cDNAクローンの塩基配列をシークェンスして約 1500個の独立した クローンを選抜した。 選抜したクローンを PCR法で増幅させ、 GTMASS Sys tem (Nippon Laser and Electronic Laboratory) を用レ て、 poly-L-lysi ne- coated マイクロスライドグラス(model S7444 ; Matsimami)にスタン ビングした後、 UVクロスリンクによって固定し、 イネ cDNAマイクロアレ ィを作製した (The Plant Cell (2001) 13 : 61-72 Seki et al)。 2. マイクロアレイ解析 Rice (Nipponbare) cultivated hydroponically for 2-3 weeks was dried, salted and treated at low temperature. The drying treatment was air-dried at room temperature, the salt treatment was cultivated with a 250 mM NaCl solution, and the low-temperature treatment was cultivated at 4 ° C. The rice subjected to each stress treatment was frozen in liquid nitrogen, and total RNA was extracted by the guanidine thiosinate-cesium chloride method, and mRNA was prepared using an Oligo (dt) -cellulose column. The obtained mRNA was transformed into type III, cDNA was synthesized using HybriZAP-2.1 two-hybrid cDNA Gigapack cloning kit (manufactured by STRATAGENE), inserted into the EcoRI-XhoI cleavage site of HybriZAP-2.1 phagemid vector, and cloned. did. The phagemid layer A was packaged using Gigapack III Gold packaging extract (manufactured by STRATAGENE). The obtained lambda phage particles containing cDNA were infected to host Escherichia coli and amplified, and then collected as a phage suspension. Approximately 1500 independent clones were selected by sequencing the above cDNA clones. The selected clones were amplified by PCR, stamped on poly-L-lysine-coated micro slide glass (model S7444; Matsimami) using GTMASS System (Nippon Laser and Electronic Laboratory), and then UV-crossed. A rice cDNA microarray was prepared by linking (The Plant Cell (2001) 13: 61-72 Seki et al). 2. Microarray analysis
前項と同様の乾燥、 塩、 低温の各ストレス処理、 又は 100 xMのアブシジ ン酸処理(5時間又は 10時間)を行ったィネ、ならびに無処理のィネの各々 から mRNAを精製した。 無処理のイネ由来の mRNAをコントロール、 各スト レス又はアブシジン酸処理したイネ由来の mRNAをサンプルとして、それぞ れ Cy3、 Cy5を用いた二蛍光標識法を用いて、 cDNAマイクロレイ解析を行 つた。 マイクロアレイ解析の結果、 インテンシティ一: 1000以上で、 コン トロールに比較して 3倍以上の発現量が認められた遺伝子をストレス誘導 性遺伝子の候補として選択した。 かくして、 a0022 (LIP9 :配列番号 2 ) 及 び a0066 (WSI724:配列番号 8 ) がストレス誘導性遺伝子として選択され た。  MRNA was purified from each of the rice plants that had been subjected to the same dry, salt, and low-temperature stress treatments as described in the previous section, or 100 xM abscisic acid treatment (5 hours or 10 hours), and untreated rice. CDNA microray analysis was performed using untreated rice-derived mRNA as a control, and mRNA from each stress or abscisic acid-treated rice as a sample, using the dual fluorescent labeling method with Cy3 and Cy5, respectively. . As a result of microarray analysis, a gene having an intensity of 1: 1000 or more and having an expression level of 3 times or more as compared to the control was selected as a candidate for a stress-inducible gene. Thus, a0022 (LIP9: SEQ ID NO: 2) and a0066 (WSI724: SEQ ID NO: 8) were selected as stress-inducible genes.
3. ノザンハイブリダイゼーシヨンによる発現解析  3. Expression analysis by Northern hybridization
前項で選択された遗伝子の発現特性をノザンハィブリダイゼーシヨンに より解析した。 まず、 イネをアブシジン酸、 乾燥、 低温、 塩 水の各スト レスに暴露し、 それぞれ 0, 1, 2, 5, 10時間ごとにサンプリングした。 な お、 アブシジン酸、乾燥、低温、塩ストレスは、 1. と同様の方法で付与し、 水ストレスは純水に浸すことにより付与した。 それぞれのサンプルから全 RNA を調製し、 電気泳動を行い、 ノザン法により各遺伝子の発現を見た。 結果を図 1に示す。  The expression characteristics of the gene selected in the previous section were analyzed by Northern hybridization. First, rice was exposed to abscisic acid, dry, low temperature, and saline stress, and samples were taken at 0, 1, 2, 5, and 10 hours, respectively. Abscisic acid, dryness, low temperature, and salt stress were applied in the same manner as in 1., and water stress was applied by immersion in pure water. Total RNA was prepared from each sample, electrophoresed, and the expression of each gene was observed by the Northern method. The results are shown in Figure 1.
図 1から明らかなように、 a0022 はアブシジン酸、 乾燥、 低温, 塩の各 ストレスにより発現が誘導され、 特にアブシジン酸、 乾燥、 塩では早い時 間帯に発現の上昇がみられ、 低温では遅いに時間帯に発現の上昇がみられ た。 また、 a0066 は、 そのストレス負荷時の発現パターン (乾燥、 塩、 低 温誘導性で、 低温による誘導性が乾燥、 塩に比べて遅い) から OsDREBの夕 一ゲットになっていることが予想された。  As is evident from Fig. 1, expression of a0022 is induced by the stresses of abscisic acid, drought, low temperature, and salt. In particular, the expression of abscisic acid, drought, and salt is increased at an early time, and is slow at a low temperature. During the period, the expression increased. The expression pattern of a0066 during stress loading (induced by drought, salt and low temperature, and induced by low temperature is slower than that of dry and salt) is expected to be OsDREB overnight. Was.
〔実施例 2〕 プロモーター配列の解析 [Example 2] Analysis of promoter sequence
1. イネゲノムデ一夕ベースのスクリーニング 1. Screening based on rice genome data
実施例 1でストレス誘導性遺伝子として選択された cDNA : a0022 (LIP9: 配列番号 2 ) について、 DDBJ のイネゲノムデータベースを利用し、 blas t により相同部位の検索を行った。 その結果、 相同性が認められた遺伝子の 開始コドンから 5 '側に向かって、 1. lkb上流の配列をプロモーター配列(配 列番号 1 ) として選択した。 また、 a0066 (WSI724:配列番号 8 ) について も同様の検索を行い、 そのプロモーター配列 (配列番号 1 0 ) が選択され た。 The cDNA selected as the stress-inducible gene in Example 1: a0022 (LIP9: SEQ ID NO: 2) was analyzed using the DDBJ rice genome database. Was used to search for homologous sites. As a result, a sequence 1 lkb upstream from the start codon of the homologous gene to the 5 'side was selected as a promoter sequence (SEQ ID NO: 1). Similar search was also performed for a0066 (WSI724: SEQ ID NO: 8), and its promoter sequence (SEQ ID NO: 10) was selected.
図 2に LIP9のプロモーター領域の構造を示す。図 2から明らかなように、 LIP9はその構造中に 2ケ所のシス配列 DRE ( (A/G) CCGAC) を持つことが確 認された。 また、 図 7に WSI724のプロモータ一領域の構造を示す。 WSI 72 4プロモーターについても、 その構造中に 2ケ所のシス配列 DRE ( (A/G) CC GAC) を持つことが確認された。  Figure 2 shows the structure of the promoter region of LIP9. As is clear from FIG. 2, it was confirmed that LIP9 has two cis sequences DRE ((A / G) CCGAC) in its structure. Fig. 7 shows the structure of one region of the promoter of WSI724. It was also confirmed that the WSI724 promoter had two cis sequences DRE ((A / G) CCGAC) in its structure.
2. クローニング 2. Cloning
選択されたプ口モーター配列を基にプライマ一を設計し、 イネのゲノム DNAを铸型として PCRを行い、 クローニングを行った。 用いたプライマー 配列及び PCR条件は以下のとおりである。  A primer was designed based on the selected motor sequence, and PCR was performed using rice genomic DNA as a type II clone for cloning. The primer sequences and PCR conditions used are as follows.
L IP9プロモーター用プライマ一配列: Primer sequence for L IP9 promoter:
Forward pr ime r: 5 ' -CACGAAGCTTTCATCAGCTATTCATCAA-3 ' (配列番号 3 ) Forward primer: 5'-CACGAAGCTTTCATCAGCTATTCATCAA-3 '(SEQ ID NO: 3)
Reverse pr ime r: 5 ' -CCGGATCCTCGATCGATGGATTCAGCTA-3 ' (配列番号 4 ) WSI 724プロモーター用プライマー配列: Reverse primer: 5'-CCGGATCCTCGATCGATGGATTCAGCTA-3 '(SEQ ID NO: 4) Primer sequence for WSI 724 promoter:
Forward pr imer: 5' -CCATTGGATCCAGCCGTGGAAGTCCAAC-3' (配列番号 1 1 ) Reverse pr imer : 5' -GCCGGGGATCCTTGGCGCCTCTCTCTCT-3' (配列番号 1 2 ) PCR条件: 9 5度 1分 5 5度 1分 6 8度 2分 3 0サイクル  Forward primer: 5'-CCATTGGATCCAGCCGTGGAAGTCCAAC-3 '(SEQ ID NO: 11) Reverse primer: 5'-GCCGGGGATCCTTGGCGCCTCTCTCTCT-3' (SEQ ID NO: 12) PCR conditions: 95 degrees 1 minute 55 degrees 1 minute 68 degrees 2 minutes 30 cycles
〔実施例 3〕 ストレスに対する LIP9プロモーター活性 [Example 3] LIP9 promoter activity against stress
( 1 ) トランスジエニック植物の作製  (1) Preparation of transgenic plants
pBIG29APHSNot のプロモーター部位をトウモロコシのュビキチンプロモ 一夕一に置換して作られた G-uMプラスミドを BamHI-Hind l l lで切断し、 同様に切断した LIP9プロモーターの断片と連結した。 LIP9プロモータ一 を組み込んだプラス ミ ド を BamHI-EcoRI で切断し、 同様に PBI 221 (Cl ontech)を BamHI- EcoRIで切断し切り出した Gus遺伝子と連結し Gus 発現コンストラクト(G_LIP9 : GUS)を作製した (図 3 )。 プラスミ ド G-LIP9:GUSを、培養後 10% glycerolで洗浄したァグロパクテリゥム EHA105 にエレク トロポレーシヨン法によって導入し、 ァグロパクテリゥム EHA105 (G-LIP9:GUS) を 作製 し た 。 こ の ァ グ ロ ノ ク テ リ ウ ム EHA105 (G-LIP9:GUS)を以下のようにしてイネに感染させ、 形質転換体を作 製した。 The G-uM plasmid generated by replacing the promoter site of pBIG29APHSNot with maize ubiquitin promoter overnight was digested with BamHI-HindIII and ligated with the similarly digested LIP9 promoter fragment. A plasmid incorporating the LIP9 promoter was digested with BamHI-EcoRI, and PBI 221 (Clontech) was similarly digested with BamHI-EcoRI and ligated to the excised Gus gene to prepare a Gus expression construct (G_LIP9: GUS). (Figure 3). Plasmid G-LIP9: GUS was introduced into agrobacterium EHA105, which was washed with 10% glycerol after culturing, by electroporation to produce agrobacterium EHA105 (G-LIP9: GUS). The rice was infected with this agrobacterium EHA105 (G-LIP9: GUS) as follows to prepare a transformant.
イネの種子を 70%エタノールで 1分浸潰し、 さらに 2%次亜塩素酸ナトリ ゥムに 1時間浸漬することにより滅菌し、次いで滅菌水により水洗後、 N6D 固形培地(1 リットル当たり: CHIHN6] Basal Salt Mixture (Sigma 社製) 3.98g、 スクロース 30g、 ミオイノシトール 100mg、 カザミノ酸 300mg、 L - プロリン 2878mg、 グリシン 2mg、 ニコチン酸 0.5mg、 ピリドキシン塩酸 0.5mg、 チアミン塩酸 lmg、 2, 4-D 2mg、 ゲルライト 4g、 H 5.8)のプレー トに 9粒ずつ播種し、 24日間培養してカルスを誘導した。 形成された種子 約 20粒分のカルスを、新たな N6D固形培地に移植し、 さらに 3日間培養し た。  Rice seeds are immersed in 70% ethanol for 1 minute, sterilized by immersion in 2% sodium hypochlorite for 1 hour, then washed with sterile water, and N6D solid medium (per liter: CHIHN6) Basal Salt Mixture (Sigma) 3.98 g, sucrose 30 g, myo-inositol 100 mg, casamino acid 300 mg, L-proline 2878 mg, glycine 2 mg, nicotinic acid 0.5 mg, pyridoxine hydrochloride 0.5 mg, thiamine hydrochloride lmg, 2,4-D 2 mg Then, 9 seeds were inoculated on a plate of Gelrite 4g, H5.8), and cultured for 24 days to induce callus. The callus of about 20 seeds was transferred to a new N6D solid medium and cultured for another 3 days.
一方、上記ァグロパクテリゥム EHA105 (G-LIP9:GUS)を 5mlのリファンピ シリン 100mg/l、及びカナマイシン 20mg/lを含む YEP培地 (1リットル当た り: Bacto peptone 10g、Bacto yeast extract 10g、NaCl 5g、MgCl 6H20406mg、 pH 7.2)で 28でで 24時間培養した。 このァグロパクテリゥムを 20mg/lの ァセトシリンゴンを含む AAM培地(1リツトル当たり: MnS04'5H2010mg、H3B03 3mg、 ZnS04'7H202mg、 NajMoO^- 2H,0250 g、 CuS04-5H2025 g, CoCl2-6H2025 ig, KI 750 zg, CaCl2-2H20150mg, MgS04'7H20250mg、 Fe - EDTA 40mg、 Na P04. 2H20150mg、ニコチン酸 lmg、チアミン塩酸 10mg、 ピリドキシン塩酸 lmg、 ミオイノシトール 100mg、 L -アルギニン 176.7mg、 グリシン 7.5mg、 L -グ ル夕ミン 900mg、 ァスパラギン酸 300mg、 KC13g、 pH 5.2)で 0. D. が 0.1 になるようにうすめ、 20mlのァグロバクテリゥム懸濁液を作製した。 On the other hand, a YEP medium containing 5 ml of rifampicillin 100 mg / l and kanamycin 20 mg / l containing the above-mentioned agrobacterium EHA105 (G-LIP9: GUS) (per liter: Bacto peptone 10 g, Bacto yeast extract 10 g, The cells were cultured with 5 g of NaCl, 0406 mg of MgCl 6 H 2 (pH 7.2) at 28 for 24 hours. AAM medium (1 liters per including Asetoshiringon of this § glow Park Teri © beam 20mg / l: MnS0 4 '5H 2 010mg, H 3 B0 3 3mg, ZnS0 4' 7H 2 02mg, NajMoO ^ - 2H, 0250 g, CuS0 4 -5H 2 025 g, CoCl 2 -6H 2 025 ig, KI 750 zg, CaCl 2 -2H 2 0150mg, MgS0 4 '7H 2 0250mg, Fe -. EDTA 40mg, Na P0 4 2H 2 0150mg, lmg nicotinic acid, Thiamine hydrochloride 10 mg, pyridoxine hydrochloride lmg, myo-inositol 100 mg, L-arginine 176.7 mg, glycine 7.5 mg, L-glucamine 900 mg, aspartic acid 300 mg, KC13 g, pH 5.2) so that 0.D. becomes 0.1. A thin, 20 ml agrobacterium suspension was prepared.
つぎに、 前述の 3日間培養したカルスにァグロパクテリゥム懸濁液を加 え、 1分間混合した。その後このカルスを滅菌したぺ一パータオルに置き、 余分なァグロパクテリゥム懸濁液を除去した後、 滅菌した濾紙を敷いた 2N6-AS固形培地(1 リツトル当たり: CHU[NS] Basal Salt Mixture 3.98g、 スクロース 30g、 グルコース 10g、 ミオイノシトール 100mg、 カザミノ酸 300mg、 グリシン 2mg、 ニコチン酸 0. 5mg、 ピリドキシン塩酸 0. 5mg、 チア ミン塩酸 lmg、 2, 4-D 2mg、ァセトシリンゴン 10mg、ゲルライト 4g、 H 5. 2) の上で 25°C 3日間、 暗黒下で培養した。 3日間の培養後、 カルペニシリン 500mg/lを含む 3¾スクロース水溶液で白濁しなくなるまで十分に洗浄し、 カルべニシリン 500mg/l及びハイグロマイシン 10mg/lを含んだ N6D固形培 地上で 1週間培養した。 その後カルべニシリン 500mg/l及びハイグロマイ シン 50mg/lを含んだ N6D固形培地に移植して、 18 日間培養した。 さらに このカルスを再分化培地(1 リットル当たり:ムラシゲ ·スクーグ培地用混 合塩類(日本製薬社製) 4. 6g、 スクロース 30g、 ソルビトール 30g、 カザミ ノ酸 2g、 ミオイノシトール 100mg、 グリシン 2mg、 ニコチン酸 0. 5mg、 ピ リドキシン塩酸 0. 5mg、チアミン塩酸 0. lmg、NAA 0. 2mg、力イネチン 2mg、 カルべニシリン 250nig、 ハイグロマイシン 50mg、 ァガロース 8g、 pH 5. 8) に移植した。 1 週間ごとに新しい培地に移植し直し、 再分化して芽が lcm 程度に生長したものはホルモンフリ一培地(1 リットル当たり:ムラシゲ · スクーグ培地用混合塩類(日本製薬社製) 4. 6g、 スクロース 30g、 グリシン 2mg、 ニコチン酸 0. 5mg、 ピリ ドキシン塩酸 0. 5mg、 チアミン塩酸 0. lmg、 ハイグロマイシン 50mg、 ゲルライト 2. 5g、 pH 5. 8)に移植した。 ホルモン フリ一培地上で 8cm程度に生長した植物体を合成粒状培土ボンソル 1号(住 友化学社製) を入れた植木鉢に移し、 形質転換植物体の種子を得た。 Next, the agrobacterium suspension was added to the callus cultured for 3 days as described above, and mixed for 1 minute. Then placed on the callus sterile Bae one Pataoru extra § Glo Park Teri © beam suspension after removal of the, 2N6-AS solid medium (1 liters per lined with sterile filter paper: CHU [N S] Basal Salt Mixture 3.98g, sucrose 30g, glucose 10g, myo-inositol 100mg, casamino acid 300 mg, glycine 2 mg, nicotinic acid 0.5 mg, pyridoxine hydrochloride 0.5 mg, thiamine hydrochloride lmg, 2,4-D 2 mg, acetosyringone 10 mg, gellite 4 g, H5.2) at 25 ° C for 3 days, dark Cultured underneath. After culturing for 3 days, wash thoroughly with 3 ク ロ ー sucrose aqueous solution containing 500 mg / l of carpenicillin until it does not become cloudy, and culture for 1 week on N6D solid medium containing 500 mg / l of carbenicillin and 10 mg / l of hygromycin . Thereafter, the cells were transplanted to an N6D solid medium containing carbenicillin 500 mg / l and hygromycin 50 mg / l, and cultured for 18 days. Furthermore, this callus was regenerated in a regeneration medium (per liter: mixed salt for Murashige-Skoog medium (Nippon Pharmaceutical) 4.6 g, sucrose 30 g, sorbitol 30 g, casamino acid 2 g, myo-inositol 100 mg, glycine 2 mg, nicotinic acid 0.5 mg, pyridoxine hydrochloride 0.5 mg, thiamine hydrochloride 0.1 mg, NAA 0.2 mg, forceinetin 2 mg, carbenicillin 250 nig, hygromycin 50 mg, agarose 8 g, pH 5.8). Every week, transplanted to a new medium, redifferentiated and the shoots grew to about lcm. Hormone-free medium (per liter: mixed salt for Murashige-Skoog medium (Nippon Pharmaceutical) 4.6 g, The transplantation was performed on 30 g of sucrose, 2 mg of glycine, 0.5 mg of nicotinic acid, 0.5 mg of pyridoxine hydrochloride, 0.1 mg of thiamine hydrochloride, 50 mg of hygromycin, 2.5 g of gellite, pH 5.8). Plants grown to about 8 cm on a hormone free medium were transferred to a flower pot containing synthetic granular soil bonsol No. 1 (manufactured by Sumitomo Chemical Co., Ltd.) to obtain seeds of transformed plants.
同様にして、 rd29A プロモ一夕一 (Nature B io technology ( 1999) 17, 287-291)、又は 35Sプロモータ一、 salTプロモーター (配列番号 5 )を GUS 遺伝子上流に結合したコンストラクトを作製し、 イネ及び/又はタバコに 導入した。  Similarly, a construct was prepared in which the rd29A promoter overnight (Nature Bio technology (1999) 17, 287-291) or the 35S promoter and the salT promoter (SEQ ID NO: 5) were linked upstream of the GUS gene, and rice and / Or introduced into tobacco.
なお、 salTプロモーターは、 LIP9プロモーターと同様のスクリーニング によってイネゲノム中より単離されたストレス誘導性プロモーターである。 salTプロモーターに対応するマイクロアレイ上の cDNAの ID No.は、 a2660 である。 salTプロモータ一は、その構造中に特別なシス配列はもたないが、 アブシジン酸、 乾燥、 低温、 塩の各ストレスにより発現が誘導されること が確認されている (特願 2002 - 377316号参照)。  The salT promoter is a stress-inducible promoter isolated from the rice genome by the same screening as the LIP9 promoter. The ID number of the cDNA on the microarray corresponding to the salT promoter is a2660. The salT promoter has no specific cis sequence in its structure, but its expression has been confirmed to be induced by abscisic acid, drought, low temperature, and salt stress (see Japanese Patent Application No. 2002-377316). ).
( 2 ) 乾燥ストレスに対するプロモーター活性 得られた GUS発現形質転換ィネの T2世代は 2週間水耕栽培し、 実施例 1 と同様にして乾燥ストレスに暴露した。 (2) Promoter activity against drought stress The resulting GUS expression transformation I Ne of T 2 generation were 2 weeks water culture, and exposed to drought stress in the same manner as in Example 1.
Gus 発現形質転換タバコの場合、 世代は再生してきた植物体をプラン トコーン内で 3〜5週間生育させ、 生長した葉を 2等分し、 一方をコント ロールとし片方を室温で風乾し乾燥ストレスに暴露した。  In the case of Gus-expressing transgenic tobacco, the generation grows the regenerated plants in plant corn for 3 to 5 weeks, divides the grown leaves into two equal parts, and controls one of them as a control to air-dry at room temperature to dry stress. Exposed.
各形質転換イネ及びタバコについて、 4- methylumbe l l i iery卜 -D-glucuronide の分解による蛍光強度の変化から GUS活性を測定した。図 4に、 乾燥ストレス負荷時における各種プロモーター導入形質転換植物の GUS活性を示す。  The GUS activity of each transformed rice and tobacco was measured from the change in fluorescence intensity due to the degradation of 4-methylumbellii-erythro-D-glucuronide. Fig. 4 shows the GUS activity of various promoter-transformed plants under drought stress.
図 4から明らかなように、 単子葉植物であるイネでは、 rd29A プロモ一 夕一よりも salTプロモータや LIP9プロモーターがより強いストレス誘導 性を示した。 特に、 LIP9プロモ一夕は salTの約 1倍という、 強い活性を 示した。 LIP9プロモーターは双子葉植物であるタバコでもストレス誘導性 プロモータ一活性を示したが、 ィネに比較してその活性は弱かつた。  As is evident from FIG. 4, in the monocotyledonous rice, the salT promoter and the LIP9 promoter showed stronger stress inducibility than the rd29A promoter overnight. In particular, LIP9 Promo overnight showed a strong activity of about 1 times that of salT. The LIP9 promoter also showed one stress-inducible promoter activity in tobacco, a dicotyledon, but its activity was weaker than that of rice.
( 3 ) 塩ストレスに対するプロモーター活性  (3) Promoter activity against salt stress
次に、 LIP9プロモー夕一一 GUSコンストラクト導入イネの植物体全体を 塩水に浸し、 GUS 染色を行ったところ、 植物体全体が染色された (図 5 )。 このことから、 LIP9プロモーターは. ス卜レスを負荷された植物体全体で 機能することが確認された。  Next, when the whole plant of the rice plant introduced with the LIP9 promoted GUS construct was soaked in saline and subjected to GUS staining, the whole plant was stained (Fig. 5). From this, it was confirmed that the LIP9 promoter functions in the whole plant loaded with stress.
〔実施例 4〕 ストレスに対する WSI 724プロモーター活性 [Example 4] WSI 724 promoter activity against stress
実施例 3と同様にして、 WSI 724プロモーターで形質転換したイネを作製 し、 そのス卜レス耐性を確認した。  In the same manner as in Example 3, rice transformed with the WSI 724 promoter was prepared, and its stress resistance was confirmed.
( 1 ) トランスジエニック植物の作製  (1) Preparation of transgenic plants
pBIG29APHSNot のプロモー夕一部位をトウモロコシのュビキチンプロモ 一夕一に置換して作られた G-ub iプラスミドを BamHI- Hind l l lで切断し、 同様に切断した WSI 724プロモーターの断片と連結した。 WSI 724プロモー 夕一を組み込んだプラスミドを BamHI で切断して末端を平滑化した後、 pBIGベクターの Smalで切断した部位に連結して GUS発現コンストラク卜 (WSI724 : GUS)を作製した。 次いで、 プラスミド WSI724 : GUSを、 培養後 10% glycerolで洗浄したァグロパクテリゥム EHA105にエレクトロポレーショ ン法によって導入し、 ァグロパクテリゥム EHA105 (WSI724 : GUS)を作製した。 このァグロパクテリゥム EHA105 (WSI724 : GUS)をイネに感染させ、形質転換 体を作製した。 The G-ub i plasmid, which was produced by substituting the ubiquitin promoter of maize overnight at the promoter site of pBIG29APHSNot, was digested with BamHI-Hind II, and ligated to the similarly digested WSI 724 promoter fragment. The plasmid containing the WSI 724 promoter was cut with BamHI to blunt the ends, and then ligated to the site cut with Smal of the pBIG vector to prepare a GUS expression construct (WSI724: GUS). Next, the plasmid WSI724: GUS was The glycerol-washed agrobacterium EHA105 was introduced by an electroporation method to prepare an agrobacterium EHA105 (WSI724: GUS). The rice was infected with this agrobacterium EHA105 (WSI724: GUS) to prepare a transformant.
( 2 ) 乾燥ストレスに対するプロモーター活性  (2) Promoter activity against drought stress
得られた GUS発現形質転換イネを実施例 3と同様にして乾燥ストレスに 暴露し、 4-methylumbel 1 i f eryl- j3 -D-glucuronide の分解による蛍光強度 の変化から GUS活性を測定した。 その結果、 乾燥ストレスを負荷 (切り取 つて 24時間放置) した形質転換イネの葉では、 コントロール(切り取って すぐに凍結) の葉に比較して、 高い GUS活性が認められた。 また、 乾燥ス トレス (24時間) 負荷後の形質転換イネを GUS染色したところ、 根と葉の 両方で GUS活性が認められた。  The resulting GUS-expressing transformed rice was exposed to drought stress in the same manner as in Example 3, and the GUS activity was measured from the change in fluorescence intensity due to degradation of 4-methylumbel 1 iferyl-j3-D-glucuronide. As a result, higher GUS activity was observed in the transformed rice leaves subjected to the drought stress (cut and left for 24 hours) as compared to the control (cut and frozen immediately) leaves. GUS staining of the transformed rice plants after loading with dry stress (24 hours) showed GUS activity in both roots and leaves.
〔実施例 5〕 形質転換イネ中の導入遺伝子と LIP9及び WSI724遺伝子の発 現 [Example 5] Expression of transgene and LIP9 and WSI724 genes in transformed rice
実施例 3と同様にして、 トウモロコシのュビキチンプロモーター、 又は 35Sプロモーター支配下に OsDREB IA遺伝子 (配列番号 6 ) 又は DREB 1C遺 伝子 (配列番号 8 ) をイネに導入した形質転換体を作製した。 そして、 形 質転換体の導入遺伝子 OsDREBIA及び DREB 1Cと、 導入遗伝子が発現を変化 させたと考えられる LIP9 (a0022)、 WSI 724 (a0066)、 salT (a2660)の mRNA レベルをノザン解析により調べた。  In the same manner as in Example 3, a transformant in which the OsDREB IA gene (SEQ ID NO: 6) or the DREB 1C gene (SEQ ID NO: 8) was introduced into rice under the control of the maize ubiquitin promoter or the 35S promoter was prepared. . Then, the mRNA levels of transgenic transgenes OsDREBIA and DREB1C and LIP9 (a0022), WSI 724 (a0066), and salT (a2660), which are considered to have altered the expression of the transgene, were examined by Northern analysis. Was.
プローブとしては、 OsDREBIA遺伝子 (配列番号 6 )、 DREB 1C遺伝子 (配 列番号 7 )、 LIP9遺伝子 QQ22:配列番号 2 )、 WSI724遺伝子(a0066:配 列番号 8 )、 salT遺伝子(a2660:配列番号 9 )を用いた (配列番号 6、 7に ついては、 配列表中の各コーディング領域の配列をプローブとして使用)。 なお、 コントロールとして、 ベクタ一のみを形質転換したイネを同様に解 祈した。  As probes, OsDREBIA gene (SEQ ID NO: 6), DREB 1C gene (SEQ ID NO: 7), LIP9 gene QQ22: SEQ ID NO: 2), WSI724 gene (a0066: SEQ ID NO: 8), salT gene (a2660: SEQ ID NO: 9) (For SEQ ID NOs: 6 and 7, the sequence of each coding region in the sequence listing was used as a probe). In addition, as a control, rice plants transformed with only one vector were similarly prayed.
形質転換イネは、 5日間 30mg/mlハイグロマイシンを含む 0. 1%ベン一レ ート溶液中で選抜した後、ボンソル 1号の入った鉢に植え替えて 12日間育 てた。 野性株も同様に育てた。 各植物から全 RNAを調製して、 電気泳動を 行い、 実施例 1と同様にノザン法で各遺伝子の発現を見た。 結果を図 6に 示す。 図中、 a、 b、 cはそれぞれ形質転換体のラインを示す。 Transformed rice was selected in a 0.1% benzilate solution containing 30 mg / ml hygromycin for 5 days, and then replanted in a pot containing Bonsol No. 1 and grown for 12 days. Wild strains were similarly raised. Prepare total RNA from each plant and run Then, the expression of each gene was observed by the Northern method in the same manner as in Example 1. Figure 6 shows the results. In the figure, a, b and c indicate the lines of the transformants, respectively.
この結果、 OsDREBlA、 DREB1C遺伝子を導入された形質転換イネでは、 プ ロモ一夕一領域に DRE配列を持つ LIP9の発現は誘導されたが、プロモータ 一領域に DRE 配列を持たない salT の発現は導入遺伝子 (OsDREBlA や DREB1C) の発現と一致しなかった。 また、 LIP9と同様にプロモー夕一領域 に DRE 配列を持ち、 OsDREB のターゲットになっていると予想されている WSI724遺伝子の発現も、 これら形質転換体で誘導された。  As a result, in transformed rice into which the OsDREBlA and DREB1C genes had been introduced, expression of LIP9 having a DRE sequence in the promoter region was induced, but expression of salT without the DRE sequence in the promoter region was introduced. The expression of the genes (OsDREBlA and DREB1C) did not match. In addition, expression of the WSI724 gene, which has a DRE sequence in the promoter region similar to LIP9 and is predicted to be a target of OsDREB, was also induced in these transformants.
LIP9や WSI724プロモーター上には DRE配列が存在し、 OsDREBlA遺伝子 の過剰発現体では LIP9遺伝子や WSI724遺伝子が高発現している。 LIP9や WSI724は OsDREBlAをはじめとする OsDREB遺伝子の標的遺伝子と考えられ、 したがって LIP9や WSI724プロモーターは OsDREB遺伝子を過剰発現するた めの最適なプロモー夕一と推定された。 〔参考例 1〕 BE35S: OsDREBlA, G-ubi: OsDREBlA及び G35S- S A: OsDREBlA の作製  A DRE sequence is present on the LIP9 and WSI724 promoters, and the LIP9 gene and WSI724 gene are highly expressed in OsDREBlA gene overexpressors. LIP9 and WSI724 were considered to be target genes for OsDREB genes such as OsDREBlA. Therefore, LIP9 and WSI724 promoters were estimated to be optimal promoters for overexpressing OsDREB gene. [Reference Example 1] Production of BE35S: OsDREBlA, G-ubi: OsDREBlA and G35S-SA: OsDREBlA
まず、 G_ubi, G35S- SliAは以下のように作製した。 まず pBIGプラスミ ド (Nucleic Acids Research 18: 203 (1990) ) を BamHIで切断 ·平滑化処 理した後、 連結して BamHI切断部位をつぶし、 さらに Hind IIIと EcoRIで 切断した。この断片と BE2113Notプラスミドを同様に切断して得られる約 1.2kbの断片とを連結して、 pBIG2113Notプラスミドを作製した。  First, G_ubi and G35S-SliA were prepared as follows. First, pBIG plasmid (Nucleic Acids Research 18: 203 (1990)) was digested with BamHI and smoothed, ligated to crush the BamHI cleavage site, and further digested with HindIII and EcoRI. This fragment was ligated to a fragment of about 1.2 kb obtained by similarly cleaving the BE2113Not plasmid to prepare a pBIG2113Not plasmid.
つぎに BIG2113Not を Hindlll と BamHI で切断し、 同様に切断された rd29A プロモーターの断片 (約 0.9kb, Nature iotechnology 17: 287-291 (1999))と連結して、 pBIG29APHSNot プラスミドを作製した。 さら にこの pBIG29APHSNotプラスミドを Hindlllと Sailで切断後、同様に切断 されたトウモロコシのュビキチン遺伝子(Ubi_l)のプロモーターの断片(約 2. Okb, Plant Molecular Biology 18: 675-689 (1992) )又は p35S_sliA- stop の CaMV 35S プロモーターとトウモロコシのスクロースシンターゼ遺伝子 (Shi) のイントロンの一部を含んだ断片(約 1.6kb, Proceeding National Academy of Science USA 96: 15348- 15353 (1999) )と連結して G-ubiプラス ミド又は G35S- SliAプラスミドを作製した。 Next, BIG2113Not was digested with Hindlll and BamHI, and ligated to the similarly digested fragment of the rd29A promoter (about 0.9 kb, Nature iotechnology 17: 287-291 (1999)) to prepare a pBIG29APHSNot plasmid. Furthermore, the pBIG29APHSNot plasmid was digested with Hindlll and Sail, and the similarly digested maize ubiquitin gene (Ubi_l) promoter fragment (about 2. Okb, Plant Molecular Biology 18: 675-689 (1992)) or p35S_sliA- G-ubi ligated to a fragment (about 1.6 kb, Proceeding National Academy of Science USA 96: 15348-15353 (1999)) containing the CaMV 35S promoter at the stop and a part of the intron of the maize sucrose synthase gene (Shi). plus A mid or G35S-SliA plasmid was prepared.
前記 pBE2113Not, G- ubi及び G35S- ShA はそれぞれ BamHIで切断した 後、 同様に切断したイネの転写因子をコードする OsDREBIA遺伝子断片と ligation high (東洋紡社製) を用いて連結し、 得られた連結物により大腸 菌 DH5aを形質転換した。 形質転換体を培養後、 該培養物からプラスミド pBE35S:0sDREBlA, G-ubi :0sDREBlA及び G35S- ShA :0sDREBlAをそれぞれ 精製した。 次いで、 これらの塩基配列を決定し、 OsDREBIA遺伝子がセンス 方向に結合したものを選抜した。  The pBE2113Not, G-ubi and G35S-ShA were each digested with BamHI, and then ligated to a similarly digested OsDREBIA gene fragment encoding a rice transcription factor using ligation high (manufactured by Toyobo Co., Ltd.). E. coli DH5a was transformed with the product. After culturing the transformant, plasmids pBE35S: 0sDREBlA, G-ubi: 0sDREBlA and G35S-ShA: 0sDREBlA were purified from the culture. Next, these nucleotide sequences were determined, and those having the OsDREBIA gene bound in the sense direction were selected.
上記のプラスミド pBE35S: OsDREBIAを持つ大腸菌 DH5 aとへルパープラ スミド PRK2013を持つ大腸菌 HB101及びァグロパクテリゥム C58を共に、 LB寒天培地を用いて 28°Cで 24時間混合培養した。 生成したコロニーを接 き取り、 1mlの LB培地に懸濁した。 この懸濁液 10 1をリファンピシリン lOOmg/K 及びカナマイシン 20mg/lを含む LB寒天培地に塗布し、 28°Cで 2 日間培養して、 接合体ァグロバクテリゥム C58(pBE35S:OsDREBlA)を得た。 一方上記のプラスミド G_ubi: OsDREBIAと G35S-ShA: OsDREBIAのプラスミ ドを、 培養後 10% glycerolで洗浄したァグロパクテリゥム EHA105にエレ ク トロポレーシヨ ン法によって導入し、 ァグロパクテリ ゥム EHA105 (G-ubi: OsDREBIA) と ァグロパク テ リ ゥム EHA105 (G35S- Sh △: OsDREBIA)をそれぞれ得た。 本明細書中で引用した全ての刊行物、 特許及び特許出願をそのまま参考 として本明細書中にとり入れるものとする。 産業上の利用の可能性  The above-mentioned plasmid pBE35S: Escherichia coli DH5a having OsDREBIA, Escherichia coli HB101 having helper plasmid PRK2013, and Agrobacterium C58 were mixedly cultured at 28 ° C. for 24 hours using LB agar medium. The resulting colonies were picked up and suspended in 1 ml of LB medium. This suspension 101 was spread on an LB agar medium containing 100 mg / K of rifampicillin and 20 mg / l of kanamycin, and cultured at 28 ° C for 2 days to obtain a conjugate agrobacterium C58 (pBE35S: OsDREBlA). Was. On the other hand, the plasmids G_ubi: OsDREBIA and G35S-ShA: OsDREBIA described above were introduced into agrobacterium EHA105, which had been cultured and washed with 10% glycerol, by the electroporation method. : OsDREBIA) and Agrobacterium EHA105 (G35S-Sh △: OsDREBIA) were obtained, respectively. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety. Industrial potential
本発明によれば、 単子葉植物において有効に機能しうるストレス誘導性 プロモーターが提供される。 該プロモーターは DRE配列を含み、 したがつ て、その支配下に OsDREB遺伝子等を連結して植物に導入すれば、イネ等の 単子葉植物において、 強いストレス耐性トランスジエニック植物を作出す ることができる。 配列表フリーテキスト According to the present invention, a stress-inducible promoter that can function effectively in monocotyledonous plants is provided. The promoter contains a DRE sequence, and thus, under the control of the OsDREB gene or the like, can be linked to a plant to produce a strong stress-resistant transgenic plant in monocotyledonous plants such as rice. Can be. Sequence listing free text
配列番号 3—人工配列の説明 : プライマー 配列番号 4一人工配列の説明 : プライマー 配列番号 1 1一人工配列の説明 : プライマー 配列番号 1 2—人工配列の説明 :プライマー SEQ ID No. 3—Description of Artificial Sequence: Primer SEQ ID No. 4 Description of Artificial Sequence: Primer SEQ ID No. 11 Description of Artificial Sequence: Primer SEQ ID No. 1 2—Description of Artificial Sequence: Primer

Claims

請 求 の 範 囲 The scope of the claims
1 . 以下の(a)又は(b)の DNAからなる、 イネ由来のプロモーター。 1. A rice-derived promoter comprising the following DNA (a) or (b):
' (a) 配列番号 1又は配列番号 1 0で表される塩基配列からなる DNA '(a) DNA consisting of the nucleotide sequence represented by SEQ ID NO: 1 or SEQ ID NO: 10
(b) 配列番号 1又は配列番号 1 0で表される塩基配列からなる DNAに相補 的な塩基配列からなる DNAとス トリンジェントな条件下でハイブリダイズ し、 かつストレス誘導性のプロモーター活性を有する DNA  (b) hybridizes with a DNA consisting of a nucleotide sequence complementary to the DNA consisting of the nucleotide sequence represented by SEQ ID NO: 1 or SEQ ID NO: 10 under stringent conditions and has a stress-inducible promoter activity DNA
2 . 前記ス トレスが乾燥ス トレス、 低温ス トレス又は塩ス トレスである 請求項 1記載のプ口モーター。  2. The motor according to claim 1, wherein the stress is a dry stress, a low-temperature stress, or a salt stress.
3 . 請求項 1又は 2記載のプロモーターを含む組換えベクター。  3. A recombinant vector containing the promoter according to claim 1 or 2.
4 . 請求項 1又は 2記載のプロモーター支配下にさらにストレス耐性を 向上させる構造遺伝子及び/又は調節遺伝子を機能しうる態様で含む、 請 求項 3記載のべクター。  4. The vector according to claim 3, further comprising a structural gene and / or a regulatory gene capable of further improving stress resistance under the control of the promoter according to claim 1 or 2.
5 . ス トレス耐性を向上させる構造遺伝子及び Z又は調節遺伝子がプ口 リン合成の鍵酵素 P5CS遺伝子、ガラクチノール合成遺伝子 AtGolS3遗伝子、 シロイヌナズナ由来転写因子 DREB遺伝子、 ィネ由来転写因子 OsDREB遺伝 子、及び ABA合成酵素 NCED遺伝子から選ばれる、請求項 4記載のベクター。 5. Structural genes and Z or regulatory genes that enhance stress resistance are key enzymes of purine synthesis P5CS gene, galactinol synthesis gene AtGolS3 gene, Arabidopsis transcription factor DREB gene, rice transcription factor OsDREB gene, 5. The vector according to claim 4, wherein the vector is selected from the group consisting of ABA synthase and NCED gene.
6 . ス トレス耐性を向上させる構造遺伝子及び/又は調節遺伝子がイネ 由来転写因子 OsDREB遺伝子である、 請求項 5記載のべクタ一。 6. The vector according to claim 5, wherein the structural gene and / or regulatory gene that improves stress resistance is a rice-derived transcription factor OsDREB gene.
7 . 請求項 3〜 6のいずれか 1項に記載のベクターを宿主に導入して得 られる形質転換体。  7. A transformant obtained by introducing the vector according to any one of claims 3 to 6 into a host.
8 . 宿主が植物である、 請求項 7記載の形質転換体。  8. The transformant according to claim 7, wherein the host is a plant.
9 . 宿主が単子葉植物である、 請求項 8記載の形質転換体。  9. The transformant according to claim 8, wherein the host is a monocotyledonous plant.
1 0 . 請求項 1又は 2記載のプロモーターを植物に導入することにより、 該植物のス トレス耐性を向上させる方法。  10. A method for improving stress resistance of a plant by introducing the promoter according to claim 1 or 2 into the plant.
PCT/JP2004/002563 2003-03-24 2004-03-02 Stress-induced promoter and method of using the same WO2004085641A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2519997A CA2519997C (en) 2003-03-24 2004-03-02 Stress-inducible promoter and method for using the same
US10/550,584 US7339050B2 (en) 2004-03-02 2004-03-02 Stress-induced promoter and method of using the same
JP2005503987A JP4219928B2 (en) 2003-03-24 2004-03-02 Stress inducible promoter and method of using the same
CN2004800143175A CN1795267B (en) 2003-03-24 2004-03-02 Stress-induced promoter and method of using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003080847 2003-03-24
JP2003-080847 2003-03-24

Publications (1)

Publication Number Publication Date
WO2004085641A1 true WO2004085641A1 (en) 2004-10-07

Family

ID=33094879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002563 WO2004085641A1 (en) 2003-03-24 2004-03-02 Stress-induced promoter and method of using the same

Country Status (5)

Country Link
JP (1) JP4219928B2 (en)
KR (1) KR100703115B1 (en)
CN (1) CN1795267B (en)
CA (1) CA2519997C (en)
WO (1) WO2004085641A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447246C (en) * 2006-04-26 2008-12-31 华中农业大学 Pathogeny evoked promoter POsDR3 and its application in improved rice resistance
WO2009127441A2 (en) * 2008-04-16 2009-10-22 Universität Potsdam Transcription factors involved in drought stress in plants
CN103882021A (en) * 2014-03-24 2014-06-25 安徽省农业科学院水稻研究所 Plant drought induced expression promoter PosDro1 and application thereof
JP2015192606A (en) * 2014-03-31 2015-11-05 国立研究開発法人理化学研究所 Promoter derived from wheat

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101131770B1 (en) * 2009-11-13 2012-04-05 주식회사 그린진 바이오텍 Promoter inducible by drought stress isolated from rice and uses thereof
CN101845437B (en) * 2010-04-19 2012-07-04 清华大学 Promoter with properties of inducing and organizing specific expression
CN102533756B (en) * 2010-12-20 2013-10-30 中国农业大学 Promoter and application thereof
CN103233024B (en) * 2013-03-07 2015-03-04 中国科学院昆明动物研究所 Paddy rice lateral root density-related coding gene and use thereof
CN104611337B (en) * 2015-02-21 2018-02-13 吉林农业大学 Cold-inducible promoter PCP1 and application
CN106282190A (en) * 2016-11-07 2017-01-04 滨州学院 The expressing gene of the Fraxinus velutina FvNCED3 gene promoter of high-salt stress induction and application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116260A (en) * 1998-10-14 2000-04-25 Japan International Res Center For Agricultural Sciences Plant resistant to environmental stress

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2703054B1 (en) * 1993-03-23 1995-06-16 Sanofi Elf STRESS INDUCIBLE PLANT PROMOTER AND PLANT CELLS CONTAINING A PROTEIN EXPRESSION UNIT OF INTEREST COMPRISING SAID PROMOTER.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116260A (en) * 1998-10-14 2000-04-25 Japan International Res Center For Agricultural Sciences Plant resistant to environmental stress

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AGUAN K, ET AL: "Isolation of genes for low-temperature-induced proteins in rice by a simple substractive method", PLANT CELL PHYSIOL., vol. 32, no. 8, 1991, pages 1285 - 1289, XP002980513 *
JOSHEE N, ET AL: "Isolation and characterization of a water stress-specific genomic gene, pwsi 18, from rice", PLANT CELL PHYSIOL., vol. 39, no. 1, January 1998 (1998-01-01), pages 64 - 72, XP008018585 *
LIU Q, ET AL: "Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in arabidopsis", PLANT CELL, vol. 10, no. 8, August 1998 (1998-08-01), pages 1391 - 1406, XP002145075 *
SHINOZAKI K, ET AL: "Gene expression and signal transduction in water-stress response", PLANT PHYSIOL., vol. 115, no. 2, October 1997 (1997-10-01), pages 327 - 334, XP001018199 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447246C (en) * 2006-04-26 2008-12-31 华中农业大学 Pathogeny evoked promoter POsDR3 and its application in improved rice resistance
WO2009127441A2 (en) * 2008-04-16 2009-10-22 Universität Potsdam Transcription factors involved in drought stress in plants
WO2009127441A3 (en) * 2008-04-16 2010-03-11 Universität Potsdam Transcription factors involved in drought stress in plants
CN103882021A (en) * 2014-03-24 2014-06-25 安徽省农业科学院水稻研究所 Plant drought induced expression promoter PosDro1 and application thereof
CN103882021B (en) * 2014-03-24 2016-05-25 安徽省农业科学院水稻研究所 One Plants drought-induced expression promoter PosDro1 and application thereof
JP2015192606A (en) * 2014-03-31 2015-11-05 国立研究開発法人理化学研究所 Promoter derived from wheat

Also Published As

Publication number Publication date
CN1795267A (en) 2006-06-28
JPWO2004085641A1 (en) 2006-06-29
CA2519997C (en) 2010-09-21
KR20060018817A (en) 2006-03-02
CN1795267B (en) 2010-10-06
KR100703115B1 (en) 2007-04-09
JP4219928B2 (en) 2009-02-04
CA2519997A1 (en) 2004-10-07

Similar Documents

Publication Publication Date Title
Abe et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling
EP1682668B1 (en) Plant transcriptional regulators
EP1578790B1 (en) A novel gene osisap1 of rice confers tolerance to stresses and a method thereof
US7842854B2 (en) Genes encoding plant transcription factors
US8912394B2 (en) Transcriptional regulation of plant disease tolerance
CA2390597A1 (en) Pathogen tolerance genes
KR100578461B1 (en) Stress-induced promoter derived from rice
EP1368467B1 (en) Putrescine-n-methyltransferase promoter
US20210102218A1 (en) Expression of transcription regulators that provide heat tolerance
CN113563442A (en) Drought-resistant related protein IbSPB1 and coding gene and application thereof
WO2004085641A1 (en) Stress-induced promoter and method of using the same
CN111574606B (en) Wheat disease-resistant and heading regulation gene TaCOK and related biological material and application thereof
US6518484B2 (en) Promoter system of plant translationally controlled tumor protein gene
AU744673B2 (en) Gene associated with disease resistance in plants
EP0938572A1 (en) Promoter from tobacco
US7339050B2 (en) Stress-induced promoter and method of using the same
WO2002012450A1 (en) Gossypium hirsutum tissue-specific promoters and their use
Blanco et al. Molecular cloning, characterization and regulation of two different NADH‐glutamate synthase cDNAs in bean nodules
JP2004248638A (en) Stress-inducing promoter derived from rice
CN112552383A (en) Application of transcription factor HINGE1 in regulation and control of plant nitrogen-phosphorus homeostasis
US20130117889A1 (en) Polynucleotide, polypeptide sequences and methods thereof
JP2003219891A (en) Gene encoding transcription factor of plant
AU2008201822A1 (en) Modification of plant and seed development and plant responses to stresses and stimuli (2)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2519997

Country of ref document: CA

Ref document number: 10550584

Country of ref document: US

Ref document number: 2005503987

Country of ref document: JP

Ref document number: 1020057017742

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048143175

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057017742

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10550584

Country of ref document: US