CN110643618A - Jatropha MYB transcription factor JcMYB16 gene and its application in improving plant drought resistance - Google Patents

Jatropha MYB transcription factor JcMYB16 gene and its application in improving plant drought resistance Download PDF

Info

Publication number
CN110643618A
CN110643618A CN201911098741.7A CN201911098741A CN110643618A CN 110643618 A CN110643618 A CN 110643618A CN 201911098741 A CN201911098741 A CN 201911098741A CN 110643618 A CN110643618 A CN 110643618A
Authority
CN
China
Prior art keywords
gene
jcmyb16
jatropha
drought
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911098741.7A
Other languages
Chinese (zh)
Other versions
CN110643618B (en
Inventor
唐跃辉
王健
包欣欣
齐静
刘坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhoukou Normal University
Original Assignee
Zhoukou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhoukou Normal University filed Critical Zhoukou Normal University
Priority to CN201911098741.7A priority Critical patent/CN110643618B/en
Publication of CN110643618A publication Critical patent/CN110643618A/en
Application granted granted Critical
Publication of CN110643618B publication Critical patent/CN110643618B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明提供了一种小桐子MYB类转录因子JcMYB16基因,其基因核苷酸序列为SEQ ID NO.1,其基因开放阅读框的核苷酸序列为SEQ ID NO.2超表达JcMYB16基因不影响植物的生长和发育,可以显著提高干旱胁迫抗性。该基因可以用于小桐子及水稻、小麦等禾谷类作物耐干旱品种的培育,还可应用于大麦、高粱、玉米、拟南芥、番茄、烟草、大豆、土豆等作物耐旱品种的培育。

Figure 201911098741

The present invention provides a Jatropha japonica MYB transcription factor JcMYB16 gene, the nucleotide sequence of which is SEQ ID NO.1, and the nucleotide sequence of the gene open reading frame is SEQ ID NO.2. Overexpression of the JcMYB16 gene does not affect the Plant growth and development can significantly improve drought stress resistance. The gene can be used for the cultivation of drought-tolerant varieties of Jatropha japonica and cereal crops such as rice and wheat, as well as for the cultivation of drought-tolerant varieties of crops such as barley, sorghum, corn, Arabidopsis, tomato, tobacco, soybean, and potato.

Figure 201911098741

Description

小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中 的应用Jatropha MYB transcription factor JcMYB16 gene and its role in improving plant drought resistance Applications

技术领域technical field

本发明属于植物生物技术领域,它涉及一种小桐子MYB类转录因子JcMYB16基因及其在植物中的应用。The invention belongs to the field of plant biotechnology, and relates to a Jatropha jatropha MYB transcription factor JcMYB16 gene and its application in plants.

背景技术Background technique

干旱胁迫引发的植物生理缺水严重影响植物生长发育和农作物产量。统计显示,目前我国可耕地面积仅有1.21亿公顷,而荒漠化和盐碱化土地有2.6亿公顷,人为因素造成的废弃土地0.13亿公顷。因此干旱胁迫已成为制约我国农作物生长发育的瓶颈,解决这一问题的重要途径就是大力加强耐逆性相关基因的挖掘及在分子育种中的开发利用研究。目前,对于模式植物拟南芥的研究已经初步了解了植物响应干旱胁迫信号的信号途径,确定了一些抗旱途径的基因。由于物种进化的特异性和相关基因在特定物种的局限性,很难在单一物种中筛选出更多的抗旱相关基因。但是,由于物种的多样性,很多植物具有较好的耐干旱的特性,因此从具有耐干旱特性的植物中挖掘抗旱的基因资源,为将来应用于我国农作物耐旱品种培育具有重要的农业价值和应用前景。小桐子的引入给我们提供了一个较理想的方案,它不仅可以改善环境,改良土壤,保持水土,还可以作为生物质能源产生较大的经济效益。小桐子(Jatropha curcas L.)是大戟科麻疯树属的多年生落叶灌木/小乔木,具有繁殖快、耐逆强特别是耐干旱的特性。Plant physiological water shortage caused by drought stress seriously affects plant growth and development and crop yield. Statistics show that my country's arable land area is only 121 million hectares, while the desertification and salinization land has 260 million hectares, and 13 million hectares of abandoned land caused by human factors. Therefore, drought stress has become a bottleneck restricting the growth and development of crops in my country. An important way to solve this problem is to vigorously strengthen the mining of stress tolerance-related genes and their development and utilization in molecular breeding. At present, the research on the model plant Arabidopsis has preliminarily understood the signaling pathways of plants in response to drought stress signals, and identified some genes of drought resistance pathways. Due to the specificity of species evolution and the limitation of related genes in specific species, it is difficult to screen more drought resistance-related genes in a single species. However, due to the diversity of species, many plants have good drought-resistant characteristics, so mining drought-resistant genetic resources from plants with drought-resistant characteristics has important agricultural value for future application in the cultivation of drought-tolerant varieties of crops in my country. application prospects. The introduction of jatropha provides us with an ideal solution, which can not only improve the environment, improve the soil, maintain water and soil, but also generate greater economic benefits as biomass energy. Jatropha curcas L. is a perennial deciduous shrub/small tree of the genus Jatropha of Euphorbiaceae, which has the characteristics of fast reproduction, strong stress tolerance, especially drought tolerance.

MYB类转录因子是众多类转录因子中的一大类,以其蛋白N端含有50多个氨基酸组成的保守MYB结构域为重要特征,且含有1—3个串联的、不完全重复的MYB结构域(R1、R2和R3)。根据MYB结构域的个数,可将MYB转录因子分成4类,分别是1R-MYB、2R-MYB(R2R3-MYB)、3R-MYB(R1R2R3-MYB)和4R-MYB(four R1/R2)。MYB转录因子在调控植物的生长发育、生理生化过程和抗逆性中有重要作用。此外,MYB转录因子在植物响应干旱胁迫过程中,MYB转录因子也发挥关键的作用。比如,拟南芥AtMYB2转录因子和rd22BP1分别结合到干旱胁迫响应基因rd22的启动子区域,然后共同激活rd22的表达,从而实现抗旱性越来越多的研究表明,MYB蛋白参与植物对非生物胁迫响应的调控。总之,尽管许多MYB蛋白已经被克隆和功能分析,但是小桐子MYB家族响应干旱胁迫的基因仍然罕见报道。因此,克隆小桐子MYB家族参与干旱胁迫调控基因并对其功能进行研究,为抗旱作物品种培育提供一个新的基因资源,为培育抗干旱植物提供分子理论基础,有助于我国干旱土地得到有效的开发利用,进而促进我国国民经济的可持续发展和生态环境的有效保护。MYB transcription factors are one of the many types of transcription factors. They are characterized by a conserved MYB domain consisting of more than 50 amino acids at the N-terminus of their proteins, and contain 1-3 tandem, incompletely repeated MYB structures. Domains (R1, R2 and R3). According to the number of MYB domains, MYB transcription factors can be divided into four categories, namely 1R-MYB, 2R-MYB (R2R3-MYB), 3R-MYB (R1R2R3-MYB) and 4R-MYB (four R1/R2) . MYB transcription factors play an important role in regulating plant growth and development, physiological and biochemical processes and stress resistance. In addition, MYB transcription factors also play a key role in the response of plants to drought stress. For example, the Arabidopsis thaliana AtMYB2 transcription factor and rd22BP1 bind to the promoter region of the drought stress-responsive gene rd22, respectively, and then jointly activate the expression of rd22, thereby achieving drought resistance. More and more studies have shown that MYB protein is involved in plant response to abiotic stress. regulation of the response. In conclusion, although many MYB proteins have been cloned and functionally analyzed, genes of the Jatropha MYB family in response to drought stress are still rarely reported. Therefore, cloning the Jatropha jatropha MYB family involved in the regulation of drought stress and researching its functions will provide a new genetic resource for the cultivation of drought-resistant crop varieties, provide a molecular theoretical basis for the cultivation of drought-resistant plants, and help my country's arid land to be effectively used. Development and utilization, and then promote the sustainable development of my country's national economy and the effective protection of the ecological environment.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供了一种小桐子MYB类转录因子JcMYB16基因及其在植物中的应用,该基因可以提高植物的抗干旱能力,对植物应对逆境胁迫的分子育种具有重要价值。The purpose of the present invention is to provide a Jatropha jatropha MYB transcription factor JcMYB16 gene and its application in plants. The gene can improve the drought resistance of plants and has important value for molecular breeding of plants to cope with adversity stress.

为实现上述目的,本发明采用的技术方案如下:For achieving the above object, the technical scheme adopted in the present invention is as follows:

一种小桐子MYB类转录因子JcMYB16基因核苷酸序列为SEQ ID NO.1,其基因开放阅读框的核苷酸序列为SEQ ID NO.2。The nucleotide sequence of a Jatropha jatropha MYB transcription factor JcMYB16 gene is SEQ ID NO.1, and the nucleotide sequence of the gene open reading frame is SEQ ID NO.2.

一种多肽,多肽的氨基酸序列由SEQ ID NO.3编码而成。A polypeptide whose amino acid sequence is encoded by SEQ ID NO.3.

一种重组构建体,重组构建体包含SEQ ID NO.1所示的核苷酸序列,所述构建体用的载体为用于克隆的pMD18-T载体或者用于表达的pCAMBIA1301载体。A recombinant construct comprising the nucleotide sequence shown in SEQ ID NO. 1, and the vector used for the construct is pMD18-T vector for cloning or pCAMBIA1301 vector for expression.

小桐子MYB类转录因子JcMYB16基因的转基因农杆菌为EHA105或GV3101。The transgenic Agrobacterium of Jatropha MYB transcription factor JcMYB16 gene is EHA105 or GV3101.

小桐子MYB类转录因子JcMYB16基因的核苷酸序列在提高植物抗旱性的应用。Application of the nucleotide sequence of Jatropha jatropha MYB transcription factor JcMYB16 gene in improving plant drought resistance.

小桐子MYB类转录因子JcMYB16基因的核苷酸序列在提高植物抗旱性的应用,所述植物为单子叶植物或双子叶植物。The application of the nucleotide sequence of Jatropha jatropha MYB transcription factor JcMYB16 gene in improving the drought resistance of plants, the plants being monocotyledonous or dicotyledonous.

所述单子叶植物为水稻,所述双子叶植物为小桐子拟南芥。The monocotyledonous plant is rice, and the dicotyledonous plant is Arabidopsis jatropha.

所述SEQ ID NO.1为:Described SEQ ID NO.1 is:

TTAGTGGTGGTTAAACTTTCAAAATCTCGATAGTGCAAGTATTTGAATTTTTAGGTTATGTTTCTTTTATGGCCTTTCGCACTGTTAGTGGAATTGGAGTGTGAAAATGGAATCTGGGGTTAGAGATTATTTTTCTTCTCTAATCAGGAGTGAGAAACCTTGAATTACTGGCCGTTCTACTCTCAATTAATGGCTTTCTGTTCCCAGGAATTGCCCTTCAAATCTGCTGTTGATAACATAGGTCAGCAGTTCACAAGAGTCCAATTTTTTTGAATTGTGGAGCAAATTACCATTGAATTCTTCACATACTCCGTTGGGATTTTGTGATTTTTATTGGAGGTGATCTCTGGTTCAGTTCTCTTGGCTTTTTTTGGGTCCATCTGCTTGTTTCTCGTCTTCCTTACCTCTACACCCTGACACATCCTGCTGCTTTCCCATAATTCTGTTCTGCCATCACTCCAACTGTTGGTCATAACCAAATATAGAAATTATTCAGATCCAAATTTCAAGAAACCGTTCTAGAATTTTTTTTTTTTTTCAAGATTGGCTTATTAATTTAGCCTAGATTCTAGAGCTAGGTTTTTCCTTTCTTTGCTAGTGTAAGATTCAAACCAGTCTAGATGATTGCGGATGAAGCAGACTGCAGCTCTGTGTGGACTAGGGAGCAGGATAAGGCATTTGAGGATGCCCTTGCAACATATCCTGAGGATGCTGTAGATCGGTGGGAGAAAATTGCTGCTGATGTTCCTGGGAAAACCTTAGAAGAGCTTAAACTTCACTATGAACTTCTGGTTGAAGATTTGAATCAGATTGAAGCTGGCTGTGTGCCTCTGCCTAACTACTCTTCTATGGAGGGTTCAATAAGCCAAGCTGGCGATGAAGGAACTACTAAGAAGGGTGGTCAAATGGGGCACCATAACAGTGAGTCTACTCATGGAAATAAGGCTTCAAGGTCAGATCAAGAACGCCGTAAAGGAATCGCTTGGACAGAGGATGAGCACAGGTTATTTCTTCTTGGTTTGGACAAATATGGGAAAGGTGACTGGCGAAGTATTTCCAGAAACTTTGTTGTGACAAGGACACCTACGCAAGTGGCAAGCCATGCACAAAAATATTTCATTCGTTTGAACTCGATGAACAAAGATAGGAGGCGTTCCAGCATTCATGATATCACCAGTGTTGGCAATGGAGATATTTCAGCGCCACAAGGACCAATAACTGGTCAAACAAATGGTTCTGCTGCAGGAGGTTCCTCTGGTAAAGCTGCTAAACAACCCCCTCAACACCCTACTGGACCTCCAGGAGTTGGTGTTTATGGTCCTCCGACTATAGGGCAACCTATAGGAGGTCCCCTTGTCTCAGCAGTTGGCACCCCTGTGAATCTTCCTGCCCCTGCACACATGGCTTATGGCGTTAGAGCTCCTGTACCAGGAACAGTACCGGGAGCTGTGGTTCCTGGTGCACCAATGATGAACATGGGTCCTATGGCATATCCAATGCCACCGACAACTGCTCATAGGTGATATACATGGTTTAGCTGCAAAATGTACAAAGACAGAAGGCTACTTGCTTGTATTTCTGGTGGGTCAGTGGCTTCTCCATTTTAGCCTGAATAAAACTGCTTATTTGCAAGCAAAAATTGTCTGATGTCATTTGTTTATTCTGGTAGCAATATCAAATAAACCAATAGGTAGAGAAACTACATGCATTTGTATAGGCAGCAGCTGTGGAAAATATGGCAGCAGTTATGGGTAGGACACATTTTGGTACTTTTTTTTTGGTTTTACATTACAATGTTTAGTCTCAGTAGCAGTCAGTTAATGGTATTTTACTTTTAATGACCAAATTTGTAAAGAATCCATTTATACGTTTTACTATTTTGAGTAGTAGATGTTGGCACGGATTGTGCAAAGCCTTTGTAAAAAAAAGTACCAAAATGTGTCCTACCCATAACTGCTGCCATATTTTCCACAGCTGCTGCCTATACAAATGCATGTAGTTTCTCTACCTATTGGTTTATTTGATATTGCTACCAGAATAAACAAATGACATCAGACAATTTTTGCTTGCAAATAAGCAGTTTTATTCAGGCTAAAATGGAGAAGCCACTGACCCACCAGAAATACAAGCAAGTAGCCTTCTGTCTTTGTACATTTTGCAGCTAAACCATGTATATCACCTATGAGCAGTTGTCGGTGGCATTGGATATGCCATAGGACCCATGTTCATCATTTAGTGGTGGTTAAACTTTCAAAATCTCGATAGTGCAAGTATTTGAATTTTTAGGTTATGTTTCTTTTATGGCCTTTCGCACTGTTAGTGGAATTGGAGTGTGAAAATGGAATCTGGGGTTAGAGATTATTTTTCTTCTCTAATCAGGAGTGAGAAACCTTGAATTACTGGCCGTTCTACTCTCAATTAATGGCTTTCTGTTCCCAGGAATTGCCCTTCAAATCTGCTGTTGATAACATAGGTCAGCAGTTCACAAGAGTCCAATTTTTTTGAATTGTGGAGCAAATTACCATTGAATTCTTCACATACTCCGTTGGGATTTTGTGATTTTTATTGGAGGTGATCTCTGGTTCAGTTCTCTTGGCTTTTTTTGGGTCCATCTGCTTGTTTCTCGTCTTCCTTACCTCTACACCCTGACACATCCTGCTGCTTTCCCATAATTCTGTTCTGCCATCACTCCAACTGTTGGTCATAACCAAATATAGAAATTATTCAGATCCAAATTTCAAGAAACCGTTCTAGAATTTTTTTTTTTTTTCAAGATTGGCTTATTAATTTAGCCTAGATTCTAGAGCTAGGTTTTTCCTTTCTTTGCTAGTGTAAGATTCAAACCAGTCTAGATGATTGCGGATGAAGCAGACTGCAGCTCTGTGTGGACTAGGGAGCAGGATAAGGCATTTGAGGATGCCCTTGCAACATATCCTGAGGATGCTGTAGATCGGTGGGAGAAAATTGCTGCTGATGTTCCTGGGAAAACCTTAGAAGAGCTTAAACTTCACTATGAACTTCTGGTTGAAGATTTGAATCAGATTGAAGCTGGCTGTGTGCCTCTGCCTAACTACTCTTCTATGGAGGGTTCAATAAGCCAAGCTGGCGATGAAGGAACTACTAAGAAGGGTGGTCAAATGGGGCACCATAACAGTGAGTCTACTCATGGAAATAAGGCTTCAAGGTCAGATCAAGAACGCCGTAAAGGAATCGCTTGGACAGAGGATGAGCA CAGGTTATTTCTTCTTGGTTTGGACAAATATGGGAAAGGTGACTGGCGAAGTATTTCCAGAAACTTTGTTGTGACAAGGACACCTACGCAAGTGGCAAGCCATGCACAAAAATATTTCATTCGTTTGAACTCGATGAACAAAGATAGGAGGCGTTCCAGCATTCATGATATCACCAGTGTTGGCAATGGAGATATTTCAGCGCCACAAGGACCAATAACTGGTCAAACAAATGGTTCTGCTGCAGGAGGTTCCTCTGGTAAAGCTGCTAAACAACCCCCTCAACACCCTACTGGACCTCCAGGAGTTGGTGTTTATGGTCCTCCGACTATAGGGCAACCTATAGGAGGTCCCCTTGTCTCAGCAGTTGGCACCCCTGTGAATCTTCCTGCCCCTGCACACATGGCTTATGGCGTTAGAGCTCCTGTACCAGGAACAGTACCGGGAGCTGTGGTTCCTGGTGCACCAATGATGAACATGGGTCCTATGGCATATCCAATGCCACCGACAACTGCTCATAGGTGATATACATGGTTTAGCTGCAAAATGTACAAAGACAGAAGGCTACTTGCTTGTATTTCTGGTGGGTCAGTGGCTTCTCCATTTTAGCCTGAATAAAACTGCTTATTTGCAAGCAAAAATTGTCTGATGTCATTTGTTTATTCTGGTAGCAATATCAAATAAACCAATAGGTAGAGAAACTACATGCATTTGTATAGGCAGCAGCTGTGGAAAATATGGCAGCAGTTATGGGTAGGACACATTTTGGTACTTTTTTTTTGGTTTTACATTACAATGTTTAGTCTCAGTAGCAGTCAGTTAATGGTATTTTACTTTTAATGACCAAATTTGTAAAGAATCCATTTATACGTTTTACTATTTTGAGTAGTAGATGTTGGCACGGATTGTGCAAAGCCTTTGTAAAAAAAAGTACCAAAATGTGTCCTACCCATAACTGCTGCCATATTTTCCACAGCTGCTGCCTATACAAATGCATGTAGT TTCTCTACCTATTGGTTTATTTGATATTGCTACCAGAATAAACAAATGACATCAGACAATTTTTTGCTTGCAAATAAGCAGTTTTATTCAGGCTAAAATGGAGAAGCCACTGACCCACCAGAAATACAAGCAAGTAGCCTTCTGTCTTTGTACATTTTGCAGCTAAACCATGTATATCACCTATGAGCAGTTGTCGGTGGCATTGGATATGCCATAGGACCCATGTTCATCAT

所述SEQ ID NO.2为:Described SEQ ID NO.2 is:

ATGATTGCGGATGAAGCAGACTGCAGCTCTGTGTGGACTAGGGAGCAGGATAAGGCATTTGAGGATGCCCTTGCAACATATCCTGAGGATGCTGTAGATCGGTGGGAGAAAATTGCTGCTGATGTTCCTGGGAAAACCTTAGAAGAGCTTAAACTTCACTATGAACTTCTGGTTGAAGATTTGAATCAGATTGAAGCTGGCTGTGTGCCTCTGCCTAACTACTCTTCTATGGAGGGTTCAATAAGCCAAGCTGGCGATGAAGGAACTACTAAGAAGGGTGGTCAAATGGGGCACCATAACAGTGAGTCTACTCATGGAAATAAGGCTTCAAGGTCAGATCAAGAACGCCGTAAAGGAATCGCTTGGACAGAGGATGAGCACAGGTTATTTCTTCTTGGTTTGGACAAATATGGGAAAGGTGACTGGCGAAGTATTTCCAGAAACTTTGTTGTGACAAGGACACCTACGCAAGTGGCAAGCCATGCACAAAAATATTTCATTCGTTTGAACTCGATGAACAAAGATAGGAGGCGTTCCAGCATTCATGATATCACCAGTGTTGGCAATGGAGATATTTCAGCGCCACAAGGACCAATAACTGGTCAAACAAATGGTTCTGCTGCAGGAGGTTCCTCTGGTAAAGCTGCTAAACAACCCCCTCAACACCCTACTGGACCTCCAGGAGTTGGTGTTTATGGTCCTCCGACTATAGGGCAACCTATAGGAGGTCCCCTTGTCTCAGCAGTTGGCACCCCTGTGAATCTTCCTGCCCCTGCACACATGGCTTATGGCGTTAGAGCTCCTGTACCAGGAACAGTACCGGGAGCTGTGGTTCCTGGTGCACCAATGATGAACATGGGTCCTATGGCATATCCAATGCCACCGACAACTGCTCATAGGTGAATGATTGCGGATGAAGCAGACTGCAGCTCTGTGTGGACTAGGGAGCAGGATAAGGCATTTGAGGATGCCCTTGCAACATATCCTGAGGATGCTGTAGATCGGTGGGAGAAAATTGCTGCTGATGTTCCTGGGAAAACCTTAGAAGAGCTTAAACTTCACTATGAACTTCTGGTTGAAGATTTGAATCAGATTGAAGCTGGCTGTGTGCCTCTGCCTAACTACTCTTCTATGGAGGGTTCAATAAGCCAAGCTGGCGATGAAGGAACTACTAAGAAGGGTGGTCAAATGGGGCACCATAACAGTGAGTCTACTCATGGAAATAAGGCTTCAAGGTCAGATCAAGAACGCCGTAAAGGAATCGCTTGGACAGAGGATGAGCACAGGTTATTTCTTCTTGGTTTGGACAAATATGGGAAAGGTGACTGGCGAAGTATTTCCAGAAACTTTGTTGTGACAAGGACACCTACGCAAGTGGCAAGCCATGCACAAAAATATTTCATTCGTTTGAACTCGATGAACAAAGATAGGAGGCGTTCCAGCATTCATGATATCACCAGTGTTGGCAATGGAGATATTTCAGCGCCACAAGGACCAATAACTGGTCAAACAAATGGTTCTGCTGCAGGAGGTTCCTCTGGTAAAGCTGCTAAACAACCCCCTCAACACCCTACTGGACCTCCAGGAGTTGGTGTTTATGGTCCTCCGACTATAGGGCAACCTATAGGAGGTCCCCTTGTCTCAGCAGTTGGCACCCCTGTGAATCTTCCTGCCCCTGCACACATGGCTTATGGCGTTAGAGCTCCTGTACCAGGAACAGTACCGGGAGCTGTGGTTCCTGGTGCACCAATGATGAACATGGGTCCTATGGCATATCCAATGCCACCGACAACTGCTCATAGGTGA

所述SEQ ID NO.3为:Described SEQ ID NO.3 is:

MIADEADCSSVWTREQDKAFEDALATYPEDAVDRWEKIAADVPGKTLEELKLHYELLVEDLNQIEAGCVPLPNYSSMEGSISQAGDEGTTKKGGQMGHHNSESTHGNKASRSDQERRKGIAWTEDEHRLFLLGLDKYGKGDWRSISRNFVVTRTPTQVASHAQKYFIRLNSMNKDRRRSSIHDITSVGNGDISAPQGPITGQTNGSAAGGSSGKAAKQPPQHPTGPPGVGVYGPPTIGQPIGGPLVSAVGTPVNLPAPAHMAYGVRAPVPGTVPGAVVPGAPMMNMGPMAYPMPPTTAHR*MIADEADCSSVWTREQDKAFEDALATYPEDAVDRWEKIAADVPGKTLEELKLHYELLVEDLNQIEAGCVPLPNYSSMEGSISQAGDEGTTKKGGQMGHHNSESTHGNKASRSDQERRKGIAWTEDEHRLFLLGLDKYGKGDWRSISRNFVVTRTPTQVASHAQKYFIRLNSMNKDRRRSSIHDITSVGNGDISAPQGPITGQTNGSAAGGSSGKAAKQPPQHPTGPPGVGVYGPPTIGQPIGGPLVSAVGTPVNLPAPAHMAYGVRAPVPGTVPGAVVPGAPMMNMGPMAYPMPPTTAHR*

与现有技术相比,本发明的优点在于:本发明提供一种小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用,超表达JcMYB16基因不影响植物的生长和发育,可以显著提高干旱胁迫抗性。Compared with the prior art, the present invention has the advantages that: the present invention provides a Jatropha jatropha MYB transcription factor JcMYB16 gene and its application in improving the drought resistance of plants. Overexpression of the JcMYB16 gene does not affect the growth and development of plants, and can Significantly improves drought stress resistance.

附图说明Description of drawings

图1表示JcMYB16在小桐子不同组织中的表达量;Figure 1 shows the expression of JcMYB16 in different tissues of Jatropha;

图2表示JcMYB16在干旱胁迫条件下在小桐子中的表达量;Figure 2 shows the expression of JcMYB16 in Jatropha under drought stress;

图3表示JcMYB16在正常生长条件下在转基因水稻中的表达量;Figure 3 shows the expression level of JcMYB16 in transgenic rice under normal growth conditions;

图4表示超表达JcMYB16基因在水稻中的表型观察;Figure 4 shows the phenotypic observation of overexpressed JcMYB16 gene in rice;

图5表示超表达JcMYB16基因在水稻干旱胁迫条件下的表型观察;Figure 5 shows the phenotypic observation of overexpressing JcMYB16 gene under drought stress in rice;

图6表示超表达JcMYB16基因在水稻干旱胁迫条件下的存活率统计结果;Figure 6 shows the statistical results of the survival rate of overexpressed JcMYB16 gene under rice drought stress;

图7表示超表达JcMYB16基因在水稻干旱胁迫条件下的相对电导率测定结果;Figure 7 shows the relative conductivity measurement results of overexpressing JcMYB16 gene under drought stress in rice;

图8表示超表达JcMYB16基因在水稻干旱胁迫条件下的脯氨酸含量测定结果;Figure 8 shows the results of proline content determination of overexpressed JcMYB16 gene in rice under drought stress conditions;

图9表示JcMYB16在正常生长条件下在转基因拟南芥中的表达量;;Figure 9 shows the expression level of JcMYB16 in transgenic Arabidopsis under normal growth conditions;

图10表示超表达JcMYB16基因在拟南芥中的表型观察;Figure 10 shows the phenotypic observation of overexpressing JcMYB16 gene in Arabidopsis;

图11表示超表达JcMYB16基因在拟南芥干旱胁迫条件下的表型观察;Figure 11 shows the phenotypic observation of overexpressed JcMYB16 gene under drought stress in Arabidopsis;

图12表示超表达JcMYB16基因在拟南芥干旱胁迫(300mM甘露醇)条件下的表型观察;Figure 12 shows the phenotypic observation of overexpressing JcMYB16 gene under drought stress (300 mM mannitol) conditions in Arabidopsis;

图13表示超表达JcMYB16基因在拟南芥正常生长条件和干旱胁迫条件下的主根长度;Figure 13 shows the taproot length of overexpressed JcMYB16 gene under normal growth conditions and drought stress conditions in Arabidopsis;

图14表示超表达JcMYB16基因在拟南芥干旱胁迫条件下的脯氨酸含量测定结果;Figure 14 shows the results of proline content determination of overexpressed JcMYB16 gene under drought stress in Arabidopsis;

图15表示超表达JcMYB16基因在拟南芥干旱胁迫条件下的丙二醛(MDA)测定结果;Figure 15 shows the results of the malondialdehyde (MDA) assay of overexpressed JcMYB16 gene under drought stress in Arabidopsis;

图16表示超表达JcMYB16基因在拟南芥干旱胁迫条件下的相对电导率测定结果;Figure 16 shows the relative conductivity measurement results of overexpressing JcMYB16 gene under drought stress in Arabidopsis;

图17表示非生物胁迫响应基因在干旱胁迫条件下在野生型和超表达JcMYB16基因拟南芥植株中的表达量;Figure 17 shows the expression levels of abiotic stress response genes in wild-type and overexpressing JcMYB16 gene Arabidopsis plants under drought stress conditions;

具体实施方式Detailed ways

以下本发明拟进一步对JcMYB16基因的上下游基因及其参与的相关调控信号通路进行分析,并分析JcMYB16基因是否具有更广泛的抗旱作用。通过分析该基因在水稻和拟南芥干旱胁迫调控机理研究及抗旱品种培育中的作用,以期丰富小桐子和水稻等禾谷类作物响应干旱胁迫的分子机理积累资料,通过基因工程手段为小桐子和水稻、小麦等禾谷类作物的抗旱分子模块设计育种提供新的基因资源。The present invention intends to further analyze the upstream and downstream genes of the JcMYB16 gene and the related regulatory signaling pathways involved, and to analyze whether the JcMYB16 gene has a broader role in drought resistance. By analyzing the role of this gene in the research on the regulation mechanism of drought stress in rice and Arabidopsis and breeding of drought-resistant varieties, in order to enrich the molecular mechanism accumulation data of Jatropha and rice and other cereal crops in response to drought stress. The design and breeding of drought-resistant molecular modules for cereal crops such as rice and wheat provides new genetic resources.

实施例1Example 1

一水稻转基因株系获得及表型、抗旱胁迫分析实验A rice transgenic line acquisition and phenotype, drought stress analysis experiment

1材料与方法1 Materials and methods

1.1植物材料及种植方式1.1 Plant materials and planting methods

供试的水稻品种为水稻粳稻品种中花11即水稻(Oryza sativa L.)cv.中花11,保存在周口师范学院植物遗传与分子育种重点实验室。新收的种子种植前先用质量百分比浓度为5%次氯酸钠消毒40min或者用1/1000的多菌灵消毒12h,再用0.1mol/L HNO3(1mL 63%的浓HNO3加入100mL水)浸种16h,自来水冲洗干净后将消毒后的种子置于28℃环境下浸种1d,然后将种子均匀的平铺在培养皿中,其中培养皿中放置一层滤纸,并用水湿润;盖上盖子,然后放入32℃下培养,每天换水两到三次,看到大多数种子破壳出根后转入30℃下培养。保存半年以上的种子播种前先晒种2d,消毒后浸种,消毒方法:55℃温汤浸种30min,待水稻芽长到4.8-5.2mm长的时候播种到纱窗布上(水稻营养液中培养),3叶期后,将水稻幼苗移入土壤中并做好对应的标签进行表型观察和后续的试验分析。水稻每间隔8或者10d进行一次施肥。The rice variety tested was the japonica rice variety Zhonghua 11, or rice (Oryza sativa L.) cv. Zhonghua 11, which was preserved in the Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University. Before planting, the newly harvested seeds were firstly sterilized with 5% sodium hypochlorite for 40min or 1/1000 of carbendazim for 12h, and then soaked with 0.1mol/L HNO3 (1mL 63% concentrated HNO3 added 100mL water) 16h, rinsed with tap water, soaked the sterilized seeds at 28°C for 1 day, and then spread the seeds evenly in a petri dish, where a layer of filter paper was placed in the petri dish and moistened with water; covered with a lid, then Put them into cultivation at 32 °C, and change the water two to three times a day. After seeing that most of the seeds have broken shells and roots, they are transferred to cultivation at 30 °C. The seeds that have been stored for more than half a year should be dried for 2 days before sowing, and then soaked after disinfection. Disinfection method: soak the seeds in warm soup at 55°C for 30 minutes, and when the rice buds grow to 4.8-5.2mm long, sow them on the screen cloth (cultivated in rice nutrient solution), After the 3-leaf stage, the rice seedlings were moved into the soil and the corresponding labels were made for phenotypic observation and subsequent experimental analysis. The rice was fertilized every 8 or 10 days.

1.2所用试剂及载体1.2 Reagents and carriers used

本实验所采用的大肠杆菌为DH5α,农杆菌为EHA105,这些菌株为周口师范学院植物遗传与分子育种重点实验室保存,植物表达载体为pCAMBIA1301;其中,限制性内切酶、克隆载体pMD18-T、T4DNA连接酶、Taq DNA聚合酶购自于TaKaBa生物公司;DNA回收试剂盒为Magen生物公司产品;潮霉素(Hyg)、卡那霉素(Kan)和氨卡霉素(Amp)等购自北京鼎国生物技术有限公司,试验所有引物均由北京奥克鼎盛生物公司合成。The Escherichia coli used in this experiment is DH5α, and the Agrobacterium is EHA105. These strains are preserved by the Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, and the plant expression vector is pCAMBIA1301; among them, the restriction endonuclease and cloning vector pMD18-T , T4 DNA ligase, Taq DNA polymerase were purchased from TaKaBa Biological Company; DNA recovery kits were products of Magen Biological Company; Hygromycin (Hyg), Kanamycin (Kan) and Amikacin (Amp) were purchased from All primers in the experiment were synthesized by Beijing Aoke Dingsheng Biotechnology Co., Ltd.

1.3 RNA的提取、cDNA合成和RT-PCR扩增目的基因1.3 RNA extraction, cDNA synthesis and RT-PCR amplification of the target gene

RNA提取使用Magen公司的植物RNA提取试剂盒,参考方法为较易提取植物组织RNA小量提取法。以1μg的RNA做模板,按照cDNA合成试剂盒(TaKaRa)操作说明合成第一链cDNA。根据OsHT1基因cDNA全长序列设计特异引物,特异引物序列见表1。RT-PCR反应体系(20μL):10×PCR反应缓冲液2μL,dNTP(2.5mmol/L)1μL,引物(10pm/μL)各1μL,Taq聚合酶(5U/μL)0.2μL,模板cDNA2μL,ddH2O 12.8μL。PCR反应条件:94℃预变性5min;94℃变性30s,54℃退火30s,72℃延伸1min,33个循环;72℃延伸10min,4℃保存。For RNA extraction, Magen's plant RNA extraction kit was used. Using 1 μg of RNA as a template, the first-strand cDNA was synthesized according to the instructions of the cDNA synthesis kit (TaKaRa). Specific primers were designed according to the full-length sequence of the OsHT1 gene cDNA, and the specific primer sequences are shown in Table 1. RT-PCR reaction system (20 μL): 10× PCR reaction buffer 2 μL, dNTP (2.5 mmol/L) 1 μL, primers (10 pm/μL) 1 μL each, Taq polymerase (5 U/μL) 0.2 μL, template cDNA 2 μL, ddH 2 O 12.8 μL. PCR reaction conditions: pre-denaturation at 94°C for 5 min; denaturation at 94°C for 30 s, annealing at 54°C for 30 s, extension at 72°C for 1 min, 33 cycles; extension at 72°C for 10 min, and storage at 4°C.

表1 RT-PCR扩增目的基因的引物序列Table 1 Primer sequences for RT-PCR amplification of target genes

Table1 The sequences of primers used in RT-PCR of objective genesTable1 The sequences of primers used in RT-PCR of objective genes

Figure BDA0002266699140000071
Figure BDA0002266699140000071

1.4 JcMYB16基因表达模式分析1.4 JcMYB16 gene expression pattern analysis

组织特异性表达分析如下:选用6叶期的小桐子根、茎韧皮部、叶,花、授粉后35天种子用于表达模式分析。干旱胁迫表达模式分析如下:干旱处理开始于小桐子六叶期(发芽后八周),对照组浇灌1/2MS培养基,实验组直接停止浇水,分别取0h,2d,4d和7d第三片叶进行RNA提取和表达分析。JcMYB16基因表达量检测选用定量PCR(qRT-PCR)。用于qRT-PCR分析的引物根据基因全长序列设计,作为定量PCR引物(表2)。Tissue-specific expression analysis was as follows: Jatropha japonica roots, stem phloem, leaves, flowers, and seeds 35 days after pollination at the 6-leaf stage were selected for expression pattern analysis. The analysis of the expression pattern of drought stress is as follows: the drought treatment started at the six-leaf stage of Jatropha japonica (eight weeks after germination), the control group was watered with 1/2 MS medium, and the experimental group was directly stopped watering. The leaves were subjected to RNA extraction and expression analysis. Quantitative PCR (qRT-PCR) was used to detect the expression of JcMYB16 gene. Primers used for qRT-PCR analysis were designed based on the full-length sequences of the genes as quantitative PCR primers (Table 2).

表2定量qRT-PCR的引物序列Table 2 Primer sequences for quantitative qRT-PCR

Table 2 The sequences of primers used in quantitative qRT-PCRTable 2 The sequences of primers used in quantitative qRT-PCR

Figure BDA0002266699140000081
Figure BDA0002266699140000081

1.5 JcMYB16基因植物表达载体的构建1.5 Construction of JcMYB16 gene plant expression vector

目的基因的PCR产物,按照宝生物(Takara)Agarose Gel DNA PurificationKit试剂盒操作进行纯化。限制性内切酶KpnI和Sal I双酶切连接有目的基因片段的pMD18-T质粒或pCAMBIA1301质粒后,用T4DNA连接酶将目的基因连接到植物表达载体pCAMBIA1301上,反应体系如下:T4DNA连接酶(5U/μL)1μL,10×buffer 1μL,目的基因片段5μL,pCAMBIA1301载体3μL;反应条件:16℃,2h。连接产物转化感受态E.coli DH5α,涂布LB平板(50mg/L Kan)培养,37℃过夜倒置培养形成单菌落。The PCR product of the target gene was purified according to the operation of Takara Agarose Gel DNA Purification Kit. After double restriction endonucleases KpnI and Sal I digested the pMD18-T plasmid or pCAMBIA1301 plasmid with the target gene fragment, the target gene was connected to the plant expression vector pCAMBIA1301 with T4 DNA ligase . The reaction system is as follows: T4 DNA ligase (5U/μL) 1μL, 10×buffer 1μL, target gene fragment 5μL, pCAMBIA1301 vector 3μL; reaction conditions: 16°C, 2h. The ligation product was transformed into competent E.coli DH5α, coated on LB plate (50 mg/L Kan) and cultured, and incubated overnight at 37°C by inversion to form a single colony.

1.6 JcMYB16基因植物表达载体的鉴定1.6 Identification of JcMYB16 gene plant expression vector

挑取JcMYB16基因植物表达载体质粒转化E.coli DH5α后形成的单克隆,提取质粒进行PCR鉴定。阳性质粒转化至感受态农杆菌EAH105,涂布LB平板(50mg/L Kan、50mg/L Rif)培养,28℃倒置培养2d,挑选阳性克隆提取质粒并进行酶切验证。The single clone formed after the transformation of E.coli DH5α with the JcMYB16 gene plant expression vector plasmid was selected, and the plasmid was extracted for PCR identification. The positive plasmids were transformed into competent Agrobacterium EAH105, coated on LB plates (50 mg/L Kan, 50 mg/L Rif) and cultured, inverted at 28°C for 2 d, and positive clones were selected to extract plasmids and verified by enzyme digestion.

1.7农杆菌侵染和转基因苗的获得1.7 Agrobacterium infection and acquisition of transgenic seedlings

以水稻愈伤组织为实验材料。JcMYB16基因植物表达载体(质粒)通过冻融法转化农杆菌EHA105。分别挑取农杆菌(含有JcMYB16基因植物超表达载体)单克隆于28℃培养过夜,取10mL培养液,3000rpm,20min,离心收集菌体沉淀,分别重悬于AAI溶液(AA培养液,30g/L蔗糖,70g/L葡萄糖,200μmol/L乙酰丁香酮,PH 5.2)内,OD600=1.0,然后将悬浮液在摇床上28℃振荡培养3-5h。将长到一定大小的水稻愈伤组织挑出,放入农杆菌悬浮液浸染30min;然后将愈伤组织取出,置于灭菌滤纸上沥干50min;将愈伤组织置于共培养基(2N6,10g/L葡萄糖,200μmol/L乙酰丁香酮,PH 5.5)上,28℃暗培养3d。三天后用500mg/L头孢美素的灭菌水清洗6遍,100mL灭菌水(包含16μL吐温)清洗5遍,然后用无菌水清洗一遍。将沥干的水稻愈伤转移到筛选培养基(2N6,500mg/L头孢美素,50mg/L潮霉素),28℃暗培养30d。将新长出的抗性愈伤组织转入分化培养基(MS+30g/L蔗糖+30g/L山梨醇+2mg/L6-BA(花之舞用KT)+0.8%琼脂+1.0mg/L NAA+250mg/L头孢霉素+50mg/L潮霉素+2g/L水解酪蛋白,PH 5.8)。挑取出现绿芽的水稻愈伤移入装有生根培养基(MS/2+30g/L蔗糖+250mg/L头孢霉素+50mg/L潮霉素)的三角瓶中,放入恒温培养箱28℃光培养15d。准备移栽。首先通过潮霉素抗性基因和GUS活性分析对阳性转基因植株进行初步筛选,然后通过qRT-PCR技术检测目的基因在野生型和转基因植株中的表达情况,进一步对初次筛选的阳性植株进行再次筛选。The rice callus was used as the experimental material. Agrobacterium EHA105 was transformed with a plant expression vector (plasmid) of the JcMYB16 gene by freeze-thaw method. Pick out Agrobacterium (plant overexpression vector containing JcMYB16 gene) single clones and culture at 28°C overnight, take 10mL of culture medium, 3000rpm, 20min, centrifuge to collect bacterial pellets, and resuspend them in AAI solution (AA medium, 30g/ L sucrose, 70 g/L glucose, 200 μmol/L acetosyringone, pH 5.2), OD 600 = 1.0, and then the suspension was shaken and cultured at 28° C. on a shaker for 3-5 h. Pick out the rice callus that has grown to a certain size, put it into the Agrobacterium suspension for 30min; then take out the callus, place it on sterilized filter paper and drain it for 50min; place the callus on a co-culture medium (2N6 , 10g/L glucose, 200μmol/L acetosyringone, PH 5.5), and cultivated in the dark at 28°C for 3d. Three days later, wash 6 times with 500 mg/L cefmetin sterilized water, 5 times with 100 mL sterilized water (including 16 μL Tween), and then once with sterile water. The drained rice calli were transferred to screening medium (2N6, 500 mg/L cefmetin, 50 mg/L hygromycin), and cultured in the dark at 28°C for 30 days. Transfer the newly grown resistant callus into differentiation medium (MS+30g/L sucrose+30g/L sorbitol+2mg/L6-BA (KT for Flower Dance)+0.8% agar+1.0mg/L NAA+250mg/L cephalosporin+50mg/L hygromycin+2g/L hydrolyzed casein, pH 5.8). Pick the rice callus with green shoots and transfer it into a conical flask containing rooting medium (MS/2+30g/L sucrose+250mg/L cephalosporin+50mg/L hygromycin), and put it into a constant temperature incubator for 28 ℃ light culture for 15d. Ready to transplant. Firstly, the positive transgenic plants were preliminarily screened by hygromycin resistance gene and GUS activity analysis, and then the expression of the target gene in wild-type and transgenic plants was detected by qRT-PCR technology, and the positive plants in the initial screening were further screened again. .

1.8 JcMYB16基因在野生型和转基因水稻中的表达情况检测1.8 Detection of expression of JcMYB16 gene in wild-type and transgenic rice

取14d的野生型和转基因水稻叶片进行RNA提取,以1μg的RNA做模板,按照cDNA合成试剂盒(TaKaRa)操作说明合成第一链cDNA。以JcMYB16基因cDNA设计特异定量PCR引物(表二),通过qRT-PCR检测JcMYB16在野生型和转基因株系中的表达情况。The 14-day wild-type and transgenic rice leaves were taken for RNA extraction, and 1 μg of RNA was used as a template to synthesize the first-strand cDNA according to the instructions of the cDNA synthesis kit (TaKaRa). Specific quantitative PCR primers were designed with the cDNA of JcMYB16 gene (Table 2), and the expression of JcMYB16 in wild-type and transgenic lines was detected by qRT-PCR.

1.9 JcMYB16基因在野生型和转基因水稻中的表型分析1.9 Phenotypic analysis of JcMYB16 gene in wild-type and transgenic rice

野生型和JcMYB16转基因水稻植株萌发后,将幼苗种植到水稻国际Yoshida营养液中,12天后进行表型分析。After germination of wild-type and JcMYB16 transgenic rice plants, seedlings were grown in Rice International Yoshida nutrient solution and phenotypic analysis was performed 12 days later.

2.0 JcMYB16基因转基因水稻干旱胁迫实验分析2.0 Experimental analysis of drought stress in JcMYB16 transgenic rice

野生型和JcMYB16转基因水稻植株萌发后,选取14d的生长一致的幼苗进行盐胁迫处理实验。方法如下:将生长14d的野生型和转基因植株幼苗放入含有300mM甘露醇的Yoshida营养液,6d后进行表型分析;然后将干旱胁迫6d的幼苗放入Yoshida营养液中生长,10d后进行表型分析并统计存活率。并选取干旱胁迫处理3d的地上部分叶片进行生理指标例如电导率、脯氨酸和MDA含量检测。每个实验包含三个生物学重复。After germination of wild-type and JcMYB16 transgenic rice plants, 14-day-old seedlings with consistent growth were selected for salt stress treatment experiments. The method is as follows: seedlings of wild-type and transgenic plants grown for 14 days were put into Yoshida nutrient solution containing 300 mM mannitol, and phenotypic analysis was performed after 6 days; then the seedlings that had been under drought stress for 6 days were grown in Yoshida nutrient solution, and phenotypic analysis was performed after 10 days. Type analysis and statistics of survival rate. And select the aboveground leaves of drought stress treatment for 3 days to detect physiological indicators such as electrical conductivity, proline and MDA content. Each experiment contained three biological replicates.

2.2 JcMYB16序列对应基因的全长2.2 The full length of the gene corresponding to the JcMYB16 sequence

JcMYB16序列对应基因的全长序列为2 232bp,其中包含完整读码框序列长度为903bp,序列如下SEQ ID NO.1;The full-length sequence of the gene corresponding to the JcMYB16 sequence is 2 232 bp, including the complete reading frame sequence with a length of 903 bp, and the sequence is as follows SEQ ID NO.1;

采用NCBI ORF-finder预测其编码蛋白质为300个氨基酸,序列如下SEQ ID NO.3;The NCBI ORF-finder is used to predict that the encoded protein is 300 amino acids, and the sequence is as follows SEQ ID NO.3;

根据序列分析,JcMYB16为一个功能未知的新的小桐子干旱胁迫相关的基因,尚没有与其同源的任何功能已知的基因被发现。According to sequence analysis, JcMYB16 is a novel drought stress-related gene of Jatropha japonica with unknown function, and no homologous gene with known function has been found yet.

实施例2Example 2

一拟南芥转基因株系获得及表型、抗旱胁迫分析实验An Arabidopsis thaliana transgenic line acquisition and phenotype, drought stress analysis experiment

1材料与方法1 Materials and methods

1.1植物材料及种植方式1.1 Plant materials and planting methods

本实验使用的拟南芥是哥伦比亚(Columbia)生态型,保存于周口师范学院植物遗传与分子育种重点实验室。拟南芥种子消毒方法为:无菌水清洗1遍,70%酒精消毒5分钟,无菌水清洗1遍,1%次氯酸钠消毒15分钟,无菌水清洗5遍。拟南芥种子种植前使用4℃低温处理2天,使其萌发一致。经消毒种植的种子在1/2MS(1%蔗糖,8%琼脂,pH 5.7)培养基上萌发7-10天后,移植于种植基质中。不需消毒的种子经低温处理后可直接播种。种植基质为大颗粒蛭石,萌发期间使用薄膜覆盖约5天。生长阶段每隔3-5天浇一次营养液。生长间的培养条件为:22±2℃,光照周期为16小时光照/8小时黑暗。The Arabidopsis thaliana used in this experiment is the Columbia ecotype, which is preserved in the Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University. The Arabidopsis thaliana seed disinfection method is as follows: wash once with sterile water, sterilize with 70% alcohol for 5 minutes, wash with sterile water once, disinfect with 1% sodium hypochlorite for 15 minutes, and wash with sterile water for 5 times. Arabidopsis seeds were treated with a low temperature of 4°C for 2 days before planting to make them germinate consistently. Sterilized planted seeds were transplanted into the planting medium after germination on 1/2MS (1% sucrose, 8% agar, pH 5.7) medium for 7-10 days. Seeds that do not need to be sterilized can be sown directly after being treated at low temperature. The planting medium was large-grained vermiculite, covered with film for about 5 days during germination. During the growth stage, water the nutrient solution every 3-5 days. The culture conditions between growths were: 22±2°C with a photoperiod of 16 hours light/8 hours dark.

超表达植株干旱胁迫分析实验Drought stress analysis experiment of overexpression plants

1.2菌株,载体和试剂1.2 Strains, vectors and reagents

本实验使用的大肠杆菌为DH5α,农杆菌为GV3101。植物表达载体为pCAMBIA1301。以上菌株和载体均保存于本实验室。pMD18-T载体、限制性内切酶、T4连接酶、核酸回收试剂盒等均购自大连宝生物公司(Takara)。氨苄霉素(Amp)、潮霉素(Hyg)等购自北京鼎国生物技术有限公司。实验所有引物均由北京奥科鼎盛生物公司合成。Escherichia coli used in this experiment was DH5α, and Agrobacterium was GV3101. The plant expression vector is pCAMBIA1301. The above strains and vectors are kept in our laboratory. The pMD18-T vector, restriction endonuclease, T4 ligase, nucleic acid recovery kit, etc. were all purchased from Dalian Biotechnology Company (Takara). Ampicillin (Amp) and hygromycin (Hyg) were purchased from Beijing Dingguo Biotechnology Co., Ltd. All primers in the experiment were synthesized by Beijing Aoke Dingsheng Biological Company.

本实验主要使用成苗干旱胁迫,幼苗150mM NaCl胁迫、300mM甘露醇(Man)胁迫对各转基因株系的抗逆性进行了实验。具体步骤如下:将消毒的拟南芥种子低温处理2天,播种于1/2MS+1%蔗糖的培养基中萌发,垂直培养4天。移栽至相应的胁迫培养基(基本培养基仍为1/2MS)中垂直培养5-7天。观察、记录生长情况和成活率等。In this experiment, the stress resistance of each transgenic line was tested mainly by drought stress on mature seedlings, 150 mM NaCl stress on seedlings, and 300 mM mannitol (Man) stress on seedlings. The specific steps are as follows: sterilized Arabidopsis thaliana seeds are treated at low temperature for 2 days, sown in a medium of 1/2MS+1% sucrose for germination, and cultured vertically for 4 days. Transplant into the corresponding stress medium (minimum medium is still 1/2MS) for vertical cultivation for 5-7 days. Observe and record growth and survival rate, etc.

1.3 RNA的提取、cDNA合成和RT-PCR扩增目的基因1.3 RNA extraction, cDNA synthesis and RT-PCR amplification of the target gene

RNA提取使用Magen公司的植物RNA提取试剂盒,参考方法为较易提取植物组织RNA小量提取法。以1μg的RNA做模板,按照cDNA合成试剂盒(TaKaRa)操作说明合成第一链cDNA。根据OsHT1基因cDNA全长序列设计特异引物,特异引物序列见表3。RT-PCR反应体系(20μL):10×PCR反应缓冲液2μL,dNTP(2.5mmol/L)1μL,引物(10pm/μL)各1μL,Taq聚合酶(5U/μL)0.2μL,模板cDNA2μL,ddH2O 12.8μL。PCR反应条件:94℃预变性5min;94℃变性30s,54℃退火30s,72℃延伸1min,33个循环;72℃延伸10min,4℃保存。For RNA extraction, Magen's plant RNA extraction kit was used. Using 1 μg of RNA as a template, the first-strand cDNA was synthesized according to the instructions of the cDNA synthesis kit (TaKaRa). Specific primers were designed according to the full-length sequence of the OsHT1 gene cDNA, and the specific primer sequences are shown in Table 3. RT-PCR reaction system (20 μL): 10× PCR reaction buffer 2 μL, dNTP (2.5 mmol/L) 1 μL, primers (10 pm/μL) 1 μL each, Taq polymerase (5 U/μL) 0.2 μL, template cDNA 2 μL, ddH 2 O 12.8 μL. PCR reaction conditions: pre-denaturation at 94°C for 5 min; denaturation at 94°C for 30 s, annealing at 54°C for 30 s, extension at 72°C for 1 min, 33 cycles; extension at 72°C for 10 min, and storage at 4°C.

表3 RT-PCR扩增目的基因的引物序列Table 3 Primer sequences for RT-PCR amplification of target genes

Table3 The sequences of primers used in RT-PCR of objective genesTable3 The sequences of primers used in RT-PCR of objective genes

1.4 JcMYB16基因植物表达载体构建1.4 Construction of JcMYB16 gene plant expression vector

提取测序正确克隆的质粒,用已经添加的酶切位点进行双酶切,具体如下:使用Kpn I和SalI双酶切。10μl体系中各酶均添加0.5μl,其他条件根据Takara提供的说明书进行,酶切时间2小时。将酶切片段回收,与用同样进行双酶切的pCAMBIA1301载体进行连接过夜。连接产物直接转化DH5α感受态,使用Kan筛选,挑取有抗性的克隆进行菌液PCR检测。将检测阳性的克隆进行扩大培养,提取质粒。对提取的质粒进行双酶切验证:除了选用PCR添加的酶切位点外,另外选取载体中已有的酶切位点EcoR I和Hind III进行组合酶切验证,判断连入表达载体的方向是否正确。将连接正确的质粒转化农杆菌GV3101感受态,1天后挑取抗性克隆进行菌液PCR检测。对检测阳性的克隆再提取质粒,进行回转验证,即再转入大肠杆菌中提取质粒进行双酶切验证。每一步均检测正确的克隆将用于下一步的转化,并保存于-80℃备用。Extract and sequence the correctly cloned plasmid, and perform double digestion with the added restriction site, as follows: use Kpn I and SalI double restriction digestion. 0.5 μl of each enzyme was added to the 10 μl system, other conditions were carried out according to the instructions provided by Takara, and the digestion time was 2 hours. The digested fragment was recovered and ligated overnight with the pCAMBIA1301 vector that was also double digested. The ligation products were directly transformed into DH5α competent cells, and the resistant clones were selected for PCR detection using Kan. The positive clones were expanded and cultured, and plasmids were extracted. Double-enzyme digestion verification of the extracted plasmid: In addition to the restriction enzyme restriction site added by PCR, the existing restriction enzyme restriction sites EcoR I and Hind III in the vector are also selected for combined restriction restriction digestion verification, and the direction of connection into the expression vector is judged. is it right or not. The correctly ligated plasmid was transformed into Agrobacterium GV3101 competent, and resistant clones were picked for PCR detection after 1 day. The positive clones were extracted with plasmids and verified by rotation, that is, the plasmids were extracted into E. coli for double-enzyme digestion verification. Correct clones detected at each step will be used for the next transformation and stored at -80°C for later use.

1.5 JcMYB16植物表达载体转基因到拟南芥1.5 Transgenic JcMYB16 plant expression vector into Arabidopsis thaliana

本实验转化拟南芥的方法为花粉管通道法,也被称为花序浸染法,具体步骤如下:选取含苞待放的拟南芥植株(约4周),去除已经开放的花苞,侵染前夜充分浇水备用。将包含目的载体的农杆菌摇至OD600=1.8,5000g离心5min收集菌体。加入浸润培养基(1/2MS不加维生素+1ml 1000×Gamborg’s Vitamins(肌醇100mg/mL,烟酸1mg/mL,B6 1mg/mL,B1 10mg/mL)+6-BA 10μg/mL,pH 5.7)使农杆菌以1:1的比例重悬,并加入表面活性剂Silwet,使其终浓度达到0.02%。准备完毕后进行浸染,浸染时间为2min,期间不断搅拌浸染液使其与花序充分结合。浸染后短暂晾干,将植株置于暗箱中黑暗培养24h,期间使用报纸遮光并保持暗箱一定湿度。暗培养结束后,继续正常培养,收取种子用于筛选。The method of transforming Arabidopsis in this experiment is the pollen tube channel method, also known as the inflorescence dip method. The specific steps are as follows: select the Arabidopsis thaliana plants with buds to be released (about 4 weeks), remove the flower buds that have opened, and infect the night before Water adequately. The Agrobacterium containing the target vector was shaken to OD 600 =1.8, and the cells were collected by centrifugation at 5000 g for 5 min. Add infiltration medium (1/2MS without vitamins + 1ml 1000×Gamborg's Vitamins (inositol 100mg/mL, niacin 1mg/mL, B6 1mg/mL, B1 10mg/mL) + 6-BA 10μg/mL, pH 5.7 ) to resuspend Agrobacterium at a 1:1 ratio and add the surfactant Silwet to a final concentration of 0.02%. After the preparation is completed, dip-dye is carried out, and the dip-dye time is 2min. During this period, the dip-dye is continuously stirred to fully combine with the inflorescence. After dip-dyeing, the plants were dried for a short time, and the plants were placed in a dark box for 24 hours of dark cultivation. During this period, newspapers were used to shade and maintain a certain humidity in the dark box. After dark cultivation, normal cultivation was continued, and seeds were collected for screening.

1.6 JcMYB16转基因植株筛选和目的基因表达量检测1.6 Screening of JcMYB16 transgenic plants and detection of target gene expression

将收取的拟南芥种子消毒,播种于1/2MS+潮霉素(Hyg)30μg/mL培养基上,一周后获得阳性植株。阳性植株的特征为叶片较绿,根系发达。这些阳性植株即为T1代株系,每个单株均为一个株系,单独编号和收集种子。将T1代株系种子进行消毒和潮霉素筛选,统计分离比。选取分离比约为3﹕1(阳性植株﹕阴性植株)的株系进行移植,每个株系12棵单株(T2代)。然后将T2代单株收种,再进行消毒和潮霉素筛选。观察T2代单株种子是否发生分离,不再发生分离的单株就是纯合体植株,单独收种、保存,并播种获得T3代植株种子。这样获得的T3代植株种子较多,用于后续的表型分析。The collected Arabidopsis seeds were sterilized and sown on 1/2MS+hygromycin (Hyg) 30 μg/mL medium, and positive plants were obtained one week later. Positive plants are characterized by greener leaves and developed roots. These positive plants are the T1 generation lines, each individual plant is a line, and the seeds are individually numbered and collected. The seeds of the T1 generation line were sterilized and screened by hygromycin, and the separation ratio was calculated. Lines with a segregation ratio of about 3:1 (positive plants:negative plants) were selected for transplantation, and each line had 12 individual plants (T2 generation). Then the T2 generation single plant was harvested, and then sterilized and hygromycin screened. It was observed whether the seeds of the T2 generation individual plants were separated, and the single plant that no longer separated was a homozygous plant, and the seeds were harvested, stored separately, and sown to obtain the seeds of the T3 generation plants. The T3 generation plants obtained in this way have more seeds for subsequent phenotypic analysis.

取生长20天的T3代植株第四片叶片用于RNA提取。提取方法为Trizol法。提取的RNA使用Nanodrop2000分光光度计和琼脂糖凝胶电泳检测浓度和完整度。质量较好的RNA用于逆转录,逆转录RNA量为2μg,试剂盒购自Premega公司。逆转录的cDNA质量使用JcActin基因进行PCR检测,并调整浓度一致。使用半定量PCR检测各目的基因在拟南芥各株系中的表达量,并由此选取3个超表达株系用于后续表型分析。The fourth leaf of T3 generation plants grown for 20 days was used for RNA extraction. The extraction method was Trizol method. Extracted RNA was tested for concentration and integrity using a Nanodrop 2000 spectrophotometer and agarose gel electrophoresis. RNA of better quality was used for reverse transcription, and the amount of reverse transcription RNA was 2 μg, and the kit was purchased from Premega Company. The quality of reverse transcribed cDNA was detected by PCR using JcActin gene, and the concentration was adjusted to be consistent. Semi-quantitative PCR was used to detect the expression levels of each target gene in each Arabidopsis line, and 3 overexpressing lines were selected for subsequent phenotype analysis.

1.7 JcMYB16转基因植物干旱胁迫实验分析1.7 Experimental analysis of drought stress in JcMYB16 transgenic plants

干旱胁迫处理条件如下:首先将野生型和JcMYB16转基因拟南芥种子消毒,然后将拟南芥点播在含有1/2MS培养基的正方形无菌培养皿中,垂直培养4d,然后挑选生长一致的野生型和转基因拟南芥幼苗并转移到1/2MS和含有300mM甘露醇的1/2MS培养基中继续垂直生长7d,进行表型分析,电导率、脯氨酸和MDA含量检测。此外,营养土中的干旱胁迫,3周的拟南芥直接停止浇水,2周后进行表型观察,然后复水7d统计存活率。The drought stress treatment conditions were as follows: first, wild-type and JcMYB16 transgenic Arabidopsis seeds were sterilized, and then Arabidopsis thaliana were seeded on-demand in square sterile petri dishes containing 1/2 MS medium, cultured vertically for 4 d, and then wild-type plants with consistent growth were selected. Type and transgenic Arabidopsis seedlings were transferred to 1/2MS and 1/2MS medium containing 300mM mannitol and continued to grow vertically for 7 days for phenotypic analysis, electrical conductivity, proline and MDA content detection. In addition, under the drought stress in the nutrient soil, the Arabidopsis thaliana directly stopped watering for 3 weeks, and the phenotype was observed after 2 weeks, and then the survival rate was counted after rehydration for 7 days.

1.8 RNA提取及qRT-PCR1.8 RNA extraction and qRT-PCR

本实验所需RNA均采用Magen公司植物RNA提取试剂盒进行;第一链cDNA合成采用TAKARA公司第一链cDNA合成试剂盒进行。LightCycler 480和TB GreenTM Premix Ex TaqII被用来进行qRT-PCR分析。2-ΔΔCT方法被用来计算基因相对表达量,AtActin2用作拟南芥内参基因。定量PCR引物见表4。The RNA required in this experiment was carried out with the plant RNA extraction kit from Magen company; the first-strand cDNA synthesis was carried out with the first-strand cDNA synthesis kit from TAKARA company. LightCycler 480 and TB GreenTM Premix Ex TaqII were used for qRT-PCR analysis. The 2 -ΔΔCT method was used to calculate the relative gene expression, and AtActin2 was used as the reference gene in Arabidopsis thaliana. Quantitative PCR primers are shown in Table 4.

表4定量qRT-PCR的引物序列Table 4 Primer sequences for quantitative qRT-PCR

Table 4 The sequences of primers used in quantitative qRT-PCRTable 4 The sequences of primers used in quantitative qRT-PCR

Figure BDA0002266699140000131
Figure BDA0002266699140000131

首次克隆并研究了小桐子MYB家族基因JcMYB16在植物响应干旱胁迫中的功能,即本发明可以提供一种能够增加植物干旱抗性的基因。首先对JcMYB16基因进行了组织特异性表达分析,qRT-PCR结果表明JcMYB16基因在小桐子根中高效表达;然后将JcMYB16基因构建到以35S启动子启动的植物表达载体pCAMBIA1301中,获得重组载体pCAMBIA1301-JcMYB16,将重组载体转入农杆菌用于进一步的转化。以水稻愈伤和拟南芥为受体,利用农杆菌介导法将构建好的载体分别转入到水稻愈伤组织和拟南芥中,获得JcMYB16转基因纯合体株系;然后对JcMYB16转基因株系进行表型和干旱胁迫分析。表型分析显示,超表达JcMYB16基因不影响植物的生长和发育。干旱胁迫实验分析显示,超表达JcMYB16基因增加了转基因水稻和拟南芥对干旱胁迫抗性。此外,我们已经种植了4代转基因株系,并且从T1代开始JcMYB16转基因水稻和转基因拟南芥就可以显著提高干旱胁迫抗性,说明我们获得的JcMYB16转基因植株是可以稳定遗传的。JcMYB16基因是水稻和拟南芥干旱胁迫的关键调控基因,表明可以利用基因工程技术提高水稻、小桐子抵抗干旱胁迫抗性,在利用生物工程技术有目的调控植物耐干旱胁迫特性,通过分子育种手段培育耐干旱水稻或者小桐子新品种进而促进水稻或小桐子在干旱地区大面积推广种植方面具有非常重要的应用价值。该基因可以用于小桐子及水稻、小麦等禾谷类作物耐干旱品种的培育,还可应用于大麦、高粱、玉米、拟南芥、番茄、烟草、大豆、土豆等作物耐旱品种的培育。JcMYB16编码的蛋白质,或其他物种中的功能类似蛋白,其氨基酸序列与Seq IDNo.3所示的氨基酸序列具有不小于30%的同源性。蛋白在培育耐逆品种植物中的应用,耐逆为增加禾谷类作物抗旱能力,进而增加在干旱和盐碱地单位面积产量。The function of Jatropha jatropha MYB family gene JcMYB16 in plant response to drought stress was cloned and studied for the first time, that is, the present invention can provide a gene that can increase plant drought resistance. Firstly, tissue-specific expression analysis of JcMYB16 gene was carried out, and qRT-PCR results showed that JcMYB16 gene was highly expressed in Jatropha JcMYB16, the recombinant vector was transferred into Agrobacterium for further transformation. Using rice callus and Arabidopsis thaliana as receptors, the constructed vector was transferred into rice callus and Arabidopsis thaliana respectively by Agrobacterium-mediated method to obtain JcMYB16 transgenic homozygous lines; Phenotypic and drought stress analyses were performed. Phenotypic analysis showed that overexpression of the JcMYB16 gene did not affect plant growth and development. Analysis of drought stress experiments showed that overexpression of the JcMYB16 gene increased drought stress resistance in transgenic rice and Arabidopsis. In addition, we have grown 4 generations of transgenic lines, and JcMYB16 transgenic rice and transgenic Arabidopsis can significantly improve drought stress resistance from the T1 generation, indicating that the JcMYB16 transgenic plants we obtained can be stably inherited. The JcMYB16 gene is a key regulator of drought stress in rice and Arabidopsis, indicating that genetic engineering technology can be used to improve the resistance of rice and jatropha to drought stress. Bioengineering technology can be used to purposefully regulate the drought stress characteristics of plants. Through molecular breeding methods It is very important to cultivate new varieties of drought-tolerant rice or Jatropha so as to promote large-scale planting of rice or Jatropha in arid areas. The gene can be used for the cultivation of drought-tolerant varieties of Jatropha japonica and cereal crops such as rice and wheat, as well as for the cultivation of drought-tolerant varieties of crops such as barley, sorghum, corn, Arabidopsis, tomato, tobacco, soybean, and potato. The amino acid sequence of the protein encoded by JcMYB16, or functionally similar proteins in other species, has no less than 30% homology with the amino acid sequence shown in Seq ID No.3. The application of protein in cultivating stress-tolerant varieties of plants. Stress tolerance is to increase the drought resistance of cereal crops, thereby increasing the yield per unit area in drought and saline-alkali land.

以上实施例仅用以说明,而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。The above embodiments are only used to illustrate rather than limit the technical solutions of the present invention. Although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art should understand that the present invention can still be modified or equivalently replaced without Any modifications or partial substitutions that depart from the spirit and scope of the present invention should be included in the scope of the claims of the present invention.

SEQUENCE LISTING SEQUENCE LISTING

<110> 周口师范学院<110> Zhoukou Normal University

<120> 小桐子MYB类转录因子JcMYB16基因及其在提高植物抗旱性中的应用<120> Jatropha MYB transcription factor JcMYB16 gene and its application in improving plant drought resistance

<130> 191131<130> 191131

<160> 3<160> 3

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 2232<211> 2232

<212> DNA<212> DNA

<213> JcMYB16基因核苷酸序列<213> Nucleotide sequence of JcMYB16 gene

<400> 1<400> 1

ttagtggtgg ttaaactttc aaaatctcga tagtgcaagt atttgaattt ttaggttatg 60ttagtggtgg ttaaactttc aaaatctcga tagtgcaagt atttgaattt ttaggttatg 60

tttcttttat ggcctttcgc actgttagtg gaattggagt gtgaaaatgg aatctggggt 120tttcttttat ggcctttcgc actgttagtg gaattggagt gtgaaaatgg aatctggggt 120

tagagattat ttttcttctc taatcaggag tgagaaacct tgaattactg gccgttctac 180tagagattat ttttcttctc taatcaggag tgagaaacct tgaattactg gccgttctac 180

tctcaattaa tggctttctg ttcccaggaa ttgcccttca aatctgctgt tgataacata 240tctcaattaa tggctttctg ttcccaggaa ttgcccttca aatctgctgt tgataacata 240

ggtcagcagt tcacaagagt ccaatttttt tgaattgtgg agcaaattac cattgaattc 300ggtcagcagt tcacaagagt ccaatttttt tgaattgtgg agcaaattac cattgaattc 300

ttcacatact ccgttgggat tttgtgattt ttattggagg tgatctctgg ttcagttctc 360ttcacatact ccgttgggat tttgtgattt ttattggagg tgatctctgg ttcagttctc 360

ttggcttttt ttgggtccat ctgcttgttt ctcgtcttcc ttacctctac accctgacac 420ttggcttttt ttgggtccat ctgcttgttt ctcgtcttcc ttacctctac accctgacac 420

atcctgctgc tttcccataa ttctgttctg ccatcactcc aactgttggt cataaccaaa 480atcctgctgc tttcccataa ttctgttctg ccatcactcc aactgttggt cataaccaaa 480

tatagaaatt attcagatcc aaatttcaag aaaccgttct agaatttttt ttttttttca 540tatagaaatt attcagatcc aaatttcaag aaaccgttct agaatttttt ttttttttca 540

agattggctt attaatttag cctagattct agagctaggt ttttcctttc tttgctagtg 600agattggctt attaatttag cctagattct agagctaggt ttttcctttc tttgctagtg 600

taagattcaa accagtctag atgattgcgg atgaagcaga ctgcagctct gtgtggacta 660taagattcaa accagtctag atgattgcgg atgaagcaga ctgcagctct gtgtggacta 660

gggagcagga taaggcattt gaggatgccc ttgcaacata tcctgaggat gctgtagatc 720gggagcagga taaggcattt gaggatgccc ttgcaacata tcctgaggat gctgtagatc 720

ggtgggagaa aattgctgct gatgttcctg ggaaaacctt agaagagctt aaacttcact 780ggtgggagaa aattgctgct gatgttcctg ggaaaacctt agaagagctt aaacttcact 780

atgaacttct ggttgaagat ttgaatcaga ttgaagctgg ctgtgtgcct ctgcctaact 840atgaacttct ggttgaagat ttgaatcaga ttgaagctgg ctgtgtgcct ctgcctaact 840

actcttctat ggagggttca ataagccaag ctggcgatga aggaactact aagaagggtg 900actcttctat ggagggttca ataagccaag ctggcgatga aggaactact aagaagggtg 900

gtcaaatggg gcaccataac agtgagtcta ctcatggaaa taaggcttca aggtcagatc 960gtcaaatggg gcaccataac agtgagtcta ctcatggaaa taaggcttca aggtcagatc 960

aagaacgccg taaaggaatc gcttggacag aggatgagca caggttattt cttcttggtt 1020aagaacgccg taaaggaatc gcttggacag aggatgagca caggttattt cttcttggtt 1020

tggacaaata tgggaaaggt gactggcgaa gtatttccag aaactttgtt gtgacaagga 1080tggacaaata tgggaaaggt gactggcgaa gtatttccag aaactttgtt gtgacaagga 1080

cacctacgca agtggcaagc catgcacaaa aatatttcat tcgtttgaac tcgatgaaca 1140cacctacgca agtggcaagc catgcacaaa aatatttcat tcgtttgaac tcgatgaaca 1140

aagataggag gcgttccagc attcatgata tcaccagtgt tggcaatgga gatatttcag 1200aagataggag gcgttccagc attcatgata tcaccagtgt tggcaatgga gatatttcag 1200

cgccacaagg accaataact ggtcaaacaa atggttctgc tgcaggaggt tcctctggta 1260cgccacaagg accaataact ggtcaaacaa atggttctgc tgcaggaggt tcctctggta 1260

aagctgctaa acaaccccct caacacccta ctggacctcc aggagttggt gtttatggtc 1320aagctgctaa acaaccccct caacacccta ctggacctcc aggagttggt gtttatggtc 1320

ctccgactat agggcaacct ataggaggtc cccttgtctc agcagttggc acccctgtga 1380ctccgactat agggcaacct ataggaggtc cccttgtctc agcagttggc acccctgtga 1380

atcttcctgc ccctgcacac atggcttatg gcgttagagc tcctgtacca ggaacagtac 1440atcttcctgc ccctgcacac atggcttatg gcgttagagc tcctgtacca ggaacagtac 1440

cgggagctgt ggttcctggt gcaccaatga tgaacatggg tcctatggca tatccaatgc 1500cgggagctgt ggttcctggt gcaccaatga tgaacatggg tcctatggca tatccaatgc 1500

caccgacaac tgctcatagg tgatatacat ggtttagctg caaaatgtac aaagacagaa 1560caccgacaac tgctcatagg tgatatacat ggtttagctg caaaatgtac aaagacagaa 1560

ggctacttgc ttgtatttct ggtgggtcag tggcttctcc attttagcct gaataaaact 1620ggctacttgc ttgtatttct ggtgggtcag tggcttctcc attttagcct gaataaaact 1620

gcttatttgc aagcaaaaat tgtctgatgt catttgttta ttctggtagc aatatcaaat 1680gcttatttgc aagcaaaaat tgtctgatgt catttgttta ttctggtagc aatatcaaat 1680

aaaccaatag gtagagaaac tacatgcatt tgtataggca gcagctgtgg aaaatatggc 1740aaaccaatag gtagagaaac tacatgcatt tgtataggca gcagctgtgg aaaatatggc 1740

agcagttatg ggtaggacac attttggtac tttttttttg gttttacatt acaatgttta 1800agcagttatg ggtaggacac attttggtac ttttttttttg gttttacatt acaatgttta 1800

gtctcagtag cagtcagtta atggtatttt acttttaatg accaaatttg taaagaatcc 1860gtctcagtag cagtcagtta atggtatttt acttttaatg accaaatttg taaagaatcc 1860

atttatacgt tttactattt tgagtagtag atgttggcac ggattgtgca aagcctttgt 1920atttatacgt tttactattt tgagtagtag atgttggcac ggattgtgca aagcctttgt 1920

aaaaaaaagt accaaaatgt gtcctaccca taactgctgc catattttcc acagctgctg 1980aaaaaaaagt accaaaatgt gtcctaccca taactgctgc catattttcc acagctgctg 1980

cctatacaaa tgcatgtagt ttctctacct attggtttat ttgatattgc taccagaata 2040cctatacaaa tgcatgtagt ttctctacct attggtttat ttgatattgc taccagaata 2040

aacaaatgac atcagacaat ttttgcttgc aaataagcag ttttattcag gctaaaatgg 2100aacaaatgac atcagacaat ttttgcttgc aaataagcag ttttattcag gctaaaatgg 2100

agaagccact gacccaccag aaatacaagc aagtagcctt ctgtctttgt acattttgca 2160agaagccact gacccaccag aaatacaagc aagtagcctt ctgtctttgt acattttgca 2160

gctaaaccat gtatatcacc tatgagcagt tgtcggtggc attggatatg ccataggacc 2220gctaaaccat gtatatcacc tatgagcagt tgtcggtggc attggatatg ccataggacc 2220

catgttcatc at 2232catgttcatc at 2232

<210> 2<210> 2

<211> 903<211> 903

<212> DNA<212> DNA

<213> 基因开放阅读框的核苷酸序列<213> Nucleotide sequence of gene open reading frame

<400> 2<400> 2

atgattgcgg atgaagcaga ctgcagctct gtgtggacta gggagcagga taaggcattt 60atgattgcgg atgaagcaga ctgcagctct gtgtggacta gggagcagga taaggcattt 60

gaggatgccc ttgcaacata tcctgaggat gctgtagatc ggtgggagaa aattgctgct 120gaggatgccc ttgcaacata tcctgaggat gctgtagatc ggtgggagaa aattgctgct 120

gatgttcctg ggaaaacctt agaagagctt aaacttcact atgaacttct ggttgaagat 180gatgttcctg ggaaaacctt agaagagctt aaacttcact atgaacttct ggttgaagat 180

ttgaatcaga ttgaagctgg ctgtgtgcct ctgcctaact actcttctat ggagggttca 240ttgaatcaga ttgaagctgg ctgtgtgcct ctgcctaact actcttctat ggagggttca 240

ataagccaag ctggcgatga aggaactact aagaagggtg gtcaaatggg gcaccataac 300ataagccaag ctggcgatga aggaactact aagaagggtg gtcaaatggg gcaccataac 300

agtgagtcta ctcatggaaa taaggcttca aggtcagatc aagaacgccg taaaggaatc 360agtgagtcta ctcatggaaa taaggcttca aggtcagatc aagaacgccg taaaggaatc 360

gcttggacag aggatgagca caggttattt cttcttggtt tggacaaata tgggaaaggt 420gcttggacag aggatgagca caggttattt cttcttggtt tggacaaata tgggaaaggt 420

gactggcgaa gtatttccag aaactttgtt gtgacaagga cacctacgca agtggcaagc 480gactggcgaa gtatttccag aaactttgtt gtgacaagga cacctacgca agtggcaagc 480

catgcacaaa aatatttcat tcgtttgaac tcgatgaaca aagataggag gcgttccagc 540catgcacaaa aatatttcat tcgtttgaac tcgatgaaca aagataggag gcgttccagc 540

attcatgata tcaccagtgt tggcaatgga gatatttcag cgccacaagg accaataact 600attcatgata tcaccagtgt tggcaatgga gatatttcag cgccacaagg accaataact 600

ggtcaaacaa atggttctgc tgcaggaggt tcctctggta aagctgctaa acaaccccct 660ggtcaaacaa atggttctgc tgcaggaggt tcctctggta aagctgctaa acaaccccct 660

caacacccta ctggacctcc aggagttggt gtttatggtc ctccgactat agggcaacct 720caacacccta ctggacctcc aggagttggt gtttatggtc ctccgactat agggcaacct 720

ataggaggtc cccttgtctc agcagttggc acccctgtga atcttcctgc ccctgcacac 780ataggaggtc cccttgtctc agcagttggc acccctgtga atcttcctgc ccctgcacac 780

atggcttatg gcgttagagc tcctgtacca ggaacagtac cgggagctgt ggttcctggt 840atggcttatg gcgttagagc tcctgtacca ggaacagtac cgggagctgt ggttcctggt 840

gcaccaatga tgaacatggg tcctatggca tatccaatgc caccgacaac tgctcatagg 900gcaccaatga tgaacatggg tcctatggca tatccaatgc caccgacaac tgctcatagg 900

tga 903tga 903

<210> 3<210> 3

<211> 300<211> 300

<212> PRT<212> PRT

<213> 基因开放阅读框的DNA编码的氨基酸序列<213> DNA-encoded amino acid sequence of the open reading frame of the gene

<400> 3<400> 3

Met Ile Ala Asp Glu Ala Asp Cys Ser Ser Val Trp Thr Arg Glu GlnMet Ile Ala Asp Glu Ala Asp Cys Ser Ser Val Trp Thr Arg Glu Gln

1 5 10 151 5 10 15

Asp Lys Ala Phe Glu Asp Ala Leu Ala Thr Tyr Pro Glu Asp Ala ValAsp Lys Ala Phe Glu Asp Ala Leu Ala Thr Tyr Pro Glu Asp Ala Val

20 25 30 20 25 30

Asp Arg Trp Glu Lys Ile Ala Ala Asp Val Pro Gly Lys Thr Leu GluAsp Arg Trp Glu Lys Ile Ala Ala Asp Val Pro Gly Lys Thr Leu Glu

35 40 45 35 40 45

Glu Leu Lys Leu His Tyr Glu Leu Leu Val Glu Asp Leu Asn Gln IleGlu Leu Lys Leu His Tyr Glu Leu Leu Val Glu Asp Leu Asn Gln Ile

50 55 60 50 55 60

Glu Ala Gly Cys Val Pro Leu Pro Asn Tyr Ser Ser Met Glu Gly SerGlu Ala Gly Cys Val Pro Leu Pro Asn Tyr Ser Ser Met Glu Gly Ser

65 70 75 8065 70 75 80

Ile Ser Gln Ala Gly Asp Glu Gly Thr Thr Lys Lys Gly Gly Gln MetIle Ser Gln Ala Gly Asp Glu Gly Thr Thr Lys Lys Gly Gly Gln Met

85 90 95 85 90 95

Gly His His Asn Ser Glu Ser Thr His Gly Asn Lys Ala Ser Arg SerGly His His Asn Ser Glu Ser Thr His Gly Asn Lys Ala Ser Arg Ser

100 105 110 100 105 110

Asp Gln Glu Arg Arg Lys Gly Ile Ala Trp Thr Glu Asp Glu His ArgAsp Gln Glu Arg Arg Lys Gly Ile Ala Trp Thr Glu Asp Glu His Arg

115 120 125 115 120 125

Leu Phe Leu Leu Gly Leu Asp Lys Tyr Gly Lys Gly Asp Trp Arg SerLeu Phe Leu Leu Gly Leu Asp Lys Tyr Gly Lys Gly Asp Trp Arg Ser

130 135 140 130 135 140

Ile Ser Arg Asn Phe Val Val Thr Arg Thr Pro Thr Gln Val Ala SerIle Ser Arg Asn Phe Val Val Thr Arg Thr Pro Thr Gln Val Ala Ser

145 150 155 160145 150 155 160

His Ala Gln Lys Tyr Phe Ile Arg Leu Asn Ser Met Asn Lys Asp ArgHis Ala Gln Lys Tyr Phe Ile Arg Leu Asn Ser Met Asn Lys Asp Arg

165 170 175 165 170 175

Arg Arg Ser Ser Ile His Asp Ile Thr Ser Val Gly Asn Gly Asp IleArg Arg Ser Ser Ile His Asp Ile Thr Ser Val Gly Asn Gly Asp Ile

180 185 190 180 185 190

Ser Ala Pro Gln Gly Pro Ile Thr Gly Gln Thr Asn Gly Ser Ala AlaSer Ala Pro Gln Gly Pro Ile Thr Gly Gln Thr Asn Gly Ser Ala Ala

195 200 205 195 200 205

Gly Gly Ser Ser Gly Lys Ala Ala Lys Gln Pro Pro Gln His Pro ThrGly Gly Ser Ser Gly Lys Ala Ala Lys Gln Pro Pro Gln His Pro Thr

210 215 220 210 215 220

Gly Pro Pro Gly Val Gly Val Tyr Gly Pro Pro Thr Ile Gly Gln ProGly Pro Pro Gly Val Gly Val Tyr Gly Pro Pro Thr Ile Gly Gln Pro

225 230 235 240225 230 235 240

Ile Gly Gly Pro Leu Val Ser Ala Val Gly Thr Pro Val Asn Leu ProIle Gly Gly Pro Leu Val Ser Ala Val Gly Thr Pro Val Asn Leu Pro

245 250 255 245 250 255

Ala Pro Ala His Met Ala Tyr Gly Val Arg Ala Pro Val Pro Gly ThrAla Pro Ala His Met Ala Tyr Gly Val Arg Ala Pro Val Pro Gly Thr

260 265 270 260 265 270

Val Pro Gly Ala Val Val Pro Gly Ala Pro Met Met Asn Met Gly ProVal Pro Gly Ala Val Val Pro Gly Ala Pro Met Met Asn Met Gly Pro

275 280 285 275 280 285

Met Ala Tyr Pro Met Pro Pro Thr Thr Ala His ArgMet Ala Tyr Pro Met Pro Pro Thr Thr Ala His Arg

290 295 300 290 295 300

Claims (7)

1. MYB transcription factor of jatropha curcasJcMYB16A gene characterized by: the above-mentionedJcMYB16The nucleotide sequence of the gene is SEQ ID NO.1, and the nucleotide sequence of the gene open reading frame is SEQ ID NO. 2.
2. A polypeptide, characterized by: the amino acid sequence of the polypeptide is encoded by SEQ ID NO. 3.
3. A recombinant construct, characterized in that: the recombinant construct comprises a nucleotide sequence shown in SEQ ID NO.1, and the vector for the construct is a pMD18-T vector for cloning or a pCAMBIA1301 vector for expression.
4. The Jatropha curcas MYB transcription factor of claim 1JcMYB16The transgenic agrobacterium of the gene is EHA105 or GV 3101.
5. The Jatropha curcas MYB transcription factor of claim 1JcMYB16The application of the nucleotide sequence of the gene in improving the drought resistance of plants.
6. The Jatropha curcas MYB transcription factor of claim 5JcMYB16The application of the nucleotide sequence of the gene in improving the drought resistance of plants is characterized in that: the plant is a monocotyledon or a dicotyledon.
7. The Jatropha curcas MYB transcription factor of claim 6JcMYB16The application of the nucleotide sequence of the gene in improving the drought resistance of plants is characterized in that: the monocotyledon is rice, and the dicotyledon is riceThe plant is Jatropha curcas Arabidopsis thaliana.
CN201911098741.7A 2019-11-08 2019-11-08 Jatropha MYB transcription factor JcMYB16 gene and its application in improving plant drought resistance Expired - Fee Related CN110643618B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911098741.7A CN110643618B (en) 2019-11-08 2019-11-08 Jatropha MYB transcription factor JcMYB16 gene and its application in improving plant drought resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911098741.7A CN110643618B (en) 2019-11-08 2019-11-08 Jatropha MYB transcription factor JcMYB16 gene and its application in improving plant drought resistance

Publications (2)

Publication Number Publication Date
CN110643618A true CN110643618A (en) 2020-01-03
CN110643618B CN110643618B (en) 2023-04-21

Family

ID=68995755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911098741.7A Expired - Fee Related CN110643618B (en) 2019-11-08 2019-11-08 Jatropha MYB transcription factor JcMYB16 gene and its application in improving plant drought resistance

Country Status (1)

Country Link
CN (1) CN110643618B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113501867A (en) * 2021-07-14 2021-10-15 华中农业大学 Corn drought-resistant gene ZmMYBR38 and application thereof
CN114231541A (en) * 2022-01-11 2022-03-25 沈阳农业大学 A MYB transcription factor to improve drought resistance of Populus shanxin and its application
CN114395023A (en) * 2022-01-27 2022-04-26 广东省农业科学院果树研究所 Jatropha curcas early flowering gene JcRR1B and application thereof
CN115927371A (en) * 2022-07-25 2023-04-07 中国科学院华南植物园 CrHsf7 gene of sea sword bean, transcription factor and application thereof
CN116855509A (en) * 2023-07-11 2023-10-10 四川农业大学 A grass drought tolerance gene LmMYB1 and its application
CN117209583A (en) * 2023-11-09 2023-12-12 吉林农业大学 Application of gene ZmMYB86 in improving drought resistance of plants

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1807627A (en) * 2006-01-10 2006-07-26 中国科学院植物研究所 Barbadosnut salt induced transcription factor and its coding gene and uses
WO2010058428A2 (en) * 2008-11-21 2010-05-27 Reliance Life Sciences Pvt. Ltd. Identification of genes related to abiotic stress tolerance in jatropha curcas
CN109456982A (en) * 2018-11-29 2019-03-12 周口师范学院 The application of rice Os MYB6 gene and its coding albumen in drought resisting and salt resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1807627A (en) * 2006-01-10 2006-07-26 中国科学院植物研究所 Barbadosnut salt induced transcription factor and its coding gene and uses
WO2010058428A2 (en) * 2008-11-21 2010-05-27 Reliance Life Sciences Pvt. Ltd. Identification of genes related to abiotic stress tolerance in jatropha curcas
CN109456982A (en) * 2018-11-29 2019-03-12 周口师范学院 The application of rice Os MYB6 gene and its coding albumen in drought resisting and salt resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NCBI: ""PREDICTED: Jatropha curcas transcription factor SRM1 (LOC105631171), transcript variant"", 《NCBI》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113501867A (en) * 2021-07-14 2021-10-15 华中农业大学 Corn drought-resistant gene ZmMYBR38 and application thereof
CN113501867B (en) * 2021-07-14 2022-06-14 华中农业大学 Maize Drought Resistance Gene ZmMYBR38 and Its Application
CN114231541A (en) * 2022-01-11 2022-03-25 沈阳农业大学 A MYB transcription factor to improve drought resistance of Populus shanxin and its application
CN114231541B (en) * 2022-01-11 2022-12-06 沈阳农业大学 A kind of MYB transcription factor improving the drought resistance of Populus montana and its application
CN114395023A (en) * 2022-01-27 2022-04-26 广东省农业科学院果树研究所 Jatropha curcas early flowering gene JcRR1B and application thereof
CN115927371A (en) * 2022-07-25 2023-04-07 中国科学院华南植物园 CrHsf7 gene of sea sword bean, transcription factor and application thereof
CN115927371B (en) * 2022-07-25 2023-06-23 中国科学院华南植物园 Sea sword bean CrHsf7 gene and transcription factor and application thereof
CN116855509A (en) * 2023-07-11 2023-10-10 四川农业大学 A grass drought tolerance gene LmMYB1 and its application
CN117209583A (en) * 2023-11-09 2023-12-12 吉林农业大学 Application of gene ZmMYB86 in improving drought resistance of plants
CN117209583B (en) * 2023-11-09 2024-03-22 吉林农业大学 Application of gene ZmMYB86 in improving plant drought resistance

Also Published As

Publication number Publication date
CN110643618B (en) 2023-04-21

Similar Documents

Publication Publication Date Title
CN110643618B (en) Jatropha MYB transcription factor JcMYB16 gene and its application in improving plant drought resistance
CN109456982B (en) Application of rice OsMYB6 gene and encoding protein thereof in drought resistance and salt resistance
CN106868021B (en) Gene OsNAC1 for controlling rice seed size and application thereof
CN104829700A (en) Corn CCCH-type zinc finger protein, and encoding gene ZmC3H54 and application thereof
CN102776228A (en) Application of Arabidopsis transcription factor in breeding drought-resistant salt-tolerant rice
CN107383179B (en) A protein GsSLAH3 related to plant stress tolerance and its coding gene and application
CN106868019A (en) Control rice tillering gene OsHT1 and its application
CN107164391A (en) A kind of strawberry floral genes FvbHLH78 and its application
CN110628808A (en) Arabidopsis AtTCP5 Gene and Its Application in Regulating Plant Height
CN107641627B (en) H gene and H protein for regulating formation of tomato type I glandular hairs and application of H gene and H protein
CN101643745B (en) The Promoter Sequence of Salmus V-pyrophosphatase Gene and the Application of Its Deletion Mutant
CN102719449A (en) Clone of apple resistance-related gene MdSIMYB1 and application thereof
CN101698854A (en) Application of transcription thellungiella halophila CBF1 gene in improving drought resistance and salt tolerance of corn and wheat
CN106591324B (en) Millet SiASR4 gene and application
CN108570469A (en) Sedum lineare resistant gene of salt SLTATS and its application
CN108570471A (en) Sedum lineare resistant gene of salt SLEIPP and its application
CN107573411A (en) Application of the wheat TaZIM1 7A albumen in crop heading stage is regulated and controled
CN110564736A (en) Sedum lineare salt-tolerant gene SlWRKY and application thereof
CN110643615A (en) Drought-resistance gene SlATHB-7 of S. foetida and its application
CN110607307A (en) Salt Tolerance Gene SlNAC and Its Application in S.
CN101864430A (en) Abiotic Stress Resistance Gene Tamyb31 in Wheat Introgression Lines and Its Application
CN104531722A (en) Suaeda salsa RAV gene and recombinant vector containing same
CN104592370A (en) OsPYL9 protein, OsPYL9 protein coding gene and applications of OsPYL9 protein
CN104673803B (en) Application of gene methylation in regulation of gene expression
CN103614385B (en) A gene KT525 is improving the application on plant stress tolerance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20230421

CF01 Termination of patent right due to non-payment of annual fee