CN107142453A - 一种基于银纳米颗粒的复合紫外增强薄膜及其制备方法 - Google Patents

一种基于银纳米颗粒的复合紫外增强薄膜及其制备方法 Download PDF

Info

Publication number
CN107142453A
CN107142453A CN201710277557.3A CN201710277557A CN107142453A CN 107142453 A CN107142453 A CN 107142453A CN 201710277557 A CN201710277557 A CN 201710277557A CN 107142453 A CN107142453 A CN 107142453A
Authority
CN
China
Prior art keywords
film
quartz substrate
layer
silver nano
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710277557.3A
Other languages
English (en)
Inventor
陶春先
阮俊
马守宝
张大伟
洪瑞金
韩朝霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201710277557.3A priority Critical patent/CN107142453A/zh
Publication of CN107142453A publication Critical patent/CN107142453A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本发明是为了解决荧光单层薄膜在紫外波段发光效率很低的问题而进行的。本发明提供的基于银纳米颗粒的复合紫外增强薄膜的制备方法,包括以下步骤:步骤一,将石英衬底进行清洗后烘干;步骤二,利用真空热蒸发在石英衬底上形成一层银纳米薄膜,银纳米薄膜的厚度为10~25nm;步骤三,将附着银纳米薄膜的石英衬底在马弗炉中进行退火处理,退火温度为200~350℃退火10~15分钟,银纳米薄膜在石英衬底上转化为银纳米颗粒层;步骤四,利用电子束蒸发在银纳米颗粒层上制备SiO2薄膜层,SiO2薄膜的厚度为10~25nm;以及步骤五,通过热阻蒸发在SiO2薄膜层上制备荧光薄膜层,荧光薄膜层的厚度为10~25nm,制备得到附着在石英衬底上的复合紫外增强薄膜。

Description

一种基于银纳米颗粒的复合紫外增强薄膜及其制备方法
技术领域
本发明涉及一种基于银纳米颗粒的复合紫外增强薄膜及其制备方法。
背景技术
荧光在照明、生物医疗、食品安全、以及环境物质勘测方面有非常广泛的用途。如利用蛋白质的内源荧光对蛋白质的结构和性质以及含量变化进行探测,将荧光物质如ANS结合蛋白质并作为荧光探针对蛋白质的构像进行检测;利用荧光特性对含有一定毒性的合成食品色素的等食品添加剂进行检测;利用三维荧光光谱法对原油及石油产品进行了光谱指纹的鉴别等等。为了实现对荧光材料的高灵敏探测,除了需要灵敏度较高的荧光探测器之外,对荧光材料的量子效率和光稳定性都具有较高的要求。但多数的荧光材料的发光效率非常低,因此需要采取一种有效的方法来提高荧光材料的发光强度。
发明内容
本发明是为了解决荧光(Lumogen)单层薄膜在紫外波段发光效率很低的问题而进行的,目的在于提供一种基于银纳米颗粒的复合紫外增强薄膜及其制备方法。
本发明提供了一种基于银纳米颗粒的复合紫外增强薄膜的制备方法,具有这样的特征,包括以下步骤:步骤一,将石英衬底进行清洗后烘干;步骤二,利用真空热蒸发在石英衬底上形成一层银纳米薄膜,银纳米薄膜的厚度为10~25nm;步骤三,将附着银纳米薄膜的石英衬底在马弗炉中进行退火处理,退火温度为200~350℃退火10~15分钟,银纳米薄膜在石英衬底上转化为银纳米颗粒层;步骤四,利用电子束蒸发在银纳米颗粒层上制备SiO2薄膜层,SiO2薄膜的厚度为10~25nm;以及步骤五,通过热阻蒸发在SiO2薄膜层上制备荧光薄膜层,荧光薄膜层的厚度为10~25nm,制备得到附着在石英衬底上的复合紫外增强薄膜。
在本发明提供的复合紫外增强薄膜的制备方法中,还可以具有这样的特征:其中,在步骤一中,将石英衬底依次用去离子水、弱碱性清洗试剂进行超声波清洗,再经过无水乙醇与乙醚按照三七比的混合溶液进行浸泡,最后利用干燥箱烘干。
在本发明提供的复合紫外增强薄膜的制备方法中,还可以具有这样的特征:其中,在步骤二中,银纳米薄膜的沉积速率为0.2nm/s。
在本发明提供的复合紫外增强薄膜的制备方法中,还可以具有这样的特征:其中,在步骤四中,SiO2薄膜的蒸发速率为0.3nm/s。
在本发明提供的复合紫外增强薄膜的制备方法中,还可以具有这样的特征:其中,在步骤五中,荧光薄膜层的镀膜速率为0.2~0.5nm/s。
本发明还提供了一种基于银纳米颗粒的复合紫外增强薄膜,覆着在石英衬底上,具有这样的特征:复合紫外增强薄膜是采用上述方法制备得到。
发明的作用与效果
根据本发明所涉及的基于银纳米颗粒的复合紫外增强薄膜及其制备方法,因为先在石英衬底上涂覆银纳米薄膜,然后再将银纳米薄膜转化为银纳米颗粒层,所以本发明的基于银纳米颗粒的复合紫外增强薄膜可以利用银纳米颗粒层的局域表面等离子体共振效应,使得银纳米颗粒层周围的局域电场增强,从而增强了Lumogen荧光薄膜周围的局域激发场,增大了Lumogen荧光薄膜的激发效率,提高了Lumogen荧光薄膜的发射强度,进而增强有机发光材料在紫外波段的荧光效率。
附图说明
图1是本发明实施例中基于银纳米颗粒的复合紫外增强薄膜的结构示意图,其中1为熔融石英玻璃衬底,2为银纳米颗粒层,3为SiO2薄膜层,4为Lumogen荧光薄膜层;
图2是本发明实施例中的银纳米颗粒的扫描电镜图;以及
图3是本发明实施例中的350nm紫外激发下的基于银纳米颗粒的复合紫外增强薄膜以及单层Lumogen紫外增强薄膜的发射光谱。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,以下实施例结合附图对本发明基于银纳米颗粒的复合紫外增强薄膜及其制备方法作具体阐述。
<实施例>
步骤一,石英衬底的预处理
将石英衬底先用无水乙醇反复擦拭去除灰尘,然后分别经过去离子水、弱碱性清洗试剂的超声波清洗,再用体积比为3:7的无水乙醇与乙醚的混合溶液进行浸泡清洗,最后利用干燥箱烘干。
步骤二,制备银纳米薄膜
先在干净的石英衬底利用真空热蒸发进行银纳米薄膜的制备,并计算得出单克银膜料制备的薄膜厚度,在本实施例中单克银膜料制备的薄膜厚度为84nm。采用石英晶体监控方式对镀膜过程进行膜厚及速率的监控,将银薄膜的沉积速率控制在0.2nm/s,在衬底上形成一层厚度为10~25nm的银纳米薄膜,在本实施例中,银纳米薄膜的厚度为20nm。
步骤三,制备银纳米颗粒
将附着银纳米薄膜的石英衬底在马弗炉中进行退火处理,退火温度为200~350℃退火10分钟,银纳米薄膜在石英衬底上转化为银纳米颗粒层,在石英衬底上形成一层银纳米颗粒。
步骤四,SiO2薄膜层的制备
利用电子束蒸发在形成了银纳米颗粒层的石英衬底进行SiO2薄膜层的制备,SiO2薄膜的厚度为10~25nm。在本实施例中,SiO2薄膜的厚度为10nm。SiO2薄膜的蒸发速率为0.3nm/s,即、SiO2薄膜的镀制速率为0.3nm/s。SiO2薄膜把银纳米薄膜与荧光材料隔离,防止荧光淬灭。
步骤五,Lumogen荧光薄膜的制备
将制备荧光薄膜的材料通过热阻蒸发的方式镀膜到SiO2薄膜层上,镀膜速率控制在0.2~0.5nm/s,荧光薄膜层的厚度为10~25nm。在本实施例中,薄膜厚度为20nm,最终制备得到附着在石英衬底上的复合紫外增强薄膜。荧光薄膜的材料为Lumogen,可把紫外光转换为可见光。
图1是本发明实施例中基于银纳米颗粒的复合紫外增强薄膜的结构示意图,其中1为熔融石英玻璃衬底,2为银纳米颗粒层,3为SiO2薄膜层,4为Lumogen荧光薄膜层。
如图1所示,本实施例的基于银纳米颗粒的复合紫外增强薄膜附着在熔融石英玻璃衬底上,具有附着在石英衬底上的银纳米颗粒层、附着在该银纳米颗粒层上的SiO2薄膜层以及附着在该SiO2薄膜层是Lumogen荧光薄膜层。
图2是本发明实施例中的银纳米颗粒的扫描电镜图。
如图2所示,采用ZEISS SUPRA 55热场发射扫描电子显微镜对石英衬底上形成的银纳米颗粒进行表征。银纳米颗粒的粒径大小主要集中在140nm左右。
图3是本发明实施例中的350nm紫外激发下的基于银纳米颗粒的复合紫外增强薄膜以及单层Lumogen紫外增强薄膜的发射光谱。
如图3所示,在HORIBA Dual-FL荧光光谱仪系统中,在350nm紫外激发条件下对本实施例中的基于银纳米颗粒的复合紫外增强薄膜和Lumogen单层紫外激励荧光薄膜分别进行测试并得到对应的发射光谱。从图3中可以看出,基于银纳米颗粒的复合紫外增强薄膜和单层Lumogen荧光薄膜的峰值波长都位于534nm,但在基于银纳米颗粒的复合紫外增强薄膜,其荧光峰值为3176,而单层的Lumogen紫外荧光薄膜发射峰强度为755,荧光增强倍数达到4.2倍,可见基于银纳米颗粒的复合紫外增强薄膜的发光强度显著提高了。
实施例的作用与效果
根据本实施例所涉及的基于银纳米颗粒的复合紫外增强薄膜及其制备方法,因为先在石英衬底上涂覆银纳米薄膜,然后再将银纳米薄膜转化为银纳米颗粒层,所以本实施例的基于银纳米颗粒的复合紫外增强薄膜可以利用银纳米颗粒层的局域表面等离子体共振效应,使得银纳米颗粒层周围的局域电场增强,从而增强了Lumogen荧光薄膜周围的局域激发场,增大了Lumogen荧光薄膜的激发效率,提高了Lumogen荧光薄膜的发射强度,进而增强有机发光材料在紫外波段的荧光效率。
上述实施方式为本发明的优选案例,并不用来限制本发明的保护范围。

Claims (6)

1.一种基于银纳米颗粒的复合紫外增强薄膜的制备方法,其特征在于,包括以下步骤:
步骤一,将石英衬底进行清洗后烘干;
步骤二,利用真空热蒸发在所述石英衬底上形成一层银纳米薄膜,所述银纳米薄膜的厚度为10~25nm;
步骤三,将附着所述银纳米薄膜的所述石英衬底在马弗炉中进行退火处理,退火温度为200~350℃退火10~15分钟,所述银纳米薄膜在所述石英衬底上转化为银纳米颗粒层;
步骤四,利用电子束蒸发在所述银纳米颗粒层上制备SiO2薄膜层,所述SiO2薄膜的厚度为10~25nm;以及
步骤五,通过热阻蒸发在所述SiO2薄膜层上制备荧光薄膜层,所述荧光薄膜层的厚度为10~25nm,制备得到附着在所述石英衬底上的所述复合紫外增强薄膜。
2.根据权利要求1所述的复合紫外增强薄膜的制备方法,其特征在于:
其中,在步骤一中,将所述石英衬底依次用去离子水、弱碱性清洗试剂进行超声波清洗,再用体积比为3:7的无水乙醇与乙醚的混合溶液进行浸泡清洗,最后利用干燥箱烘干。
3.根据权利要求1所述的复合紫外增强薄膜的制备方法,其特征在于:
其中,在步骤二中,所述银纳米薄膜的沉积速率为0.2nm/s。
4.根据权利要求1所述的复合紫外增强薄膜的制备方法,其特征在于:
其中,在步骤四中,所述SiO2薄膜的蒸发速率为0.3nm/s。
5.根据权利要求1所述的复合紫外增强薄膜的制备方法,其特征在于:
其中,在步骤五中,所述荧光薄膜层的镀膜速率为0.2~0.5nm/s。
6.一种复合紫外增强薄膜,覆着在石英衬底上,其特征在于:
所述复合紫外增强薄膜是采用权利要求1~5中的任意一种方法制备得到。
CN201710277557.3A 2017-04-25 2017-04-25 一种基于银纳米颗粒的复合紫外增强薄膜及其制备方法 Pending CN107142453A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710277557.3A CN107142453A (zh) 2017-04-25 2017-04-25 一种基于银纳米颗粒的复合紫外增强薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710277557.3A CN107142453A (zh) 2017-04-25 2017-04-25 一种基于银纳米颗粒的复合紫外增强薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN107142453A true CN107142453A (zh) 2017-09-08

Family

ID=59774421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710277557.3A Pending CN107142453A (zh) 2017-04-25 2017-04-25 一种基于银纳米颗粒的复合紫外增强薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN107142453A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507846A (zh) * 2022-01-25 2022-05-17 中国科学院海洋研究所 一种表面负载银纳米颗粒的sers基底的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500679B2 (en) * 2001-03-15 2002-12-31 Yokogawa Electric Corporation Fluorescence-enhanced chip
CN102126834A (zh) * 2010-01-19 2011-07-20 同济大学 一种用于发光薄膜荧光增强的光学玻璃基片及其制备方法
CN102610685A (zh) * 2011-03-30 2012-07-25 郑州大学 用于太阳电池的新型等离子激元增强上转换器及其制备
CN103992796A (zh) * 2014-05-30 2014-08-20 盐城工学院 具有光增强功能黄色荧光粉的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500679B2 (en) * 2001-03-15 2002-12-31 Yokogawa Electric Corporation Fluorescence-enhanced chip
CN102126834A (zh) * 2010-01-19 2011-07-20 同济大学 一种用于发光薄膜荧光增强的光学玻璃基片及其制备方法
CN102610685A (zh) * 2011-03-30 2012-07-25 郑州大学 用于太阳电池的新型等离子激元增强上转换器及其制备
CN103992796A (zh) * 2014-05-30 2014-08-20 盐城工学院 具有光增强功能黄色荧光粉的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
金云姜等: "ZnO:Ag薄膜的结构对其紫外发光增强的研究", 《量子电子学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507846A (zh) * 2022-01-25 2022-05-17 中国科学院海洋研究所 一种表面负载银纳米颗粒的sers基底的制备方法

Similar Documents

Publication Publication Date Title
KR100999974B1 (ko) 일렉트로루미네센스 소자
CN103969241A (zh) 一种拉曼基底
CN103460807B (zh) 金属系颗粒集合体
Liu et al. Strong infrared laser ablation produces white-light-emitting materials via the formation of silicon and carbon dots in silica nanoparticles
US20150197687A1 (en) Photoluminescence-Enhanced Sandwich Structure of Luminescent Films and Method
CN104764732A (zh) 基于特异材料超吸收体的表面增强拉曼散射基底及其制备方法
US20190025217A1 (en) Carrier for raman spectroscopy and method of manufacturing the same
CN107142453A (zh) 一种基于银纳米颗粒的复合紫外增强薄膜及其制备方法
Srinivasan et al. A sensitive optical sensor based on DNA-labelled Si@ SiO _ 2 Si@ SiO 2 core–shell nanoparticle for the detection of Hg^ 2+ Hg 2+ ions in environmental water samples
CN104561901A (zh) 一种掺铊的碘化铯复合薄膜及其制备方法
WO2011022878A1 (zh) 发光元件、其制造方法及其发光方法
Olszowska et al. Zinc oxide quantum dots embedded in hydrophobic silica particles for latent fingermarks visualization based on time-gated luminescence measurements
Coxon et al. An abrupt switch between the two photoluminescence bands within alkylated silicon nanocrystals
EP1663470B1 (fr) Dispersion collodale d un phosphate de terre rare et son procede de preparation
WO2011022876A1 (zh) 发光元件、其制造方法及其发光方法
CN106770083B (zh) 一种三维光子晶体-等离激元模式增强荧光纳米结构及其制备方法和应用
Rocha et al. Eu (III) as a probe in titânia thin films: the effect of temperature
CN105419778A (zh) 一种含有石蜡的量子点复合材料及其制备方法
CN104911706B (zh) 一种超快闪烁ZnO薄膜的制备方法
TW594227B (en) Substrate with ITO coating film and manufacturing method thereof
JP2023020954A (ja) 複合粒子及びその製造方法、並びにセンサ素子
Chakrabarti et al. Preparation of hydroxide-free magnesium oxide films by an alkoxide-free sol–gel technique
Zhang et al. Luminescence of nanosized ZnO/polyaniline films prepared by self-assembly
Lee et al. Localized surface plasmon coupled photoluminescence of divalent europium complex with silver nanoparticles
CN110079298A (zh) 一种量子等离激元材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170908