CN114561377A - 一株高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株及其应用 - Google Patents

一株高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株及其应用 Download PDF

Info

Publication number
CN114561377A
CN114561377A CN202210171762.2A CN202210171762A CN114561377A CN 114561377 A CN114561377 A CN 114561377A CN 202210171762 A CN202210171762 A CN 202210171762A CN 114561377 A CN114561377 A CN 114561377A
Authority
CN
China
Prior art keywords
strain
xylose
saccharomyces cerevisiae
fermentation
culture medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210171762.2A
Other languages
English (en)
Other versions
CN114561377B (zh
Inventor
鲍晓明
李洪兴
吴龙昊
颜凝
杨硕
李在禄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angel Yeast Co Ltd
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN202210171762.2A priority Critical patent/CN114561377B/zh
Publication of CN114561377A publication Critical patent/CN114561377A/zh
Application granted granted Critical
Publication of CN114561377B publication Critical patent/CN114561377B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/02Preparation of hybrid cells by fusion of two or more cells, e.g. protoplast fusion
    • C12N15/04Fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/905Stable introduction of foreign DNA into chromosome using homologous recombination in yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2445Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/045Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01037Xylan 1,4-beta-xylosidase (3.2.1.37)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/01Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
    • C12Y503/01005Xylose isomerase (5.3.1.5)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Immunology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一株高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株,该菌株命名为酿酒酵母(Saccharomyces cerevisiae)BLH507,已于2021年11月12日保藏在“中国微生物菌种保藏管理委员会普通微生物中心”,保藏编号为CGMCC NO.23786;本发明还公开了所述菌株在以木质纤维素水解液为原料发酵生产乙醇中的应用。实验证实,本发明菌株为一株兼具亲本菌株的葡萄糖/木糖共代谢能力、对混合抑制物的高耐受性及对纤维二糖及木寡糖水解能力的酿酒酵母工业菌株,且具有较强的同步糖化发酵能力,其限氧条件培养64±2小时能将几乎全部糖份利用完并生成乙醇,基于总糖消耗的得率为0.442,糖醇转化率为理论值的87%,具有应用于二代燃料乙醇工业化生产的潜力。

Description

一株高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工 业菌株及其应用
技术领域
本发明涉及一株C6/C5共发酵酿酒酵母菌株及其应用,尤其涉及一株高鲁棒性、高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株及其应用,属于生物技术领域。
背景技术
生物燃料乙醇是典型的可再生和环境友好型能源之一,其自身特性和功能使其易于与汽油混合,是国际公认的可替代化石能源的理想液体燃料之一。以廉价且储量丰富的木质纤维素生物质,特别是秸秆等农业残留物为原料生产的第二代燃料乙醇即纤维素乙醇是目前最有产业化前景的先进燃料。纤维素乙醇生产的基本流程是物理/化学因子预处理改变木质纤维素原料结构;经纤维素酶酶解后释放单糖及寡糖;微生物(首选为酿酒酵母Saccharomyces cerevisiae)对糖分最大限度地发酵生成乙醇;蒸馏及脱水操作后得到无水乙醇用于添加到汽油中。但在常见的预处理和酶解之后,伴随葡萄糖和木糖等单糖的释放,同时也会产生各类抑制发酵微生物生长的化合物(如弱酸类、呋喃醛类和酚类等非糖组分抑制物)及寡糖(如纤维二糖、木寡糖等)。
酿酒酵母作为乙醇发酵生产的首选微生物,具有生长速率快、公认安全及遗传操作体系完善等诸多优点,是极具潜力的细胞工厂。理想的木质纤维素水解物的乙醇发酵,要求发酵微生物,①能够耐受上游工艺过程中产生弱酸、呋喃醛和酚类等抑制性化合物;②同时尽可能实现葡萄糖、木糖等单糖以及纤维二糖、木二糖等寡糖的高效共发酵,从而降低生产成本、提高纤维素乙醇生产的经济效益。研究者经过30余年的努力,对酿酒酵母菌株的改造取得了较大成果,相关研究已取得长足进步。目前,大部分研究所构建的重组酵母工业菌株,基于消耗糖的乙醇发酵得率在0.40-0.48g·g-1之间。然而,将上述重组工业菌株应用在纤维素乙醇的产业化生产中,依然存在一些不尽人意之处。尤其是菌株缺乏寡糖代谢能力,以及在含有抑制物的木质纤维素水解液中,工程菌株对糖的利用速率显著低于纯品混合糖培养基,说明抑制物对菌株的影响依然严重,且愈发凸显为纤维素乙醇产业化的一个主要障碍。
申请人在前期工作中,基于从牛瘤胃宏基因组(bovine rumen metagenomiclibrary)中筛选得到的高活性木糖异构酶Ru-XI和来自季也蒙毕赤酵母(Meyerozymaguilliermondii)的特异性木糖转运蛋白MGT05196N360F,以野生型二倍体酿酒酵母BSIF为出发菌株,通过理性代谢工程及适应性进化工程构建得到一株葡萄糖&木糖高效共利用的重组酿酒酵母菌株LF1(发明专利号:ZL201510747241.7)。然而,该菌株的鲁棒性相对于工业应用仍有不足,且缺乏对寡糖的利用能力。专利《一株能够缓解木糖利用与高鲁棒性拮抗的C6/C5共发酵酿酒酵母及其应用》(专利号ZL202011296559.5)通过常温常压等离子体(ARTP)迭代诱变,并结合在高毒性(含多种抑制物)玉米秸秆预处理液和纯木糖培养基中交替驯化和筛选获得菌株6M-15,其能够缓解木糖利用与高鲁棒性间的拮抗现象,但是该菌株依然缺乏对寡糖的利用能力。针对上述问题,经信息检索,目前具备葡萄糖&木糖共利用、高鲁棒性及寡糖利用等三价性能的酿酒酵母菌株构建和应用的相关专利和文献尚未见报道。
发明内容
针对目前二代燃料乙醇生产所用酿酒酵母菌株对木质纤维素水解液中所含混合抑制物的耐受性不足,以及菌株缺乏木寡糖、纤维二糖等寡糖水解能力的现状,本发明要解决的问题是提供一株高鲁棒性、高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株及其应用。
本发明所述的高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株,其特征在于:所述菌株是通过原生质体融合育种技术,结合迭代筛选及验证后获得,命名为酿酒酵母(Saccharomyces cerevisiae)BLH507,菌株已于2021年11月12日保藏在“中国微生物菌种保藏管理委员会普通微生物中心”(地址:北京市朝阳区北辰西路1号院3号),保藏编号为CGMCC NO.23786;该菌株同时具备水解寡糖(木寡糖和纤维二糖)、对木质纤维素水解液中所含混合抑制物的耐受性及代谢木糖三重特性,且具有遗传稳定性。
上述高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株具有如下特征和功能:
(1)菌株BLH507为二倍体菌株。
(2)菌株BLH507于50mL的YPD液体培养基中培养至OD600为0.5时的海藻糖含量约为37mg·g-1(细胞干重),菌株总还原力约为17GSH/GSSG。
(3)菌株BLH507的木糖异构酶酶活为0.66U·mg-1蛋白;木糖苷酶酶活约为6.00U·mg-1蛋白;β-葡萄糖苷酶酶活约为5.34U·mg-1蛋白。
(4)菌株BLH507以0.5g·L-1细胞干重接种至40mL含2.0×混合抑制物的4%YPD液体培养基(即YP培养基添加40g·L-1葡萄糖)中限氧发酵时,36h可将约40g·L-1葡萄糖全部消耗完,并生成19.29g·L-1乙醇,得率为0.480。其中,所述培养基中,各抑制物组份及终浓度分别为20mM乙酸,10mM甲酸,10mM乙酰丙酸,10mM糠醛,10mM HMF,10mM香草醛。
(5)菌株BLH507以0.5g·L-1细胞干重接种至40mL,4%YPX液体培养基中限氧发酵时,12h可将40g·L-1木糖全部消耗完,并生成17.8g·L-1乙醇,得率为0.446。
(6)菌株BLH507在YPD液体培养基中连续传代约1000代,其上述性能基本保持稳定。
(7)菌株BLH507以0.5g·L-1细胞干重接种至40mL YPGX液体培养基(即YP培养基添加40g·L-1木糖,80g·L-1葡萄糖)中进行限氧发酵时,在16h将80g·L-1葡萄糖和40g·L-1木糖全部消耗完,乙醇得率为0.476,且发酵12h时,葡萄糖完全耗尽,同时约有78%的木糖同时被利用。
上述高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株的构建方法,步骤是:
(1)通过检测海藻糖含量及总还原力指标,确定选择高鲁棒性的二倍体酿酒酵母工业菌株RC212;
(2)通过同源重组分别在菌株RC212染色体上多拷贝整合β-葡萄糖苷酶基因和β-木糖苷酶基因,使其获得水解纤维二糖和木寡糖的能力,所得菌株命名为BLN26,做为原生质体融合亲本1;
(3)选择保藏号为CGMCC No.11331的含有木糖异构酶基因且能代谢木糖的重组酿酒酵母菌株LF1作为原生质体融合亲本2,进行原生质体制备后将亲本1与亲本2融合、初筛及复筛后获得潜在融合子;
(4)具三价性能稳定融合菌株的筛选:
1)将步骤(3)得到的融合子,稀释后均匀涂布于含有苯菌灵的YPXO固体筛选培养基上,30℃恒温摇床培养3-5天;其中,所述含有苯菌灵的YPXO固体筛选培养基是指YPXO培养基中含有30ng/uL苯菌灵,YPXO培养基配方是:YP培养基添加20g·L-1低聚木糖(购自上海源叶生物科技有限公司);
2)挑取生长较好的单菌落,至含1.5×混合抑制物及10ng·μL-1苯菌灵的YPX液体培养基中,于Bioscreen全自动生长曲线分析仪中培养3-4天,挑取生长较好的孔板对应的菌落进行PCR及发酵性能验证;其中,所述培养基中,各抑制物组份及终浓度分别为15mM乙酸,7.5mM甲酸,7.5mM乙酰丙酸,7.5mM糠醛,7.5mM HMF,7.5mM香草醛;YPX液体培养基配方是:YP培养基添加20g·L-1木糖;
3)通过酵母菌落PCR验证,选择同时具有木糖异构酶基因、β-葡萄糖苷酶基因和β-木糖苷酶基因三种特征基因的单菌落;并通过摇瓶发酵验证其木糖、寡糖代谢能力;
4)再重复步骤1)至3)所述苯菌灵筛选及验证工作,直至筛选获得具三价性能的稳定融合菌株即为高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株。
本发明所述高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株在以木质纤维素水解液为原料发酵生产乙醇中的应用。
其中,所述以木质纤维素水解液为原料摇瓶发酵生产乙醇的方法是:
在YP液体培养基中添加80g·L-1葡萄糖、40g·L-1木糖、10g·L-1纤维二糖和10g·L-1低聚木糖(预先经过木聚糖酶水解)模拟木质纤维素水解液中的糖份组成,添加1.5×混合抑制物来模拟木质纤维素水解液中存在的多种抑制物,制成模拟木质纤维素水解液培养基;其中所述培养基中各抑制物组份及终浓度分别为15mM乙酸,7.5mM甲酸,7.5mM乙酰丙酸,7.5mM糠醛,7.5mM HMF,7.5mM香草醛;以0.5g/L细胞干重的量将经活化及扩培后的酿酒酵母菌株BLH507接种至模拟木质纤维素水解液培养基中限氧摇瓶发酵,发酵条件是:培养温度为28-30℃,150mL限氧瓶中装有40mL培养基,摇床转速为180-200rpm,橡胶塞封口,插上注射器针头控制限氧条件;所述酿酒酵母菌株BLH507限氧条件培养64±2小时能将几乎全部糖份利用完并生成乙醇,基于总糖消耗的得率为0.442,糖醇转化率为理论值的87%。
本发明提供了一种适于上述高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株发酵生产乙醇的发酵培养基,其特征在于,所述发酵培养基是在YP液体培养基中添加80g·L-1葡萄糖、40g·L-1木糖、10g·L-1纤维二糖和10g·L-1低聚木糖(预先经过木聚糖酶水解),再添加1.5×混合抑制物制得;其中所述发酵培养基中各抑制物组份及终浓度分别为15mM乙酸,7.5mM甲酸,7.5mM乙酰丙酸,7.5mM糠醛,7.5mM HMF,7.5mM香草醛。
本发明公开了一株高鲁棒性、高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株BLH507。与现有技术相比,本发明具有的技术特点和显著效果是:
本发明基于二代燃料乙醇生产菌株在生产过程中出现的缺乏全糖利用能力和鲁棒性较差的问题,采用传统的原生质体融合育种技术,同时结合特定胁迫条件下的多轮高通量筛选策略,得到一株兼具亲本菌株的葡萄糖/木糖共代谢能力、对混合抑制物的高耐受性及对纤维二糖及木寡糖水解能力的酿酒酵母工业菌株,且具有较强的同步糖化发酵能力,该菌株具有应用于二代燃料乙醇工业化生产的潜力。同时本发明中采用的技术策略为进一步选育发酵性能更优的二代燃料乙醇生产用酿酒酵母菌株提供了技术参考与基础。
附图说明
图1.融合菌株在含苯菌灵培养基中迭代筛选后生存率变化。
图2.菌株BLH507在4%YPX液体培养基(YP培养基添加40g·L-1木糖)中的乙醇发酵曲线图。
其中:■,BLH507;●,LF1;▲,BLN26;实心标识:木糖;空心标识:乙醇;×:OD600
图3.菌株BLH507在含2.0×混合抑制物的4%YPD液体培养基(YP培养基添加40g·L-1葡萄糖)中的乙醇发酵曲线图。
其中:■,BLH507;●,LF1;▲,BLN26;实心标识:葡萄糖;空心标识:乙醇;×:OD600
图4.菌株BLH507在YPGX液体培养基(YP培养基添加40g·L-1木糖,80g·L-1葡萄糖)中的乙醇发酵曲线图。
其中:■,葡萄糖;●,木糖;▲,乙醇;—,OD600
图5.菌株BLH507在含1.5×混合抑制物的4%YPX液体培养基(YP培养基添加40g·L-1木糖)中的乙醇发酵曲线图。
其中:■,BLH507;●,LF1;▲,BLN26;实心标识:木糖;空心标识:乙醇;×:OD600
图6.菌株BLH507在模拟木质纤维素水解液培养基中的乙醇发酵曲线图。
其中:■,葡萄糖;●,木糖;◇,纤维二糖;▽,木二糖+木三糖;▲,乙醇;—,OD600
本发明所述酿酒酵母(Saccharomyces cerevisiae)BLH507菌株已于2021年11月12日保藏在“中国微生物菌种保藏管理委员会普通微生物中心”(地址:北京市朝阳区北辰西路1号院3号),保藏编号为CGMCC NO.23786。
具体实施方式
下面结合具体附图和实施例对本发明内容进行详细说明。如下所述例子仅是本发明的较佳实施方式而已,应该说明的是,下述说明仅仅是为了解释本发明,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对实施方式所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。
下述实施例中,所涉及的高鲁棒性的二倍体酿酒酵母工业菌株RC212(S.cerevisiae Bourgovin RC 212)从沃尔玛超市购得。含有木糖异构酶基因且能代谢木糖的C6/C5共发酵重组酿酒酵母菌株LF1是申请人先前申报专利中保护的菌株,其专利申请号:201510747241.7,保藏号为:CGMCC No.11331。
其他所使用的材料、质粒、基因、试剂等,如无特殊说明,均从商业或公共途径得到。
实施例1原生质体融合及稳定融合子的筛选
本发明所述兼具高鲁棒性、高木糖利用且能水解寡糖的三价性酿酒酵母菌株BLH507是经原生质体制备、融合、初筛、复筛及结合迭代筛选及验证后获得。具体选育流程如下:
(1)双亲本菌株的选择
以较高鲁棒性的二倍体酿酒酵母工业菌株RC212为基础,通过同源重组分别在染色体上多拷贝整合β-葡萄糖苷酶基因和β-木糖苷酶基因,使其获得水解纤维二糖和木寡糖的能力,所得菌株命名为BLN26,做为亲本菌株1。
以含有木糖异构酶基因且能代谢木糖的C6/C5共发酵重组酿酒酵母菌株LF1为亲本菌株2。
(2)酿酒酵母培养基及培养条件
YPD培养基:YP培养基添加20g·L-1葡萄糖;YPX培养基:YP培养基添加20g·L-1木糖;YPXO培养基:YP培养基添加20g·L-1低聚木糖(购自上海源叶生物科技有限公司);4%YPX培养基:YP培养基添加40g·L-1木糖;YPGX培养基:YP培养基添加40g·L-1木糖,80g·L-1葡萄糖。
含1.5×混合抑制物的培养基:相应培养基添加混合抑制物至终浓度为15mM乙酸,7.5mM甲酸,7.5mM乙酰丙酸,7.5mM糠醛,7.5mM HMF,7.5mM香草醛;相应的固体培养基添加20g·L-1琼脂粉。
酿酒酵母的培养条件为:固体平板于30℃恒温箱培养;酵母单菌落于液体培养基中,30℃,200rpm振荡培养;培养时间根据实际需求作调整。
Bioscreen全自动生长曲线分析仪培养条件为:培养基体积为200μL,初始接种量OD600约为0.2,培养温度为30℃,每个条件做三组平行实验,每0.5h自动取样检测OD600值。
限氧摇瓶发酵条件:培养温度为30℃,150mL限氧瓶中装有40mL培养基,摇床转速为200rpm,橡胶塞封口,插上注射器针头控制限氧条件,每个条件做三组平行发酵实验,定期取样进行底物及产物测定。
(3)双亲本菌株原生质体融合
①原生质体的制备
将两亲本菌株分别在5mL体积的YPD液体培养基中200rpm、30℃活化12h。以初始OD600=0.2转接至40mL新鲜YPD液体培养基中培养至对数生长期前期,此时OD600值约为0.6~1.0。4500rpm离心菌液15min,收集菌体,弃上清液后加20mL无菌水水洗2次,加1mL双蒸水悬浮菌体,测量OD600值并调整菌悬液终浓度至细胞个数约为107·mL-1。向菌悬液中加入3mL等分试样,其中含有0.2%(v/v)β-巯基乙醇和0.06M TE缓冲液(100mM Tris,100mM EDTA,pH 8.0),混匀并在30℃下孵育20min。孵育后,将菌悬液离心并重悬于4mL原生质体制备试剂和0.5、1、2、3、5U·g-1(细胞湿重)酵母裂解酶zymolyase的S缓冲液中(S缓冲液由1.0M山梨糖,10mM PIPES配制而成,pH 6.5),用于酶消化细胞壁,如表1所示,当酵母裂解酶浓度为1U·g-1(细胞湿重)时,原生质体的制备率与再生率最高,所以选择该浓度制备原生质体,于30℃孵育15分钟。4℃、5000rpm离心5min后用S缓冲液洗两次。将1μL样品分别混于20μL的S缓冲液和20μL的双蒸水中,在显微镜下观察,若原生质体在水中破裂,且在S缓冲液中保持完整,则原生质体制备成功。
表1酶浓度对原生质体制备和再生的影响
Figure BDA0003518434500000061
原生质体形成率和再生率通过以下公式计算:
原生质体制备率(%)=[(A-C)/A]×100%,
原生质体再生率(%)=[(B-C)/(A-C)]×100%,
其中A表示通过酵母裂解酶水解细胞壁之前在YPD固体培养基上计数的菌落总数,B表示在用酵母裂解酶水解细胞壁后在含0.8M山梨醇的YPD固体培养基上计数的菌落数,C表示在通过酶水解细胞壁后在YPD固体培养基上计数的菌落数。
②原生质体的灭活
将亲本菌株LF1的原生质体悬浮液转移到无菌试管中,并在60℃水浴中孵育2、5、10、15、和20min,以选择最佳的灭活条件。灭活后的原生质体在再生培养基(琼脂浓度为0.8%)中不能生长以证实灭活作用。
将亲本菌株BLN26的原生质体悬浮液转移至直径为3cm的无菌培养皿中并置于预热的磁力搅拌器上,将其置于30瓦紫外线灯下(无其他光源),垂直距离为20cm,并照射1、2、5、7、和10分钟以选择最佳的灭活条件。将处理过的原生质体在黑暗中保持2h,以避免光活化修复作用。灭活后的原生质体在再生培养基(琼脂浓度为0.8%)中不能生长以证实灭活作用。
结果如表2所示,将LF1原生质体在60℃水浴中孵育15分钟,致死率达100%。将BLN26原生质体在紫外线下照射7分钟,致死率达100%。
表2不同灭活条件对原生质体致死率的影响
Figure BDA0003518434500000071
原生质体灭活率通过以下公式计算:
原生质体灭活率(%)=[1-(A-B)/(C-D)]×100%,
其中A对应灭活后在再生培养基上观察到的菌落数,B对应灭活后在YPD固体培养基上观察到的菌落数,C代表灭活前在再生培养基上观察到的菌落数,D代表灭活前在YPD固体培养基上观察到的菌落数。
③原生质体的融合
原生质体融合条件对于成功完成双亲菌株的融合、重组至关重要。
PEG和CaCl2的浓度以及融合时间显著影响原生质体的融合效率。
在本发明中,使用正交实验设计方法优化融合条件。
表3描述了正交实验设计方法的设计表和实验结果。通过检查R值来确定实验中的主要因素,以确定最佳因素和水平组合。
从表3可以看出,R值显示PEG 6000的浓度是原生质体融合时最重要的因素,第二是CaCl2的浓度,最后为原生质体融合的时间。根据每个因素的平均值,最佳融合条件为30%(w/v)PEG 6000,20mM CaCl2和20min融合时间。
表3原生质体融合正交实验条件的结果
Figure BDA0003518434500000081
双亲本的灭活原生质体悬浮液,调节其浓度约为1×107个原生质体·mL-1。各取1mL、并在4℃下以3000rpm离心10min。各取1mL PEG 6000溶液(预热至30℃)收集双亲原生质体,混合。
将混合的原生质体在30℃水浴中孵育20min,接着以3000rpm的转速离心10min。弃去上清液并重悬于2mL S缓冲液中。经S缓冲液稀释混合的原生质体,并在含0.8M山梨醇的YPX培养基上再生。
原生质体融合率的计算公式如下:
原生质体融合率(%)=[(A-B)/C]×100%,
其中A对应于在YPX再生培养基上观察到的菌落数,B对应于灭活的亲本在YPX再生培养基所观察到的菌落数,C代表在再生培养基上观察到的亲本菌落数。
④融合子的再生
将融合后的细胞液与冷却至50℃含0.8%琼脂的再生固体培养基混合均匀,取约5mL均匀倒在含有2%琼脂的再生固体培养基平板上,长出的菌落似飞碟形状镶嵌在上层培养基中。
(4)融合子的初步筛选
挑取再生平板中的单菌落至含200μL YPD液体培养基的96孔板中,置于微孔板恒温振荡器30℃培养12h。用Eppendorf多道移液器吸取菌液,点滴至含1.5×混合抑制物的YPXO固体培养基上,置于30℃恒温培养箱培养3-5天。其中所述培养基中各抑制物组份及终浓度分别为15mM乙酸,7.5mM甲酸,7.5mM乙酰丙酸,7.5mM糠醛,7.5mM HMF,7.5mM香草醛。
挑选较厚的菌落进行下一步筛选。
(5)融合子的复筛
挑选上述单菌落若干,通过Bioscreen全自动生长曲线分析仪测试其在含1.5×混合抑制物的YPX液体培养基中的生长能力。选择生长较快的菌落,通过酵母菌落PCR验证木糖异构酶基因、β-葡萄糖苷酶基因和β-木糖苷酶基因,选择同时具有上述三种特征基因的单菌落;将上述菌落置于40mL含1.5×混合抑制物的YPX液体培养基条件下进行摇瓶发酵复筛,选择生长较快、木糖代谢能力强者作为潜在的融合子。其中所述培养基中各抑制物组份及终浓度分别为15mM乙酸,7.5mM甲酸,7.5mM乙酰丙酸,7.5mM糠醛,7.5mM HMF,7.5mM香草醛。
(6)稳定融合子的获得
由于融合子存在遗传不稳定现象,在上述通过原生质体融合、初筛及复筛得到融合子后,申请人在后续试验中发现其遗传特性及发酵性能出现分裂现象。具体表现为,融合子的后代中,有相当比例细胞的β-葡萄糖苷酶基因或/和β-木糖苷酶基因丢失;在含1.5×混合抑制物的YPX液体培养基中,菌体生长状态不一。
为解决上述融合子的不稳定现象,通过在培养基中添加苯菌灵(benomyl,抑制酿酒酵母细胞有丝分裂时纺锤体的形成)作为胁迫条件之一筛选具有稳定遗传性能的融合子细胞;具体步骤如下:
①经初筛、复筛后的融合子经稀释后均匀涂布于含有苯菌灵的YPXO固体培养基,挑选约200个较大菌落;
②分别挑取上述菌落的部分菌体至含1.5×混合抑制物及10ng·μL-1苯菌灵的YPX液体培养基中,于Bioscreen全自动生长曲线分析仪中培养3-4天,挑取生长较好的孔板对应的菌落进行PCR及发酵性能验证。其中所述培养基中各抑制物组份及终浓度分别为15mM乙酸,7.5mM甲酸,7.5mM乙酰丙酸,7.5mM糠醛,7.5mM HMF,7.5mM香草醛。
③通过酵母菌落PCR验证上述菌落中木糖异构酶基因、β-葡萄糖苷酶基因和β-木糖苷酶基因,选择同时具有上述三种特征基因的单菌落;并通过摇瓶发酵验证其木糖、寡糖代谢能力;
④取性能较优者重复上述苯菌灵筛选及验证工作(步骤①至③),直至获得具三价性能的稳定融合菌株。
经过7轮的反复筛选后,融合菌株对苯菌灵的敏感性显著降低,200个融合子在混合抑制物、木糖和苯菌灵三重胁迫条件下的存活率从2%增加到100%,并保持良好的发酵性能,表明融合菌株遗传稳定性显著提高(图1),通过上述迭代筛选后最终得到兼具C6/C5共发酵、高鲁棒性和寡糖利用的菌株,命名为酿酒酵母BLH507,且BLH507经过近千代传代培养后,在含有抑制物的木糖培养基中,依然具有稳定的木糖代谢能力。
所述兼具C6/C5共发酵、高鲁棒性和寡糖利用的酿酒酵母菌株BLH507已于2020年11月12日保藏在“中国微生物菌种保藏管理委员会普通微生物中心(地址:北京市朝阳区北辰西路1号院3号),保藏编号为CGMCC NO.23786。
实施例2菌株BLH507在含4%YPX液体培养基中的乙醇发酵性能
本实施例验证融合菌株BLH507在较高浓度木糖培养基中的发酵性能,BLH507经活化后以0.5g·L-1细胞干重接种至40mL含4%YPX液体培养基(即YP培养基添加40g·L-1木糖)的摇瓶中进行限氧培养,间隔取样检测OD600值和产物浓度,作三组平行实验,限氧摇瓶发酵条件如实施例1所述。
通过高效液相色谱法测定乙醇发酵时底物、产物的浓度。定期取1mL发酵液样品,高速离心(13000rpm、5min)去除样品中的杂质或者菌体,取上清液用0.22μm微孔滤膜过滤,用高效液相色谱仪系统Waters e2695测定其成分含量。
发酵液中葡萄糖,木糖,甘油、乙酸、乙醇等使用HPX-87H离子排阻色谱柱(Bio-RadAminex)进行分析,该色谱柱在45℃下以5mM H2SO4作为流动相,使用Waters 2414RI示差折光检测器。
结果如图2所示,发酵12h后,其产生乙醇17.8g·L-1,得率为0.446,与同为高木糖利用出发菌株LF1的木糖利用能力几乎没有差异。
实施例3菌株BLH507在含2.0×混合抑制物的4%YPD培养基中的乙醇发酵性能
本实施例验证融合菌株BLH507在较高浓度葡萄糖和高浓度毒性混合抑制物培养基中的发酵性能,BLH507经活化后以0.5g·L-1细胞干重接种至40mL含2.0×混合抑制物的4%YPD液体培养基(即YP培养基添加40g·L-1葡萄糖)的摇瓶中进行限氧培养,间隔取样检测OD600值和产物浓度,作三组平行实验,限氧摇瓶发酵条件如实施例1所述。其中所述培养基中各抑制物组份及终浓度分别为20mM乙酸,10mM甲酸,10mM乙酰丙酸,10mM糠醛,10mMHMF,10mM香草醛。
通过高效液相色谱法测定乙醇发酵时底物、产物的浓度,具体方法如实施例2所述。
结果如图3所示,限氧摇瓶发酵36h后,葡萄糖基本耗尽,其产生乙醇19.29g·L-1,得率为0.480,显示出对高浓度混合抑制物的较高耐受性,且葡萄糖代谢能力优于高耐受性出发菌株BLN26。
实施例4菌株BLH507在YPGX液体培养基中的乙醇发酵性能
本实施例验证融合菌株BLH507在高浓度葡萄糖和木糖混合糖培养基中的发酵性能,BLH507经活化后以0.5g·L-1细胞干重接种至40mL YPGX液体培养基(即YP培养基添加40g·L-1木糖,80g·L-1葡萄糖)的摇瓶中进行限氧培养,间隔取样检测OD600值和产物浓度,作三组平行实验,限氧摇瓶发酵条件如实施例1所述。
通过高效液相色谱法测定乙醇发酵时底物、产物的浓度,具体方法如实施例2所述。
结果如图4所示,限氧摇瓶发酵16h后,其产生乙醇57.12g·L-1,得率为0.476,且可以较好地同步利用木糖/葡萄糖,与同为木糖/葡萄糖共利用的出发菌株LF1的发酵性能几乎没有差异。
实施例5菌株BLH507在含1.5×混合抑制物的4%YPX培养基中的乙醇发酵性能
本实施例验证融合菌株BLH507在较高浓度木糖和高毒性混合抑制物培养基中的发酵性能,BLH507经活化后以0.5g·L-1细胞干重接种至40mL含1.5×混合抑制物的4%YPX液体培养基(即YP培养基添加40g·L-1木糖)的摇瓶中进行限氧培养,间隔取样检测OD600值和产物浓度,作三组平行实验,限氧摇瓶发酵条件如实施例1所述。通过高效液相色谱法测定乙醇发酵时底物、产物的浓度,具体方法如实施例2所述。其中所述培养基中各抑制物组份及终浓度分别为15mM乙酸,7.5mM甲酸,7.5mM乙酰丙酸,7.5mM糠醛,7.5mM HMF,7.5mM香草醛。
结果如图5所示,限氧摇瓶发酵60h后,其产生乙醇17.43g·L-1,得率为0.442,发酵性能明显优于两亲本菌株(两亲本菌株不能在此条件下生长)。
实施例6菌株BLH507在模拟木质纤维素水解液中的乙醇发酵性能
本实施例验证融合菌株BLH507在模拟木质纤维素水解液培养基中的发酵性能,YP液体培养基中添加80g·L-1葡萄糖、40g·L-1木糖、10g·L-1纤维二糖和10g·L-1低聚木糖(预先经过木聚糖酶水解)模拟木质纤维素水解液中的糖份组成,添加1.5×混合抑制物来模拟木质纤维素水解液中存在的多种抑制物共同制成模拟木质纤维素水解液培养基;其中所述模拟木质纤维素水解液培养基中各抑制物组份及终浓度分别为15mM乙酸,7.5mM甲酸,7.5mM乙酰丙酸,7.5mM糠醛,7.5mM HMF,7.5mM香草醛。
取YPD固体平板短期保藏或超低温冰箱长期保藏的融合菌株BLH507,置YPD液体培养基活化12h,转接十分之一体积至新鲜的YPD液体培养基继续二次活化约12h,之后转接十分之一体积至新鲜的YPD液体培养基扩培作为发酵菌种。
将上述扩培后的BLH507以0.5g·L-1细胞干重接种至40mL模拟木质纤维素水解液培养基中,限氧摇瓶发酵,间隔取样检测OD600值和产物浓度,作三组平行实验,限氧摇瓶发酵条件如实施例1所述。
通过高效液相色谱法测定乙醇发酵时底物、产物的浓度,发酵液中纤维二糖、木二糖、木三糖使用ICS-3000离子交换色谱系统,ED电化学检测器(四电位安培脉冲检测器)和Carbopac PA-100分析柱对进行测定。保证柱和检测器都在30℃下保持运行至少60min。流动相为NaOH(100mM)和NaOAc(500mM),以梯度模式进行操作,流速为0.3mL·min-1。葡萄糖,木糖,甘油、乙酸、乙醇等检测的具体方法如实施例2所述。
结果如图6所示,限氧摇瓶发酵约64h后,融合菌株BLH507能将培养基内几乎全部糖份利用完并生成乙醇,发酵液中乙醇浓度达到61.88g·L-1,乙醇得率为0.442。

Claims (5)

1.一株高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株,其特征在于:所述菌株是通过原生质体融合育种技术,结合迭代筛选及验证后获得,命名为酿酒酵母(Saccharomyces cerevisiae)BLH507,菌株已于2021年11月12日保藏在“中国微生物菌种保藏管理委员会普通微生物中心”,保藏编号为CGMCC NO.23786;该菌株同时具备水解寡糖、对木质纤维素水解液中所含混合抑制物的耐受性及代谢木糖三重特性,且具有遗传稳定性。
2.权利要求1所述高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株的构建方法,步骤是:
(1)通过检测海藻糖含量及总还原力指标,确定选择高鲁棒性的二倍体酿酒酵母工业菌株RC212;
(2)通过同源重组分别在菌株RC212染色体上多拷贝整合β-葡萄糖苷酶基因和β-木糖苷酶基因,使其获得水解纤维二糖和木寡糖的能力,所得菌株命名为BLN26,做为原生质体融合亲本1;
(3)选择保藏号为CGMCC No.11331的含有木糖异构酶基因且能代谢木糖的的重组酿酒酵母菌株LF1作为原生质体融合亲本2,进行原生质体制备后将亲本1与亲本2融合,初筛及复筛后获得潜在融合子;
(4)具三价性能稳定融合菌株的筛选:
1)将步骤(3)得到的融合子,稀释后均匀涂布于含有苯菌灵的YPXO固体筛选培养基上,30℃恒温摇床培养3-5天;其中,所述含有苯菌灵的YPXO固体筛选培养基是指YPXO培养基中含有30ng/uL苯菌灵,YPXO培养基配方是:YP培养基添加20g·L-1低聚木糖;
2)挑取生长较好的单菌落,至含1.5×混合抑制物及10ng·μL-1苯菌灵的YPX液体培养基中,于Bioscreen全自动生长曲线分析仪中培养3-4天,挑取生长较好的孔板对应的菌落进行PCR及发酵性能验证;其中,所述培养基中,各抑制物组份及终浓度分别为15mM乙酸,7.5mM甲酸,7.5mM乙酰丙酸,7.5mM糠醛,7.5mM HMF,7.5mM香草醛;YPX液体培养基配方是:YP培养基添加20g·L-1木糖;
3)通过酵母菌落PCR验证,选择同时具有木糖异构酶基因、β-葡萄糖苷酶基因和β-木糖苷酶基因三种特征基因的单菌落;并通过摇瓶发酵验证其木糖、寡糖代谢能力;
4)再重复步骤1)至3)所述苯菌灵筛选及验证工作,直至筛选获得具三价性能的稳定融合菌株即为高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株。
3.权利要求1所述高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株在以木质纤维素水解液为原料发酵生产乙醇中的应用。
4.如权利要求3所述的应用,其特征在于,所述以木质纤维素水解液为原料摇瓶发酵生产乙醇的方法是:
在YP液体培养基中添加80g·L-1葡萄糖、40g·L-1木糖、10g·L-1纤维二糖和10g·L-1低聚木糖模拟木质纤维素水解液中的糖份组成,添加1.5×混合抑制物来模拟木质纤维素水解液中存在的多种抑制物,制成模拟木质纤维素水解液培养基;其中所述培养基中各抑制物组份及终浓度分别为15mM乙酸,7.5mM甲酸,7.5mM乙酰丙酸,7.5mM糠醛,7.5mM HMF,7.5mM香草醛;以0.5g/L细胞干重的量将经活化及扩培后的酿酒酵母菌株BLH507接种至模拟木质纤维素水解液培养基中限氧摇瓶发酵,发酵条件是:培养温度为28-30℃,150mL限氧瓶中装有40mL培养基,摇床转速为180-200rpm,橡胶塞封口,插上注射器针头控制限氧条件;所述酿酒酵母菌株BLH507限氧条件培养64±2小时能将几乎全部糖份利用完并生成乙醇,基于总糖消耗的得率为0.442,糖醇转化率为理论值的87%。
5.一种适于权利要求1所述高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株发酵生产乙醇的发酵培养基,其特征在于,所述发酵培养基是在YP液体培养基中添加80g·L-1葡萄糖、40g·L-1木糖、10g·L-1纤维二糖和10g·L-1低聚木糖,再添加1.5×混合抑制物制得;其中所述发酵培养基中各抑制物组份及终浓度分别为15mM乙酸,7.5mM甲酸,7.5mM乙酰丙酸,7.5mM糠醛,7.5mM HMF,7.5mM香草醛。
CN202210171762.2A 2022-02-24 2022-02-24 一株高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株及其应用 Active CN114561377B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210171762.2A CN114561377B (zh) 2022-02-24 2022-02-24 一株高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210171762.2A CN114561377B (zh) 2022-02-24 2022-02-24 一株高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株及其应用

Publications (2)

Publication Number Publication Date
CN114561377A true CN114561377A (zh) 2022-05-31
CN114561377B CN114561377B (zh) 2023-05-19

Family

ID=81716127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210171762.2A Active CN114561377B (zh) 2022-02-24 2022-02-24 一株高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株及其应用

Country Status (1)

Country Link
CN (1) CN114561377B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116496917A (zh) * 2023-03-24 2023-07-28 湖北大学 一种高效共利用木糖和葡萄糖的重组酿酒酵母及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103124783A (zh) * 2010-06-03 2013-05-29 马斯科马公司 表达用于使用淀粉和纤维素进行联合生物加工的糖分解酶的酵母
CN107384815A (zh) * 2017-08-03 2017-11-24 山东大学 一株酿酒酵母菌株及其在综合利用木糖母液和木糖渣产木糖醇中的应用
CN112375694A (zh) * 2020-11-18 2021-02-19 齐鲁工业大学 一株能够缓解高木糖利用与高鲁棒性拮抗的c6/c5共发酵酿酒酵母及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103124783A (zh) * 2010-06-03 2013-05-29 马斯科马公司 表达用于使用淀粉和纤维素进行联合生物加工的糖分解酶的酵母
US20160068850A1 (en) * 2010-06-03 2016-03-10 Lallemand Hungary Liquidity Management Llc Yeast expressing saccharolytic enzymes for consolidated bioprocessing using starch and cellulose
CN107384815A (zh) * 2017-08-03 2017-11-24 山东大学 一株酿酒酵母菌株及其在综合利用木糖母液和木糖渣产木糖醇中的应用
CN112375694A (zh) * 2020-11-18 2021-02-19 齐鲁工业大学 一株能够缓解高木糖利用与高鲁棒性拮抗的c6/c5共发酵酿酒酵母及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
常瀚文;郑鑫铃;骆健美;王敏;申雁冰;: "抗逆元件及其在高效微生物细胞工厂构建中的应用进展", 生物技术通报 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116496917A (zh) * 2023-03-24 2023-07-28 湖北大学 一种高效共利用木糖和葡萄糖的重组酿酒酵母及其应用

Also Published As

Publication number Publication date
CN114561377B (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
Kuhad et al. Bioethanol production from pentose sugars: Current status and future prospects
CN112375694B (zh) 一株能够缓解高木糖利用与高鲁棒性拮抗的c6/c5共发酵酿酒酵母及其应用
Li et al. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation
WO2015188244A1 (pt) Cassete de expressão para a transformação de célula eucariótica, processo para a transformação de célula eucariótica, micro-organismo geneticamente modificado, processo de produção de biocombustíveis e/ou bioquímicos e biocombustível e/ou bioquímico assim produzidos
Flores et al. Simultaneous saccharification and fermentation of Agave tequilana fructans by Kluyveromyces marxianus yeasts for bioethanol and tequila production
CN103849576B (zh) 一株具有胁迫耐受性的重组酿酒酵母菌株
US8329444B2 (en) Strains of zymomonas mobilis for fermentation of biomass
TWI540208B (zh) 用於培養酵母菌細胞的種菌培養基及其用途
CN108823113B (zh) 高效的木糖代谢产乙醇的工业菌株及方法
CN114561377B (zh) 一株高鲁棒性高木糖利用且能水解寡糖的三价性酿酒酵母工业菌株及其应用
CN104673712A (zh) 一株同步利用葡萄糖与木糖生产醇类燃料的菌株及其应用
Zhang et al. The isolation and performance studies of an alginate degrading and ethanol producing strain
CN102146345B (zh) 一种乙酸耐性乙醇生产酿酒酵母菌株及菌株筛选方法
CN102212489A (zh) 一种高产乳酸的酿酒酵母工程菌的构建及其应用
CN102618479B (zh) 一种能耐受高浓度丁醇的梭菌及其构建方法与应用
Rahman et al. Growth of thermotolerant Pichia kudriavzevii UniMAP 3-1 strain for ethanol production using xylose and glucose at different fermentation temperatures
CN108841736B (zh) 一种具有多重耐受性的乙醇浓醪发酵高产菌株及其应用
CN110055184B (zh) 酿酒酵母、包含其的微生物制剂及使用其生产乙醇的方法
CN112011472A (zh) 一株具有xr-xdh途径的可快速发酵木糖的酿酒酵母菌株及构建方法
Milessi et al. Immobilization of Scheffersomyces stipitis cells with calcium alginate beads: A sustainable method for hemicellulosic ethanol production from sugarcane bagasse hydrolysate
CN104838005A (zh) 用于制造生物醇的改性细菌
Pang et al. Fermentation of xylose into ethanol by a new fungus strain Pestalotiopsis sp. XE-1
CN116555359B (zh) 一种生物转化杨木生物质生产燃料乙醇的方法
Srisupa et al. Bioethanol production using cellulose-rich corncob residue by thermotolerant yeasts
Cunha et al. Selection of a Thermotolerant Kluyveromyces marxianus Strain with Potential Application For Cellulosic Ethanol Production by Simultaneous Saccharification and Fermentation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240802

Address after: No. 168 Chengdong Avenue, Yichang City, Hubei Province 443000 (Formerly No. 24 Zhongnan Road)

Patentee after: ANGELYEAST Co.,Ltd.

Country or region after: China

Address before: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501

Patentee before: Qilu University of Technology

Country or region before: China

TR01 Transfer of patent right