CN112625102A - Rice heading stage gene OsPRR73 and application thereof - Google Patents
Rice heading stage gene OsPRR73 and application thereof Download PDFInfo
- Publication number
- CN112625102A CN112625102A CN202110020721.9A CN202110020721A CN112625102A CN 112625102 A CN112625102 A CN 112625102A CN 202110020721 A CN202110020721 A CN 202110020721A CN 112625102 A CN112625102 A CN 112625102A
- Authority
- CN
- China
- Prior art keywords
- osprr73
- rice
- plant
- gene
- heading
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 235000007164 Oryza sativa Nutrition 0.000 title claims abstract description 73
- 235000009566 rice Nutrition 0.000 title claims abstract description 71
- 101710138390 Two-component response regulator-like PRR73 Proteins 0.000 title abstract description 11
- 240000007594 Oryza sativa Species 0.000 title description 3
- 241000209094 Oryza Species 0.000 claims abstract description 75
- 241000196324 Embryophyta Species 0.000 claims abstract description 56
- 230000009261 transgenic effect Effects 0.000 claims abstract description 22
- 239000013598 vector Substances 0.000 claims abstract description 22
- 230000003111 delayed effect Effects 0.000 claims abstract description 11
- 108020004707 nucleic acids Proteins 0.000 claims description 9
- 102000039446 nucleic acids Human genes 0.000 claims description 9
- 150000007523 nucleic acids Chemical class 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 229920001184 polypeptide Polymers 0.000 claims description 8
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 8
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 8
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 7
- 230000014509 gene expression Effects 0.000 claims description 7
- 241000209510 Liliopsida Species 0.000 claims description 4
- 238000009395 breeding Methods 0.000 claims description 4
- 230000001488 breeding effect Effects 0.000 claims description 4
- 239000002773 nucleotide Substances 0.000 claims description 4
- 125000003729 nucleotide group Chemical group 0.000 claims description 4
- 230000002018 overexpression Effects 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 241001233957 eudicotyledons Species 0.000 claims 2
- 108090000623 proteins and genes Proteins 0.000 abstract description 41
- 108020004414 DNA Proteins 0.000 abstract description 13
- 102000053602 DNA Human genes 0.000 abstract description 10
- 241000746966 Zizania Species 0.000 abstract description 2
- 235000002636 Zizania aquatica Nutrition 0.000 abstract description 2
- 230000012010 growth Effects 0.000 description 14
- 206010020649 Hyperkeratosis Diseases 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 6
- 239000002609 medium Substances 0.000 description 5
- 241000589158 Agrobacterium Species 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 238000012258 culturing Methods 0.000 description 4
- 238000003208 gene overexpression Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 238000011529 RT qPCR Methods 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000014075 nitrogen utilization Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- OJOBTAOGJIWAGB-UHFFFAOYSA-N acetosyringone Chemical compound COC1=CC(C(C)=O)=CC(OC)=C1O OJOBTAOGJIWAGB-UHFFFAOYSA-N 0.000 description 2
- 230000009418 agronomic effect Effects 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- PRPINYUDVPFIRX-UHFFFAOYSA-N 1-naphthaleneacetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CC=CC2=C1 PRPINYUDVPFIRX-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 108010023832 Florigen Proteins 0.000 description 1
- FAIXYKHYOGVFKA-UHFFFAOYSA-N Kinetin Natural products N=1C=NC=2N=CNC=2C=1N(C)C1=CC=CO1 FAIXYKHYOGVFKA-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 101100298810 Oryza sativa subsp. japonica PRR73 gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000012881 co-culture medium Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000003967 crop rotation Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000009355 double cropping Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 230000001261 florigenic effect Effects 0.000 description 1
- 238000012214 genetic breeding Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 238000010362 genome editing Methods 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- QANMHLXAZMSUEX-UHFFFAOYSA-N kinetin Chemical compound N=1C=NC=2N=CNC=2C=1NCC1=CC=CO1 QANMHLXAZMSUEX-UHFFFAOYSA-N 0.000 description 1
- 229960001669 kinetin Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003147 molecular marker Substances 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000033732 regulation of nitrogen utilization Effects 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 230000000754 repressing effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009105 vegetative growth Effects 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
The invention discloses a gene in the heading stage of riceOsPRR73And applications thereof. The invention provides application of a protein OsPRR73, a DNA molecule for coding a protein OsPRR73 or a recombinant vector containing the DNA molecule for coding the protein OsPRR73 in regulation and control of a plant heading stage. The invention is toOsPRR73The gene is transferred into wild rice to obtain transgenic rice. In transgenic Rice compared with recipient RiceOsPRR73Genes are overexpressed, which is advanced under long-day conditions and delayed under short-day conditions. Lays a foundation for cultivating the transgenic plants with changed heading stage.
Description
Technical Field
The invention relates to the technical field of biology, in particular to a gene for a rice heading stageOsPRR73And applications thereof.
Background
Rice is one of the main grain crops in China, and the rice yield plays an important role in guaranteeing the national grain safety. The proper growth period is an important prerequisite for high-yield and high-efficiency production of rice. The variety with longer growth period is often influenced by adverse weather factors in the later period, so that the risk of yield reduction is faced, and the planting of crops in the later period is not facilitated. In recent years, with the rapid development of economic society of China, the rapid reduction of rural labor force and the continuous reform of land management system, the large-scale operation mode of rice production promotes the light simplified cultivation mode mainly based on direct seeding rice to be greatly popularized. However, since direct-seeded rice has no seedling bed stage, in double cropping rice areas, crop rotation rice areas and northeast rice areas, direct-seeded rice varieties are required to have a shorter growth period and to maintain a higher yield, and breeding of rice varieties with a shorter growth period has become a future development trend of rice breeding in each rice area. Therefore, the functional gene with the early heading characteristic is excavated, the action mechanism of the functional gene is analyzed, and on the basis, the growth period of the rice variety is improved by using a molecular marker assisted selection or gene editing technology, so that the method has important scientific, practical and social significance for enhancing the adaptability of the rice variety and popularizing a simplified cultivation mode.
In production, the rice variety with a short growth period is reduced in the vegetative growth period, and the nutrient substance reserve in the early period is reduced, so that the yield is reduced. Therefore, the excavation and utilization of functional genes which can shorten the growth period and simultaneously can not reduce the yield are always hot spots and difficulties of research work of rice genetic breeding science, and only a few genes are reported to have the characteristics of early maturity, such as the growth period shortening and high yield.OsNRT1.1AIt encodes a nitrate transport protein, and participates in the regulation of nitrogen utilization and flowering time. The gene mutantosnrt1.1aThe nitrogen utilization rate of (a) is reduced, and the flowering time is delayed; to be over-expressedOsNRT1.1AThe nitrogen utilization and yield can be greatly improved, while the growth period is significantly shortened.Ef-cdCoding a section of long-chain non-woven fabricCode RNA (IncRNA) which can positively regulate heading stage geneOsSOC1Expression of (2), increase of florigen GeneHd3aAndRFT1the expression level of the gene can shorten the growth period of rice by 7 to 20 days in different latitudes, and simultaneouslyEd-cfAnd the early maturing and stable yield of the rice are realized by improving the nitrogen utilization rate and the photosynthetic efficiency.
More functional genes with early maturing characteristics are excavated and researched, the internal connection and the molecular regulation mechanism among the functional genes are analyzed, and the method has important theoretical and practical significance for the cultivation of early maturing varieties of rice.OsPRR73Is one of the core components of the rice biological clock system and is a transcription repressing factor. In the present invention, overexpressionOsPRR73Under the condition of long sunshine (the length of sunshine is greater than 13.5 h), the growth period of the rice can be shortened, the yield of a single plant is not reduced, and under the condition of short sunshine (the length of sunshine is less than 12.5 h), the growth period of the rice can be delayed.OsPRR73The function and application research of the method is beneficial to the improvement of the growth period of the rice variety and has important significance for the expansion of the variety planting area.
Disclosure of Invention
The invention aims to provide a rice heading stage gene, a nucleotide sequence thereof and a recombinant vector containing the gene. The inventors overexpress in rice plantsOsPRR73Gene shows that the heading period of the transgenic plant rice is obviously advanced under the long-day condition, and the yield is not reduced; under the condition of short sunshine, the heading period of the target plant is successfully changed.
One objective of the invention is to provide a polypeptide, namely protein OsPRR73, the amino acid sequence of which is shown in SEQ ID NO. 2. The coding gene of the protein OsPRR73 is introduced into a target plant, and the polypeptide is overexpressed by the target plant, so that the heading stage of the plant is greatly advanced under long-day conditions and delayed under short-day conditions.
Another object of the present invention is to provide an oligonucleotide encoding the aforementioned polypeptide, i.e., an oligonucleotide encoding the polypeptideOsPRR73The nucleotide sequence of the gene is shown as SEQ ID NO. 1. The gene is introduced into target plant to make the target plant over-express the polypeptide, so that the heading date of the plant can be prolongedGreatly advanced under light conditions and retarded under short-day conditions.
It is a further object of the present invention to provide a composition comprising saidOsPRR73Recombinant vectors of genes. The recombinant vector of the invention is a vector in pCAMBIA1390Pst IThe nucleotide sequence inserted between the enzyme cutting sites is shown as SEQ ID NO. 1OsPRR73A vector obtained from the gene.
Using the recombinant vectorOsPRR73By introducing the gene into a target plant and allowing the target plant to overexpress the polypeptide, the heading stage of the plant can be greatly advanced under long-day conditions and delayed under short-day conditions.
It is still another object of the present invention to provide a transgenic plant obtained by comprising the sameOsPRR73Transgenic cell lines of the gene. The transgenic plant obtained by culturing the transgenic cell line can also over-express the polypeptide, so that the heading period of the transgenic plant is advanced under a long-day condition and delayed under a short-day condition.
The invention provides application of any substance of the following 1) -3) in regulating and controlling the heading stage and cultivating the heading stage of plants to change plants:
1) protein OsPRR 73;
2) a nucleic acid encoding a protein OsPRR 73;
3) a recombinant vector comprising a nucleic acid encoding the protein OsPRR 73;
the protein OsPRR73 is (1) or (2) as follows:
(1) a protein consisting of an amino acid sequence shown as SEQ ID NO. 2;
(2) and (2) the protein which is derived from the protein (1) and has the same function, wherein the amino acid sequence shown in SEQ ID NO. 2 is subjected to substitution and/or deletion and/or addition of one or more amino acid residues.
The substitution and/or deletion and/or addition of one or more amino acid residues is the substitution and/or deletion and/or addition of no more than 10 amino acid residues.
In the above application, the DNA molecule encoding the protein OsPRR73 is the DNA molecule described in any one of the following 1) to 4):
1) 1, DNA molecule shown in SEQ ID NO;
2) a DNA molecule shown as SEQ ID NO. 3;
3) a DNA molecule which hybridizes with the DNA molecule defined in 1) or 2) under strict conditions and codes for a protein consisting of the amino acid sequence shown in SEQ ID NO. 2;
4) a DNA molecule which has at least 70 percent of homology with the DNA molecule defined by the 1) or the 2 and codes a protein consisting of an amino acid sequence shown in SEQ ID NO. 2.
The stringent conditions may be hybridization in a solution of 6 XSSC, 0.5% SDS at 65 ℃ and washing the membrane once with each of 2 XSSC, 0.1% SDS and 1 XSSC, 0.1% SDS.
In the application, the heading stage or the heading stage change of the plant is the change of flowering time, heading date, mature period and growth period.
In the above application, the plant is a monocotyledon; preferably, the monocotyledonous plant is rice.
The invention is proved by experiments thatOsPRR73The gene is transferred into wild rice to obtain transgenic rice with changed heading period. In transgenic rice, compared with recipient riceOsPRR73The gene is over-expressed, the heading period is obviously advanced under the long-day condition, the rice yield is not influenced, and the heading period is delayed under the short-day condition. Therefore, the temperature of the molten metal is controlled,OsPRR73the gene is related to heading stage, and lays a foundation for cultivating transgenic plants with changed heading stage.
The invention has important theoretical significance and practical significance for further clarifying the molecular mechanism of the heading stage of the plant and cultivating new varieties of high-quality and high-yield crops by means of genetic engineering.
Drawings
FIG. 1 is a map of pCAMBIA1390 vector.
FIG. 2-A shows the wild type rice Nipponbare andOsPRR73detecting the expression of the gene over-expression rice.
FIG. 2-B shows the wild type rice Nipponbare andOsPRR73the gene overexpresses the phenotype of rice.
FIG. 2-C shows wildType rice Nipponbare andOsPRR73statistics data of heading stage of rice with gene over-expression in Nanning and Beijing.
FIG. 2-D shows wild-type rice Nipponbare andOsPRR73the agronomic characters of the rice with gene over-expression in Beijing are counted.
Detailed Description
The experimental procedures used in the following examples are all conventional procedures unless otherwise specified.
Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
N6 medium was purchased from Phytotechnology Laboratories, USA, under the trade name C167.
Rice variety Nipponbare (Oryza sativa) In the document "Li Z, Wan J, Xia J, et al, Mapping of qualitative train location controlling physico-chemical properties of rice grainsOryza sativa L.) Breeding science, 2003, 53(3): 209-.
Agrobacterium tumefaciens EHA105 (Agrobacterium tumefaciensEHA 105) is described in the literature "Hood, Elizabeth E; Gelvin, Stanton B; Melchers, Leo S; Hoekema, Andre.1993.New Agrobacterium helium plasmids for gene transfer to plants.Transgenic ResearchAnd (2), (4) p.208-.
The pCAMBIA1390 vector is a commercial vector, can be obtained by public through commercial channels or related institutions, and can also be obtained from the institute of crop science of Chinese academy of agricultural sciences.
The invention is over-expressed in Nipponbare by pCAMBIA1390 carrierOsPRR73The heading stage of the transgenic homozygous progeny is obviously advanced under the long-day condition, the yield is not influenced, and the heading stage is delayed under the short-day condition. The phenotype of the pedigree is due to overexpressionOsPRR73Cause it to explainOsPRR73Plays an important role in regulating and controlling the heading stage of rice.
Are as followsOsPRR73Examples of the use of the genes in the cultivation of transgenic plants with altered heading date.
One, over-expression vector pCAMBIA 1390-OsPRR73Construction of
1、OsPRR73Obtaining of genes
Extracting wild type Nipponbare total RNA and reverse transcribing into cDNA, performing PCR amplification by taking the cDNA as a template and OsPRR73-cds-F and OsPRR73-cds-R as primers to obtain 2304 bpOsPRR73A gene.
OsPRR73The genome sequence of the gene is shown as SEQ ID NO. 3 (LOC _ Os03g 17570),OsPRR73the cDNA of the gene has a sequence of SEQ ID NO:1 (LOC _ Os03g17570.1), and the coding protein OsPRR73 and the amino acid sequence of the protein OsPRR73 are SEQ ID NO: 2.
The primers are as follows:
OsPRR73-cds-F: 5’- TCTGCACTAGGTACCTGCAGATGGGTAGCGCCTGCG-3' (underlined sequence is the vector linker sequence)
OsPRR73-cds-R: 5’-ATGGATCCGTCGACCTGCAGTTATCTGTCTTCGTCTTGGCCTG-3' (underlined sequence is the vector linker sequence)
2、OsPRR73Construction of overexpression vectors
Using restriction endonucleasesPst IThe pCAMBIA1390 vector is subjected to single enzyme digestion, linear plasmid of about 10820bp is recovered, a large vector fragment is obtained, and the circular vector map of the pCAMBIA1390 vector is shown in figure 1. The 10820bp linearized plasmid was ligated with the plasmid obtained in step 1 above using the in-fusion enzyme from Clontech (www.clontech.com, cat # ST 0344)OsPRR73The gene is connected in-fusion to obtain a recombinant plasmid which is named as pCAMBIA 1390-OsPRR73。
Confirmed by sequencing that the recombinant plasmid pCAMBIA 1390-OsPRR73Is in pCAMBIA1390 vectorPst IInsertion between enzyme cutting sitesOsPRR73The vector thus obtained.
Two, turnOsPRR73Obtaining of Rice
1. Construction of recombinant bacterium
The recombinant plasmid pCAMBIA 1390-OsPRR73The recombinant Agrobacterium tumefaciens EHA105 is introduced to obtain the recombinant Agrobacterium EHA105/pCAMBIA 1390-OsPRR73。
2、OsPRR73Obtaining of Gene-overexpressed Rice
EHA105/pCAMBIA 1390-OsPRR73Transferred into rice Nipponbare (Oryza sativa) The callus of mature embryo (hereinafter referred to as receptor rice) comprises the following steps:
one step of suspension culture of recombinant Agrobacterium EHA105/pCAMBIA 1390-containing liquid LB medium containing 50. mu. mol/L kanamycinOsPRR73Obtaining OD600nm About 0.5 bacterial suspension.
And (II) mixing the mature embryo callus of the receptor rice with the bacterial suspension obtained in the step (I), infecting for 30 min, sucking dry the bacterial suspension by using filter paper, placing the callus on a co-culture medium (a solid N6 medium containing 0.03924mg/L acetosyringone), and culturing for 3 days at 24 ℃.
And thirdly, inoculating the callus obtained in the step (two) to a solid N6 culture medium containing 150 mg/L G418, and culturing for 16 days at 24 ℃.
And fourthly, inoculating the healthy callus obtained in the third step to a solid N6 culture medium containing 200 mg/L G418, and culturing at 24 ℃ for subculture once every 15 days.
Fifthly, the healthy callus obtained in the step four is taken and inoculated to a differentiation medium (a solid N6 medium containing 150 mg/L G418, 2 mg/L kinetin and 0.05 mg/L naphthylacetic acid), the callus is cultured for 45 days at 24 ℃ (the height of the overground part of the plant is about 15 cm), the bottleneck is opened, the callus is hardened for 3 days, and then the callus is moved to a greenhouse for cultivation, namely T0And (5) plant generation.
(VI) mixing T0Selfing the plants for two generations, harvesting seeds and cultivating the seeds into plants, namely T2And (5) plant generation.
3. Rotating shaftOsPRR73PCR identification of Rice
Separately extracting T0Generation and T2Dai ZhuanOsPRR73The genomic DNA of the rice plant is used as a template, and 1390-F and OsPRR73-R are used as primers for PCR amplification.
The primers are as follows:
1390-F: 5'-TGCCTTCATACGCTATTTATTTGC-3';
OsPRR73-R:5'- CTTTCGCTTCCACTGCCACT -3'。
1390-F corresponds to 10707-10730 bp on the vector of FIG. 1, and the OsPRR73-R primer corresponds to 619-638 bp in SEQ ID NO: 1. If a transgenic plant can be amplified by the primer PCR to obtain a DNA fragment of 730 bp, the transgenic plant is proved to be a positive transgenic plant.
For a certain T0A plant generation, if the plant and its T2The PCR identification of the generation plants is positive, and the plants are proved to be homozygousOsPRR73A plant with gene over-expression, the self-bred progeny of the plant is oneOsPRR73Gene-overexpressing strain comprising 20T2Dai ZhuanOsPRR73And (4) single plants.
4. Detection of mRNA expression level of plant
For detecting transgenic offspringOsPRR73The degree of gene expression, the detection of the receptor rice and T by real-time quantitative PCR2Dai ZhuanOsPRR73In the body of riceOsPRR73The expression profile of the gene. Real-time quantitative PCR was performed on a quantitative PCR instrument (7900 real-time, Applied Biosystems) according to the protocol provided by Applied Biosystems, using riceUbiqutinThe gene is used as an internal reference. The primers were annealed at 60 ℃ and reacted for 40 cycles, with 3 replicates per sample set up. The reaction system was 25. mu.l, which included 2. mu.l of reverse transcription product, 0.25. mu.M forward and reverse primers, and 12.5. mu.l of SYBRGreen mixture (from Takara).
The primers used for real-time quantitative PCR identification were as follows:
OsPRR73-RT-F:5'-AGGTGCGCTATCAGAGCAGA-3';
OsPRR73-RT-R:5'-GGCCTGCCTGATCTTCCTGT-3'。
the partial detection results are shown in FIG. 2-A. Compared with wild riceOsPRR73Rice T2Generation lineOE-1AndOE-4inOsPRR73The expression level of the gene is obviously improved.
Three, turnOsPRR73Phenotypic and agronomic trait survey of rice
1. Heading date survey
Will turn toOsPRR73 T2The generation rice and the receptor rice are planted in Guangxi Nanning (short)Sunshine area, sunshine length less than 12.5 h) and Beijing cission (long sunshine area, sunshine length greater than 15 h), investigating heading period of the material and taking a picture, wherein heading period refers to the number of days required from sowing to when the first ear of the plant is pulled out of the leaf sheath by 3cm length. The results of the observation are shown in FIG. 2, in which WT represents a wild-type rice;OE-1andOE-4represents T2Dai ZhuanOsPRR73A rice plant. FIG. 2-B shows the plant type of rice, FIG. 2-C shows the heading date statistics of rice material in Beijing and Nanning, compared with wild riceOsPRR73Gene T2The heading period of the generation rice is advanced by 25-30 days in Beijing, and the heading period of the generation rice is delayed by 8 days in Nanning.
2. Measurement of Individual plant yield
In the process of turningOsPRR73 T2After the seeds of the generation rice and the receptor rice are mature, respectively collecting 20 rice ears of representative plants, after threshing, weighing the seed weight of each plant by using a thousandth electronic balance, and taking the average value as the single-plant yield of each material.
The results of the assay are shown in FIG. 2-D, in which WT represents wild-type rice;OE-1andOE-4represents T2Dai ZhuanOsPRR73A rice plant. Compared with wild riceOsPRR73Gene T2The yield of each generation of rice plants is not different.
<110> institute of crop science of Chinese academy of agricultural sciences
<120> rice heading stage gene OsPRR73 and application thereof
<160> 3
<210> 1
<211> 2304
<212> cDNA
<213> Rice
<400> 1
ATGGGTAGCGCCTGCGAAGCTGGTACGGACGAGCCTTCCCGAGACGATGTTAAGGGGACAGGGAATGGCATCCTGGAGAATGGTCATAGTCACAAGCCAGAGGAGGAGGAATGGAGGAATGGCATGGGAGAGGACTTACCCAATGGGCACAGTACACCACCAGAGCCCCAGCAAACAGATGAACAGAAGGAGCACCAAGTGCAGATTGTCCGGTGGGAGAGGTTCCTCCCTGTGAAGACACTGAGGGTCTTGCTGGTGGAGAATGATGACTCTACCCGTCAGGTGGTCAGCGCACTGCTTCGTAAGTGTTGTTATGAAGTTATCCCTGCTGAAAATGGGCTACATGCATGGCAATGTCTTGAAGATCTGCAAAACCACATTGACCTTGTATTGACCGAGGTCGTAATGCCACGTCTGTCTGGCATTGGTCTGCTTAGTAAGATCACAAGCCACAAAATTTGCAAGGATATTCCCGTGATTATGATGTCTTCGAATGACTCAATGGGTACAGTCTTTAAGTGTTTGTCAAAAGGAGCAGTTGACTTTCTAGTGAAGCCTATACGTAAGAATGAACTTAAGAACCTTTGGCAGCATGTTTGGAGACGATGCCACAGTTCCAGTGGCAGTGGAAGCGAAAGTGGCATCCGAACACAAAAGTGTACCAAACCAAAGGTTGATGATGAATATGAGAATAACAGCGGTAGCAATAATGACAACGAGGATGATGATGACAATGATGAAGATGATGACGACTTAAGTGTTGGACACAACGCTAGGGATGGCAGTGATAATGGCAGTGGCACTCAAAGTTCATGGACAAAGCGTGCAGTGGAGATTGACAGCCCACAACAAATGTCTCCTGATCAACCATCCGATCTACCAGATAGTACTTGTGCGCAAGTAATTCACCCCACATCAGAGATATGCAGCAACAGGTGGTTACCGACTGCAAATAAAAGGAGCGGAAAGAAACATAAAGAAAATAACGATGACTCCATGGGGAAGTACTTAGAAATAGGAGCTCCTAGAAATTCTAGTATGGAGTACCAATCTTCTCCAAGAGAGATGTCCGTTAATCCAACAGAAAAACAGCATGAAACTCTCATGCCCCAAAGTAAAACAACAAGAGAAACAGATAGTAGGAACACACAGAATGAACCAACTACTCAAACTGTTGATTTAATTAGTTCAATAGCCAGAAGCACAGATGACAAACAAGTAGTTAGAATCAATAATGCTCCTGATTGCTCCTCCAAGGTTCCAGATGGAAATGATAAAAATCGTGATTCTCTCATTGATATGACATCTGAAGAGTTGGGTTTGAAGAGATTGAAAACAACTGGATCTGCAACTGAAATCCATGATGAACGAAATATTCTGAAAAGATCAGATCTCTCAGCTTTCACCAGGTACCATACAACTGTGGCTTCTAATCAAGGTGGAGCTGGATTTGGGGGAAGCTGTTCACCTCAAGATAACAGTTCAGAGGCTCTGAAAACAGACTCCAACTGCAAGGTGAAGTCAAATTCAGATGCTGCTGAAATAAAGCAAGGCTCCAATGGTAGTAGCAACAACAATGACATGGGCTCCAGTACTAAGAATGCCATCACAAAACCTTCTTCAAACAGGGGAAAAGTGATATCACCATCAGCTGTCAAAGCTACCCAACATACATCAGCATTCCATCCTGTGCAGCGTCAAACGTCACCTGCTAATGTTGTAGGGAAAGACAAAGTTGATGAAGGAATTGCTAATGGAGTTAATGTGGGCCACCCTGTAGATGTACAAAATAGCTTTATGCAGCACCATCATCATGTTCATTACTACGTCCATGTTATGACACAGCAGCAGCAGCAGCCATCCATTGAGCGAGGATCATCAGATGCTCAGTGTGGTTCATCCAATGTATTTGATCCTCCCATTGAAGGTCATGCGGCAAACTATAGTGTGAACGGGAGCTTTTCAGGTGGCCATAATGGAAACAATGGGCAAAGAGGACCTAGTACTGCTCCCAATGTTGGGAGGCCAAACATGGAGACTGTTAATGGTATCGTGGATGAAAATGGGGCTGGAGGTGGCAATGGAAGTGGGAGCGGTAGTGGTAATGACTTGTATCAGAATGGGGTCTGTTACCGAGAAGCTGCATTGAACAAATTCAGACAGAAACGGAAAGTGAGGAACTTTGGAAAAAAGGTGCGCTATCAGAGCAGAAAGAGGTTGGCTGAGCAGCGCCCTCGGATCCGCGGGCAATTCGTGCGACAATCTGGACAGGAAGATCAGGCAGGCCAAGACGAAGACAGATAA
<210> 2
<211> 767
<212> PRT
<213> Rice
<400> 2
MGSACEAGTDEPSRDDVKGTGNGILENGHSHKPEEEEWRNGMGEDLPNGHSTPPEPQQTDEQKEHQVQIVRWERFLPVKTLRVLLVENDDSTRQVVSALLRKCCYEVIPAENGLHAWQCLEDLQNHIDLVLTEVVMPRLSGIGLLSKITSHKICKDIPVIMMSSNDSMGTVFKCLSKGAVDFLVKPIRKNELKNLWQHVWRRCHSSSGSGSESGIRTQKCTKPKVDDEYENNSGSNNDNEDDDDNDEDDDDLSVGHNARDGSDNGSGTQSSWTKRAVEIDSPQQMSPDQPSDLPDSTCAQVIHPTSEICSNRWLPTANKRSGKKHKENNDDSMGKYLEIGAPRNSSMEYQSSPREMSVNPTEKQHETLMPQSKTTRETDSRNTQNEPTTQTVDLISSIARSTDDKQVVRINNAPDCSSKVPDGNDKNRDSLIDMTSEELGLKRLKTTGSATEIHDERNILKRSDLSAFTRYHTTVASNQGGAGFGGSCSPQDNSSEALKTDSNCKVKSNSDAAEIKQGSNGSSNNNDMGSSTKNAITKPSSNRGKVISPSAVKATQHTSAFHPVQRQTSPANVVGKDKVDEGIANGVNVGHPVDVQNSFMQHHHHVHYYVHVMTQQQQQPSIERGSSDAQCGSSNVFDPPIEGHAANYSVNGSFSGGHNGNNGQRGPSTAPNVGRPNMETVNGIVDENGAGGGNGSGSGSGNDLYQNGVCYREAALNKFRQKRKVRNFGKKVRYQSRKRLAEQRPRIRGQFVRQSGQEDQAGQDEDR*
<210> 3
<211> 9300
<212> DNA
<213> Rice
<400> 3
GTTATCTACCGCCTCCTCTCACCACCACCGCCTCCTCCTCCTCCTCCGCCTTCCGCCTCTCACCACCACGGCTTCCAGCTCTGGCCGTAGCAGCAGCAGCGCGCGCGCGGGTGCCTGTGCCCGCCGCTGCTCACGGCTCCTCGCCGCCGGCTTGTGCCTCCGATACGTGAGCTCCCCACGGTGCGGCGCCCCGCCGTACGTCGCCGCGTGCGCGACAAGAGCTCGGTCGCGTTGGGGTTTGGGGATCGATTGATTTATAGGCTTTTTTGTTTTTGTGCGGCAGGGGGTGCGAGGGGGTCTGGAAACCGGCGGATCTCGGCCGCTCGCCGCCGGAGTCCGGCACGGGTGGAGGAGTACGGCGACCCGCTTTTTTCTTAGCGATTTTCTTTCCTCTTCTCTCAGGCTGAGGCATGCTTCGAGCGCTTCGTCCGTTCTGATTTTTTTTTTAGCCCGACTGTTTGAGAATCGTCTGACTGACCTGATAAAGCCTAATTTTACTGCCATTTTAGCTCCCCAAGCGCCGTGAATTGGTAGGACTTTTGTGGGAGGCGCTGGTTTCTGCTCTACTCACAGCAAGTTTCTAAAGTAGGTGAATCCTCACGGCTCCGGATCTCCTCTTTTGAGGATTTCCCCCGAATTTTGATCAGATGTTCGATGCTTTTCAGGACTCGGAAGCAATTGATTGTGAAGTATTCCTTTCAGTTCGGCTTGAAGTAGTCCTCTCAGACCATTGCCGCATATAAGAGTAGCTTATTACCTTGTATAGGAAAAAGTAGAAAGCTTATTCCGAGCATGTCTTGTTCATAATAGACTGGACTCTTTGATTCCTGTGTGTTTCTGGCAGATCCAAGTAGCTGACTGGGTGCAGCATATGCTTTTTCTAACGTTGGGCGTATGATGCACCCCACAATCTGTGAACTATCCCTAGTCACTCAGATCAACGGCGCATTATCTCTCTTCCAATCTGGTTGATGGGTAGCGCCTGCGAAGCTGGTACGGACGAGCCTTCCCGAGACGATGTTAAGGGGACAGGGAATGGCATCCTGGAGAATGGTCATAGTCACAAGCCAGAGGAGGAGGAATGGAGGAATGGCATGGGAGAGGACTTACCCAATGGGCACAGTACACCACCAGAGCCCCAGCAAACAGATGAACAGAAGGAGCACCAAGTGCAGATTGTCCGGTGGGAGAGGTTCCTCCCTGTGAAGACACTGAGGGTCTTGCTGGTGGAGAATGATGACTCTACCCGTCAGGTGGTCAGCGCACTGCTTCGTAAGTGTTGTTATGAAGGTATGCACTGCAAATTGCAATACCAATTTATTGTTAATAAGTTTTTCTATTTTCCGAGGGAAGTTAAATTACTTTTATGATCACATATTCGTATTGGAGAATGGAGATTAAGATGAAGATTTTACCTCGGTTTTCCTTAGCATGCTTTTCAAACTACTAATGTTGTTTTATGTGAAAACTTTGTATATAAAAGTTATTTTAAAATATCAAATAAATCCATTTTCAAATTTGAAATAATTAAAACTCAATTAATCATGCGCTAATGACTTTCTCGTTTTACGTGTACATATTTAATCTTCATGTTTAGCATGTTCAAACGGGGACTAAAGGTTTCCTAACTACATATTTATTTCTCAATTCCAGTTTTATGTTGCATTCAGTTGTGATTTTTTCTATACAAGGGAAAATTTGCTCTCTCCACTATATAAAAAATATGTATTGTGCATTGTAAAAAAGAAAGTGCGGTTGAGTCACATTTTTGAACTTAGACGCGGTAAAAATTCACCATGCTATGAAGCTATATTTAGAAAAAGGCATTTTTTGTCTAATTATCTCGCTTAACAATTAGTTGACTTGCCCTTTTTTCCTTAAGAAGAAAGGTTCCAAATATTGAATATCACTATCTTTATGCATCAGCTGATTGGTCTCATTGGCATGGTCATTCTTGGTAACCAGAGGGGTATAGCGCATAGGCCTGCTTCCAATACGCACGGCAGGCACTATAGTTAGCATAGACAGCAGACGAGTGCATATTCCAACACATGGCAGTTGAAGATAGACTAGTGGGCCAGATGTGGACTGGGGATATTCTGGTGATTTTTTCTATATAGTCTTGAATTTAGTTTTAAGTACTCATCCACATTCCTCTCCCAATGAAGAAAAAAAAATGGAACATAGTGCCTCTACATTTTACTACAGGCTGCCCGCAGGACCAATCTCTTCAGTATCCTGGATCAAGTAACTGACATGAAAAGACCTGCTATAGGCATCGGTGTTATTTTCTGTTAGCACCACGTTCCCCCAATTTTCAAATTTGCCATACCATCAAGTCATCTCAGCATCACTACTCCCTCCTCCCTCTTCTCTTGTTAATATGCTCAACTACCTTATTATTGGCGCTGGATCCAGGGTAAAATGCCACTAGGGTCACTCTACTTACATGATGGTAGCATTGACTATTTACAAGAGCAATTTACCATACCGAAGGAGCATTGACTATGGACCTGATGCTTGCATGCTGGACCTGACCCTGCTGATTGTGAATGCTTGCATTACATGATTTTTCTTCTGCAATTTGATTGGGCAGATTCAAGAGGGTTCTGCGCTTCCAGATTTCCAAGTGCAGGTGCTGATGCACCAACTGCCATTTTCAGATAAGAGTGTGATCTGGTCACATAGGTGTGACACTGGATTCCTGTATTTGCCATGCAATGCACCATGGCTTTGCCCTGGATTTTATCATTAGATAACTCTAACAATAGTGCTATTCCTACAGTTTCATTTTTGGTTTGTTCTTTTGTCAATCTTGCTTCCACTCTCTTCTTTTAAAATTTTTTACAAGACCTGAACCAAGCCCAGACATTCATGTGCTAAAGGCCTGCTCGACATTAAGATGGTTTATGAATTTATGATAACCTCAGGGTTGTCGATAATAATAGTTCCATGACAGGATTCCCTATGATTCTGTCCTCTCCATGAAATTAATCATAATATTACACATATTTGAATTAAAAACAGCATACATAGATAATATACTCCTAGATTTCTGTTTTCTTTAAGATTCCTAAACCTGTTTAAACTTCAAGAATGGGGAGTACTGGATGCAACACCTACTACTACTACCTGCTAGACAATTAGATTGCCAATCTTGGTGGCAATTGTCAAAATATCGAATTATGCTGAAGGAAGCATTTTGGAAGTTACATGATCAAGGCCAGTAGATCCAATTGTTTCTCTCTTTTTTTTCATGTTGAACTCAACCACATCTATTATTTAGTTAACCTTATTACACTAGGTAGAAGAAGATTTGAATAAGGTGCACTGACTGATTTGAACAACTCGATTATGGTCAACTCTGACCTAATGATGTAGTTTGTTTTCTAACTATCGTCTTGTTCAAATGTTTTAATAGTTTTGTATTTGTACTGGTATTGTCTTGTCATCGATGAGTGTTCTGCTTTTTATTAGCAATTAGTAAAAACTGGATAACTCTTGATTCATCATGTTTTACCTTTGTAACTCTGTTAAATGTCAATTGGAAATTCTGTAAGAGAACTGACCCTTTTCACGTTGTTGCACAGTGCACATAGTGTCAACCTGTGCACCTTGTGTCAACCAGCTACTACAATTGGACCATTTGAAGCCCCAATCTTCACTTAACTGTTGATGTCAAAATGATTCTAAGTTAATATTAATTTGGATATTCCTCGTATGCCACTGACATCTGACATATAAAGGGACATTCTGTGGAAAAAGAAGGGGAAAAGGCTCTTGTATATGAAATCATGATCTGTTATTTACTTGGTCTGATATATTTCCATTTCCCGATATTCGATATCAGCAGAGGGTGGATATGCATGGAACTAACCACAAAATCTAGGTAGTTACATTCTGGAAGGTTACCTATAAGTTTACATGATTCCTTTTTCCAGTTTGGACTCTGAGAAAGTTCTTTTTTTGTTCTTATGGAAGGCTATGCAACTATAGTGTTTTGACAAATGTTGAACTTGTGTTCCTACTGTCACGTAGCAATTGAAGCTAGAACTTTACAACGTTGAGCTCAGCCTCTGCAATGTTTGTTGTACTCGGAGGAATAATTAAATACATCTTGAAGTGAATTCTATGGATCGTAAACATGTTAATTGCATCATGATTGGTTTGTTAACCTGGAAAGTATGTTTATTGTATGTTATATGTCTTACTAGAATTATGCATGCTTGTTTCTCTTAGCACTGAAGGTTTATCTAAAACTATGTTTTGCATTATGTTAGTTTATTGATTTGGCATCTACTGTATCTCTTTCATTCTAGTTATCCCTGCTGAAAATGGGCTACATGCATGGCAATGTCTTGAAGATCTGCAAAACCACATTGACCTTGTATTGACCGAGGTCGTAATGCCACGTCTGTCTGGCATTGGTCTGCTTAGTAAGATCACAAGCCACAAAATTTGCAAGGATATTCCCGTGATTAGTAAGTAGCATTCTTGCTCAACCACATTTTTCACTTATATACTGTGACACATTTCTACATAACCTTTTAGTCTGAATATGTTTGACTGATGCTGATGTCATTTTCATGCAGTGATGTCTTCGAATGACTCAATGGGTACAGTCTTTAAGTGTTTGTCAAAAGGAGCAGTTGACTTTCTAGTGAAGCCTATACGTAAGAATGAACTTAAGAACCTTTGGCAGCATGTTTGGAGACGATGCCACAGTGTAAGTTTGTTTTTTTTTGTTGGCCTACCTTTAATGTGGGATCAAGTCCCCAACTCTCCGTGTAACTCATAGTATTTTGATTCTAACTTCTTTGTCTGAATATTTTTTATGTGACTAATCTGAATATAATTTGTCTATTTGTAATTCAGTCCAGTGGCAGTGGAAGCGAAAGTGGCATCCGAACACAAAAGTGTACCAAACCAAAGGTTGATGATGAATATGAGAATAACAGCGGTAGCAATAATGACAACGAGGATGATGATGACAATGATGAAGATGATGACGACTTAAGTGTTGGACACAACGCTAGGGATGGCAGTGATAATGGCAGTGGCACTCAAGTAAGAGACCGTTTACTACTTTTCGAAACAGTGTTACTCTTATGTGTTATGTCTATCGCTAGATATATATGAATATGAACGCTAGTTAGAACTTTTTGCTAGCATTCATCGCAAATTAACTGGAAATACATATCAAATTTATCGGCTGTTTTATAGTGGGTATATCAACCTTATGTTTTAACCCTGAATTCTTTTTCATGGAAAATAATACAAAATATCCAAAATTCTAAATTTATACTAGCAAATAGAGTTGCAATGTTTCCTCCTTTCTATCTATCTATCTATCTATCCCAAATATGAATTGGCATGATCTTTCATGAGGATAGCACACTACCTTTTATCATGTCAACTGCCAATAGTTTCTTCATATGCATGTTTGTTTATATGGTAAGAAACCTCTATTTTGTGCAAGTGATTAGACTTTATGTCCGATGGTTTTGTTGTGGAGGTTGAAGAGACGATTTACTAGGGGACTGAATCGTTAGTGGTGAATTGGTGACATGTTGACTGGTATTCCATCCGGACATAAATATTTGATGTTTAGGACAATATTTGATTAAACTTTTAAAAATTCCAACCATCAATAATTTCTCAAATGCTTAGTTTACAAACAGGAAATTTGGTAGACATCGATTTGCCTTGAAAAGTACTATTATAATATCATAAACTTACTAGGTTTTATAAACTTATTCTGATATAGAATTTATGGTAAGAATTTCAAATTTTTGACCAAATCTTGTCCTAAATGACAGATATTTATGACTGGAGGGAGTATCTGTCTATCAGTGATGTATGTATAGAAACTAGAGGGTGCAGAATAGAAAACTAGGATTTATTGATTTATTTGCTTGATTATTAGAAAAATAACAATATACTGTAAAACTTCTCCACACTATTGAAATTATTGCCATGTTTCTCTTACCGCTAGCTAAGTAACGATTTGCTTTGGAGTTGTATATGGAGTTACCACAAATCAATAGTGTCCCAACTAAGGCCCCGTTTGGCAAGTCCTAAATCCCCACCCATCCCTGGGGATGGGCCAGGAAATCTGATGGTGTGAGGATTAAGATCCATCAGTTTTTTTAATGAAATCACTATCGCCTCTTTCTATGATCTCAAATTTAAGCCATACAGGATTAAACACTACTACTACTTGTTTTGTGGAACATTTAAAGACCCATGCAAAATAAACAACTTACATGTGCCGATGGCCACATAATAGCCAAACTGATTATATAACTCTTGTATAAGACTTTACAGTAAAACTGACTTACATGCTAATAGGTGGATTGGTGAAAATGTTGCATTCTAATGTTGTAAATGAAAAAACAACTTCGCGAACAGTTTTCTCTAAATGTAGGACAATTGTGCCAATGTATTCTCATGCCATCAGCCTGTTTTAAAACACAGAGTTCATGGACAAAGCGTGCAGTGGAGATTGACAGCCCACAACAAATGTCTCCTGATCAACCATCCGATCTACCAGATAGTACTTGTGCGCAAGTAATTCACCCCACATCAGAGATATGCAGCAACAGGTGGTTACCGACTGCAAATAAAAGGAGCGGAAAGAAACATAAAGAAAATAACGGTACTATGCTTGATACATCCATGGTAATATAGAAAACGTTACCTTTTTGTTCAACCCAACTATACTCATTTTTCTTTCTTTTCTCAGATGACTCCATGGGGAAGTACTTAGAAATAGGAGCTCCTAGAAATTCTAGTATGGAGTACCAATCTTCTCCAAGAGAGATGTCCGTTAATCCAACAGAAAAACAGCATGAAACTCTCATGCCCCAAAGTAAAACAACAAGAGAAACAGATAGTAGGAACACACAGAATGAACCAACTACTCAAACTGTTGATTTAATTAGTTCAATAGCCAGAAGCACAGATGACAAACAAGTAGTTAGAATCAATAATGCTCCTGATTGCTCCTCCAAGGTTCCAGATGGAAATGATAAAAATCGTGATTCTCTCATTGATATGACATCTGAAGAGTTGGGTTTGAAGAGATTGAAAACAACTGGATCTGCAACTGAAATCCATGATGAACGAAATATTCTGAAAAGATCAGATCTCTCAGCTTTCACCAGGTGCAAAAAATAATATCAGTGTCACTCCTGAGTTATGAACATGGCAATAAATTGCGTACTAATGTTTTCTTATCTTGCAAGGTACCATACAACTGTGGCTTCTAATCAAGGTGGAGCTGGATTTGGGGGAAGCTGTTCACCTCAAGATAACAGTTCAGAGGCTCTGAAAACAGACTCCAACTGCAAGGTGAAGTCAAATTCAGATGCTGCTGAAATAAAGCAAGGCTCCAATGGTAGTAGCAACAACAATGACATGGGCTCCAGTACTAAGAATGCCATCACAAAACCTTCTTCAAACAGGGGAAAAGTGATATCACCATCAGCTGTCAAAGCTACCCAACATACATCAGCATTCCATCCTGTGCAGCGTCAAACGTCACCTGCTAATGTTGTAGGGAAAGACAAAGTTGATGAAGGAATTGCTAATGGAGTTAATGTGGGCCACCCTGTAGATGTACAAAATAGCTTTATGCAGCACCATCATCATGTTCATTACTACGTCCATGTTATGACACAGCAGCAGCAGCAGCCATCCATTGAGCGAGGATCATCAGATGCTCAGTGTGGTTCATCCAATGTATTTGATCCTCCCATTGAAGGTCATGCGGCAAACTATAGTGTGAACGGGAGCTTTTCAGGTGGCCATAATGGAAACAATGGGCAAAGAGGACCTAGTACTGCTCCCAATGTTGGGAGGCCAAACATGGAGACTGTTAATGGTATCGTGGATGAAAATGGGGCTGGAGGTGGCAATGGAAGTGGGAGCGGTAGTGGTAATGACTTGTATCAGAATGGGGTCTGTTACCGAGAAGCTGCATTGAACAAATTCAGACAGAAACGGAAAGTGAGGAACTTTGGAAAAAAGGTAGCCTGTTTTCAGTTACACGCCTATCAAAGTCATGAGTCCTAAAATTAGTAGTATTAATCACTTGAACTCTTTGAGGGGGCTATGAATTCTACTCAGTATAGCAAAAACGAGTGGTAGTATATTCTAATGATTGGGTAAACAAAATGACAATTGATACAATTTCTTCGTACGGATGTGAACACTACTTTTGAAAAGAGTATAAAAAAGTGTTGTTTCTTCCAAGGGTGGGCCAAACTTTAATAAGTACCAGGATCGAACCAGTGAATTACTACATTCCACAAAGTAATTCATAATGTCTAATGAGGGGAGTATGATCTTTAGGCAATAATCGGTTTTGACACTGTTGTTTCACTTTTGAGGAAAAAGACACTTTTTTCTTGCTGTTGTGCCTGACTAAGGTTAGCATTGAACCGGTATCTTTCTGATGGCTTTGTCCGCCTATTTTCAGGTGCGCTATCAGAGCAGAAAGAGGTTGGCTGAGCAGCGCCCTCGGATCCGCGGGCAATTCGTGCGACAATCTGGACAGGAAGATCAGGCAGGCCAAGACGAAGACAGATAACTAAGAACCACCTACATATCCAACATGGCATCTGCTTTGACAGCTGGAGAGCTACGCAATTCATTCCATAGCTGAAAGCAGCTCATCGATCCCCACATTGGAGTGCTCAATAAATAAAACCCATATGATTATTTTCTGTGCCTGACTCCAGATGAAATTTGTGCTATGGAGTGGACCACGCATTTAATTTTAATATGGCAATCGGTAACAACTTAGATGCGATGGTTATTTGTGACCTCCAGTTCCCTTGCAGAGATCCACTTGGACACTTTGTCGAGTCTAAGGAGGAGCAAACCATCTGACGTTTCTATCGGATCATGAATGCTAAATCTTTACTCTACTACTACATCGAGCTGACATCAGTGAGGGTTCAACTATTCATTGCGAGACATTATTTTCAAGTCAAATAGTACATACTTTTCTGCTGGCTGCATTTCTTTTTCATGTTAATTTCCGCTGGCTCCAATTTTGTGGTTGACTACTGTTATGGAGTAATGGCAACCCCAGTGCAGTAATGACGGTTTCTTTTTAAGTTTTGCTTTAGCTTTGTCTTGTAATGAACCTCTGTGATGTTTGGGATTTCTTACAAAGCCGGATGCTGACGATCTTTCCTCTAAAAAAATTGCCATGGTAGGCTGGTTCAGATAACTTTCTGGACAAAATGCTTTCGTCGTTTTGAACCTGAAACCAGTTACGCTATGAAATGA
Claims (10)
1. A polypeptide is characterized in that the amino acid sequence is shown as SEQ ID NO. 2.
2. A nucleic acid encoding the polypeptide of claim 1.
3. The nucleic acid of claim 2, wherein the nucleotide sequence is set forth in SEQ ID NO 1.
4. A recombinant vector comprising the nucleic acid of claim 2.
5. Use of a nucleic acid according to claim 2 or 3 for modulating the heading stage of a plant.
6. Use according to claim 5, characterized in that: overexpression of said nucleic acids in plants by transgenic means to obtain said regulated plant heading phase is advanced under long-day conditions and delayed under short-day conditions.
7. Use according to claim 5 or 6, characterized in that: the plant is a monocotyledon or dicotyledon, and further the plant is rice.
8. A method of breeding transgenic plants with altered heading date comprising: introducing the nucleic acid of claim 2 or 3 into a plant of interest to increase expression of said nucleic acid, resulting in a transgenic plant, wherein heading date of said transgenic plant is advanced under long-day conditions and delayed under short-day conditions.
9. The method of claim 8, wherein: the plant is a monocotyledon or a dicotyledon.
10. The method of claim 9, wherein said monocot is rice.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110020721.9A CN112625102A (en) | 2021-01-08 | 2021-01-08 | Rice heading stage gene OsPRR73 and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110020721.9A CN112625102A (en) | 2021-01-08 | 2021-01-08 | Rice heading stage gene OsPRR73 and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112625102A true CN112625102A (en) | 2021-04-09 |
Family
ID=75291079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110020721.9A Pending CN112625102A (en) | 2021-01-08 | 2021-01-08 | Rice heading stage gene OsPRR73 and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112625102A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009127441A2 (en) * | 2008-04-16 | 2009-10-22 | Universität Potsdam | Transcription factors involved in drought stress in plants |
US20190249198A1 (en) * | 2008-04-29 | 2019-08-15 | Monsanto Technology Llc | Genes and uses for plant enhancement |
CN111662928A (en) * | 2020-06-16 | 2020-09-15 | 中国科学院植物研究所 | Method for regulating and controlling salt tolerance of plants and salt tolerance related protein |
-
2021
- 2021-01-08 CN CN202110020721.9A patent/CN112625102A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009127441A2 (en) * | 2008-04-16 | 2009-10-22 | Universität Potsdam | Transcription factors involved in drought stress in plants |
US20190249198A1 (en) * | 2008-04-29 | 2019-08-15 | Monsanto Technology Llc | Genes and uses for plant enhancement |
CN111662928A (en) * | 2020-06-16 | 2020-09-15 | 中国科学院植物研究所 | Method for regulating and controlling salt tolerance of plants and salt tolerance related protein |
Non-Patent Citations (10)
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107435047B (en) | Low-phosphorus-resistant key gene GmPHR25 in plant phosphorus signal network and application thereof | |
CN112831478B (en) | Protein OsCAT8 for regulating rice chalkiness and coding gene and application thereof | |
CN111197049B (en) | Method for creating dwarf plant type chrysanthemum | |
CN110066774B (en) | Corn receptor kinase gene ZmRLK7 and application thereof | |
CN110643618A (en) | Jatropha curcas MYB transcription factor JcMYB16 gene and application thereof in improving drought resistance of plants | |
CN112779234A (en) | Phyllostachys pubescens PeAPX5 gene and application thereof | |
CN118064449B (en) | RcILI4 gene for regulating and controlling plant flowering phase and application thereof | |
CN110093353B (en) | Cold-resistant related coding gene of ordinary wild rice in bud stage and application thereof | |
CN112899302B (en) | Application of rape alpha-6 tubulin gene in improving rape yield | |
CN111171127B (en) | Astragalus sinicus LHY gene and application thereof | |
CN109666069B (en) | Plant flowering time character related protein AtJAZ5, and coding gene and application thereof | |
CN109096380B (en) | Application of OsBICs gene in regulation and control of plant height and flowering time | |
CN114875042B (en) | Application of OsTPR075 mutant in rice heading stage regulation process | |
CN114921473B (en) | Gene for negative regulation and control of synthesis of endogenous salicylic acid of cassava and application of gene | |
CN107573411B (en) | Application of wheat TaZIM1-7A protein in regulation and control of crop heading period | |
CN108218967B (en) | Rice heading stage related protein and coding gene and application thereof | |
CN114480422B (en) | Application of corn ZmBES1/BZR1-9 gene in breeding early flowering plants | |
WO2022213453A1 (en) | Use of aluminum ion receptor alr1 gene or protein for regulating aluminum resistance of plant | |
CN111454964B (en) | Rape cold-resistant gene BnTR1, and coding protein and application thereof | |
CN112625102A (en) | Rice heading stage gene OsPRR73 and application thereof | |
CN109182350B (en) | Application of corn Zm675 gene in plant quality improvement | |
CN112080481B (en) | Spike-type related gene OsFRS5 and application and phenotype recovery method thereof | |
CN112481296B (en) | Method for improving cold resistance of hot pepper by using ramie BnXTH2 gene | |
CN114736919B (en) | Method for cultivating drought-resistant corn by editing carbonic anhydrase gene and application thereof | |
CN116376964B (en) | Gene for regulating low-temperature germination of rice and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210409 |
|
RJ01 | Rejection of invention patent application after publication |