CN114522710B - 一种Ti1-NC单原子催化材料的制备方法及应用 - Google Patents

一种Ti1-NC单原子催化材料的制备方法及应用 Download PDF

Info

Publication number
CN114522710B
CN114522710B CN202210092885.7A CN202210092885A CN114522710B CN 114522710 B CN114522710 B CN 114522710B CN 202210092885 A CN202210092885 A CN 202210092885A CN 114522710 B CN114522710 B CN 114522710B
Authority
CN
China
Prior art keywords
dye
catalytic material
monatomic
solution
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210092885.7A
Other languages
English (en)
Other versions
CN114522710A (zh
Inventor
史彦涛
辛存存
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202210092885.7A priority Critical patent/CN114522710B/zh
Publication of CN114522710A publication Critical patent/CN114522710A/zh
Application granted granted Critical
Publication of CN114522710B publication Critical patent/CN114522710B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明属于新材料领域,提供了一种Ti1‑NC单原子催化材料的制备方法及应用。以含氮小分子和有机金属钛盐为原料合成实验所需要的具有一定保护作用的金属前驱体,再将合成的金属前驱体和碳载体进行高温煅烧,前驱体分解后,Ti原子被锚定再碳载体上,从而制备出具有原子级分散的Ti单原子催化剂Ti1‑NC。本发明所制备的Ti1‑NC单原子催化材料,在催化染料敏化太阳能电池阴极碘还原反应中表现出很高的催化活性,光伏器件的光转效率达到8.2%,该效率和使用商业Pt电极时达到的光转化效率相当。该单原子催化剂具有制备过程稳定可靠,制备成本低,催化活性高等有点,有望在DSCs中取代Pt电极。

Description

一种Ti1-NC单原子催化材料的制备方法及应用
技术领域
本发明属于新材料领域,涉及一种新型氮掺杂碳材料负载的钛单原子催化剂(Ti1-NC)。首先由含氮的小分子无机物和有机金属钛盐(双(乙酰丙酮基)二异丙基钛酸酯,TYZOR)合成复合物作为金属钛前驱体。将合成的钛前驱体碳与载体前驱体经过球磨混合均匀后高温煅烧获得材料。本发明还涉及该催化剂的应用。
背景技术
单原子催化剂(SACs)是指金属组分以单个原子的形式负载于载体上,并参与催化反应过程中的一类催化剂。SACs的概念由张涛等于2011年提出,一经提出便迅速成为催化领域的研究热点。单原子催化剂具有最高的表观原子利用率,独特的活性位点也在众多反应中(如ORR,OER,HER,二氧化碳还原,甲烷氧化等)展现了优秀的催化活性和选择性。但是当金属组分的尺寸由纳米颗粒降低至单原子时,迅速增加的表面自由能使SACs在制备过程中容易出现金属的团聚。因此如何有效保持金属组分的原子级分散是制备SACs的重要问题。
Li等人(Angew.Chem.Int.Ed.2017,56,6937–6941)开发了一种利用金属有机骨架(MOF)限域封装策略,利用该策略合成了具有2.6wt%金属负载量的铁单原子催化剂Fe-ISAs/CN。该催化剂具有原子级分散的FeN4位点,并在电催化氧还原反应中具有0.90V的半波电位。同时还表现出较好的稳定性和抗甲醇中毒能力;Shi等人(Nano Energy.2020,72,104670)提出了一种熔融盐策略,将前驱体和熔融盐混合后高温煅烧,利用熔融盐的强极性可以有效抑制高温下金属原子的团聚,从而能够将金属氧化物转化为单原子催化剂;Xia等人(Nat.Chem.2021,13,887–894)开发了一种使用石墨烯量子点作为载体的普适性合成策略。使用比表面大、热稳定性高的石墨烯量子点作为碳基底,对其进行-NH2基团修饰,使其对金属离子具有高配位活性。引入金属离子后可得到以金属离子作为节点、功能化石墨烯量子点作为结构单元的交联网络,最后热解即可得到高载量的金属单原子材料。如上所述,目前利用各种合成方法可以制备出多种过渡金属单原子催化剂,但是关于Ti单原子催化剂的制备却非常少见。主要原因是金属Ti及其容易在制备过程与C,N,O等形成化合物,而目前的制备方法却无法较好解决该问题,所以很少有关于Ti单原子催化剂的制备和应用。
虽然Ti单原子催化剂难以制备,但是有较多的理论预测工作指出,Ti单原子催化剂将在多个领域表现出应用前景。Chen等人的研究表明(ACS Nano 2009,3,10,2995–3000)金属钛原子可以被锚定于氧化石墨烯表面,且石墨烯锚定的Ti单原子催化剂可以用于作为储氢材料;Hu等人的理论研究则证明(The Journal of Physical Chemistry C,2013,117(31):16005-16011),将Ti单原子锚定于碳材料上后获得的单原子材料可以在催化丙烯环氧化反应中展现优异的催化活性;Song等人用DFT理论研究了碳材料负载金属Ti之后的性质(Thin Solid Films,2013,546:124-127),发现Ti/G材料有望用于HF气体探测。除了以上关于钛单原子材料的用途的预测,钛单原子材料还表现出低成本高活性的特点和优势。
染料敏化太阳能电池(DSCs)是一种模仿光合作用原理制备出来的新型清洁能源器件,由于其使用低成本的二氧化钛和燃料作为主要的材料,因此具有价格成本低廉,环境友好,等特点。同时,DSCs模仿自然界中的植物,将太阳能转化为电能且转化效率较高。其中,对电极催化材料在转化效率中发挥重要的作用。但是在传统的DSCs器件中,对电极使用的贵金属Pt大大增加了器件的成本。因此如何利用成本低廉,转化效率优秀的非贵金属催化剂替代Pt电极是重要的研究内容。
综上所述,如何使用简单有效的方法抑制Ti原子在制备过程中形成其他化合物,并将其使用到具有实用价值新能源器件中具有重要意义。本专利使用含氮小分子和有机金属钛盐合成复合物作为金属前驱体。包裹着Ti原子的小分子化合物在高温下缓慢分解,使Ti原子“软着陆”至碳载体上,同时小分子分解会产生更多地N掺杂和缺陷,使载体的锚定能力获得提升。该方法有效地抑制了在制备过程中Ti原子和其他非金属原子形成TiN,TiC,TiO2等化合物,成功得到了一种氮掺杂碳材料负载的钛单原子催化剂Ti1-NC。将该材料用于染料敏化太阳能电池中,表现出优秀的催化活性,取得了8.2%的光转化效率。
发明内容
本发明的目的在于,以含氮小分子和有TYZOR为原料合成实验所需要的具有一定保护作用的金属前驱体TNC,再将合成的金属前驱体和碳载体进行高温煅烧,前驱体TNC分解后,Ti原子被锚定再碳载体上,从而制备出具有原子级分散的Ti单原子催化剂Ti1-NC。
本发明的技术方案:
一种Ti1-NC单原子催化材料,该Ti1-NC催化材料以双氰胺和TYZOR合成的复合物为金属源,与碳载体一起在惰性气氛中高温煅烧得到。
经XPS和ICP测试分析,所述的Ti1-NC单原子催化材料中,碳的质量分数为70.0-75.0%;氮的质量分数为15.0-20.0%;氧的质量分数为3.0-5.0%;Ti的质量分数为0.2-0.3%。
一种Ti1-NC单原子催化材料的制备方法,步骤如下:
步骤(1):含Ti金属前驱体TNC的制备:
①将双氰胺粉末超声分散在异丙醇溶液中,随后缓慢加入双(乙酰丙酮基)二异丙基钛酸酯的异丙醇溶液TYZOR,防止TYZOR在双氰胺上吸附的不均匀,搅拌至两者混合均匀,得到混合液;其中,双氰胺的质量浓度为10g/L,双氰胺和TYZOR的质量比为100:1;
②将步骤①中得到的混合液于60-80℃水浴锅中加热至异丙醇溶液完全挥发,获得淡黄色固体;
③将步骤②获得的淡黄色固体研磨均匀后转入管式炉中,通入惰性气体,排空0.5-1h后,加热至500℃保温1-2h;冷却至室温,获得黄色含Ti金属前驱体TNC;
步骤(2):Ti1-NC单原子催化材料的制备:
将步骤(1)中得到的黄色含Ti金属前驱体TNC和碳载体按质量比为1:10混合,球磨混合均匀后,转移至刚玉舟中;在惰性气体中于800-850℃煅烧保持1-2h,自然冷却至室温,即得到Ti1-NC单原子催化材料。
所述的惰性气体为He或Ar。
步骤(1)和(2)中的升温速度均为2-5℃/min。
一种Ti1-NC单原子催化材料在染料敏化太阳能电池中的应用,以FTO负载的Ti1-NC为对电极,TiO2为光阳极,在光阳极和对电极之间填充I/I3氧化还原对为电解质;步骤如下:
①将Ti1-NC材料分散在乙醇中,形成10mg/mL的分散液;球磨超声均匀后喷涂至洗净的FTO上,保持分散液在FTO上的喷涂量为1mL/cm2
②将TiO2光阳极在染料中浸泡12-24h确保光阳极上吸附足够的染料,之后用乙醇冲洗清除表面不稳定的染料分子,30-50℃烘干后备用;
③将喷涂好的对电极和浸泡好的光阳极组装成染料敏化太阳能电池器件,滴加含I/I3离子对的电解液后即可测试器件的光伏性质。
超声球磨分散至分散液中无明显颗粒即可,喷涂前在溶液中滴加Nafion溶液作为粘结剂,防止涂层脱落,滴加量为每毫升分散液添加10微升Nafion溶液。
所述的染料的能带结构和TiO2的能带结构相互匹配,如N719,N749,Z907。
本发明的有益效果:本发明所制备的Ti1-NC单原子催化材料,在催化染料敏化太阳能电池阴极碘还原反应中表现出很高的催化活性,光伏器件的光转效率达到8.2%,该效率和使用商业Pt电极时达到的光转化效率相当。该单原子催化剂具有制备过程稳定可靠,制备成本低,催化活性高等有点,有望在DSCs中取代Pt电极。
附图说明
图1为Ti1-NC单原子催化材料的亚埃级分辨率的高角环形暗场扫描透射电镜图,从中可以清晰地看到样品中含有的Ti原子亮点。证明Ti原子以以单个原子的形式分散在碳载体上。
图2为Ti1-NC单原子催化材料的同步辐射数据,从中可以看到Ti1-NC的Ti主要是以Ti-N的配位方式存在。
图3a为Ti1-NC单原子催化材料的CV曲线,从中可以看到该材料对I/I3有很好的还原作用,其电流密度和还原电位均比Pt对电极好;图3b为Ti1-NC单原子催化材料作为对电极的DSC的J-V曲线,从中可以看到Ti1-NC作为对电极时DSC器件的性能与使用Pt作为对电极时几乎相当。
具体实施方式
下面结合具体实施例对本发明做进一步说明。本发明所涉及的材料并不局限于以下实施例中的表述。
实施例1
将0.5g双氰胺溶解30mL异丙醇溶液中,超声溶解后加入5mg TYZOR,超声使其分散均匀。将上述溶液在60-80℃的水浴锅中蒸干,获得淡黄色固体,研磨后转入管式炉中500℃煅烧1-2h获得金属前驱体;
将0.1g金属前驱体粉末和1g碳前驱体进行球磨,球磨30min确保分散均匀后转入刚玉舟中,Ar氛围下将上述混合物在管式炉中以2.5℃/min升温到850℃,恒温2小时,然后降到室温,制得Ti1-NC单原子催化材料,其电镜和同步辐射表征见图1和图2。
实施例2
制备NC的过程同实施例1。不同之处在于,不在碳载体中添加金属前驱体。除此之外,所有操作步骤和用量相同。
实施例3
对比样品制备过程和实施例1类似,不同之处在于不在双氰胺溶液中添加金属有机钛盐。详细步骤如下:
将0.5g双氰胺溶解30mL异丙醇溶液中,超声溶解。将上述溶液在60-80℃的水浴锅中蒸干,获得白色固体,研磨后转入管式炉中500℃煅烧1-2h获得金属前驱体;
将0.1g上述粉末和1g碳前驱体进行球磨,球磨30min确保分散均匀后转入刚玉舟中,Ar氛围下将上述混合物在管式炉中以2.5℃/min升温到850℃,恒温2小时,然后降到室温,制得所需材料。
实施例4
取10mg制备的钛单原子催化材料,分散在1mL乙醇中,球磨超声均匀后喷涂至洗净的FTO上,喷涂面积为1cm2。将获得的对电极和浸泡染料后的商业光阳极组装成染料敏化太阳能电池器件,滴加电解液后在光源下测试其J-V曲线。
实施例5
取10mg制备的钛单原子催化材料,分散在1mL乙醇中,球磨超声均匀后喷涂至洗净的FTO上,喷涂面积为1cm2。将获得的对电极和浸泡染料后的商业光阳极组装成染料敏化太阳能电池器件,在含有I/I3还原对的CV电解液中,使用电化学工作站进行CV测试。
实施例6
取制备的NC和商业Pt电极作为对电极进行CV和JV曲线测试。测试过程中使用的电解液用量和仪器参数设置均与Ti单原子材料测试时保持一致。
上述Ti1-NC单原子催化材料在作为对电极催化碘还原反应中表现出非常高的催化活性。如图3a,在CV测试中,该材料的电流密度和氧化还原电位相比于Pt对电极均相对较高。如图3b,把单原子材料作为对电极,组装成染料敏化太阳能电池后,测得其转化效率和商业Pt相当,展现出良好得应用前景。

Claims (5)

1.一种Ti1-NC单原子催化材料在染料敏化太阳能电池中的应用,其特征在于,
以FTO负载的Ti1-NC为对电极,TiO2为光阳极,在光阳极和对电极之间填充I/I3氧化还原对为电解质;步骤如下:
1)将Ti1-NC材料分散在乙醇中,形成10mg/mL的分散液;球磨超声均匀后喷涂至洗净的FTO上,保持分散液在FTO上的喷涂量为1mL/cm2
2)将TiO2光阳极在染料中浸泡12-24h确保光阳极上吸附足够的染料,之后用乙醇冲洗清除表面不稳定的染料分子,30-50℃烘干后备用;
3)将喷涂好的对电极和浸泡好的光阳极组装成染料敏化太阳能电池器件,滴加含I/I3离子对的电解液后即可测试器件的光伏性质;
其中,所述的Ti1-NC单原子催化材料的制备方法,步骤如下:
步骤(1):含Ti金属前驱体TNC的制备:
(1.1)将双氰胺粉末超声分散在异丙醇溶液中,随后缓慢加入双(乙酰丙酮基)二异丙基钛酸酯的异丙醇溶液TYZOR,防止TYZOR在双氰胺上吸附的不均匀,搅拌至两者混合均匀,得到混合液;其中,双氰胺的质量浓度为10g/L,双氰胺和TYZOR的质量比为100:1;
(1.2)将步骤(1.1)中得到的混合液于60-80℃水浴锅中加热至异丙醇溶液完全挥发,获得淡黄色固体;
(1.3)将步骤(1.2)获得的淡黄色固体研磨均匀后转入管式炉中,通入惰性气体,排空0.5-1h后,加热至500℃保温1-2h;冷却至室温,获得黄色含Ti金属前驱体TNC;
步骤(2):Ti1-NC单原子催化材料的制备:
将步骤(1)中得到的黄色含Ti金属前驱体TNC和碳载体按质量比为1:10混合,球磨混合均匀后,转移至刚玉舟中;在惰性气体中于800-850℃煅烧保持1-2h,自然冷却至室温,即得到Ti
1-NC单原子催化材料 。
2.根据权利要求1所述的应用,其特征在于,所述的惰性气体为He或Ar。
3.根据权利要求1或2所述的应用,其特征在于,步骤(1)和(2)中的升温速度均为2-5℃/min。
4.根据权利要求1所述的应用,其特征在于,超声球磨分散至分散液中无明显颗粒即可,喷涂前在溶液中滴加Nafion溶液作为粘结剂,防止涂层脱落,滴加量为每毫升分散液添加10微升Nafion溶液。
5.根据权利要求1或4所述的应用,其特征在于,染料的能带结构和TiO2的能带结构相互匹配。
CN202210092885.7A 2022-01-26 2022-01-26 一种Ti1-NC单原子催化材料的制备方法及应用 Active CN114522710B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210092885.7A CN114522710B (zh) 2022-01-26 2022-01-26 一种Ti1-NC单原子催化材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210092885.7A CN114522710B (zh) 2022-01-26 2022-01-26 一种Ti1-NC单原子催化材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN114522710A CN114522710A (zh) 2022-05-24
CN114522710B true CN114522710B (zh) 2023-04-18

Family

ID=81623476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210092885.7A Active CN114522710B (zh) 2022-01-26 2022-01-26 一种Ti1-NC单原子催化材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN114522710B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115475647B (zh) * 2022-10-09 2023-07-14 陕西师范大学 一种原位构建单原子Ti接枝的氮化碳光催化剂并催化还原硝基芳烃的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107262080B (zh) * 2017-06-14 2019-12-27 大连理工大学 一种新型单原子钛催化剂的制备及其应用
CN108682870B (zh) * 2018-04-26 2020-05-05 深圳市国创新能源研究院 双金属单原子负载型催化剂及其制备方法
CN109731598B (zh) * 2018-12-11 2020-07-24 南京航空航天大学 一种钛掺杂的c3n4催化剂及其制备方法和应用
CN112264064B (zh) * 2020-10-09 2021-10-22 浙江大学 一种铜单原子碳基催化剂的制备方法及降解酚类有机污染物的应用
CN113559911B (zh) * 2021-07-30 2022-09-13 中国科学院生态环境研究中心 一种单原子催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN114522710A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
Zheng et al. Strong oxide‐support interaction over IrO2/V2O5 for efficient pH‐universal water splitting
CN109216712B (zh) 基于金属有机框架的非贵金属/碳复合材料的制备方法、非贵金属/碳复合材料及其应用
Wang et al. A new strategy for accelerating dynamic proton transfer of electrochemical CO2 reduction at high current densities
Maruyama et al. Fuel cell cathode catalyst with heme-like structure formed from nitrogen of glycine and iron
Tang et al. Halogen bonding induced aqueously stable CsPbBr3@ MOFs-Derived Co3O4/N-doped-C heterostructure for high-performance photoelectrochemical water oxidation
Chang et al. Photo-enhanced electrocatalysis of sea-urchin shaped Ni 3 (VO 4) 2 for the hydrogen evolution reaction
Xiao et al. Enhanced photocatalytic nitrogen fixation on MoO2/BiOCl composite
CN112349916A (zh) 一种铁掺杂ZIF8与Ce基金属有机框架复合电催化剂及其制备方法与应用
CN101288849A (zh) 碳氮纳米纤维负载铂钌纳米粒子电极催化剂及制备方法
Wang et al. A novel graphdiyne (C n H 2n− 2) preparation strategy: calcium carbide-derived graphdiyne film supported cobalt tetroxide nanoneedles for photocatalytic hydrogen production
CN111686780A (zh) 一种用于二氧化碳电还原的金属-氮-碳催化剂及其制备方法
CN111841641B (zh) 氮杂环卡宾修饰镍铱双原子碳基催化剂的制备方法及应用
Park et al. Architecting the high‐entropy oxides on 2D MXene nanosheets by rapid microwave‐heating strategy with robust photoelectrochemical oxygen evolution performance
Guo et al. CoV‐LDH‐Derived CoP2 Active Sites and ZnxCd1− xS Solid‐Solution Ingeniously Constructed S‐Scheme Heterojunction for Photocatalytic Hydrogen Evolution
CN114522710B (zh) 一种Ti1-NC单原子催化材料的制备方法及应用
Parkash Pt nanoparticles anchored on Cu-MOF-74: an efficient and durable ultra-low Pt electrocatalyst toward oxygen reduction reaction
Meng et al. One-step synthesis of N-doped carbon nanotubes-encapsulated Ni nanoparticles for efficient electrochemical CO2 reduction to CO
Wang et al. CoSe 2/CdS-diethylenetriamine coupled with P clusters for efficient photocatalytic hydrogen evolution
Ma et al. Ni single‐atom arrays as self‐supported electrocatalysts for CO2RR
Guan et al. Zeolitic imidazolate framework-derived composites with SnO 2 and ZnO phase components for electrocatalytic carbon dioxide reduction
CN109037717A (zh) 一种碱性燃料电池的铁基催化剂及制备方法
CN113174609B (zh) 一种超高性能析氢电解水催化剂的制备方法及应用
CN114243031A (zh) 一种简易的MOF衍生Fe单位点氧还原电催化剂及其制备方法与应用
Wu et al. CeO 2 modified Ni-MOF as an efficient catalyst for electrocatalytic urea oxidation
WO2009075037A1 (en) Method of preparing an electrode catalyst for fuel cells, and a polymer electrolyte fuel cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Shi Yantao

Inventor after: Xin Cuncun

Inventor before: Shi Yantao

Inventor before: Xin Cun

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant