CN112625102A - Rice heading stage gene OsPRR73 and application thereof - Google Patents

Rice heading stage gene OsPRR73 and application thereof Download PDF

Info

Publication number
CN112625102A
CN112625102A CN202110020721.9A CN202110020721A CN112625102A CN 112625102 A CN112625102 A CN 112625102A CN 202110020721 A CN202110020721 A CN 202110020721A CN 112625102 A CN112625102 A CN 112625102A
Authority
CN
China
Prior art keywords
osprr73
rice
plant
gene
heading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110020721.9A
Other languages
Chinese (zh)
Inventor
万建民
汪欲鹏
朱杉杉
吴赴清
程治军
张欣
郭秀平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Crop Sciences of Chinese Academy of Agricultural Sciences
Original Assignee
Institute of Crop Sciences of Chinese Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Crop Sciences of Chinese Academy of Agricultural Sciences filed Critical Institute of Crop Sciences of Chinese Academy of Agricultural Sciences
Priority to CN202110020721.9A priority Critical patent/CN112625102A/en
Publication of CN112625102A publication Critical patent/CN112625102A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses a gene in the heading stage of riceOsPRR73And applications thereof. The invention provides application of a protein OsPRR73, a DNA molecule for coding a protein OsPRR73 or a recombinant vector containing the DNA molecule for coding the protein OsPRR73 in regulation and control of a plant heading stage. The invention is toOsPRR73The gene is transferred into wild rice to obtain transgenic rice. In transgenic Rice compared with recipient RiceOsPRR73Genes are overexpressed, which is advanced under long-day conditions and delayed under short-day conditions. Lays a foundation for cultivating the transgenic plants with changed heading stage.

Description

Rice heading stage geneOsPRR73And uses thereof
Technical Field
The invention relates to the technical field of biology, in particular to a gene for a rice heading stageOsPRR73And applications thereof.
Background
Rice is one of the main grain crops in China, and the rice yield plays an important role in guaranteeing the national grain safety. The proper growth period is an important prerequisite for high-yield and high-efficiency production of rice. The variety with longer growth period is often influenced by adverse weather factors in the later period, so that the risk of yield reduction is faced, and the planting of crops in the later period is not facilitated. In recent years, with the rapid development of economic society of China, the rapid reduction of rural labor force and the continuous reform of land management system, the large-scale operation mode of rice production promotes the light simplified cultivation mode mainly based on direct seeding rice to be greatly popularized. However, since direct-seeded rice has no seedling bed stage, in double cropping rice areas, crop rotation rice areas and northeast rice areas, direct-seeded rice varieties are required to have a shorter growth period and to maintain a higher yield, and breeding of rice varieties with a shorter growth period has become a future development trend of rice breeding in each rice area. Therefore, the functional gene with the early heading characteristic is excavated, the action mechanism of the functional gene is analyzed, and on the basis, the growth period of the rice variety is improved by using a molecular marker assisted selection or gene editing technology, so that the method has important scientific, practical and social significance for enhancing the adaptability of the rice variety and popularizing a simplified cultivation mode.
In production, the rice variety with a short growth period is reduced in the vegetative growth period, and the nutrient substance reserve in the early period is reduced, so that the yield is reduced. Therefore, the excavation and utilization of functional genes which can shorten the growth period and simultaneously can not reduce the yield are always hot spots and difficulties of research work of rice genetic breeding science, and only a few genes are reported to have the characteristics of early maturity, such as the growth period shortening and high yield.OsNRT1.1AIt encodes a nitrate transport protein, and participates in the regulation of nitrogen utilization and flowering time. The gene mutantosnrt1.1aThe nitrogen utilization rate of (a) is reduced, and the flowering time is delayed; to be over-expressedOsNRT1.1AThe nitrogen utilization and yield can be greatly improved, while the growth period is significantly shortened.Ef-cdCoding a section of long-chain non-woven fabricCode RNA (IncRNA) which can positively regulate heading stage geneOsSOC1Expression of (2), increase of florigen GeneHd3aAndRFT1the expression level of the gene can shorten the growth period of rice by 7 to 20 days in different latitudes, and simultaneouslyEd-cfAnd the early maturing and stable yield of the rice are realized by improving the nitrogen utilization rate and the photosynthetic efficiency.
More functional genes with early maturing characteristics are excavated and researched, the internal connection and the molecular regulation mechanism among the functional genes are analyzed, and the method has important theoretical and practical significance for the cultivation of early maturing varieties of rice.OsPRR73Is one of the core components of the rice biological clock system and is a transcription repressing factor. In the present invention, overexpressionOsPRR73Under the condition of long sunshine (the length of sunshine is greater than 13.5 h), the growth period of the rice can be shortened, the yield of a single plant is not reduced, and under the condition of short sunshine (the length of sunshine is less than 12.5 h), the growth period of the rice can be delayed.OsPRR73The function and application research of the method is beneficial to the improvement of the growth period of the rice variety and has important significance for the expansion of the variety planting area.
Disclosure of Invention
The invention aims to provide a rice heading stage gene, a nucleotide sequence thereof and a recombinant vector containing the gene. The inventors overexpress in rice plantsOsPRR73Gene shows that the heading period of the transgenic plant rice is obviously advanced under the long-day condition, and the yield is not reduced; under the condition of short sunshine, the heading period of the target plant is successfully changed.
One objective of the invention is to provide a polypeptide, namely protein OsPRR73, the amino acid sequence of which is shown in SEQ ID NO. 2. The coding gene of the protein OsPRR73 is introduced into a target plant, and the polypeptide is overexpressed by the target plant, so that the heading stage of the plant is greatly advanced under long-day conditions and delayed under short-day conditions.
Another object of the present invention is to provide an oligonucleotide encoding the aforementioned polypeptide, i.e., an oligonucleotide encoding the polypeptideOsPRR73The nucleotide sequence of the gene is shown as SEQ ID NO. 1. The gene is introduced into target plant to make the target plant over-express the polypeptide, so that the heading date of the plant can be prolongedGreatly advanced under light conditions and retarded under short-day conditions.
It is a further object of the present invention to provide a composition comprising saidOsPRR73Recombinant vectors of genes. The recombinant vector of the invention is a vector in pCAMBIA1390Pst IThe nucleotide sequence inserted between the enzyme cutting sites is shown as SEQ ID NO. 1OsPRR73A vector obtained from the gene.
Using the recombinant vectorOsPRR73By introducing the gene into a target plant and allowing the target plant to overexpress the polypeptide, the heading stage of the plant can be greatly advanced under long-day conditions and delayed under short-day conditions.
It is still another object of the present invention to provide a transgenic plant obtained by comprising the sameOsPRR73Transgenic cell lines of the gene. The transgenic plant obtained by culturing the transgenic cell line can also over-express the polypeptide, so that the heading period of the transgenic plant is advanced under a long-day condition and delayed under a short-day condition.
The invention provides application of any substance of the following 1) -3) in regulating and controlling the heading stage and cultivating the heading stage of plants to change plants:
1) protein OsPRR 73;
2) a nucleic acid encoding a protein OsPRR 73;
3) a recombinant vector comprising a nucleic acid encoding the protein OsPRR 73;
the protein OsPRR73 is (1) or (2) as follows:
(1) a protein consisting of an amino acid sequence shown as SEQ ID NO. 2;
(2) and (2) the protein which is derived from the protein (1) and has the same function, wherein the amino acid sequence shown in SEQ ID NO. 2 is subjected to substitution and/or deletion and/or addition of one or more amino acid residues.
The substitution and/or deletion and/or addition of one or more amino acid residues is the substitution and/or deletion and/or addition of no more than 10 amino acid residues.
In the above application, the DNA molecule encoding the protein OsPRR73 is the DNA molecule described in any one of the following 1) to 4):
1) 1, DNA molecule shown in SEQ ID NO;
2) a DNA molecule shown as SEQ ID NO. 3;
3) a DNA molecule which hybridizes with the DNA molecule defined in 1) or 2) under strict conditions and codes for a protein consisting of the amino acid sequence shown in SEQ ID NO. 2;
4) a DNA molecule which has at least 70 percent of homology with the DNA molecule defined by the 1) or the 2 and codes a protein consisting of an amino acid sequence shown in SEQ ID NO. 2.
The stringent conditions may be hybridization in a solution of 6 XSSC, 0.5% SDS at 65 ℃ and washing the membrane once with each of 2 XSSC, 0.1% SDS and 1 XSSC, 0.1% SDS.
In the application, the heading stage or the heading stage change of the plant is the change of flowering time, heading date, mature period and growth period.
In the above application, the plant is a monocotyledon; preferably, the monocotyledonous plant is rice.
The invention is proved by experiments thatOsPRR73The gene is transferred into wild rice to obtain transgenic rice with changed heading period. In transgenic rice, compared with recipient riceOsPRR73The gene is over-expressed, the heading period is obviously advanced under the long-day condition, the rice yield is not influenced, and the heading period is delayed under the short-day condition. Therefore, the temperature of the molten metal is controlled,OsPRR73the gene is related to heading stage, and lays a foundation for cultivating transgenic plants with changed heading stage.
The invention has important theoretical significance and practical significance for further clarifying the molecular mechanism of the heading stage of the plant and cultivating new varieties of high-quality and high-yield crops by means of genetic engineering.
Drawings
FIG. 1 is a map of pCAMBIA1390 vector.
FIG. 2-A shows the wild type rice Nipponbare andOsPRR73detecting the expression of the gene over-expression rice.
FIG. 2-B shows the wild type rice Nipponbare andOsPRR73the gene overexpresses the phenotype of rice.
FIG. 2-C shows wildType rice Nipponbare andOsPRR73statistics data of heading stage of rice with gene over-expression in Nanning and Beijing.
FIG. 2-D shows wild-type rice Nipponbare andOsPRR73the agronomic characters of the rice with gene over-expression in Beijing are counted.
Detailed Description
The experimental procedures used in the following examples are all conventional procedures unless otherwise specified.
Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
N6 medium was purchased from Phytotechnology Laboratories, USA, under the trade name C167.
Rice variety Nipponbare (Oryza sativa) In the document "Li Z, Wan J, Xia J, et al, Mapping of qualitative train location controlling physico-chemical properties of rice grainsOryza sativa L.) Breeding science, 2003, 53(3): 209-.
Agrobacterium tumefaciens EHA105 (Agrobacterium tumefaciensEHA 105) is described in the literature "Hood, Elizabeth E; Gelvin, Stanton B; Melchers, Leo S; Hoekema, Andre.1993.New Agrobacterium helium plasmids for gene transfer to plants.Transgenic ResearchAnd (2), (4) p.208-.
The pCAMBIA1390 vector is a commercial vector, can be obtained by public through commercial channels or related institutions, and can also be obtained from the institute of crop science of Chinese academy of agricultural sciences.
The invention is over-expressed in Nipponbare by pCAMBIA1390 carrierOsPRR73The heading stage of the transgenic homozygous progeny is obviously advanced under the long-day condition, the yield is not influenced, and the heading stage is delayed under the short-day condition. The phenotype of the pedigree is due to overexpressionOsPRR73Cause it to explainOsPRR73Plays an important role in regulating and controlling the heading stage of rice.
Are as followsOsPRR73Examples of the use of the genes in the cultivation of transgenic plants with altered heading date.
One, over-expression vector pCAMBIA 1390-OsPRR73Construction of
1、OsPRR73Obtaining of genes
Extracting wild type Nipponbare total RNA and reverse transcribing into cDNA, performing PCR amplification by taking the cDNA as a template and OsPRR73-cds-F and OsPRR73-cds-R as primers to obtain 2304 bpOsPRR73A gene.
OsPRR73The genome sequence of the gene is shown as SEQ ID NO. 3 (LOC _ Os03g 17570),OsPRR73the cDNA of the gene has a sequence of SEQ ID NO:1 (LOC _ Os03g17570.1), and the coding protein OsPRR73 and the amino acid sequence of the protein OsPRR73 are SEQ ID NO: 2.
The primers are as follows:
OsPRR73-cds-F: 5’- TCTGCACTAGGTACCTGCAGATGGGTAGCGCCTGCG-3' (underlined sequence is the vector linker sequence)
OsPRR73-cds-R: 5’-ATGGATCCGTCGACCTGCAGTTATCTGTCTTCGTCTTGGCCTG-3' (underlined sequence is the vector linker sequence)
2、OsPRR73Construction of overexpression vectors
Using restriction endonucleasesPst IThe pCAMBIA1390 vector is subjected to single enzyme digestion, linear plasmid of about 10820bp is recovered, a large vector fragment is obtained, and the circular vector map of the pCAMBIA1390 vector is shown in figure 1. The 10820bp linearized plasmid was ligated with the plasmid obtained in step 1 above using the in-fusion enzyme from Clontech (www.clontech.com, cat # ST 0344)OsPRR73The gene is connected in-fusion to obtain a recombinant plasmid which is named as pCAMBIA 1390-OsPRR73
Confirmed by sequencing that the recombinant plasmid pCAMBIA 1390-OsPRR73Is in pCAMBIA1390 vectorPst IInsertion between enzyme cutting sitesOsPRR73The vector thus obtained.
Two, turnOsPRR73Obtaining of Rice
1. Construction of recombinant bacterium
The recombinant plasmid pCAMBIA 1390-OsPRR73The recombinant Agrobacterium tumefaciens EHA105 is introduced to obtain the recombinant Agrobacterium EHA105/pCAMBIA 1390-OsPRR73
2、OsPRR73Obtaining of Gene-overexpressed Rice
EHA105/pCAMBIA 1390-OsPRR73Transferred into rice Nipponbare (Oryza sativa) The callus of mature embryo (hereinafter referred to as receptor rice) comprises the following steps:
one step of suspension culture of recombinant Agrobacterium EHA105/pCAMBIA 1390-containing liquid LB medium containing 50. mu. mol/L kanamycinOsPRR73Obtaining OD600nm About 0.5 bacterial suspension.
And (II) mixing the mature embryo callus of the receptor rice with the bacterial suspension obtained in the step (I), infecting for 30 min, sucking dry the bacterial suspension by using filter paper, placing the callus on a co-culture medium (a solid N6 medium containing 0.03924mg/L acetosyringone), and culturing for 3 days at 24 ℃.
And thirdly, inoculating the callus obtained in the step (two) to a solid N6 culture medium containing 150 mg/L G418, and culturing for 16 days at 24 ℃.
And fourthly, inoculating the healthy callus obtained in the third step to a solid N6 culture medium containing 200 mg/L G418, and culturing at 24 ℃ for subculture once every 15 days.
Fifthly, the healthy callus obtained in the step four is taken and inoculated to a differentiation medium (a solid N6 medium containing 150 mg/L G418, 2 mg/L kinetin and 0.05 mg/L naphthylacetic acid), the callus is cultured for 45 days at 24 ℃ (the height of the overground part of the plant is about 15 cm), the bottleneck is opened, the callus is hardened for 3 days, and then the callus is moved to a greenhouse for cultivation, namely T0And (5) plant generation.
(VI) mixing T0Selfing the plants for two generations, harvesting seeds and cultivating the seeds into plants, namely T2And (5) plant generation.
3. Rotating shaftOsPRR73PCR identification of Rice
Separately extracting T0Generation and T2Dai ZhuanOsPRR73The genomic DNA of the rice plant is used as a template, and 1390-F and OsPRR73-R are used as primers for PCR amplification.
The primers are as follows:
1390-F: 5'-TGCCTTCATACGCTATTTATTTGC-3';
OsPRR73-R:5'- CTTTCGCTTCCACTGCCACT -3'。
1390-F corresponds to 10707-10730 bp on the vector of FIG. 1, and the OsPRR73-R primer corresponds to 619-638 bp in SEQ ID NO: 1. If a transgenic plant can be amplified by the primer PCR to obtain a DNA fragment of 730 bp, the transgenic plant is proved to be a positive transgenic plant.
For a certain T0A plant generation, if the plant and its T2The PCR identification of the generation plants is positive, and the plants are proved to be homozygousOsPRR73A plant with gene over-expression, the self-bred progeny of the plant is oneOsPRR73Gene-overexpressing strain comprising 20T2Dai ZhuanOsPRR73And (4) single plants.
4. Detection of mRNA expression level of plant
For detecting transgenic offspringOsPRR73The degree of gene expression, the detection of the receptor rice and T by real-time quantitative PCR2Dai ZhuanOsPRR73In the body of riceOsPRR73The expression profile of the gene. Real-time quantitative PCR was performed on a quantitative PCR instrument (7900 real-time, Applied Biosystems) according to the protocol provided by Applied Biosystems, using riceUbiqutinThe gene is used as an internal reference. The primers were annealed at 60 ℃ and reacted for 40 cycles, with 3 replicates per sample set up. The reaction system was 25. mu.l, which included 2. mu.l of reverse transcription product, 0.25. mu.M forward and reverse primers, and 12.5. mu.l of SYBRGreen mixture (from Takara).
The primers used for real-time quantitative PCR identification were as follows:
OsPRR73-RT-F:5'-AGGTGCGCTATCAGAGCAGA-3';
OsPRR73-RT-R:5'-GGCCTGCCTGATCTTCCTGT-3'。
the partial detection results are shown in FIG. 2-A. Compared with wild riceOsPRR73Rice T2Generation lineOE-1AndOE-4inOsPRR73The expression level of the gene is obviously improved.
Three, turnOsPRR73Phenotypic and agronomic trait survey of rice
1. Heading date survey
Will turn toOsPRR73 T2The generation rice and the receptor rice are planted in Guangxi Nanning (short)Sunshine area, sunshine length less than 12.5 h) and Beijing cission (long sunshine area, sunshine length greater than 15 h), investigating heading period of the material and taking a picture, wherein heading period refers to the number of days required from sowing to when the first ear of the plant is pulled out of the leaf sheath by 3cm length. The results of the observation are shown in FIG. 2, in which WT represents a wild-type rice;OE-1andOE-4represents T2Dai ZhuanOsPRR73A rice plant. FIG. 2-B shows the plant type of rice, FIG. 2-C shows the heading date statistics of rice material in Beijing and Nanning, compared with wild riceOsPRR73Gene T2The heading period of the generation rice is advanced by 25-30 days in Beijing, and the heading period of the generation rice is delayed by 8 days in Nanning.
2. Measurement of Individual plant yield
In the process of turningOsPRR73 T2After the seeds of the generation rice and the receptor rice are mature, respectively collecting 20 rice ears of representative plants, after threshing, weighing the seed weight of each plant by using a thousandth electronic balance, and taking the average value as the single-plant yield of each material.
The results of the assay are shown in FIG. 2-D, in which WT represents wild-type rice;OE-1andOE-4represents T2Dai ZhuanOsPRR73A rice plant. Compared with wild riceOsPRR73Gene T2The yield of each generation of rice plants is not different.
<110> institute of crop science of Chinese academy of agricultural sciences
<120> rice heading stage gene OsPRR73 and application thereof
<160> 3
<210> 1
<211> 2304
<212> cDNA
<213> Rice
<400> 1
ATGGGTAGCGCCTGCGAAGCTGGTACGGACGAGCCTTCCCGAGACGATGTTAAGGGGACAGGGAATGGCATCCTGGAGAATGGTCATAGTCACAAGCCAGAGGAGGAGGAATGGAGGAATGGCATGGGAGAGGACTTACCCAATGGGCACAGTACACCACCAGAGCCCCAGCAAACAGATGAACAGAAGGAGCACCAAGTGCAGATTGTCCGGTGGGAGAGGTTCCTCCCTGTGAAGACACTGAGGGTCTTGCTGGTGGAGAATGATGACTCTACCCGTCAGGTGGTCAGCGCACTGCTTCGTAAGTGTTGTTATGAAGTTATCCCTGCTGAAAATGGGCTACATGCATGGCAATGTCTTGAAGATCTGCAAAACCACATTGACCTTGTATTGACCGAGGTCGTAATGCCACGTCTGTCTGGCATTGGTCTGCTTAGTAAGATCACAAGCCACAAAATTTGCAAGGATATTCCCGTGATTATGATGTCTTCGAATGACTCAATGGGTACAGTCTTTAAGTGTTTGTCAAAAGGAGCAGTTGACTTTCTAGTGAAGCCTATACGTAAGAATGAACTTAAGAACCTTTGGCAGCATGTTTGGAGACGATGCCACAGTTCCAGTGGCAGTGGAAGCGAAAGTGGCATCCGAACACAAAAGTGTACCAAACCAAAGGTTGATGATGAATATGAGAATAACAGCGGTAGCAATAATGACAACGAGGATGATGATGACAATGATGAAGATGATGACGACTTAAGTGTTGGACACAACGCTAGGGATGGCAGTGATAATGGCAGTGGCACTCAAAGTTCATGGACAAAGCGTGCAGTGGAGATTGACAGCCCACAACAAATGTCTCCTGATCAACCATCCGATCTACCAGATAGTACTTGTGCGCAAGTAATTCACCCCACATCAGAGATATGCAGCAACAGGTGGTTACCGACTGCAAATAAAAGGAGCGGAAAGAAACATAAAGAAAATAACGATGACTCCATGGGGAAGTACTTAGAAATAGGAGCTCCTAGAAATTCTAGTATGGAGTACCAATCTTCTCCAAGAGAGATGTCCGTTAATCCAACAGAAAAACAGCATGAAACTCTCATGCCCCAAAGTAAAACAACAAGAGAAACAGATAGTAGGAACACACAGAATGAACCAACTACTCAAACTGTTGATTTAATTAGTTCAATAGCCAGAAGCACAGATGACAAACAAGTAGTTAGAATCAATAATGCTCCTGATTGCTCCTCCAAGGTTCCAGATGGAAATGATAAAAATCGTGATTCTCTCATTGATATGACATCTGAAGAGTTGGGTTTGAAGAGATTGAAAACAACTGGATCTGCAACTGAAATCCATGATGAACGAAATATTCTGAAAAGATCAGATCTCTCAGCTTTCACCAGGTACCATACAACTGTGGCTTCTAATCAAGGTGGAGCTGGATTTGGGGGAAGCTGTTCACCTCAAGATAACAGTTCAGAGGCTCTGAAAACAGACTCCAACTGCAAGGTGAAGTCAAATTCAGATGCTGCTGAAATAAAGCAAGGCTCCAATGGTAGTAGCAACAACAATGACATGGGCTCCAGTACTAAGAATGCCATCACAAAACCTTCTTCAAACAGGGGAAAAGTGATATCACCATCAGCTGTCAAAGCTACCCAACATACATCAGCATTCCATCCTGTGCAGCGTCAAACGTCACCTGCTAATGTTGTAGGGAAAGACAAAGTTGATGAAGGAATTGCTAATGGAGTTAATGTGGGCCACCCTGTAGATGTACAAAATAGCTTTATGCAGCACCATCATCATGTTCATTACTACGTCCATGTTATGACACAGCAGCAGCAGCAGCCATCCATTGAGCGAGGATCATCAGATGCTCAGTGTGGTTCATCCAATGTATTTGATCCTCCCATTGAAGGTCATGCGGCAAACTATAGTGTGAACGGGAGCTTTTCAGGTGGCCATAATGGAAACAATGGGCAAAGAGGACCTAGTACTGCTCCCAATGTTGGGAGGCCAAACATGGAGACTGTTAATGGTATCGTGGATGAAAATGGGGCTGGAGGTGGCAATGGAAGTGGGAGCGGTAGTGGTAATGACTTGTATCAGAATGGGGTCTGTTACCGAGAAGCTGCATTGAACAAATTCAGACAGAAACGGAAAGTGAGGAACTTTGGAAAAAAGGTGCGCTATCAGAGCAGAAAGAGGTTGGCTGAGCAGCGCCCTCGGATCCGCGGGCAATTCGTGCGACAATCTGGACAGGAAGATCAGGCAGGCCAAGACGAAGACAGATAA
<210> 2
<211> 767
<212> PRT
<213> Rice
<400> 2
MGSACEAGTDEPSRDDVKGTGNGILENGHSHKPEEEEWRNGMGEDLPNGHSTPPEPQQTDEQKEHQVQIVRWERFLPVKTLRVLLVENDDSTRQVVSALLRKCCYEVIPAENGLHAWQCLEDLQNHIDLVLTEVVMPRLSGIGLLSKITSHKICKDIPVIMMSSNDSMGTVFKCLSKGAVDFLVKPIRKNELKNLWQHVWRRCHSSSGSGSESGIRTQKCTKPKVDDEYENNSGSNNDNEDDDDNDEDDDDLSVGHNARDGSDNGSGTQSSWTKRAVEIDSPQQMSPDQPSDLPDSTCAQVIHPTSEICSNRWLPTANKRSGKKHKENNDDSMGKYLEIGAPRNSSMEYQSSPREMSVNPTEKQHETLMPQSKTTRETDSRNTQNEPTTQTVDLISSIARSTDDKQVVRINNAPDCSSKVPDGNDKNRDSLIDMTSEELGLKRLKTTGSATEIHDERNILKRSDLSAFTRYHTTVASNQGGAGFGGSCSPQDNSSEALKTDSNCKVKSNSDAAEIKQGSNGSSNNNDMGSSTKNAITKPSSNRGKVISPSAVKATQHTSAFHPVQRQTSPANVVGKDKVDEGIANGVNVGHPVDVQNSFMQHHHHVHYYVHVMTQQQQQPSIERGSSDAQCGSSNVFDPPIEGHAANYSVNGSFSGGHNGNNGQRGPSTAPNVGRPNMETVNGIVDENGAGGGNGSGSGSGNDLYQNGVCYREAALNKFRQKRKVRNFGKKVRYQSRKRLAEQRPRIRGQFVRQSGQEDQAGQDEDR*
<210> 3
<211> 9300
<212> DNA
<213> Rice
<400> 3
GTTATCTACCGCCTCCTCTCACCACCACCGCCTCCTCCTCCTCCTCCGCCTTCCGCCTCTCACCACCACGGCTTCCAGCTCTGGCCGTAGCAGCAGCAGCGCGCGCGCGGGTGCCTGTGCCCGCCGCTGCTCACGGCTCCTCGCCGCCGGCTTGTGCCTCCGATACGTGAGCTCCCCACGGTGCGGCGCCCCGCCGTACGTCGCCGCGTGCGCGACAAGAGCTCGGTCGCGTTGGGGTTTGGGGATCGATTGATTTATAGGCTTTTTTGTTTTTGTGCGGCAGGGGGTGCGAGGGGGTCTGGAAACCGGCGGATCTCGGCCGCTCGCCGCCGGAGTCCGGCACGGGTGGAGGAGTACGGCGACCCGCTTTTTTCTTAGCGATTTTCTTTCCTCTTCTCTCAGGCTGAGGCATGCTTCGAGCGCTTCGTCCGTTCTGATTTTTTTTTTAGCCCGACTGTTTGAGAATCGTCTGACTGACCTGATAAAGCCTAATTTTACTGCCATTTTAGCTCCCCAAGCGCCGTGAATTGGTAGGACTTTTGTGGGAGGCGCTGGTTTCTGCTCTACTCACAGCAAGTTTCTAAAGTAGGTGAATCCTCACGGCTCCGGATCTCCTCTTTTGAGGATTTCCCCCGAATTTTGATCAGATGTTCGATGCTTTTCAGGACTCGGAAGCAATTGATTGTGAAGTATTCCTTTCAGTTCGGCTTGAAGTAGTCCTCTCAGACCATTGCCGCATATAAGAGTAGCTTATTACCTTGTATAGGAAAAAGTAGAAAGCTTATTCCGAGCATGTCTTGTTCATAATAGACTGGACTCTTTGATTCCTGTGTGTTTCTGGCAGATCCAAGTAGCTGACTGGGTGCAGCATATGCTTTTTCTAACGTTGGGCGTATGATGCACCCCACAATCTGTGAACTATCCCTAGTCACTCAGATCAACGGCGCATTATCTCTCTTCCAATCTGGTTGATGGGTAGCGCCTGCGAAGCTGGTACGGACGAGCCTTCCCGAGACGATGTTAAGGGGACAGGGAATGGCATCCTGGAGAATGGTCATAGTCACAAGCCAGAGGAGGAGGAATGGAGGAATGGCATGGGAGAGGACTTACCCAATGGGCACAGTACACCACCAGAGCCCCAGCAAACAGATGAACAGAAGGAGCACCAAGTGCAGATTGTCCGGTGGGAGAGGTTCCTCCCTGTGAAGACACTGAGGGTCTTGCTGGTGGAGAATGATGACTCTACCCGTCAGGTGGTCAGCGCACTGCTTCGTAAGTGTTGTTATGAAGGTATGCACTGCAAATTGCAATACCAATTTATTGTTAATAAGTTTTTCTATTTTCCGAGGGAAGTTAAATTACTTTTATGATCACATATTCGTATTGGAGAATGGAGATTAAGATGAAGATTTTACCTCGGTTTTCCTTAGCATGCTTTTCAAACTACTAATGTTGTTTTATGTGAAAACTTTGTATATAAAAGTTATTTTAAAATATCAAATAAATCCATTTTCAAATTTGAAATAATTAAAACTCAATTAATCATGCGCTAATGACTTTCTCGTTTTACGTGTACATATTTAATCTTCATGTTTAGCATGTTCAAACGGGGACTAAAGGTTTCCTAACTACATATTTATTTCTCAATTCCAGTTTTATGTTGCATTCAGTTGTGATTTTTTCTATACAAGGGAAAATTTGCTCTCTCCACTATATAAAAAATATGTATTGTGCATTGTAAAAAAGAAAGTGCGGTTGAGTCACATTTTTGAACTTAGACGCGGTAAAAATTCACCATGCTATGAAGCTATATTTAGAAAAAGGCATTTTTTGTCTAATTATCTCGCTTAACAATTAGTTGACTTGCCCTTTTTTCCTTAAGAAGAAAGGTTCCAAATATTGAATATCACTATCTTTATGCATCAGCTGATTGGTCTCATTGGCATGGTCATTCTTGGTAACCAGAGGGGTATAGCGCATAGGCCTGCTTCCAATACGCACGGCAGGCACTATAGTTAGCATAGACAGCAGACGAGTGCATATTCCAACACATGGCAGTTGAAGATAGACTAGTGGGCCAGATGTGGACTGGGGATATTCTGGTGATTTTTTCTATATAGTCTTGAATTTAGTTTTAAGTACTCATCCACATTCCTCTCCCAATGAAGAAAAAAAAATGGAACATAGTGCCTCTACATTTTACTACAGGCTGCCCGCAGGACCAATCTCTTCAGTATCCTGGATCAAGTAACTGACATGAAAAGACCTGCTATAGGCATCGGTGTTATTTTCTGTTAGCACCACGTTCCCCCAATTTTCAAATTTGCCATACCATCAAGTCATCTCAGCATCACTACTCCCTCCTCCCTCTTCTCTTGTTAATATGCTCAACTACCTTATTATTGGCGCTGGATCCAGGGTAAAATGCCACTAGGGTCACTCTACTTACATGATGGTAGCATTGACTATTTACAAGAGCAATTTACCATACCGAAGGAGCATTGACTATGGACCTGATGCTTGCATGCTGGACCTGACCCTGCTGATTGTGAATGCTTGCATTACATGATTTTTCTTCTGCAATTTGATTGGGCAGATTCAAGAGGGTTCTGCGCTTCCAGATTTCCAAGTGCAGGTGCTGATGCACCAACTGCCATTTTCAGATAAGAGTGTGATCTGGTCACATAGGTGTGACACTGGATTCCTGTATTTGCCATGCAATGCACCATGGCTTTGCCCTGGATTTTATCATTAGATAACTCTAACAATAGTGCTATTCCTACAGTTTCATTTTTGGTTTGTTCTTTTGTCAATCTTGCTTCCACTCTCTTCTTTTAAAATTTTTTACAAGACCTGAACCAAGCCCAGACATTCATGTGCTAAAGGCCTGCTCGACATTAAGATGGTTTATGAATTTATGATAACCTCAGGGTTGTCGATAATAATAGTTCCATGACAGGATTCCCTATGATTCTGTCCTCTCCATGAAATTAATCATAATATTACACATATTTGAATTAAAAACAGCATACATAGATAATATACTCCTAGATTTCTGTTTTCTTTAAGATTCCTAAACCTGTTTAAACTTCAAGAATGGGGAGTACTGGATGCAACACCTACTACTACTACCTGCTAGACAATTAGATTGCCAATCTTGGTGGCAATTGTCAAAATATCGAATTATGCTGAAGGAAGCATTTTGGAAGTTACATGATCAAGGCCAGTAGATCCAATTGTTTCTCTCTTTTTTTTCATGTTGAACTCAACCACATCTATTATTTAGTTAACCTTATTACACTAGGTAGAAGAAGATTTGAATAAGGTGCACTGACTGATTTGAACAACTCGATTATGGTCAACTCTGACCTAATGATGTAGTTTGTTTTCTAACTATCGTCTTGTTCAAATGTTTTAATAGTTTTGTATTTGTACTGGTATTGTCTTGTCATCGATGAGTGTTCTGCTTTTTATTAGCAATTAGTAAAAACTGGATAACTCTTGATTCATCATGTTTTACCTTTGTAACTCTGTTAAATGTCAATTGGAAATTCTGTAAGAGAACTGACCCTTTTCACGTTGTTGCACAGTGCACATAGTGTCAACCTGTGCACCTTGTGTCAACCAGCTACTACAATTGGACCATTTGAAGCCCCAATCTTCACTTAACTGTTGATGTCAAAATGATTCTAAGTTAATATTAATTTGGATATTCCTCGTATGCCACTGACATCTGACATATAAAGGGACATTCTGTGGAAAAAGAAGGGGAAAAGGCTCTTGTATATGAAATCATGATCTGTTATTTACTTGGTCTGATATATTTCCATTTCCCGATATTCGATATCAGCAGAGGGTGGATATGCATGGAACTAACCACAAAATCTAGGTAGTTACATTCTGGAAGGTTACCTATAAGTTTACATGATTCCTTTTTCCAGTTTGGACTCTGAGAAAGTTCTTTTTTTGTTCTTATGGAAGGCTATGCAACTATAGTGTTTTGACAAATGTTGAACTTGTGTTCCTACTGTCACGTAGCAATTGAAGCTAGAACTTTACAACGTTGAGCTCAGCCTCTGCAATGTTTGTTGTACTCGGAGGAATAATTAAATACATCTTGAAGTGAATTCTATGGATCGTAAACATGTTAATTGCATCATGATTGGTTTGTTAACCTGGAAAGTATGTTTATTGTATGTTATATGTCTTACTAGAATTATGCATGCTTGTTTCTCTTAGCACTGAAGGTTTATCTAAAACTATGTTTTGCATTATGTTAGTTTATTGATTTGGCATCTACTGTATCTCTTTCATTCTAGTTATCCCTGCTGAAAATGGGCTACATGCATGGCAATGTCTTGAAGATCTGCAAAACCACATTGACCTTGTATTGACCGAGGTCGTAATGCCACGTCTGTCTGGCATTGGTCTGCTTAGTAAGATCACAAGCCACAAAATTTGCAAGGATATTCCCGTGATTAGTAAGTAGCATTCTTGCTCAACCACATTTTTCACTTATATACTGTGACACATTTCTACATAACCTTTTAGTCTGAATATGTTTGACTGATGCTGATGTCATTTTCATGCAGTGATGTCTTCGAATGACTCAATGGGTACAGTCTTTAAGTGTTTGTCAAAAGGAGCAGTTGACTTTCTAGTGAAGCCTATACGTAAGAATGAACTTAAGAACCTTTGGCAGCATGTTTGGAGACGATGCCACAGTGTAAGTTTGTTTTTTTTTGTTGGCCTACCTTTAATGTGGGATCAAGTCCCCAACTCTCCGTGTAACTCATAGTATTTTGATTCTAACTTCTTTGTCTGAATATTTTTTATGTGACTAATCTGAATATAATTTGTCTATTTGTAATTCAGTCCAGTGGCAGTGGAAGCGAAAGTGGCATCCGAACACAAAAGTGTACCAAACCAAAGGTTGATGATGAATATGAGAATAACAGCGGTAGCAATAATGACAACGAGGATGATGATGACAATGATGAAGATGATGACGACTTAAGTGTTGGACACAACGCTAGGGATGGCAGTGATAATGGCAGTGGCACTCAAGTAAGAGACCGTTTACTACTTTTCGAAACAGTGTTACTCTTATGTGTTATGTCTATCGCTAGATATATATGAATATGAACGCTAGTTAGAACTTTTTGCTAGCATTCATCGCAAATTAACTGGAAATACATATCAAATTTATCGGCTGTTTTATAGTGGGTATATCAACCTTATGTTTTAACCCTGAATTCTTTTTCATGGAAAATAATACAAAATATCCAAAATTCTAAATTTATACTAGCAAATAGAGTTGCAATGTTTCCTCCTTTCTATCTATCTATCTATCTATCCCAAATATGAATTGGCATGATCTTTCATGAGGATAGCACACTACCTTTTATCATGTCAACTGCCAATAGTTTCTTCATATGCATGTTTGTTTATATGGTAAGAAACCTCTATTTTGTGCAAGTGATTAGACTTTATGTCCGATGGTTTTGTTGTGGAGGTTGAAGAGACGATTTACTAGGGGACTGAATCGTTAGTGGTGAATTGGTGACATGTTGACTGGTATTCCATCCGGACATAAATATTTGATGTTTAGGACAATATTTGATTAAACTTTTAAAAATTCCAACCATCAATAATTTCTCAAATGCTTAGTTTACAAACAGGAAATTTGGTAGACATCGATTTGCCTTGAAAAGTACTATTATAATATCATAAACTTACTAGGTTTTATAAACTTATTCTGATATAGAATTTATGGTAAGAATTTCAAATTTTTGACCAAATCTTGTCCTAAATGACAGATATTTATGACTGGAGGGAGTATCTGTCTATCAGTGATGTATGTATAGAAACTAGAGGGTGCAGAATAGAAAACTAGGATTTATTGATTTATTTGCTTGATTATTAGAAAAATAACAATATACTGTAAAACTTCTCCACACTATTGAAATTATTGCCATGTTTCTCTTACCGCTAGCTAAGTAACGATTTGCTTTGGAGTTGTATATGGAGTTACCACAAATCAATAGTGTCCCAACTAAGGCCCCGTTTGGCAAGTCCTAAATCCCCACCCATCCCTGGGGATGGGCCAGGAAATCTGATGGTGTGAGGATTAAGATCCATCAGTTTTTTTAATGAAATCACTATCGCCTCTTTCTATGATCTCAAATTTAAGCCATACAGGATTAAACACTACTACTACTTGTTTTGTGGAACATTTAAAGACCCATGCAAAATAAACAACTTACATGTGCCGATGGCCACATAATAGCCAAACTGATTATATAACTCTTGTATAAGACTTTACAGTAAAACTGACTTACATGCTAATAGGTGGATTGGTGAAAATGTTGCATTCTAATGTTGTAAATGAAAAAACAACTTCGCGAACAGTTTTCTCTAAATGTAGGACAATTGTGCCAATGTATTCTCATGCCATCAGCCTGTTTTAAAACACAGAGTTCATGGACAAAGCGTGCAGTGGAGATTGACAGCCCACAACAAATGTCTCCTGATCAACCATCCGATCTACCAGATAGTACTTGTGCGCAAGTAATTCACCCCACATCAGAGATATGCAGCAACAGGTGGTTACCGACTGCAAATAAAAGGAGCGGAAAGAAACATAAAGAAAATAACGGTACTATGCTTGATACATCCATGGTAATATAGAAAACGTTACCTTTTTGTTCAACCCAACTATACTCATTTTTCTTTCTTTTCTCAGATGACTCCATGGGGAAGTACTTAGAAATAGGAGCTCCTAGAAATTCTAGTATGGAGTACCAATCTTCTCCAAGAGAGATGTCCGTTAATCCAACAGAAAAACAGCATGAAACTCTCATGCCCCAAAGTAAAACAACAAGAGAAACAGATAGTAGGAACACACAGAATGAACCAACTACTCAAACTGTTGATTTAATTAGTTCAATAGCCAGAAGCACAGATGACAAACAAGTAGTTAGAATCAATAATGCTCCTGATTGCTCCTCCAAGGTTCCAGATGGAAATGATAAAAATCGTGATTCTCTCATTGATATGACATCTGAAGAGTTGGGTTTGAAGAGATTGAAAACAACTGGATCTGCAACTGAAATCCATGATGAACGAAATATTCTGAAAAGATCAGATCTCTCAGCTTTCACCAGGTGCAAAAAATAATATCAGTGTCACTCCTGAGTTATGAACATGGCAATAAATTGCGTACTAATGTTTTCTTATCTTGCAAGGTACCATACAACTGTGGCTTCTAATCAAGGTGGAGCTGGATTTGGGGGAAGCTGTTCACCTCAAGATAACAGTTCAGAGGCTCTGAAAACAGACTCCAACTGCAAGGTGAAGTCAAATTCAGATGCTGCTGAAATAAAGCAAGGCTCCAATGGTAGTAGCAACAACAATGACATGGGCTCCAGTACTAAGAATGCCATCACAAAACCTTCTTCAAACAGGGGAAAAGTGATATCACCATCAGCTGTCAAAGCTACCCAACATACATCAGCATTCCATCCTGTGCAGCGTCAAACGTCACCTGCTAATGTTGTAGGGAAAGACAAAGTTGATGAAGGAATTGCTAATGGAGTTAATGTGGGCCACCCTGTAGATGTACAAAATAGCTTTATGCAGCACCATCATCATGTTCATTACTACGTCCATGTTATGACACAGCAGCAGCAGCAGCCATCCATTGAGCGAGGATCATCAGATGCTCAGTGTGGTTCATCCAATGTATTTGATCCTCCCATTGAAGGTCATGCGGCAAACTATAGTGTGAACGGGAGCTTTTCAGGTGGCCATAATGGAAACAATGGGCAAAGAGGACCTAGTACTGCTCCCAATGTTGGGAGGCCAAACATGGAGACTGTTAATGGTATCGTGGATGAAAATGGGGCTGGAGGTGGCAATGGAAGTGGGAGCGGTAGTGGTAATGACTTGTATCAGAATGGGGTCTGTTACCGAGAAGCTGCATTGAACAAATTCAGACAGAAACGGAAAGTGAGGAACTTTGGAAAAAAGGTAGCCTGTTTTCAGTTACACGCCTATCAAAGTCATGAGTCCTAAAATTAGTAGTATTAATCACTTGAACTCTTTGAGGGGGCTATGAATTCTACTCAGTATAGCAAAAACGAGTGGTAGTATATTCTAATGATTGGGTAAACAAAATGACAATTGATACAATTTCTTCGTACGGATGTGAACACTACTTTTGAAAAGAGTATAAAAAAGTGTTGTTTCTTCCAAGGGTGGGCCAAACTTTAATAAGTACCAGGATCGAACCAGTGAATTACTACATTCCACAAAGTAATTCATAATGTCTAATGAGGGGAGTATGATCTTTAGGCAATAATCGGTTTTGACACTGTTGTTTCACTTTTGAGGAAAAAGACACTTTTTTCTTGCTGTTGTGCCTGACTAAGGTTAGCATTGAACCGGTATCTTTCTGATGGCTTTGTCCGCCTATTTTCAGGTGCGCTATCAGAGCAGAAAGAGGTTGGCTGAGCAGCGCCCTCGGATCCGCGGGCAATTCGTGCGACAATCTGGACAGGAAGATCAGGCAGGCCAAGACGAAGACAGATAACTAAGAACCACCTACATATCCAACATGGCATCTGCTTTGACAGCTGGAGAGCTACGCAATTCATTCCATAGCTGAAAGCAGCTCATCGATCCCCACATTGGAGTGCTCAATAAATAAAACCCATATGATTATTTTCTGTGCCTGACTCCAGATGAAATTTGTGCTATGGAGTGGACCACGCATTTAATTTTAATATGGCAATCGGTAACAACTTAGATGCGATGGTTATTTGTGACCTCCAGTTCCCTTGCAGAGATCCACTTGGACACTTTGTCGAGTCTAAGGAGGAGCAAACCATCTGACGTTTCTATCGGATCATGAATGCTAAATCTTTACTCTACTACTACATCGAGCTGACATCAGTGAGGGTTCAACTATTCATTGCGAGACATTATTTTCAAGTCAAATAGTACATACTTTTCTGCTGGCTGCATTTCTTTTTCATGTTAATTTCCGCTGGCTCCAATTTTGTGGTTGACTACTGTTATGGAGTAATGGCAACCCCAGTGCAGTAATGACGGTTTCTTTTTAAGTTTTGCTTTAGCTTTGTCTTGTAATGAACCTCTGTGATGTTTGGGATTTCTTACAAAGCCGGATGCTGACGATCTTTCCTCTAAAAAAATTGCCATGGTAGGCTGGTTCAGATAACTTTCTGGACAAAATGCTTTCGTCGTTTTGAACCTGAAACCAGTTACGCTATGAAATGA

Claims (10)

1. A polypeptide is characterized in that the amino acid sequence is shown as SEQ ID NO. 2.
2. A nucleic acid encoding the polypeptide of claim 1.
3. The nucleic acid of claim 2, wherein the nucleotide sequence is set forth in SEQ ID NO 1.
4. A recombinant vector comprising the nucleic acid of claim 2.
5. Use of a nucleic acid according to claim 2 or 3 for modulating the heading stage of a plant.
6. Use according to claim 5, characterized in that: overexpression of said nucleic acids in plants by transgenic means to obtain said regulated plant heading phase is advanced under long-day conditions and delayed under short-day conditions.
7. Use according to claim 5 or 6, characterized in that: the plant is a monocotyledon or dicotyledon, and further the plant is rice.
8. A method of breeding transgenic plants with altered heading date comprising: introducing the nucleic acid of claim 2 or 3 into a plant of interest to increase expression of said nucleic acid, resulting in a transgenic plant, wherein heading date of said transgenic plant is advanced under long-day conditions and delayed under short-day conditions.
9. The method of claim 8, wherein: the plant is a monocotyledon or a dicotyledon.
10. The method of claim 9, wherein said monocot is rice.
CN202110020721.9A 2021-01-08 2021-01-08 Rice heading stage gene OsPRR73 and application thereof Pending CN112625102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110020721.9A CN112625102A (en) 2021-01-08 2021-01-08 Rice heading stage gene OsPRR73 and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110020721.9A CN112625102A (en) 2021-01-08 2021-01-08 Rice heading stage gene OsPRR73 and application thereof

Publications (1)

Publication Number Publication Date
CN112625102A true CN112625102A (en) 2021-04-09

Family

ID=75291079

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110020721.9A Pending CN112625102A (en) 2021-01-08 2021-01-08 Rice heading stage gene OsPRR73 and application thereof

Country Status (1)

Country Link
CN (1) CN112625102A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009127441A2 (en) * 2008-04-16 2009-10-22 Universität Potsdam Transcription factors involved in drought stress in plants
US20190249198A1 (en) * 2008-04-29 2019-08-15 Monsanto Technology Llc Genes and uses for plant enhancement
CN111662928A (en) * 2020-06-16 2020-09-15 中国科学院植物研究所 Method for regulating and controlling salt tolerance of plants and salt tolerance related protein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009127441A2 (en) * 2008-04-16 2009-10-22 Universität Potsdam Transcription factors involved in drought stress in plants
US20190249198A1 (en) * 2008-04-29 2019-08-15 Monsanto Technology Llc Genes and uses for plant enhancement
CN111662928A (en) * 2020-06-16 2020-09-15 中国科学院植物研究所 Method for regulating and controlling salt tolerance of plants and salt tolerance related protein

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
LI ZHANG 等: "Three CCT domain-containing genes were identified to regulate heading date by candidate gene-based association mapping and transformation in rice", 《SCIENTIFIC REPORTS》 *
LIWEN LIANG 等: "The transcriptional repressor OsPRR73 links circadian clock and photoperiod athway to control heading date in rice", 《PLANT CELL ENVIRON》 *
MASAYA MURAKAMI 等: "Circadian-Associated Rice Pseudo Response Regulators (OsPRRs): Insight into the Control of Flowering Time", 《BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY》 *
MASAYA MURAKAMI 等: "The Evolutionarily Conserved OsPRR Quintet: Rice Pseudo-Response Regulators Implicated in Circadian Rhythm", 《PLANT CELL PHYSIOL.》 *
MURAKAMI,M. 等: "Oryza sativa Japonica Group OsPRR73 mRNA for pseudo-response regulator 73, complete cds", 《GENBANK DATABASE》 *
ZHANG JIA 等: "The CCT domain-containing gene family has large impacts on heading date, regional adaptation, and grain yield in rice", 《JOURNAL OF INTEGRATIVE AGRICULTURE》 *
分晴文彬: "中国广西壮族自治区南宁日照长度和太阳高度角表", 《百度文库》 *
国家气象局展览办公室: "《我国农业气候资源及区划》", 31 July 1986, 测绘出版社 *
百事可乐: "中国 北京日照长度和太阳高度角表", 《百度文库》 *
魏鑫 等: "水稻抽穗期的光周期调控分子基础研究进展", 《生命科学研究》 *

Similar Documents

Publication Publication Date Title
CN107435047B (en) Low-phosphorus-resistant key gene GmPHR25 in plant phosphorus signal network and application thereof
CN112831478B (en) Protein OsCAT8 for regulating rice chalkiness and coding gene and application thereof
CN111197049B (en) Method for creating dwarf plant type chrysanthemum
CN110066774B (en) Corn receptor kinase gene ZmRLK7 and application thereof
CN110643618A (en) Jatropha curcas MYB transcription factor JcMYB16 gene and application thereof in improving drought resistance of plants
CN112779234A (en) Phyllostachys pubescens PeAPX5 gene and application thereof
CN118064449B (en) RcILI4 gene for regulating and controlling plant flowering phase and application thereof
CN110093353B (en) Cold-resistant related coding gene of ordinary wild rice in bud stage and application thereof
CN112899302B (en) Application of rape alpha-6 tubulin gene in improving rape yield
CN111171127B (en) Astragalus sinicus LHY gene and application thereof
CN109666069B (en) Plant flowering time character related protein AtJAZ5, and coding gene and application thereof
CN109096380B (en) Application of OsBICs gene in regulation and control of plant height and flowering time
CN114875042B (en) Application of OsTPR075 mutant in rice heading stage regulation process
CN114921473B (en) Gene for negative regulation and control of synthesis of endogenous salicylic acid of cassava and application of gene
CN107573411B (en) Application of wheat TaZIM1-7A protein in regulation and control of crop heading period
CN108218967B (en) Rice heading stage related protein and coding gene and application thereof
CN114480422B (en) Application of corn ZmBES1/BZR1-9 gene in breeding early flowering plants
WO2022213453A1 (en) Use of aluminum ion receptor alr1 gene or protein for regulating aluminum resistance of plant
CN111454964B (en) Rape cold-resistant gene BnTR1, and coding protein and application thereof
CN112625102A (en) Rice heading stage gene OsPRR73 and application thereof
CN109182350B (en) Application of corn Zm675 gene in plant quality improvement
CN112080481B (en) Spike-type related gene OsFRS5 and application and phenotype recovery method thereof
CN112481296B (en) Method for improving cold resistance of hot pepper by using ramie BnXTH2 gene
CN114736919B (en) Method for cultivating drought-resistant corn by editing carbonic anhydrase gene and application thereof
CN116376964B (en) Gene for regulating low-temperature germination of rice and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210409

RJ01 Rejection of invention patent application after publication