CN114540958B - 一种双层过渡金属硫族化合物连续薄膜及其制备方法 - Google Patents
一种双层过渡金属硫族化合物连续薄膜及其制备方法 Download PDFInfo
- Publication number
- CN114540958B CN114540958B CN202210182597.0A CN202210182597A CN114540958B CN 114540958 B CN114540958 B CN 114540958B CN 202210182597 A CN202210182597 A CN 202210182597A CN 114540958 B CN114540958 B CN 114540958B
- Authority
- CN
- China
- Prior art keywords
- double
- layer
- transition metal
- metal chalcogenide
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/46—Sulfur-, selenium- or tellurium-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/305—Sulfides, selenides, or tellurides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0209—Pretreatment of the material to be coated by heating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/16—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/46—Sulfur-, selenium- or tellurium-containing compounds
- C30B29/48—AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明公开了一种双层过渡金属硫族化合物连续薄膜及其制备方法,所述双层过渡金属硫族化合物连续薄膜由衬底和衬底表面形核双层的晶粒组成,双层晶粒在衬底的高台阶处均匀成形并连续覆盖,两层尺寸一致且边缘对齐,所述过渡金属硫族化合物为二硫化钼、二硫化钨、二硒化钼或二硒化钨;所述连续薄膜的制备方法为气相沉积法,在衬底表面形核双层的晶粒,该双层晶粒上下两层对齐、等速生长,拼接为均匀、连续的双层薄膜;所述连续薄膜可达到厘米级别,完全满足高性能电子器件集成的要求。
Description
技术领域
本发明涉及一种双层过渡金属硫族化合物连续薄膜,还涉及所述化合物连续薄膜的制备方法。
背景技术
随着摩尔定律的发展,传统硅基材料已经无法满足晶体管往尺寸更小性能更高的目标,二维半导体材料由于其原子级的厚度,表面无悬挂键,在几层厚度的范围内仍然具有强的栅控能力,成为未来器件发展极具潜力的材料。过渡金属硫族化合物(TMDC)是一种重要的二维半导体,由于其优异的性质,如高开关比、迁移率等,TMDC在电子器件及集成领域上具有极大优势。大面积的单层TMDC的制备也进一步推动了过渡金属硫族化物在集成电路上的发展。相较于单层,双层TMDC由于更小的带隙和更高的态密度,具有更高的迁移率和开态电流密度。然而,均匀双层过渡金属硫族化合物连续薄膜的制备仍具有挑战。
目前,获得双层过渡金属硫族化合物的方法包括机械剥离法,化学气相沉积(CVD)等方法。机械剥离法能够获得高质量的一定层数的过渡金属硫族化物,但是它无法制备大面积薄膜,也无法获得均匀可控的、特定厚度的TMDC材料。CVD方法将含有过渡金属元素的前驱体和硫族元素的前驱体在高温下进行化学反应,在衬底上获得目标材料。目前,已报道的CVD法均采用逐层生长(layer-by-layer)的模式制备双层过渡金属硫族化合物,即先在衬底上先沉积第一层TMDC,然后在第一层的上面沉积第二层,形成双层TMDC(NatureCommunications,2019,10,598)。该方法的的缺点在于:1)只能获得不连续的双层TMDC晶粒,很难获得连续的双层薄膜。这是因为,从热力学角度,在单层TMDC上生长第二层时,边界能增加导致体系能量上升,不利于双层连续膜的生长。2)由于上下两层是先后沉积,其生长面积、生长速率存在显著差异,且上下两层的生长存在竞争,使得很难得到厚度均匀的连续薄膜。因此,获得大面积、均匀的双层过渡金属硫族化合物连续膜是现在的技术难点。
发明内容
发明目的:本发明针对现有技术中存在的双层过渡金属硫族化合物缺乏厚度可控性及面积过小的问题,提供一种连续覆盖的双层过渡金属硫族化合物连续薄膜;还提供了上述双层过渡金属硫族化合物连续薄膜的制备方法。
技术方案:本发明的所述的双层过渡金属硫族化合物连续薄膜,由衬底和衬底表面形核双层的晶粒组成;通过高台阶诱导双层晶粒的形核来生长双层,所述双层晶粒在衬底的高台阶处均匀成形并连续覆盖;所述形核的双层晶粒两层尺寸一致且边缘对齐,所述薄膜横向尺寸为厘米级以上。
优选的,所述过渡金属硫族化合物为二硫化钼、二硫化钨、二硒化钼或二硒化钨。
优选的,所述衬底为蓝宝石晶片,且表面分布有四层及以上的Al-O-Al原子台阶,即蓝宝石晶片的高度原子台阶为不小于0.8nm。
优选的,所述蓝宝石晶片的斜切角为0.2-10°。
本发明所述的双层过渡金属硫族化合物连续薄膜的制备方法,采用气相沉积法,将所述蓝宝石衬底体置于气相沉积腔室中,载入过渡金属硫族化合物生长源,设定生长源反应条件,在蓝宝石单晶体衬底表面生成重叠的两层对齐的过渡金属硫族化合物晶粒;然后持续不断通入生长源,过渡金属硫族化合物晶粒逐渐长大,最终相互拼接,得到大面积均匀的双层过渡金属硫族化合物连续薄膜。
本发明所制备的双层过渡金属硫族化合物连续薄膜,从热力学角度,对于逐层生长的双层TMDC,顶层TMDC引入增加的边缘能导致整个体系能量的增加,因此,该方法难以生长双层连续膜。在热力学上,单层TMDC是最稳定的,由于第二层TMDC具有比第一层TMDC更低的边缘能,使得双层对齐的晶粒在热力学上成为局部稳定的状态,双层对齐的晶粒形核并生长拼接成为双层连续膜成为可能。本发明利用直接在衬底表面形成双层对齐的晶粒保持两层的同步生长获得大面积均匀双层连续膜。
有益效果:与现有技术相比,本发明具有如下显著优点:
(1)本发明采用上下对齐、等速生长的双层形核及生长方式进行双层连续膜的外延生长,确保了晶粒持续长大相互拼接时,上下两层同时连续,因而保障了大面积范围内的厚度均匀性;
(2)本发明制得的双层TMDC连续薄膜可达到厘米级别及以上,满足高性能电子器件集成的要求,薄膜尺寸可根据衬底大小和外延设备的腔体空间进行调整,达到适应于不同生产的需求;
(3)本发明利用蓝宝石衬底表面的原子台阶诱导形核,该台阶通过衬底的斜切和退火即可获得,工艺简单,可设计性强,且稳定性好,重复性高,且易实现产业放大。
附图说明
图1为实施例1中均匀分布的双层二硫化钼晶粒的显微镜照片;
图2为实施例1中双层二硫化钼晶粒的AFM图;
图3为实施例1中双层二硫化钼晶粒在具有高原子级台阶的蓝宝石上形核的横截面透射电子显微镜图片;
图4为实施例1中双层二硫化钼晶粒生长前端的横截面透射电子显微镜图片,可见上下两层对齐生长;
图5为实施例2中生长得到的厘米级的双层二硫化钼实物照片;
图6为实施例2中生长得到的双层二硫化钼的拉曼光谱;
图7为实施例4中均匀分布双层二硫化钨晶粒的显微镜照片;
图8为实施例4中双层二硫化钨晶粒的AFM图;
图9为实施例4中生长得到的双层二硫化钼的拉曼光谱;
图10为本发明的双层过渡金属硫族化合物高台阶处形核生长的示意图。
具体实施方式
下面结合附图对本发明的技术方案作进一步说明。
本发明的一种制备大面积均匀双层过渡金属硫族化合物的制备方法,可用于二硫化钼、二硫化钨、二硒化钼、二硒化钨等过渡金属硫族化合物双层的制备,通过改变双层薄膜的生长方式,在衬底的台阶处诱导上下对齐的双层过渡金属硫族化合物晶粒的形核,生长时两层同步生长,完美拼接,并最终实现晶粒间的拼接得到大面积双层连续膜的生长。
实施例1
将硫粉(S)、金属钼(Mo)、蓝宝石(C面,具有一定斜切角,空气中退火)衬底分别放入三温区CVD体系的第一、二、三温区。抽真空至10Pa以下,通入100标准毫升/分钟(sccm)的Ar。将衬底升温到1000-1050℃,然后加热S到180-200℃使之熔化,再将Mo升温到650-850℃,通入5-10sccm的氧气。反应10min后关闭氧气。衬底在Ar和S气氛中降温至200-300℃,关闭S的加热装置。继续降温到室温,取出样品。
其光学显微照片如图1,可以看到利用本发明所述台阶可以得到厚度均匀的双层MoS2三角形晶粒。
如图2,使用原子力显微镜(AFM)对蓝宝石上生长得到的MoS2晶粒高度进行测量,说明所得MoS2为双层。
在双层晶粒的形核初期,进行截面的高分辨成像,图3~4为样品的截面的高分辨透射电镜表征,可以看到,双层晶粒依靠高台阶形核,验证了高台阶诱导双层形核的原理,且观察得到双层晶粒的特征为上下两层原子对齐。
实施例2
将硫粉(S)、金属钼(Mo)、长宽约为2cm的蓝宝石衬底(C面,具有一定斜切角,空气中退火)分别放入三温区CVD体系的第一、二、三温区。抽真空至10Pa以下,通入100标准毫升/分钟(sccm)的Ar。将衬底升温到1050-1080℃,然后加热S到180-200℃使之熔化,再将Mo升温到650-850℃,通入5-10sccm的氧气。反应30min后关闭氧气。衬底在Ar和S气氛中降温至200-300℃,关闭S的加热装置。然后继续降温到室温,取出样品,得到连续覆盖的MoS2双层连续膜。
本发明所制得的双层MoS2可以达到厘米量级,2cm双层样品的实物照片如图5,图6为双层样品的拉曼光谱,由图可知,两个拉曼特征峰位的波数差~22.9cm-1,大于单层拉曼特征峰位的波数差,由此进一步证明制得的样品为双层的MoS2。
实施例3
将硫粉(S)、金属钼(Mo)、蓝宝石衬底(C面,具有一定斜切角,空气中退火)分别放入三温区CVD体系的第一、二、三温区。抽真空至10Pa以下,通入100标准毫升/分钟(sccm)的Ar。将衬底升温到1000℃,然后加热S到180-200℃使之熔化,再将Mo升温到650-850℃,通入5-10sccm的氧气。反应40min后关闭氧气。衬底在Ar和S气氛中降温至200-300℃,关闭S的加热装置。然后继续降温到室温,取出样品,观察到MoS2在单层生长连续后,在上方以逐层方式生长出双层晶粒。
实施例4
将硫粉(S)、三氧化钨(WO3)、蓝宝石衬底(C面,具有一定斜切角,空气中退火)分别放入三温区CVD体系的第一、二、三温区。抽真空至10Pa以下,通入100sccm Ar+10sccm H2。将衬底升温到1050℃,然后加热S到150℃使之熔化,再将WO3升温到1050℃开始反应。反应10min后关闭H2。衬底在Ar和S气氛中降温至200-300℃,关闭S的加热装置。然后继续降温到室温,取出样品,得到均匀分布的双层WS2晶粒。
其光学显微照片如图7,可以看到利用本发明所述台阶可以得到厚度均匀的双层WS2三角形晶粒。
如图8所示,使用AFM对蓝宝石上生长得到的WS2晶粒高度进行测量,说明所得MoS2为双层,且所得的双层WS2上下两层尺寸一致,说明其对齐形核的特征。图9为双层样品的拉曼光谱,两个拉曼特征峰位的波数差~63cm-1,大于单层拉曼特征峰位的波数差,由此进一步证明制得的样品为双层的WS2。
本发明采用气相沉积法,在衬底表面形核双层的晶粒,该双层晶粒上下两层对齐、等速生长,拼接为均匀、连续的双层薄膜;在蓝宝石单晶体表面直接生成厚度均匀、上下边缘对齐的双层过渡金属硫族化合物晶粒,经过模拟计算,顶层具有比底层底的边缘能,在生长过程中具有热力学稳定性,能够稳定存在。随着反应时间的增加,双层晶粒在上下两层边缘同时吸附原子生长,最终拼接得到大面积均匀的双层过渡金属硫族化合物连续薄膜。
采用化学气相沉积法制备上述双层过渡金属硫族化合物晶体的过程为,将该蓝宝石单晶体衬底置于化学气相沉积腔室的下游区域中,在上游区域分别加入含硫族元素和过渡金属元素的前驱体,设定生长源反应条件,在蓝宝石单晶体衬底表面生成具有单一外延关系的双层过渡金属硫族化合物晶粒;然后持续不断通入生长源,双层过渡金属硫族化合物晶粒逐渐长大,相互拼接,得到大面积的双层过渡金属硫族化合物。
Claims (6)
1.一种双层过渡金属硫族化合物连续薄膜,其特征在于,所述薄膜由衬底和衬底表面形核双层的晶粒组成,通过高台阶诱导双层晶粒的形核来生长双层,所述双层晶粒在衬底的高台阶处均匀成形并连续覆盖。
2.根据权利要求1所述的双层过渡金属硫族化合物连续薄膜,其特征在于,所述形核的双层晶粒两层尺寸一致且边缘对齐,所述薄膜横向尺寸为厘米级以上。
3.根据权利要求1所述的双层过渡金属硫族化合物连续薄膜,其特征在于,所述过渡金属硫族化合物为二硫化钼、二硫化钨、二硒化钼或二硒化钨。
4.根据权利要求1所述的双层过渡金属硫族化合物连续薄膜,其特征在于,所述衬底为蓝宝石晶片,且表面分布有四层及以上的Al-O-Al原子台阶,即蓝宝石晶片的高度原子台阶为不小于0.8nm。
5.根据权利要求4所述的双层过渡金属硫族化合物连续薄膜,其特征在于,所述蓝宝石晶片的斜切角为0.2-10°。
6.一种权利要求1所述的双层过渡金属硫族化合物连续薄膜的制备方法,其特征在于,采用气相沉积法,将衬底置于气相沉积腔室中,载入过渡金属硫族化合物生长源,设定生长源反应条件,在衬底表面生成重叠的两层对齐的过渡金属硫族化合物晶粒;然后通入生长源,过渡金属硫族化合物晶粒逐渐长大,最终相互拼接,得到大面积均匀的双层过渡金属硫族化合物连续薄膜。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210182597.0A CN114540958B (zh) | 2022-02-25 | 2022-02-25 | 一种双层过渡金属硫族化合物连续薄膜及其制备方法 |
US17/724,949 US20220243335A1 (en) | 2022-02-25 | 2022-04-20 | Method for uniform growth of bi-layer transition metal dichalcogenide continuous films |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210182597.0A CN114540958B (zh) | 2022-02-25 | 2022-02-25 | 一种双层过渡金属硫族化合物连续薄膜及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114540958A CN114540958A (zh) | 2022-05-27 |
CN114540958B true CN114540958B (zh) | 2022-12-27 |
Family
ID=81679988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210182597.0A Active CN114540958B (zh) | 2022-02-25 | 2022-02-25 | 一种双层过渡金属硫族化合物连续薄膜及其制备方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20220243335A1 (zh) |
CN (1) | CN114540958B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115156524B (zh) * | 2022-08-18 | 2024-07-05 | 中南大学 | 一种异位成核的双层MoS2纳米片及其制备方法 |
CN116081580A (zh) * | 2022-12-31 | 2023-05-09 | 湘潭大学 | 一种晶圆级二硫化钨或二硒化钨二维纳米薄膜的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017018834A1 (ko) * | 2015-07-29 | 2017-02-02 | 한국표준과학연구원 | 2차원 전이금속 디칼코지나이드 박막의 제조 방법 |
CN111826713A (zh) * | 2020-06-29 | 2020-10-27 | 南京大学 | 制备大面积过渡金属硫族化合物单晶的方法及其所得产品 |
WO2022005398A1 (en) * | 2020-06-30 | 2022-01-06 | Agency For Science, Technology And Research | Method of growing monolayer transition metal dichalcogenides via sulfurization and subsequent sublimation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160093491A1 (en) * | 2014-09-29 | 2016-03-31 | University Of North Texas | LARGE SCALE AND THICKNESS-MODULATED MoS2 NANOSHEETS |
US20230290636A1 (en) * | 2020-06-04 | 2023-09-14 | The Trustees Of The Stevens Institute Of Technology | In situ doping of irons into mos2 toward two-dimensional dilute magnetic semiconductors |
-
2022
- 2022-02-25 CN CN202210182597.0A patent/CN114540958B/zh active Active
- 2022-04-20 US US17/724,949 patent/US20220243335A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017018834A1 (ko) * | 2015-07-29 | 2017-02-02 | 한국표준과학연구원 | 2차원 전이금속 디칼코지나이드 박막의 제조 방법 |
CN111826713A (zh) * | 2020-06-29 | 2020-10-27 | 南京大学 | 制备大面积过渡金属硫族化合物单晶的方法及其所得产品 |
WO2022005398A1 (en) * | 2020-06-30 | 2022-01-06 | Agency For Science, Technology And Research | Method of growing monolayer transition metal dichalcogenides via sulfurization and subsequent sublimation |
Non-Patent Citations (1)
Title |
---|
Uniform nucleation and epitaxy of bilayer;Lei Liu et al;《nature》;20220505;第605卷;第69-75页 * |
Also Published As
Publication number | Publication date |
---|---|
US20220243335A1 (en) | 2022-08-04 |
CN114540958A (zh) | 2022-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114540958B (zh) | 一种双层过渡金属硫族化合物连续薄膜及其制备方法 | |
CN111826713B (zh) | 制备大面积过渡金属硫族化合物单晶的方法及其所得产品 | |
CN110551986B (zh) | 用于原子层过渡金属二硫属化物的直接图形化生长的方法 | |
KR20150098904A (ko) | 금속 칼코게나이드 박막의 제조 방법 및 그 박막 | |
CN103194729A (zh) | 金属硫属化物薄膜的制备方法 | |
CN110055591B (zh) | 二维三元原子晶体的制备方法 | |
CN110565052B (zh) | 一种二维硫化钨基垂直异质结构材料的制备方法 | |
CN112501555A (zh) | 一种单层二硫化钼薄膜的制备方法 | |
Bacaksiz et al. | The influence of substrate temperature on the morphology, optical and electrical properties of thermal-evaporated ZnSe thin films | |
KR101813985B1 (ko) | 단결정 이황화 몰리브덴 박막의 제조방법 | |
CN113668053B (zh) | 黑磷薄膜反应装置、黑磷薄膜制备方法 | |
KR20230000470A (ko) | 유기금속화학기상증착 방법을 이용한 Bi2O2Se 박막 제조방법 및 이를 위한 전구체 | |
KR20190024575A (ko) | 금속 칼코겐 화합물 박막의 제조 방법 | |
CN113957538A (zh) | 一种不同覆盖率的双层硫化钼晶体材料的制备方法 | |
CN113088932A (zh) | 一种晶圆级层数可控硫化钼及其制备方法 | |
CN115156524B (zh) | 一种异位成核的双层MoS2纳米片及其制备方法 | |
Wong | Chemical vapor deposition growth of 2D semiconductors | |
CN114411148B (zh) | 二维材料、二维材料合金以及二维材料异质结制备方法 | |
Španková et al. | Influence of precursor thin-film quality on the structural properties of large-area MoS2 films grown by sulfurization of MoO3 on c-sapphire | |
KR20190135606A (ko) | 전이금속 디칼코게나이드의 제조 방법 | |
Wang et al. | Improved epitaxial growth of TbAs film on III–V semiconductors | |
CN115354392B (zh) | 一种大尺寸单晶二硫化钼的制备方法 | |
Tao et al. | A novel method for in situ growing Ge-rich polycrystalline SiGe thin films on glass at low temperature | |
CN112210829B (zh) | 一种单层单晶MoS2及其制备方法 | |
CN113045213B (zh) | 一种二硫化钼平面同质结的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |