CN110551986B - 用于原子层过渡金属二硫属化物的直接图形化生长的方法 - Google Patents

用于原子层过渡金属二硫属化物的直接图形化生长的方法 Download PDF

Info

Publication number
CN110551986B
CN110551986B CN201910418823.9A CN201910418823A CN110551986B CN 110551986 B CN110551986 B CN 110551986B CN 201910418823 A CN201910418823 A CN 201910418823A CN 110551986 B CN110551986 B CN 110551986B
Authority
CN
China
Prior art keywords
substrate
transition metal
salt
mask
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910418823.9A
Other languages
English (en)
Other versions
CN110551986A (zh
Inventor
李煦凡
A·哈鲁特尤亚恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of CN110551986A publication Critical patent/CN110551986A/zh
Application granted granted Critical
Publication of CN110551986B publication Critical patent/CN110551986B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种图形化的过渡金属二硫属化物单层的直接生长的方法,该方法包括以下步骤:提供由掩模覆盖的衬底,掩模具有由一个或多个成形孔洞限定的图形;通过一个或多个成形孔洞将盐热沉积在衬底上,使得沉积盐以掩模图形设置在衬底上;以及将过渡金属氧化物和硫族元素热共沉积到沉积盐上,以形成具有掩模图形的图形化的过渡金属二硫属化物单层。还提供了根据本方法制备的图形化的过渡金属二硫属化物单层。

Description

用于原子层过渡金属二硫属化物的直接图形化生长的方法
相关申请的交叉引用
本申请要求2018年5月31日提交的美国临时申请No.62/678802的优先权。该优先权申请的公开内容通过引用整体并入本文。
背景技术
原子层过渡金属二硫属化物(TMDs)由于其有前途的光电属性和催化属性以及新一代电路而成为深入研究的主题。在电路中使用TMDs不仅需要保持与单层材料的低接触电阻,而且还需要与具有必要图形化的非常精细的光刻工艺兼容。然而,利用光刻工艺是复杂的,因为不仅掩模分辨率问题而且所需的反应离子蚀刻都可能无意地改变TMD单层的固有属性。因此,对于这些材料的持续性挑战不仅在于大单层域的合成,而且还在于根据电路设计控制它们的生长图形。
发明内容
根据一些方面,本公开涉及用于图形化的TMD单层直接生长的方法,其包括将盐沉积在衬底上,其中该衬底由具有图形化形状的掩模覆盖,以在该衬底上形成预沉积的图形化盐;和将过渡金属氧化物和硫族元素热共沉积到位于该衬底上的该预沉积的图形化盐上,以在该预沉积的图形化盐上形成图形化的TMD单层。本公开还涉及制备TMD单层的方法,其包括提供衬底,将盐沉积在该衬底上,和将过渡金属氧化物和硫族元素沉积到该沉积盐上,以形成该TMD单层。
附图说明
图1示出了根据本公开的一些方面用于通过掩模在加热衬底上热沉积图形化盐层的示例方案。
图2示出了根据本公开的一些方面用于在真空室中的冷却衬底上热沉积盐的示例方案。
图3示出了根据本公开的一些方面用于在衬底上沉积图形化的TMD单层的示例方案。
图4示出了根据本公开的一些方面图形化的预沉积盐和已生长的MoS2的扫描电子显微镜(SEM)图像。
图5示出了根据本公开的一些方面生长的图形化MoS2的拉曼(Raman)和光致发光(PL)光谱和映射。
图6示出了根据本公开的方面使用位于不具有掩模的衬底上的预沉积盐来生长衬底规模的连续MoS2单层的光学和SEM图像。
具体实施方式
以下结合附图阐述的详细描述旨在作为各种构造的描述,而无意表示可实践本文所描述的概念的唯一构造。出于提供对各种概念的透彻理解的目的,该详细描述包括具体细节。然而,对于本领域技术人员来说明显的是,可以在没有这些具体细节的情况下实践这些概念。
本公开描述了一种新研发的方法,其用于二硫化钼(MoS2)和/或其他过渡金属二硫属化物材料的原子层的直接图形化生长。通过使用盐作为中间材料或模板材料已经实现了图形化生长。具体地,盐可以通过具有期望图形的掩模沉积在衬底上。该方法导致原子层MoS2(或其他金属二硫属化物材料)的各种图形的生长,该图形与由预先沉积的盐制成的图形相同。由此得到的材料已经被扫描电子显微镜以及拉曼和光致发光光谱确认。
本公开的方法可以包括将盐沉积在衬底上,其中该衬底由具有图形化形状的掩模覆盖,以在该衬底上形成预沉积的图形化盐;和将过渡金属氧化物和硫族元素热共沉积到该预沉积的图形化盐上,以形成图形化单层。然而,应当理解,根据一些方面,如本文所述的盐可以在没有图形的情况下沉积。例如,根据一些方面,如本文所述的方法可以在没有掩模的情况下执行,从而在该衬底的完整表面上提供盐。采用这种方式,可以在该衬底的约整个表面上提供连续的过渡金属二硫属化物材料。
应当理解,虽然本公开描述了用于图形化MoS2单层的直接生长的方法,其使用二氧化钼(MoO2)作为过渡金属氧化物,并使用硫(S)作为硫族元素,但是根据如本文所述的方法可以制备各种图形化单层。例如,根据一些方面,通过使用二氧化钨(WO2)和/或三氧化钨(WO3)作为如本文所述的过渡金属氧化物,和/或通过使用硒(Se)作为如本文所述的硫族元素,该单层可包括二硫化钨(WS2)和/或二硒化钼(MoSe2)。
如本文所用,术语“约”定义为接近本领域普通技术人员所理解的。在一个非限制性实施例中,术语“约”定义为在10%之内,优选地在5%之内,更优选地在1%之内,最优选地在0.5%之内。
如本文所用,术语“盐”是指具有阳离子和阴离子的电中性离子化合物。根据一些方面,盐能够至少部分地提供具有大尺寸(例如,介于约20μm至200μm之间)域的单层单晶,和/或通过钝化域的边缘来减少生长中的单层膜的应变。不希望受到理论的束缚,大尺寸域可以至少部分地通过有助于成核和/或改变膜生长模式的盐来实现,特别是将膜生长的模式从Volmer-Weber(VW,即,岛状生长)或Stranski-Krastanov(SK,即层状加岛状)变为Frank-van der Merwe(FM,即逐层生长)。根据一些方面,从VW或SK到FM的转变可以至少部分地归因于衬底表面的改变(例如,表面张力和/或可湿性)和/或由盐的阳离子提供的界面能量的改变。
根据本公开的盐有用性的示例包括但不限于钠盐和钾盐,例如NaBr、NaCl、KBr、KCl及其组合。应当理解,尽管NaBr在本文中用作示例性的盐,但是可以使用任何合适的盐作为其补充或替代。
根据一些方面,衬底可以是适合根据本文所述方法使用的任何惰性材料。根据本公开的有用的衬底示例包括但不限于包括SiO2、Si、c-蓝宝石、氟金云母、SrTiO3、h-BN或其组合的衬底,或者由SiO2、Si、c-蓝宝石、氟金云母、SrTiO3、h-BN或其组合组成的衬底。应当理解,尽管SiO2衬底在本文中用作示例性的衬底,但是可以使用任何合适的衬底作为其补充或替代。
如图1所示,该方法可以包括为衬底11,例如Si/SiO2衬底,提供具有图形化形状的掩模12。如本文所用,术语“掩模”是指适合于提供如本文所述的图形化形状的任何装置。根据一些方面,该掩模可以包括薄材料,该薄材料具有大致对应于衬底尺寸的尺寸,并且包括图形化形状。根据一些方面,该掩模的厚度可以是约0.01至0.5mm,可选地约0.01至0.4mm,以及可选地为约0.3mm。根据一些方面,该掩模可包括金属合金,例如不锈钢。根据一些方面,该图形化形状可以由掩模中的单个成形孔洞(voids)或成形孔洞阵列限定。该孔洞可以是任何形状,并且可以适当地确定尺寸(例如,从100nm到1cm),以限定其面积小于衬底的其上设置有掩模的面的表面积。根据一些方面,该图形化形状可以由成形孔洞的20×20阵列限定,可选地由15×15阵列限定,可选地由10×10阵列限定,以及可选地由5×5阵列限定。根据一些方面,该孔洞可以大致呈圆形,并且直径可以介于约1μm和600μm之间,可选地介于约100μm和500μm之间,可选地介于约200μm和400μm之间,以及可选地为约300μm。
根据一些方面,由掩模12覆盖的Si/SiO2衬底11可以设置在包含有盐(例如NaBr)的第一托盘13的上方,使得衬底11的由掩模12覆盖的面接触盐(在本文中可替代地描述为“面朝下”位置)。第一托盘13可以具有任何形状和尺寸。术语“托盘”没有特别限制,并且合适的托盘包括但不限于称量盘、坩埚、烧瓶或其他能够承受本文公开的方法的温度漂移的容器。被掩盖的Si/SiO2衬底11可以适当地面朝下设置在NaBr的第一托盘的上方,使得掩模中的至少一部分成形孔洞覆盖第一托盘中的至少一部分NaBr。
由覆盖有掩模12的Si/SiO2衬底11覆盖的第一托盘13可以加热,使得NaBr沉积到Si/SiO2衬底11上,即,使得NaBr热沉积到Si/SiO2衬底11上。根据一些方面,可以利用例如位于烤炉中或本领域中已知的其他合适装置中的加热机构进行加热,例如,该加热机构具有位于第一托盘13上方和/或下方的一个或多个加热丝111。根据一些方面,该加热装置可包括石英管。根据一些方面,该加热装置可以设置有惰性气体流,例如氩(Ar)气流115。
如图1所示,由覆盖有掩模12的Si/SiO2衬底11覆盖的第一托盘13可以加热到第一温度,并持续第一时间段,该第一时间段适于在由掩模12中的成形孔洞暴露的区域中提供NaBr到Si/SiO2衬底11上的热沉积,以在Si/SiO2衬底11上形成NaBr盐的预沉积图形。
根据一些方面,第一温度可以介于约600℃和900℃之间,可选地介于约650℃和850℃之间,可选地介于约700℃和800℃之间,可选地介于约740℃和800℃之间,可选地为约770℃,或可选地为约750℃。根据一些方面,第一温度可以通过增加温度来实现,例如,通过将温度从室温增加至第一温度。例如,根据一些方面,第一温度可以通过以介于约10℃至70℃/分钟之间的速率,可选地以约40℃/分钟的速率,将温度从室温增加至第一温度来实现。如本文所用,术语“室温”是指介于约15℃至25℃之间的温度。根据一些方面,第一时间段可以介于约1分钟和1小时之间,可选地介于约1分钟和30分钟之间,可选地介于约1分钟和15分钟之间,以及可选地介于约3分钟和15分钟之间。
图2显示了根据本公开的方面将盐沉积在衬底上的另一示例。如图2所示,该方法可以包括为冷却衬底18,例如Si/SiO2衬底,提供具有图形化形状的掩模12。如本文所用,术语“冷却”是指不超过约100℃的温度,可选地不超过约50℃,可选地不超过约25℃。根据一些方面,图形化形状可以由掩模中的单个成形孔洞19或成形孔洞19的阵列限定,例如,如本文关于图1所述。
根据一些方面,由掩模12覆盖的Si/SiO2衬底18可以设置在第一托盘13的上方。第一托盘13可以具有如本文关于图1所述的任何形状和尺寸。被掩盖的Si/SiO2衬底18可以适当地设置,使得衬底18的由掩模12覆盖的面与第一托盘13相对(在本文中可替代地描述为“面朝上”位置)。
类似于图2所示的示例,由掩模12覆盖的Si/SiO2衬底18可以设置在加热装置110中,例如,烤炉或本领域中已知的其他合适装置,该加热装置110具有例如一个或多个加热丝111。然而,与图1所示的示例不同,其上具有由掩模12覆盖的Si/SiO2衬底18的第一托盘13可以以远离一个或多个加热丝111的方式设置在加热装置110中,使得衬底18可以保持冷却的温度。
如图2所示,该方法可包括将包含有如本文所述的盐14的盐托盘112设置在加热装置110的区域中,该加热装置110能够将盐托盘112加热至介于100℃和1100℃之间的沉积温度,可选地介于约200℃和1000℃之间,可选地介于约300℃和900℃之间,可选地介于约400℃和800℃之间,可选地介于约500℃和700℃之间,和可选地为约600℃。例如,该方法可以包括将盐托盘112设置在加热装置110的区域中,该区域位于一个或多个加热丝111的加热近距离(heating proximity)之内。盐托盘112在一些方面可以与本文所述的第一托盘类似。该方法可以包括例如通过机械泵114将用密封件113密封的加热装置110抽空到减压。减压可以不超过约200毫托,可选地不超过约100毫托,可选地不超过约50毫托,可选地不超过约10毫托,和可选地不超过约1毫托。该方法可以进一步包括在减压下将包含有盐14的盐托盘112加热至沉积温度,并持续一个时间段,该时间段适于在由掩模12中的成形孔洞暴露的区域中提供盐14到衬底18上的沉积,以在衬底18上形成盐14的预沉积图形,如本文所述。
如图3所示,具有例如如图1或图2所示制备的预沉积图形化NaBr盐34的Si/SiO2衬底11可以接着设置在包含有过渡金属氧化物粉末的过渡金属氧化物托盘31的上方,例如MoO2粉末,同时带有预沉积图形化NaBr盐34的面面朝下,即与MoO2粉末接触。由位于Si/SiO2衬底11上的预沉积图形化NaBr盐34覆盖的过渡金属氧化物托盘31可以在惰性气体流下通过加热机构33加热到过渡金属氧化物温度。例如,如图3所示,由位于Si/SiO2衬底11上的预沉积图形化NaBr盐34覆盖的过渡金属氧化物托盘31可以设置在加热装置中的加热丝33之间,例如石英管。过渡金属氧化物托盘在一些或所有方面可以与第一托盘类似。
根据一些方面,过渡金属氧化物温度可以介于约600℃和900℃之间,可选地介于约650℃和850℃之间,可选地介于约700℃和800℃之间,可选地介于约740℃至800℃之间,可选地为约770℃,或者可选地为约750℃。
根据一些方面,还可以设置硫族元素托盘32,其在一些或所有方面可以与第一托盘和/或过渡金属氧化物托盘类似。硫族元素托盘32可包含有硫族元素粉末,例如S粉末。根据一些方面,硫族元素托盘32可以设置在加热装置中,且相对于惰性气体流115位于过渡金属氧化物托盘31的上游。硫族元素托盘32可以通过加热机构34加热到硫族元素温度,该加热机构34与用于加热过渡金属氧化物托盘31的加热机构33相同或不同。例如,通过将硫族元素托盘设置在加热带和/或加热丝43之间,可以将硫族元素托盘加热到硫族元素温度。
硫族元素温度可以与第一温度和/或过渡金属氧化物温度相同或不同。例如,根据一些方面,硫族元素温度可以介于约50℃和350℃之间,可选地介于约100℃和300℃之间,可选地介于约150℃和250℃之间,或可选地为约200℃。可替代地,根据一些方面,硫族元素温度可以介于约250℃和650℃之间,可选地介于约300℃和600℃之间,可选地介于约350℃和550℃之间,或可选地为约450℃。
根据一些方面,过渡金属氧化物温度和硫族元素温度可以如此选择,使得MoO2和S共沉积到位于Si/SiO2衬底11上的预沉积图形化NaBr盐34上,以在位于Si/SiO2衬底11上的预沉积图形化NaBr盐34上形成图形化的MoS2单层。
根据一些方面,加热装置可包括石英管。根据一些方面,加热装置可以设置有惰性气体流,例如氩(Ar)气体流。
应当理解,本文所述的单层MoS2晶体可以以各种形状和尺寸生长,这取决于预沉积图形化NaBr盐的形状和尺寸。根据一些方面,所得到的MoS2晶体的尺寸和/或形状还可取决于以下因素中的一个或多个:沉积在衬底上的NaBr浓度,原始材料的重量比(例如,(MoO2+NaBr):S、MoO2:NaBr、和/或MoO2:S的重量比),惰性气体的流速和/或处理时间。
本公开还涉及根据本文所述方法制备的单层,例如包括MoS2、WS2、MoSe2或其组合的单层。
本书面描述使用示例来公开本发明,其包括优选实施例,并且还使本领域技术人员能够实践本发明,其包括制造和使用任何设备或系统以及执行任何并入的方法。本发明的可专利范围由权利要求限定,并且可包括本领域技术人员想到的其他示例。如果这些其他示例具有与权利要求的字面语言没有不同的结构元件,或者如果它们包括与权利要求的字面语言无实质差别的等效结构元件,则这些其他示例意图在权利要求的范围内。来自所描述的各种实施例的各方面,以及每个这类方面的其他已知等同物可以由本领域普通技术人员混合和匹配,以根据本申请的原理构建另外的实施例和技术。
虽然已经结合上面概述的示例方面描述了本文所述的方面,但是各种替代、修改、变化、改进和/或实质等同物,无论是已知的还是现在无法预见的,对那些至少是本领域普通技术人员的人而言都可以变得明显。因此,如上所述的示例方面旨在是说明性的而非限制性的。在不脱离本公开的精神和范围的情况下,可以进行各种改变。因此,本公开旨在涵盖所有已知或以后开发的替代、修改、变化、改进和/或实质等同物。
除非特别说明,否则对元件的单数引用并非旨在表示“一个且仅一个”,而是“一个或多个”。本公开中描述的各个方面的元件的所有结构和功能等同物,无论它们对本领域普通技术人员而言是已知的或者以后将被已知,都通过引用明确地并入本文。此外,本文公开的内容并非旨在贡献给公众。
此外,词语“示例”在本文中用于表示“用作示例、实例或说明”。本文作为“示例”描述的任何方面不必解释为相比其他方面更优选或更具优势。除非另外特别说明,否则术语“一些”是指一个或多个。组合,例如“A、B或C中的至少一个”、“A、B和C中的至少一个”以及“A、B、C或其任何组合”,包括A、B和/或C的任何组合,并且可以包括多个A,多个B或多个C。具体地,组合,例如“A、B或C中的至少一个”、“A、B和C中的至少一个”以及”A、B、C或其任何组合“,可以是仅有A,仅有B,仅有C,A和B,A和C,B和C,或者A和B和C,其中任何此类组合可以包含有A、B或C中的一个或多个成员。
此外,本申请中的所有参考文献,例如包括已颁发或已授权专利的专利文献或等同物;专利申请公开文献;和非专利文献资料或其他来源材料,在此均通过引用整体并入本文,如同通过引用单独并入一样。
示例
示例I:原子级薄TMD的图形化生长
在配备有1英寸石英管的管式炉系统中合成2D TMD。首先,用丙酮和异丙醇(IPA)清洁生长衬底,即具有285nm SiO2的Si(SiO2/Si)板,并用具有图形化的各种形状的孔洞的掩模覆盖该生长衬底。然后,将NaBr沉积到由掩模覆盖的衬底上,以为衬底提供图形化的NaBr颗粒(对应于掩模的图形化孔洞)。接着,将衬底面朝下放置在包含有~1-3mg MoO2粉末的氧化铝坩埚的上方,并将衬底插入石英管的中央。在将管抽空至~5×10-3托之后,通过500sccm(标准立方厘米每分钟)的氩气流将反应室压力增加至环境压力。包含有~50mg S粉末的另一坩埚位于管的上游侧(相对于氩气流),此处缠绕有加热带。然后在770℃下(升温速率为40℃/分钟)用60-120sccm的氩气流进行3-15分钟处理时间的反应,,以提供MoS2TMD。生长后,立即移除加热带,并打开炉子,以允许利用风扇快速冷却至室温。然后使用各种NaBr浓度、原始材料比、惰性气体流和处理时间来重复该过程。还使用各种材料来重复该过程,以提供MoSe2和WS2 TMD。
示例II(a):原子级薄TMD的扫描电子显微镜表征
如本文所述合成2D TMD,并使用扫描电子显微镜(SEM)来表征该2D TMD。图4(a)示出了通过具有6×6孔阵列的阴影掩模沉积在SiO2/Si衬底上的NaBr层的SEM图像,其中每个孔的直径为约300μm。如图4(a)所示,可以看到图形化的6×6阵列的NaBr圆盘。图4(b)示出了如图4(a)所示的单个NaBr盘的放大SEM图像。图4(c)示出了使用图4(a)中的NaBr层作为模板生长的图形化单层MoS2的SEM图像。可以看到6x6阵列的单层MoS2盘。图4(d)示出了如图4(c)所示的单个单层MoS2盘的放大SEM图像。
示例II(b):原子级薄TMD的拉曼和光致发光(PL)光谱和映射
如本文所述合成2D TMD,并通过拉曼和PL光谱和映射来表征该2D TMD。图5(a)示出了MoS2单层的3个盘的光学图像。图5(b)示出了从MoS2单层盘获得的拉曼和PL光谱。拉曼光谱示出了MoS2的典型E1 2g和A1g模式,它们之间的能量差为约19cm-1。由于A激子的直接组合,PL光谱示出了单个X0带。两者都证实了MoS2的单层性质。图5(c)和5(d)分别示出了如图5(a)所示的相应3个盘的PL和拉曼强度映射,从而显示了每个单层盘的连续性和均匀性。
示例III:连续原子级薄TMD的生长
在配备有1英寸石英管的管式炉系统中合成2D TMD。首先,用丙酮和异丙醇(IPA)清洁生长衬底,即1×1cm的SiO2衬底。然后,将NaBr沉积在衬底上,以在衬底的整个表面上为其提供NaBr颗粒。接着,将衬底面朝下放置在包含有~1-3mg MoO2粉末的氧化铝坩埚的上方,并将衬底插入石英管的中央。在将管抽空至~5×10-3托之后,通过500sccm(标准立方厘米每分钟)的氩气流将反应室压力增加至环境压力。包含有~50mg S粉末的另一坩埚位于管的上游侧(相对于氩气流),此处缠绕有加热带。然后在770℃下(升温速率为40℃/分钟)用60-120sccm的氩气流进行3-15分钟处理时间的反应,以提供MoS2 TMD。生长后,立即移除加热带,并打开炉子,以允许利用风扇快速冷却至室温。
示例IV(a):连续原子级薄TMD的表征
使用扫描电子显微镜(SEM)来光学表征根据示例III制备的2D TMD。图6(a)示出了MoS2单层的光学图像。虚线矩形表示具有连续MoS2单层的区域。图6(b)示出了连续MoS2单层的SEM图像。

Claims (15)

1.一种图形化的过渡金属二硫属化物单层的直接生长的方法,所述方法包括:
提供由掩模覆盖的衬底,所述掩模具有由一个或多个成形孔洞限定的图形;
通过所述一个或多个成形孔洞将盐热沉积在所述衬底上,使得沉积盐以所述掩模的所述图形设置在所述衬底上;和
将过渡金属氧化物和硫族元素热共沉积到所述沉积盐上,以形成具有所述掩模的所述图形的所述图形化的过渡金属二硫属化物单层。
2.根据权利要求1所述的方法,其中,通过所述一个或多个成形孔洞将所述盐热沉积在所述衬底上包括:
将由所述掩模覆盖的所述衬底设置在包含有所述盐的第一托盘上,使得所述衬底的由所述掩模覆盖的面接触所述盐;以及
将由所述掩模覆盖的所述衬底和所述盐加热到第一温度,
其中,所述第一温度介于600℃和900℃之间。
3.根据权利要求1所述的方法,其中,通过所述一个或多个成形孔洞将所述盐热沉积在所述衬底上包括:
将由所述掩模覆盖的所述衬底设置在加热装置中的第一托盘上,使得所述衬底的由所述掩模覆盖的面与所述第一托盘相对;
将包含有所述盐的盐托盘设置在所述加热装置中;
将所述加热装置抽空至不超过200毫托的减压;以及
将所述盐托盘独立地加热至沉积温度,
其中,位于所述第一托盘上的由所述掩模覆盖的所述衬底保持在冷却温度,所述冷却温度不同于所述沉积温度,
其中,所述冷却温度不超过100℃,
其中,所述沉积温度介于100℃和1100℃之间。
4.根据权利要求1所述的方法,其中,将所述过渡金属氧化物和所述硫族元素热共沉积到所述沉积盐上包括:
将具有所述沉积盐的所述衬底设置在加热装置中,其中所述衬底位于包含有所述过渡金属氧化物的过渡金属氧化物托盘上,使得所述衬底的具有所述沉积盐的面接触所述过渡金属氧化物;
将包含有硫族元素的硫族元素托盘设置在所述加热装置中,相对于惰性气体流处于所述过渡金属氧化物托盘的下游;
将具有所述沉积盐的所述衬底和所述过渡金属氧化物加热到过渡金属氧化物温度;以及
将硫族元素加热到硫族元素温度,
其中,所述过渡金属氧化物温度介于600℃和900℃之间,
其中,所述硫族元素温度介于50℃和350℃之间。
5.根据权利要求1所述的方法,其中,所述一个或多个成形孔洞每个具有从1μm到600μm的尺寸。
6.根据权利要求1所述的方法,其中,所述图形包括成形孔洞的阵列。
7.根据权利要求1所述的方法,其中,所述盐包括NaBr。
8.根据权利要求1所述的方法,其中,所述衬底是SiO2衬底、Si衬底、或者SiO2和Si衬底。
9.根据权利要求1所述的方法,其中,所述过渡金属氧化物选自由MoO2、WO2、WO3及其组合构成的组。
10.根据权利要求9所述的方法,其中,所述过渡金属氧化物是MoO2
11.根据权利要求1所述的方法,其中,所述硫族元素选自由S、Se及其组合构成的组。
12.根据权利要求11所述的方法,其中,所述硫族元素是S。
13.根据权利要求1所述的方法,其中,所述图形化的过渡金属二硫属化物单层包括MoS2
14.一种过渡金属二硫属化物单层,所述过渡金属二硫属化物单层由以下方法制备,该方法包括:
提供衬底;
将盐沉积在所述衬底上;和
将过渡金属氧化物和硫族元素沉积在所述沉积盐上,以形成所述过渡金属二硫属化物单层,
其中:
在将所述盐热沉积在所述衬底上之前,用掩模覆盖所述衬底,所述掩模具有由一个或多个成形孔洞限定的图形;
通过所述一个或多个成形孔洞将所述盐热沉积在所述衬底上,使得沉积盐以所述掩模的所述图形设置在所述衬底上,以及
将所述过渡金属氧化物和所述硫族元素热共沉积到所述沉积盐上,以形成具有所述掩模的所述图形的所述过渡金属二硫属化物单层。
15.根据权利要求14所述的过渡金属二硫属化物单层,其中,所述过渡金属二硫属化物单层包括MoS2
CN201910418823.9A 2018-05-31 2019-05-20 用于原子层过渡金属二硫属化物的直接图形化生长的方法 Active CN110551986B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862678802P 2018-05-31 2018-05-31
US62/678,802 2018-05-31
US16/217,845 2018-12-12
US16/217,845 US10832906B2 (en) 2018-05-31 2018-12-12 Method for direct patterned growth of atomic layer transition metal dichalcogenides

Publications (2)

Publication Number Publication Date
CN110551986A CN110551986A (zh) 2019-12-10
CN110551986B true CN110551986B (zh) 2022-04-05

Family

ID=66323727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910418823.9A Active CN110551986B (zh) 2018-05-31 2019-05-20 用于原子层过渡金属二硫属化物的直接图形化生长的方法

Country Status (4)

Country Link
US (1) US10832906B2 (zh)
EP (1) EP3575436B1 (zh)
JP (1) JP2020015977A (zh)
CN (1) CN110551986B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11041236B2 (en) * 2019-03-01 2021-06-22 Honda Motor Co., Ltd. Method for direct patterned growth of atomic layer metal dichalcogenides with pre-defined width
CN110983249A (zh) * 2019-12-25 2020-04-10 中建材蚌埠玻璃工业设计研究院有限公司 一种大面积连续层状硫化钼的制备方法
US11519068B2 (en) 2020-04-16 2022-12-06 Honda Motor Co., Ltd. Moisture governed growth method of atomic layer ribbons and nanoribbons of transition metal dichalcogenides
US11408073B2 (en) 2020-04-16 2022-08-09 Honda Motor Co., Ltd. Method for growth of atomic layer ribbons and nanoribbons of transition metal dichalcogenides
US11639546B2 (en) 2020-04-16 2023-05-02 Honda Motor Co., Ltd. Moisture governed growth method of atomic layer ribbons and nanoribbons of transition metal dichalcogenides
CN113073390B (zh) * 2021-02-26 2022-08-30 华南师范大学 一种制备大单晶过渡金属硫族化合物的方法
US11565247B2 (en) 2021-03-11 2023-01-31 Honda Motor Co., Ltd. Catalyst compositions including metal chalcogenides, processes for forming the catalyst compositions, and uses thereof
EP4306684A1 (en) * 2022-07-13 2024-01-17 Imec VZW Template for growing a transition metal dichalcogenide crystal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017100616A1 (en) * 2015-12-10 2017-06-15 Massachusetts Institute Of Technology Universal methodology to synthesize diverse two-dimensional heterostructures
CN107021524A (zh) * 2017-05-18 2017-08-08 南京大学 水溶性盐辅助转移cvd二维过渡金属硫族化合物的方法
CN107313024A (zh) * 2017-06-06 2017-11-03 深圳大学 一种提高单层过渡金属硫化物材料发光性能的方法
CN107723735A (zh) * 2017-09-27 2018-02-23 中国科学院长春应用化学研究所 一种纳米金属单质及其氧化物修饰过渡金属硫化物阵列催化剂及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110065282A1 (en) 2009-09-11 2011-03-17 General Electric Company Apparatus and methods to form a patterned coating on an oled substrate
WO2014134524A1 (en) * 2013-03-01 2014-09-04 Massachusetts Institute Of Technology Synthesis of transition metal disulfide layers
US9761446B2 (en) 2013-05-08 2017-09-12 University Of Houston System Methods for the synthesis of arrays of thin crystal grains of layered semiconductors SnS2 and SnS at designed locations
US9640391B2 (en) * 2015-06-23 2017-05-02 The Trustees Of The Stevens Institute Of Technology Direct and pre-patterned synthesis of two-dimensional heterostructures
US10752794B2 (en) * 2016-11-18 2020-08-25 Saint Louis University Mask free methods of depositing compositions to form heterostructures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017100616A1 (en) * 2015-12-10 2017-06-15 Massachusetts Institute Of Technology Universal methodology to synthesize diverse two-dimensional heterostructures
CN107021524A (zh) * 2017-05-18 2017-08-08 南京大学 水溶性盐辅助转移cvd二维过渡金属硫族化合物的方法
CN107313024A (zh) * 2017-06-06 2017-11-03 深圳大学 一种提高单层过渡金属硫化物材料发光性能的方法
CN107723735A (zh) * 2017-09-27 2018-02-23 中国科学院长春应用化学研究所 一种纳米金属单质及其氧化物修饰过渡金属硫化物阵列催化剂及其制备方法和应用

Also Published As

Publication number Publication date
JP2020015977A (ja) 2020-01-30
EP3575436A1 (en) 2019-12-04
EP3575436B1 (en) 2022-08-24
US20190371605A1 (en) 2019-12-05
CN110551986A (zh) 2019-12-10
US10832906B2 (en) 2020-11-10

Similar Documents

Publication Publication Date Title
CN110551986B (zh) 用于原子层过渡金属二硫属化物的直接图形化生长的方法
US10309011B2 (en) Method for manufacturing two-dimensional transition metal dichalcogemide thin film
KR102325522B1 (ko) 금속 칼코게나이드 박막의 제조 방법
US9773668B2 (en) Apparatus for forming a transition metal chalcogenide thin-film
WO2015126087A1 (ko) 금속 칼코게나이드 박막의 제조 방법 및 그 박막
FR3016889A1 (fr) Procede de reaslisation par ald d'une couche mince de formule myx
JP2009541991A (ja) 太陽電池用光吸収層の製造方法
CN112663144B (zh) 二维In2S3/SnS异质结晶体材料的制备方法
JP2018123039A (ja) ナノリボン及びその製造方法
Sun et al. High-sulfur Cu2ZnSn (S, Se) 4 films by sulfurizing as-deposited CZTSe film: The evolutions of phase, crystallinity and S/(S+ Se) ratio
Wang et al. Toward wafer‐scale production of 2D transition metal chalcogenides
Chang et al. Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
WO2016013984A1 (en) Process for depositing metal or metalloid chalcogenides
KR102280763B1 (ko) 전이금속 디칼코게나이드 박막, 그 제조 방법 및 제조 장치
Wong Chemical vapor deposition growth of 2D semiconductors
Ko et al. Toward non-gas-permeable hBN film growth on smooth Fe surface
CN114540958B (zh) 一种双层过渡金属硫族化合物连续薄膜及其制备方法
CN110668499B (zh) 铈掺杂的单分子层二硫化钨薄膜及其制备方法
CN114182230A (zh) 一种制备二维碲烯薄膜的化学气相沉积方法
Park et al. S/Mo ratio and petal size controlled MoS2 nanoflowers with low temperature metal organic chemical vapor deposition and their application in solar cells
KR102576569B1 (ko) 전이금속 디칼코게나이드의 제조 방법
Chowdhury Synthesis, characterization, and electrical transport in 2-D transition metal dichalcogenides grown by chemical vapor deposition
CN111041449B (zh) 一种特定形貌二硫化钨的制备方法
CN116926472A (zh) 一种叠层生长多层二维材料范德华异质结的方法
Nandhagopal et al. Optimisation study on few layer formations of MoS2 thin films by a novel sulfurization method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant