CN114507846A - 一种表面负载银纳米颗粒的sers基底的制备方法 - Google Patents

一种表面负载银纳米颗粒的sers基底的制备方法 Download PDF

Info

Publication number
CN114507846A
CN114507846A CN202210084593.9A CN202210084593A CN114507846A CN 114507846 A CN114507846 A CN 114507846A CN 202210084593 A CN202210084593 A CN 202210084593A CN 114507846 A CN114507846 A CN 114507846A
Authority
CN
China
Prior art keywords
silver
substrate
silver nanoparticles
film
sers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210084593.9A
Other languages
English (en)
Other versions
CN114507846B (zh
Inventor
王思羽
张鑫
栾振东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Oceanology of CAS
Original Assignee
Institute of Oceanology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Oceanology of CAS filed Critical Institute of Oceanology of CAS
Priority to CN202210084593.9A priority Critical patent/CN114507846B/zh
Publication of CN114507846A publication Critical patent/CN114507846A/zh
Application granted granted Critical
Publication of CN114507846B publication Critical patent/CN114507846B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种表面负载银纳米颗粒的SERS基底的制备方法,包括步骤1:镀银膜石英基底的制备;将干净的石英衬底在丙酮、乙醇、超纯水中分别清洗2‑4次,在石英衬底上沉积Ag膜,并采用厚度检测器对Ag膜厚度进行检测,最终控制Ag膜厚度为10‑800nm;步骤2:将步骤1制备的镀银膜石英基底放置于马弗炉中,加热温度保持为350‑450℃,升温速率控制在1‑10℃/min,加热时间控制在2‑60min;步骤3:将步骤2得到的镀银膜石英衬底置于空气中自然冷却,即得到负载银纳米颗粒的SERS基底。本发明制备的基底灵敏度高,耐高压,增加了SERS的“热点”;负载的银纳米颗粒为自由能最低的单晶面Ag,更容易吸附分子,增强了SERS效果,抗氧化性得到了提高。

Description

一种表面负载银纳米颗粒的SERS基底的制备方法
技术领域
本发明涉及光谱分析检测技术领域,具体涉及增强拉曼信号领域,尤其是一种表面负载银纳米颗粒的SERS基底的制备方法。
背景技术
后生动物与化能自养生物的共生机制是维持深海生态系统生命活动稳定和可持续的重要因素,已成为深海研究的热点问题之一。磷脂酰乙醇胺(PE)头群可作为古菌共生菌的生物标志物。PE头部基的形成与磷酸乙醇胺(PETA)的形成有关。因此,PETA的微量检测对于深海共生细菌的存在定位和共生细菌代谢物的原位检测具有重要意义。然而,深海细胞外代谢还没有任何原位检测技术手段。传统的检测方法(包括比色法、液相色谱-质谱联用(LC-MS)和核磁共振(NMR))也不能同时检测多组分,耗时长、成本高、灵敏度低。同时,受拉曼检测限的影响,深海微生物代谢物或中间体在低浓度下难以检测。
表面增强拉曼散射(Surface-enhanced Raman Scattering,SERS)主要来自于贵金属(Ag、Au)附近局部电磁场的增强,因此具有超灵敏、快速检测待检测痕量分子的能力。目前常用的拉曼信号增强介质主要有SERS衬底和纳米溶胶。为了满足深海原位实验的需要,需要SERS基底。分散在亚纳米隙基底上的金属纳米结构是增强SERS信号的理想材料。然而,制备间距小于10nm的金属纳米结构并不容易。各种制造技术已被用于创建纳米间隙嵌入结构,如光刻、阴影蒸发和气相沉积。然而,所有这些都是具有挑战性的、昂贵的和耗时的。
发明内容
为了克服现有技术中存在的上述问题,本发明提出一种表面负载银纳米颗粒的SERS基底的制备方法。
本发明解决其技术问题所采用的技术方案是:一种表面负载银纳米颗粒的SERS基底的制备方法,包括如下步骤:
步骤1:镀银膜石英基底的制备;
步骤2:将步骤1制备的镀银膜石英基底放置于马弗炉中,加热温度保持为350-450℃,升温速率控制在1-10℃/min,加热时间控制在2-60min;
步骤3:将步骤2得到的镀银膜石英衬底置于空气中自然冷却,即得到负载银纳米颗粒的SERS基底;
所述步骤1的具体制备方法为:将干净的石英衬底在丙酮、乙醇、超纯水中分别清洗2-4次,在石英衬底上沉积Ag膜,并采用厚度检测器对Ag膜厚度进行检测,最终控制Ag膜厚度为10-800nm。
上述的一种表面负载银纳米颗粒的SERS基底的制备方法,所述步骤1中采用电子束沉积(EBD FU-12PEB)沉积Ag膜。
上述的一种表面负载银纳米颗粒的SERS基底的制备方法,所述步骤1中采用电子束沉积法沉积Ag膜时的速率为1-10A/s。
上述的一种表面负载银纳米颗粒的SERS基底的制备方法,所述步骤2中马弗炉加热温度保持在420-425℃。
上述的一种表面负载银纳米颗粒的SERS基底的制备方法,所述步骤2中马弗炉设置的升温速率为5-10℃/min。
上述的一种表面负载银纳米颗粒的SERS基底的制备方法,所述步骤2中马弗炉设置加热时间为5-30min。
上述的一种表面负载银纳米颗粒的SERS基底的制备方法,所述步骤2中负载的银纳米颗粒之间间隙在5-20nm之间。
本发明的有益效果是:(1)利用简单的高温退火工艺得到了具有类似七星瓢虫形貌的银纳米颗粒的SERS基底,该基底灵敏度高,耐高压,增加了SERS的“热点”;
(2)制备的表面负载银纳米颗粒SERS基底为自由能最低的单晶面Ag(111),更容易吸附分子,增强了SERS效果;
(3)制备的表面负载银纳米颗粒SERS基底在空气中退火,其抗氧化性得到了提高,为未来在极端深海环境中的原位应用铺平了道路。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1为本发明实施例1-实施例5的SERS基底对罗丹明B溶液的检测效果示意图;
图2为本发明实施例4所制样品的的扫描电镜(SEM)图;
图3为本发明实施例4所制样品结构示意图。
具体实施方式
为使本领域技术人员更好的理解本发明的技术方案,下面结合附图和具体实施方式对本发明作详细说明。
【实施例1】
银纳米颗粒SERS基底的制备方案,包括以下步骤:
(1)镀银膜石英基底是通过电子束沉积法制备:将干净的石英衬底在丙酮,乙醇,超纯水中反复洗净,以10A/s的速率在衬底上沉积Ag膜,采用厚度监测器对薄膜厚度进行检测,最终得到厚度为100nm的Ag膜;
(2)取步骤(1)得到的镀银膜石英基底,将步骤(1)制备的镀银膜石英基底放置于马弗炉中,加热温度保持为350℃,升温速率控制在10℃/min,加热时间控制在20分钟,得到负载银纳米颗粒的SERS基底;
(3)将步骤(2)所得的SERS基底,浸润在10-6M罗丹明B溶液中2小时,取出SERS基底干燥后检测。
【实施例2】
(1)镀银膜石英基底是通过电子束沉积法制备:将干净的石英衬底在丙酮,乙醇,超纯水中反复洗净,以10A/s的速率在衬底上沉积Ag膜,采用厚度监测器对薄膜厚度进行检测,最终得到厚度为100nm的Ag膜。
(2)取步骤(1)得到的镀银膜石英基底,将步骤(1)制备的镀银膜石英基底放置于马弗炉中,加热温度保持为375℃,升温速率控制在10℃/min,加热时间控制在20分钟,得到负载银纳米颗粒的SERS基底。
(3)将步骤(2)所得的SERS基底,浸润在10-6M罗丹明B溶液中2小时,取出SERS基底干燥后检测。
【实施例3】
(1)镀银膜石英基底是通过电子束沉积法制备。将干净的石英衬底在丙酮,乙醇,超纯水中反复洗净,以10A/s的速率在衬底上沉积Ag膜。采用厚度监测器对薄膜厚度进行检测,最终得到厚度为100nm的银膜。
(2)取步骤(1)得到的镀银膜石英基底,将步骤(1)制备的镀银膜石英基底放置于马弗炉中,加热温度保持为400℃,升温速率控制在10℃/min,加热时间控制在20分钟,得到负载银纳米颗粒的SERS基底。
(3)将步骤(2)所得的SERS基底,浸润在10-6M罗丹明B溶液中2小时,取出SERS基底干燥后检测。
【实施例4】
(1)镀银膜石英基底是通过电子束沉积法制备。将干净的石英衬底在丙酮,乙醇,超纯水中反复洗净,以10A/s的速率在衬底上沉积Ag膜。采用厚度监测器对薄膜厚度进行检测,最终得到厚度为100nm的银膜。
(2)取步骤(1)得到的镀银膜石英基底,将步骤(1)制备的镀银膜石英基底放置于马弗炉中,加热温度保持为425℃,升温速率控制在10℃/min,加热时间控制在20分钟,得到负载银纳米颗粒的SERS基底。
(3)将步骤(2)所得的SERS基底,浸润在10-6M罗丹明B溶液中2小时,取出SERS基底干燥后检测。
【实施例5】
(1)镀银膜石英基底是通过电子束沉积法制备。将干净的石英衬底在丙酮,乙醇,超纯水中反复洗净,以10A/s的速率在衬底上沉积Ag膜。采用厚度监测器对薄膜厚度进行检测,最终得到厚度为100nm的银膜。
(2)取步骤(1)得到的镀银膜石英基底,将步骤(1)制备的镀银膜石英基底放置于马弗炉中,加热温度保持为450℃,升温速率控制在10℃/min,加热时间控制在20分钟,得到负载银纳米颗粒的SERS基底。
(3)将步骤(2)所得的SERS基底,浸润在10-6M罗丹明B溶液中2小时,取出SERS基底干燥后检测。
实施例1~5制备的银纳米颗粒SERS基底用于罗丹明B溶液的检测的效果见图3,可以看出随着加热温度的升高,SERS效果增强,到温度为425℃时效果最好,超过425℃,效果变差,并对实施例4加热温度为425℃进行扫描电镜实验,扫描电镜图如图2所示,并绘制了实施例4加热温度为425℃时的模型图如图3所示,可见此种方式制备的银纳米颗粒SERS基底表面的银纳米颗粒之间有间隙,且间隙在5-20nm之间。
以上实施例仅为本发明的示例性实施例,不用于限制本发明,本发明的保护范围由权利要求书限定。本领域技术人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或等同替换也应视为落在本发明的保护范围内。

Claims (7)

1.一种表面负载银纳米颗粒的SERS基底的制备方法,其特征在于:包括如下步骤:
步骤1:镀银膜石英基底的制备;
步骤2:将步骤1制备的镀银膜石英基底放置于马弗炉中,加热温度保持为350-450℃,升温速率控制在1-10℃/min,加热时间控制在2-60min;
步骤3:将步骤2得到的镀银膜石英衬底置于空气中自然冷却,即得到负载银纳米颗粒的SERS基底;
所述步骤1的具体制备方法为:将干净的石英衬底在丙酮、乙醇、超纯水中分别清洗2-4次,在石英衬底上沉积Ag膜,并采用厚度检测器对Ag膜厚度进行检测,最终控制Ag膜厚度为10-800nm。
2.根据权利要求1所述的一种表面负载银纳米颗粒的SERS基底的制备方法,其特征在于,所述步骤1中采用电子束沉积(EBD FU-12PEB)沉积Ag膜。
3.根据权利要求2所述的一种表面负载银纳米颗粒的SERS基底的制备方法,其特征在于,所述步骤1中采用电子束沉积法沉积Ag膜时的速率为1-10A/s。
4.根据权利要求1所述的一种表面负载银纳米颗粒的SERS基底的制备方法,其特征在于,所述步骤2中马弗炉加热温度保持在420-425℃。
5.根据权利要求1所述的一种表面负载银纳米颗粒的SERS基底的制备方法,其特征在于,所述步骤2中马弗炉设置的升温速率为5-10℃/min。
6.根据权利要求1所述的一种表面负载银纳米颗粒的SERS基底的制备方法,其特征在于,所述步骤2中马弗炉设置加热时间为5-30min。
7.根据权利要求1所述的一种表面负载银纳米颗粒的SERS基底的制备方法,其特征在于,所述步骤2中负载的银纳米颗粒之间间隙在5-20nm之间。
CN202210084593.9A 2022-01-25 2022-01-25 一种表面负载银纳米颗粒的sers基底的制备方法 Active CN114507846B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210084593.9A CN114507846B (zh) 2022-01-25 2022-01-25 一种表面负载银纳米颗粒的sers基底的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210084593.9A CN114507846B (zh) 2022-01-25 2022-01-25 一种表面负载银纳米颗粒的sers基底的制备方法

Publications (2)

Publication Number Publication Date
CN114507846A true CN114507846A (zh) 2022-05-17
CN114507846B CN114507846B (zh) 2023-06-20

Family

ID=81549200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210084593.9A Active CN114507846B (zh) 2022-01-25 2022-01-25 一种表面负载银纳米颗粒的sers基底的制备方法

Country Status (1)

Country Link
CN (1) CN114507846B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127098A (ja) * 1994-11-02 1996-05-21 Mitsui Toatsu Chem Inc 反射体
US20070155021A1 (en) * 2005-12-29 2007-07-05 Intel Corporation Modification of metal nanoparticles for improved analyte detection by surface enhanced Raman spectroscopy (SERS)
JP2009031023A (ja) * 2007-07-25 2009-02-12 Keio Gijuku 表面増強ラマン分光分析用基板の作成方法、マイクロtasの製造方法、及び、マイクロtas
CN103203465A (zh) * 2013-04-02 2013-07-17 陕西师范大学 银纳米颗粒的制备方法
CN103934472A (zh) * 2014-04-10 2014-07-23 陕西师范大学 一种电场辅助退火制备银微纳米颗粒的方法
CN104132921A (zh) * 2014-07-07 2014-11-05 华南师范大学 一种基于化学气相沉积制备表面拉曼增强活性基底的方法
AU2015200030A1 (en) * 2007-03-20 2015-01-29 Becton, Dickinson And Company Assays using surface-enhanced Raman spectroscopy (SERS)-active particles
CN104692827A (zh) * 2015-02-02 2015-06-10 华南师范大学 一种Ag-SiO2-Ag纳米球阵列的制备方法
CN106442460A (zh) * 2016-09-05 2017-02-22 山东师范大学 一种金@银纳米颗粒/金字塔形硅三维拉曼增强基底及制备方法和应用
CN106770157A (zh) * 2016-11-23 2017-05-31 国家纳米科学中心 一种表面增强拉曼基底及其制备方法
CN107142453A (zh) * 2017-04-25 2017-09-08 上海理工大学 一种基于银纳米颗粒的复合紫外增强薄膜及其制备方法
CN108893714A (zh) * 2018-06-05 2018-11-27 中国科学院上海硅酸盐研究所 一种高密度Ag纳米柱表面增强拉曼散射衬底的制备方法
US20200400579A1 (en) * 2019-06-19 2020-12-24 Tsinghua University Flexible paper-based surface-enhanced raman scattering substrate and method for preparing same
CN112626473A (zh) * 2020-12-08 2021-04-09 中建材蚌埠玻璃工业设计研究院有限公司 一种sers基底材料的制备方法以及sers基底材料

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127098A (ja) * 1994-11-02 1996-05-21 Mitsui Toatsu Chem Inc 反射体
US20070155021A1 (en) * 2005-12-29 2007-07-05 Intel Corporation Modification of metal nanoparticles for improved analyte detection by surface enhanced Raman spectroscopy (SERS)
AU2015200030A1 (en) * 2007-03-20 2015-01-29 Becton, Dickinson And Company Assays using surface-enhanced Raman spectroscopy (SERS)-active particles
JP2009031023A (ja) * 2007-07-25 2009-02-12 Keio Gijuku 表面増強ラマン分光分析用基板の作成方法、マイクロtasの製造方法、及び、マイクロtas
CN103203465A (zh) * 2013-04-02 2013-07-17 陕西师范大学 银纳米颗粒的制备方法
CN103934472A (zh) * 2014-04-10 2014-07-23 陕西师范大学 一种电场辅助退火制备银微纳米颗粒的方法
CN104132921A (zh) * 2014-07-07 2014-11-05 华南师范大学 一种基于化学气相沉积制备表面拉曼增强活性基底的方法
CN104692827A (zh) * 2015-02-02 2015-06-10 华南师范大学 一种Ag-SiO2-Ag纳米球阵列的制备方法
CN106442460A (zh) * 2016-09-05 2017-02-22 山东师范大学 一种金@银纳米颗粒/金字塔形硅三维拉曼增强基底及制备方法和应用
CN106770157A (zh) * 2016-11-23 2017-05-31 国家纳米科学中心 一种表面增强拉曼基底及其制备方法
CN107142453A (zh) * 2017-04-25 2017-09-08 上海理工大学 一种基于银纳米颗粒的复合紫外增强薄膜及其制备方法
CN108893714A (zh) * 2018-06-05 2018-11-27 中国科学院上海硅酸盐研究所 一种高密度Ag纳米柱表面增强拉曼散射衬底的制备方法
US20200400579A1 (en) * 2019-06-19 2020-12-24 Tsinghua University Flexible paper-based surface-enhanced raman scattering substrate and method for preparing same
CN112626473A (zh) * 2020-12-08 2021-04-09 中建材蚌埠玻璃工业设计研究院有限公司 一种sers基底材料的制备方法以及sers基底材料

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
DAN JIANG等: "Ag films annealed in a nanoscale limited area for surface-enhanced Raman scattering detection", vol. 25, pages 1 - 7 *
万军鹏: "玻璃表面镀膜方法简介" *
万军鹏;: "玻璃表面镀膜方法简介", 玻璃, no. 11, pages 49 - 52 *
徐进之;满石清;刘应亮;: "低对称性SiO_2/Ag核壳复合纳米结构的银镜反应制备及表面增强拉曼散射活性研究", 材料导报, no. 12 *
徐进之等: "低对称性SiO2/Ag核壳复合纳米结构的银镜反应制备及表面增强拉曼散射活性研究", no. 12, pages 112 - 115 *
林建平;兰慧琴;吴杨微;关贵清;赖发春;: "不同基底上银薄膜的光电学性质研究", 光电子.激光, vol. 24, no. 01, pages 87 - 92 *
林建平;关贵清;宋萌萌;张芳;黄光彩;: "真空退火对AAO模板上Ag纳米颗粒膜SERS光谱的影响", 宁德师范学院学报(自然科学版), vol. 25, no. 01, pages 17 - 19 *
林建平等: "不同基底上银薄膜的光电学性质研究" *
林建平等: "真空退火对AAO模板上Ag纳米颗粒膜SERS光谱的影响" *

Also Published As

Publication number Publication date
CN114507846B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
Li et al. Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering
CN108226137B (zh) 一种柔性、透明的二硫化钼@银颗粒/三维金字塔结构pmma sers基底的制备方法及应用
Gupta et al. Au-spotted zinc oxide nano-hexagonrods structure for plasmon-photoluminescence sensor
CN105651756B (zh) 用于放大拉曼信号的拉曼增强基底及其制备方法和应用
CN108982474B (zh) 一种基于金属-介质复合等离激元共振结构的表面增强拉曼活性基底及其制备方法
WO2010088726A1 (en) Fabrication of nanoparticles on solid surfaces
US10429308B2 (en) Carrier for Raman spectroscopy and method of manufacturing the same
CN104789939A (zh) 一种表面增强拉曼散射基底及其制备方法
CN112505019B (zh) 基于双金属纳米叠层表面增强拉曼散射基底的制备方法
Li et al. Graphene-coated Si nanowires as substrates for surface-enhanced Raman scattering
Toma et al. Pushing the surface-enhanced Raman scattering analyses sensitivity by magnetic concentration: a simple non core–shell approach
CN104259475A (zh) 一种纳米银/石墨烯衍生物表面增强拉曼基体的制备方法
WO2022116484A1 (zh) 一种表面增强拉曼散射检测基底、系统及其制备方法和其在癌症诊断中的应用
Zheng et al. Application progress of nanoporous gold in analytical chemistry
Feng et al. Deposition of gold nanoparticles upon bare and indium tin oxide film coated glass based on annealing process
Cao et al. Atomic-layer-deposition assisted formation of wafer-scale double-layer metal nanoparticles with tunable nanogap for surface-enhanced Raman scattering
CN111411335B (zh) 一种大面积分布的Ag@SiO2纳米粒子的制备方法及应用
Bian et al. Flexible Ag SERS substrate for non-destructive and rapid detection of toxic materials on irregular surface
Juine et al. Surfactant-free green synthesis of ZnS QDs with active surface defects for selective nanomolar oxalic acid colorimetric sensors at room temperature
Tao et al. A spontaneously formed plasmonic-MoTe2 hybrid platform for ultrasensitive Raman enhancement
CN109115746B (zh) 一种表面增强拉曼活性基底及其制备方法
Zhao et al. Silica cladding of Ag nanoparticles for high stability and surface-enhanced Raman spectroscopy performance
Vo et al. Nanosilver-embedded silicon nanowires as a SERS-active substrate for the ultrasensitive detection of monoamine neurotransmitters
CN114507846A (zh) 一种表面负载银纳米颗粒的sers基底的制备方法
Liu et al. Induced SERS activity in Ag@ SiO2/Ag core‐shell nanosphere arrays with tunable interior insulator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant