WO2022116484A1 - 一种表面增强拉曼散射检测基底、系统及其制备方法和其在癌症诊断中的应用 - Google Patents

一种表面增强拉曼散射检测基底、系统及其制备方法和其在癌症诊断中的应用 Download PDF

Info

Publication number
WO2022116484A1
WO2022116484A1 PCT/CN2021/096129 CN2021096129W WO2022116484A1 WO 2022116484 A1 WO2022116484 A1 WO 2022116484A1 CN 2021096129 W CN2021096129 W CN 2021096129W WO 2022116484 A1 WO2022116484 A1 WO 2022116484A1
Authority
WO
WIPO (PCT)
Prior art keywords
enhanced raman
raman scattering
scattering detection
magnetic bead
substrate
Prior art date
Application number
PCT/CN2021/096129
Other languages
English (en)
French (fr)
Inventor
杜鲁涛
张成鹏
陈帅
李娟�
李雁儒
李培龙
王继来
史振宇
王传新
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to AU2021346298A priority Critical patent/AU2021346298B2/en
Publication of WO2022116484A1 publication Critical patent/WO2022116484A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the invention relates to the technical field of biological detection, in particular to a surface-enhanced Raman scattering detection substrate, a system, a preparation method thereof, and its application in the field of cancer diagnosis.
  • SERS Surface-enhanced Raman scattering
  • Pancreatic cancer is a malignant tumor of the digestive tract. It is difficult to diagnose and treat because of its non-obvious location. The five-year survival rate is less than 1%, and the morbidity and mortality are increasing year by year. The reason for the high mortality rate of pancreatic cancer is that the early diagnosis rate is low, and the early stage of cancer has a greater potential for cure. Therefore, improving the early diagnosis can greatly improve the survival rate of pancreatic cancer patients.
  • Glypican-1 GPC-1 (GPC-1) was shown to be a 100% specific tumor marker for pancreatic cancer, positive for both CD18/HPAF and MiaPACa exosomes, so GPC-1 as a pancreatic cancer-specific biomarker.
  • Chinese patent CN110118765A discloses the preparation of a SERS substrate and its application in cancer detection.
  • TiO2 precursor solution is added into the gap of spin-coated multi-layer polystyrene microspheres, and the microspheres are removed by annealing method.
  • a TiO2 inverse opal structure is obtained, and finally gold plating achieves Raman enhancement.
  • the preparation process of the SERS substrate in this patent is complicated and the structure is not uniform, and the exosomes purified from plasma are directly used in the patent, and there may be macromolecular proteins, which makes it difficult for signal analysis.
  • the application of surface-enhanced Raman scattering in the field of early diagnosis of cancer requires a clear distinction and contrast between the spectrum of normal people and the spectrum of cancer patients, and the detection system needs to have requirements such as high precision, high sensitivity, and high stability.
  • a surface-enhanced Raman scattering detection substrate, a system, a preparation method thereof, and an application in cancer diagnosis are provided.
  • the present invention provides a surface-enhanced Raman scattering detection substrate, which is arranged from bottom to top by a metal substrate, a pit structure, nano-silver particles, a graphene film and a functional magnetic bead system composition, in which the functional magnetic bead system falls into the pit structure.
  • the pit structure is arranged on the surface of the metal substrate, the nano silver particles are distributed on the surface of the pit structure, the surface of the nano silver particles is provided with graphene to form a graphene film, and the functional magnetic bead system falls into the above-mentioned pits.
  • the base structure of the present invention not only ensures the uniformity and order of the system, but also can generate more hot spots and improve the sensitivity of the system through the combination of silver nanoparticles, graphene films and functional magnetic bead systems.
  • the metal substrate can be a metal material currently known or judged according to its function or characteristic and can be used to make a surface-enhanced Raman scattering detection substrate.
  • the metal substrate may be a metal material with low hardness, which is convenient for imprinting, and a face-centered cubic metal with Raman enhancement function, such as gold, silver, copper, and the like.
  • the pit structures (which may also be referred to as pit limiting structures in the present invention) have a uniform structure and shape, and are all microlens structures; in some embodiments of the present invention , when there is more than one dimple structure, an array of dimple structure is formed, which is linearly and uniformly distributed on the surface of the metal substrate.
  • the functional magnetic bead system includes immunofunctional magnetic beads, and the immunofunctional magnetic beads have uniform particle size and adjustable size.
  • the immunofunctional magnetic beads The particle size range is 200nm-3 ⁇ m.
  • the functional magnetic bead system can detect tumor markers.
  • the functional magnetic bead system may include immunofunctional magnetic beads, exosomes, 4-mercaptobenzene Formic acid (4-MBA) and nano-silver particles, the structure of which is immune function magnetic beads-exosome-4-MBA@nano-silver particles.
  • the immunofunctional magnetic beads in the functional magnetic bead system can be streptavidin magnetic beads.
  • the carboxyl group in 4-MBA is activated and then connected to Glypican-1 (GPC-1, 100% to the pancreas) cancer-specific tumor marker) antibody, which can form a surface-enhanced Raman scattering label (SERS label), and immunofunctional magnetic beads are combined with the antibody.
  • GPC-1 Glypican-1
  • SERS label surface-enhanced Raman scattering label
  • immunofunctional magnetic beads are combined with the antibody.
  • streptavidin magnetic beads are combined with CD -63 antibody binds to form CD-63 functionalized magnetic beads and captures exosomes.
  • SERS labeling and exosome-captured CD-63 functionalized magnetic beads form a functional magnetic bead system.
  • the pit structure array has a limiting effect on the functional magnetic bead system, which can ensure the uniformity and order of the distribution of the functional magnetic bead system, and reduce the surface-enhanced Raman scattering detection substrate. Random error during detection; the diameter of the pit structure and the spacing between the pit structures can be adjusted according to the particle size of the functional magnetic bead system, so that the functional magnetic bead system is only distributed in the pit structure, and only distributed in a single pit structure A functional magnetic bead system.
  • the diameter of the pit structure is 1.1-1.5 times the diameter of the magnetic bead, and the pitch of the pit structure array is 0.2-1.5 ⁇ m.
  • the silver nanoparticles are spherical, with uniform particle size and uniform distribution, with a particle size range of 10-100 nm, and no aggregation phenomenon.
  • silver nanoparticles can be grown by hydrothermal methods.
  • the graphene thin film is formed on the surface of the silver nanoparticle with a uniform thickness, and its thickness is 10-60 nm.
  • the arrangement of the pit array can ensure that the distribution of the magnetic bead system has uniformity and order, and reduce the random error of the detection system; the nano-silver particles on the surface of the pit structure and the graphene film distributed thereon can play the role of To the effect of multiple enhancement, both electric field enhancement (EM) and chemical enhancement (CM) are produced, resulting in higher sensitivity.
  • EM electric field enhancement
  • CM chemical enhancement
  • the surface-enhanced Raman scattering detection substrate of the invention has a uniform structure and good enhancement performance, can better cooperate with the specific functional magnetic bead system, and can be quickly, sensitively, and accurately applied to the early diagnosis of cancer.
  • the present invention provides a method for preparing the surface-enhanced Raman scattering detection substrate described in the first aspect, comprising: transferring a pit structure array to a metal substrate, The substrate is subjected to plasma treatment, and then the nano-silver particles are distributed on the surface of the pit structure array, and graphene is distributed on the surface of the nano-silver particles of the pit structure array to form a graphene film, and functional magnetic beads are further distributed on the graphene film. system.
  • the method can use the metal hot embossing technology to transfer the pit structure array to the metal substrate, perform plasma treatment on the metal substrate, and then use the hydrothermal method to grow the nano-silver particles on the pit structure. and spin-coating graphene on the surface of the nano-silver particles of the pit structure array to form a graphene film, further distributing the functional magnetic bead system on the graphene film by a blade coating process, and removing the excess magnetic beads on the surface.
  • the metal hot embossing technology to transfer the pit structure array to the metal substrate, perform plasma treatment on the metal substrate, and then use the hydrothermal method to grow the nano-silver particles on the pit structure. and spin-coating graphene on the surface of the nano-silver particles of the pit structure array to form a graphene film, further distributing the functional magnetic bead system on the graphene film by a blade coating process, and removing the excess magnetic beads on the surface.
  • the imprinting speed in the method for preparing a surface-enhanced Raman scattering detection substrate, in the metal hot imprinting process, the imprinting speed is 150-1000 r/min, and the imprinting gap is 0.1-1000 r/min. 0.3mm, the roller temperature is 0 ⁇ 100°C; in the spin coating process, the spin coating speed is 10 ⁇ 400r/min; in the blade coating process, the blade coating speed is 0.1 ⁇ 100mm/s.
  • the present invention provides a method for preparing a functional magnetic bead system, the functional magnetic bead system can be used in conjunction with a surface-enhanced Raman scattering detection substrate, for example, especially suitable for use in the first aspect of the present invention
  • a surface-enhanced Raman scattering detection substrate for example, especially suitable for use in the first aspect of the present invention
  • the surface-enhanced Raman scattering detection substrate is not limited to bea surface-enhanced Raman scattering detection substrate.
  • the method includes combining silver nanoparticles with 4-MBA, followed by N-hydroxysuccinimide (NHS) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC) ) activate the carboxyl group of 4-MBA, connect GPC-1 antibody on 4-MBA to form SERS label, then take streptavidin magnetic beads and combine with CD-63 antibody to form CD-63 functionalized magnetic beads, and capture Exosomes: Incubate the SERS labeling with the functionalized magnetic beads after capturing the exosomes, purify the magnetic beads with a magnetic stand, and obtain a functional magnetic bead system after washing.
  • NHS N-hydroxysuccinimide
  • EDC 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide
  • the preparation method of the invention is simple, efficient and highly ordered, and is especially suitable for preparing a large-area surface-enhanced Raman scattering detection substrate.
  • the present invention provides the application of the surface-enhanced Raman scattering detection substrate described in the first aspect above in preparing a detection system for diagnosing cancer, especially in early diagnosis of cancer.
  • the surface-enhanced Raman scattering detection substrate is particularly suitable for early diagnosis of pancreatic cancer.
  • the present invention provides a surface-enhanced Raman scattering detection system for early diagnosis of pancreatic cancer, which includes the surface-enhanced Raman scattering detection substrate described in the first aspect.
  • the present invention obtains a highly ordered microlens pit array through metal hot embossing technology, which is simple in process, excellent in efficiency and highly ordered; It can not only realize electric field enhancement, but also realize chemical enhancement, and can also isolate the contact between silver nanoparticles and air, slow down the oxidation speed, and improve the service life; through the signal amplification effect of nanoparticles and graphene films, the microlens pits
  • the limiting effect of the structure on the functional magnetic bead system and the specific expression of the functional magnetic bead system make the surface-enhanced Raman scattering detection substrate of the present invention and the detection system comprising the substrate useful in cancer detection and diagnosis, especially in the early diagnosis of pancreatic cancer.
  • the structure and preparation method of the surface-enhanced Raman scattering detection substrate of the present invention are particularly suitable for preparing a large-area surface-enhanced Raman scattering detection substrate.
  • FIG. 1 is a cross-sectional view of a surface-enhanced Raman scattering detection substrate in one or more embodiments of the present invention
  • FIG. 2 is a flow chart of the preparation of a surface-enhanced Raman scattering detection substrate in one or more embodiments of the present invention
  • FIG. 3 is a top view of a scanning electron microscope photograph of a functional magnetic bead system (preparation example 1) prepared by the present invention
  • Fig. 1 and Fig. 2 110-metal substrate; 120-dimple structure array; 130-nanometer silver particle; 140-graphene film; 150-functional magnetic bead system.
  • reagents or raw materials used in the present invention can be purchased through conventional channels. Unless otherwise specified, the reagents or raw materials used in the present invention are used in a conventional manner in the art or in accordance with product instructions. In addition, any methods and materials similar or equivalent to those described can be used in the methods of the present invention. Unless otherwise specified, materials with the same names in the examples are regarded as the same materials, and are not affected by the order of the examples. Methods and materials for preferred embodiments described herein are provided for illustrative purposes only.
  • the present invention provides a surface-enhanced Raman scattering detection substrate, the structure of which can be shown in FIG. 1 , including a metal substrate 110, a pit structure array 120, and silver nanoparticles. 130.
  • the graphene film 140 and the functional magnetic bead system 150 or composed of the above structures. Among them, the immunofunctional magnetic bead system falls into the pit structure array.
  • the surface-enhanced Raman scattering detection substrate can be used for early diagnosis of cancer, for example, in some embodiments of the present invention, can be used for early diagnosis of pancreatic cancer.
  • the metal substrate is a face-centered cubic metal, such as gold, silver, copper, etc., which has a low hardness, is convenient for imprinting, and has a Raman-enhancing function.
  • the pit structures are uniform in shape and are all microlens structures, and their diameter is 1.1-1.5 times the diameter of the magnetic bead. In some preferred embodiments, the diameter of the pit structures is 1.5 times the diameter (particle size) of the immunofunctional magnetic beads; in some embodiments, the pit structures are uniformly distributed, and are distributed in a linear array on the surface of the metal substrate with a spacing of 0.2-1.5 ⁇ m.
  • the confinement effect of the pit structure on the functional magnetic bead system can ensure the uniformity and order of the distribution of the functional magnetic bead system, reduce the random error in the detection of the surface-enhanced Raman scattering detection substrate, and enhance the detection stability of the substrate. In some embodiments of the present invention, when the diameter of the pit structure and the pitch of the pits are too large or too small, the uniform order of the substrate is affected, and the error and accuracy of the surface-enhanced Raman scattering detection are increased.
  • the silver nanoparticles are spherical, with uniform particle size and distribution, with a particle size range of 10-100 nm, and no aggregation phenomenon; in some preferred embodiments, the particle size range is 30-70nm.
  • silver nanoparticles can be grown directly on the surface of the pit structure by a hydrothermal method.
  • graphene is spin-coated on the surface of silver nanoparticles to form a graphene film with a uniform thickness, the thickness of which is 10-60 nm. If it is too thick or too thin, it is difficult to achieve the double-layer enhancement effect with the silver nanoparticles, which will affect the signal enhancement effect. In some preferred embodiments, the thickness is 10-40 nm.
  • the immunofunctional magnetic beads used in the functional magnetic bead system are uniform in particle size and adjustable in size, ranging from 200 nm to 3 ⁇ m.
  • the present invention provides a method for preparing a surface-enhanced Raman scattering detection substrate, the steps of which include: metal hot embossing process, hydrothermal growth of silver nanoparticles, spin-coating graphite
  • the olefin film and the functional magnetic bead system can be operated as shown in FIG. 2 to obtain a uniform substrate that can be directly tested by Raman.
  • the preparation method includes: obtaining a uniform microlens pit array 120 on the surface of the metal substrate 110 by using a hot embossing technique, performing plasma treatment on the copper sheet, and applying a hydrothermal method to A layer of silver nanoparticles 130 is grown on the inner surface of the pit structure, and then a layer of graphene film 140 is coated on the surface by a spin coating process, and finally the functional magnetic bead system 150 is scraped into the pit structure array.
  • the imprinting speed in the method for preparing a surface-enhanced Raman scattering detection substrate, in the metal hot imprinting process, is 150-1000 r/min, and the imprinting gap is 0.1-1000 r/min. 0.3mm, the roller temperature is 0 ⁇ 100°C; in some embodiments, the imprinting speed can be 150 ⁇ 500r/min or 500 ⁇ 1000r/min, the imprinting gap is 0.1 ⁇ 0.3mm, and the roller temperature is 50 ⁇ 100°C Or 0 ⁇ 50°C.
  • the spin coating speed is 10-400 r/min; in some embodiments, the spin coating The speed can be 10-200r/min or 200-400r/min.
  • the blade coating speed is 0.1-100 mm/s; in some embodiments, the blade coating The speed may be 0.1 to 3 mm/s or 3 to 50 mm/s or 3 to 100 mm/s.
  • a functional magnetic bead system the structure of which is immunofunctional magnetic beads-exosome-4-MBA@nano-silver particles, obtained by the following steps: combining the nano-silver particles and 4-MBA, and then activating 4-MBA with NHS and EDC
  • the carboxyl group of GPC-1 antibody is attached to it to form a SERS marker.
  • streptavidin magnetic beads (2 ⁇ m in diameter) were combined with CD-63 antibody to form CD-63 functionalized magnetic beads and capture exosomes.
  • the SERS labeling and the functional magnetic beads after capturing exosomes were mixed and incubated, the magnetic beads were purified by a magnetic stand, and the functional magnetic bead system was obtained after washing.
  • the top view of its scanning electron microscope photo is shown in Figure 3.
  • a surface-enhanced Raman scattering detection substrate is prepared by the following steps: obtaining a uniform microlens pit structure array 120 on the surface of a metal substrate 110 (copper sheet) by using a hot embossing technique, and performing plasma treatment on the copper sheet, A layer of silver nanoparticles 130 is grown on the inner surface of the pit structure by a hydrothermal method, then a layer of graphene film 140 is coated on the surface by a spin coating process, and finally the functional magnetic bead system 150 (prepared in Example 1) is scraped-coated Into the pit structure array, obtain a uniform substrate that can be directly tested by Raman.
  • the imprinting speed is 150r/min, the imprinting gap is 0.1mm, and the roller temperature is 100°C; in the spin coating process, the spin coating speed is 200r/min; in the blade coating process, the blade The coating speed was 3mm/s.
  • the diameter of the pit structure is 1.5 times the diameter of the magnetic bead (2 ⁇ m in diameter), the depth is 1.8 ⁇ m, and the spacing is 0.5 ⁇ m; the diameter of the silver nanoparticles is 50 nm. ;
  • the graphene film thickness is 10 nm.
  • a surface-enhanced Raman scattering detection substrate compared with Example 2, the difference is that the thickness of the graphene film is 20 nm.
  • a surface-enhanced Raman scattering detection substrate compared with Example 2, the difference is that the thickness of the graphene film is 30nm.
  • a surface-enhanced Raman scattering detection substrate compared with Example 4, the difference is that the thickness of the graphene film is 40 nm.
  • a surface-enhanced Raman scattering detection substrate which is different from Example 4 in that the diameter of the magnetic beads is 3 ⁇ m.
  • a surface-enhanced Raman scattering detection substrate is different from Example 4 in that the thickness of the graphene film is 20 nm and the diameter of the magnetic bead is 3 ⁇ m.
  • a surface-enhanced Raman scattering detection substrate is different from Example 4 in that the thickness of the graphene film is 30 nm and the diameter of the magnetic bead is 3 ⁇ m.
  • a surface-enhanced Raman scattering detection substrate for early diagnosis of pancreatic cancer is different from Example 4 in that the thickness of the graphene film is 40 nm and the diameter of the magnetic bead is 3 ⁇ m.
  • a surface-enhanced Raman scattering detection substrate compared with Example 4, the difference is that there is no microlens pit array, silver nanoparticles and graphene film in the substrate.
  • a surface-enhanced Raman scattering detection substrate compared with Example 4, differs in that there are no silver nanoparticles and graphene films in the substrate.
  • a surface-enhanced Raman scattering detection substrate is different from Example 4 in that there is no graphene film in the substrate.
  • the surface-enhanced Raman detection substrates in the above preparation examples and comparative examples were used as detection systems for detection. Five points were selected from the samples of the above preparation and comparative examples (surface-enhanced Raman scattering detection substrates) for Raman testing, and the presence of disease was determined by detecting 4-MBA in the functional magnetic bead system. During detection, the laser wavelength was 633 nm, the excitation power was 1 mW, and the integration time was 5 s. The enhancement factors of different preparation examples and comparative examples were calculated according to the peak intensity at 1594 cm -1 .
  • Figure 4 is a Raman spectrum of a cancer patient.
  • the upper curve is the spectrum obtained by the functional magnetic bead system in the surface-enhanced Raman scattering detection system
  • the lower curve is the spectrum obtained by the functional magnetic bead system on a glass slide.
  • the surface-enhanced Raman scattering detection system The peak intensity at 1594 cm -1 of the Mann scattering detection system is 3.5 times that of the glass slide, so the sensitivity of the surface-enhanced Raman scattering detection system is considered to be higher.
  • Table 1 is a statistical table of relative standard deviation (RSD) of the surface-enhanced Raman detection system for early diagnosis of pancreatic cancer prepared in Examples 2-9 and Comparative Examples 1-3 to detect basal enhancement factor (EF) and multi-point test of the same sample.
  • RSD relative standard deviation
  • EF basal enhancement factor

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种表面增强拉曼散射检测基底、系统及其制备方法和在癌症诊断中的应用,表面增强拉曼散射检测基底由金属基材(110)、凹坑结构(120)、纳米银颗粒(130)、石墨烯薄膜(140)和功能磁珠体系(150)自下而上排布组成,其中功能磁珠体系(150)落入凹坑结构(120)之中。该表面增强拉曼散射检测基底能够用于癌症早期诊断,精度高、准确性好、灵敏度高。

Description

一种表面增强拉曼散射检测基底、系统及其制备方法和其在癌症诊断中的应用 技术领域
本发明涉及生物检测技术领域,具体涉及一种表面增强拉曼散射检测基底、系统及其制备方法和其在癌症诊断领域中的应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
表面增强拉曼散射(SERS)可以通过贵金属颗粒或结构、氧化物涂层等将常规拉曼信号放大至10 7以上,又因为其具有特异指纹峰、检测迅速、成本较低、待测样品不需复杂处理等优势,成为倍受关注的检测方法,并已经广泛应用于生物医学、食品安全、环境污染等领域。
胰腺癌是一种消化道恶性肿瘤,因其发病位置不外显,诊断和治疗十分困难,而且预后五年存活率小于1%,且发病率和死亡率逐年上升。导致胰腺癌的死亡率较高的原因是早期的确诊率较低,而癌症的早期阶段具有较大的治愈潜力,因此提升早期的确诊可以大大提升胰腺癌患者的生存率。磷脂酰肌醇蛋白多糖-1(GPC-1)被证明是是一种100%对胰腺癌特异的肿瘤标记物,与CD18/HPAF和MiaPACa的外泌体都呈阳性,因此可以将GPC-1作为胰腺癌特异性生物标记物。
中国专利CN110118765A公开了一种SERS基底的制备及其在癌症检测方面的应用,该专利通过在旋涂的多层聚苯乙烯微球间隙中加入TiO 2前驱液,并利用退火方法去掉微球,获得TiO 2反蛋白石结构,最后镀金实现拉曼增强。但是发明人发现,该专利中的SERS基底制备过程复杂,结构不均匀,且专利中直接使用血浆中提纯的外泌体,可能存在高分子蛋白质,为信号分析产生了困难。中国专利CN110412291A一种构建SERS光谱探针检测乳腺癌标志物EGFR磷酸化酪氨酸的方法,制备了Au@4-MBA@Ag纳米粒子胶体探针,连接DNA单链,并通过DNA间相互作用连接到金板上进行检测,发明人发现,该专利虽然对外泌体进行了修饰,但是工艺过程复杂,且以光滑金板为基底,只能实现SERS探针体系的随机二维组装,无法实现SERS探针的有序分布,因此对检测的稳定性和有序性有所损坏。
发明内容
表面增强拉曼散射应用在癌症早期诊断领域,要求正常人的光谱与癌症病人的光谱具有明确的区分对比,且检测系统需要具有高精度、高灵敏度、高稳定性等要求,为此,本发明提供了一种表面增强拉曼散射检测基底、系统及其制备方法和其在癌症诊断中的应用。
在本发明的第一方面,本发明提供了一种表面增强拉曼散射检测基底,其由金属基材、凹坑结构、纳米银颗粒、石墨烯薄膜和功能磁珠体系自下而上排布组成,其中,功能磁珠体系落入凹坑结构之中。其中,凹坑结构设置在金属基材的表面,凹坑结构表面分布有纳米银颗粒,纳米银颗 粒表面设置有石墨烯形成石墨烯薄膜,而功能磁珠体系落入上述设置后的凹坑之内。本发明的基底结构既保证了系统的均匀性和有序性,而且通过银纳米颗粒、石墨烯薄膜与功能磁珠体系的结合,可以产生更多热点,提升系统的灵敏度。
其中,所述金属基材可采用目前已知或根据功能或特性判断可用于制作表面增强拉曼散射检测基底的金属材料。在本发明的一些实施方式中,所述的金属基材可以为硬度较低,方便压印成型的金属材料,且具有拉曼增强功能的面心立方金属,如金、银、铜等。
在本发明的一个或多个实施方式中,所述凹坑结构(在本发明中也可称为凹坑限位结构)结构形状统一,均为微透镜结构;在本发明的一些实施方式中,当凹坑结构多于一个时组成凹坑结构阵列,其呈线性均匀分布在金属基材表面。
在本发明的一个或多个实施方式中,所述功能磁珠体系中包含免疫功能磁珠,免疫功能磁珠粒径均匀,尺寸可调,在本发明的一些实施方式中,免疫功能磁珠的粒径范围为200nm-3μm。
在本发明的实施方式中,所述功能磁珠体系能够检测肿瘤标记物,在本发明的一些实施方式中,所述功能磁珠体系可以包括免疫功能磁珠、外泌体、4-巯基苯甲酸(4-MBA)和纳米银颗粒,其结构为免疫功能磁珠-外泌体-4-MBA@纳米银颗粒。功能磁珠体系中的免疫功能磁珠比如可以为链霉亲和素磁珠。
在本发明提供的检测胰腺癌的实施方式中,本发明所述功能磁珠体系 中,4-MBA中的羧基被激活后连接磷脂酰肌醇蛋白多糖-1(GPC-1,100%对胰腺癌特异的肿瘤标记物)抗体,可形成表面增强拉曼散射标记(SERS标记),免疫功能磁珠与抗体结合,比如在本发明的一些实施方式中,取链霉亲和素磁珠与CD-63抗体结合,形成CD-63功能化磁珠并捕获外泌体,SERS标记与捕获外泌体的CD-63功能化磁珠组成功能磁珠体系。通过检测该体系中的4-MBA可以判断外泌体是否连接上GPC-1抗体,从而判断检测样本是否为胰腺癌的早期患者。
在本发明的一个或多个实施方式中,凹坑结构阵列对于功能磁珠体系具有限位作用,可以保证功能磁珠体系的分布具有均匀性和有序性,减少表面增强拉曼散射检测基底检测时的随机误差;凹坑结构的直径和凹坑结构间的间距可以根据功能磁珠体系的粒径调整,使得功能磁珠体系仅分布于凹坑结构中,并且单个凹坑结构中仅分布一个功能磁珠体系。比如,在本发明的一些实施方式中,凹坑结构的直径为磁珠直径的1.1-1.5倍,凹坑结构阵列的间距为0.2-1.5μm。
在本发明的一个或多个实施方式中,银纳米颗粒为类球形,粒径均匀且分布均匀,粒径范围为10-100nm,无聚集现象。在一些实施方式中,银纳米颗粒可以通过水热法生长。
在本发明的一个或多个实施方式中,石墨烯薄膜在银纳米颗粒上表面形成,厚度均匀,其厚度为10-60nm。
在本发明中,凹坑阵列的设置能够保证磁珠体系的分布具有均匀性和有序性,减少检测系统的随机误差;凹坑结构表面的纳米银颗粒和其上分 布的石墨烯薄膜可以起到多重增强的作用,既产生了电场增强(EM),又产生了化学增强(CM),从而具有更高的灵敏度。
本发明的表面增强拉曼散射检测基底结构均匀、增强性能好,能够与特异性功能磁珠体系更好地配合,能够更快更灵敏更精密准确的应用于癌症的早期诊断。
在本发明的第二方面,本发明提供了一种制备上述第一方面中所述的表面增强拉曼散射检测基底的方法,其包括:将凹坑结构阵列转移到金属基材上,对金属基材进行等离子体处理,然后将纳米银颗粒分布在凹坑结构阵列表面,并在凹坑结构阵列的纳米银颗粒表面上分布石墨烯形成石墨烯薄膜,进一步在石墨烯薄膜上分布功能磁珠体系。
进一步地,所述方法可采用将金属热压印技术将凹坑结构阵列转移到金属基材上,对金属基材进行等离子体处理,然后将采用水热法使纳米银颗粒生长在凹坑结构阵列表面,并在凹坑结构阵列的纳米银颗粒表面上旋涂石墨烯形成石墨烯薄膜,进一步通过刮涂工艺在石墨烯薄膜上分布功能磁珠体系,并去除表面多余磁珠。当然,本领域内,其他容易想到的能够实现本发明所述表面增强拉曼散射检测基底中各组成部分排布方式的方法均应视为落入本发明的范围。
在本发明的一个或多个实施方式中,所述制备表面增强拉曼散射检测基底的方法中,在金属热压印过程中,压印速度为150~1000r/min,压印间隙为0.1~0.3mm,辊子温度为0~100℃;在旋涂工艺中,旋涂速度为10~400r/min;在刮涂工艺中,刮涂速度为0.1~100mm/s。
在本发明的第三方面,本发明提供了一种制备功能磁珠体系的方法,该功能磁珠体系可与表面增强拉曼散射检测基底配合使用,比如,尤其适用于本发明第一方面中所述的表面增强拉曼散射检测基底。所述方法包括:将纳米银颗粒和4-MBA结合,然后用N-羟基琥珀酰亚胺(NHS)和1-(3-二甲氨基丙基)-3-乙基碳二亚胺(EDC)激活4-MBA的羧基,在4-MBA上连接GPC-1抗体,形成SERS标记,再取链霉亲和素磁珠与CD-63抗体结合,形成CD-63功能化磁珠,并捕获外泌体;将SERS标记与捕获外泌体后的功能化磁珠混匀孵育,用磁力架将磁珠提纯,清洗后获得功能磁珠体系。
本发明的制备方法简单,效率高,且高度有序,尤其适合制备大面积的表面增强拉曼散射检测基底。
在本发明的第四方面,本发明提供了上述第一方面中所述的表面增强拉曼散射检测基底在制备用于诊断癌症尤其是在癌症早期诊断的检测系统中的应用。在本发明的一些实施方式中,采用本发明所述功能磁珠体系时,所述的表面增强拉曼散射检测基底特别适用于胰腺癌早期的诊断。
在本发明的第五方面,本发明提供了一种用于胰腺癌早期诊断的表面增强拉曼散射检测系统,其包括上述第一方面所述的表面增强拉曼散射检测基底。
与现有技术相比,本发明通过金属热压印技术获得高度有序的微透镜凹坑阵列,工艺简便、效率优异、高度有序;银纳米颗粒和石墨烯薄膜的配合具有双层增强的功能,既能实现电场增强,又能实现化学增强,而且 还能隔绝银纳米颗粒与空气的接触,减缓氧化速度,提升使用寿命;通过纳米颗粒和石墨烯薄膜的信号放大作用,微透镜凹坑结构对功能磁珠体系的限位作用,功能磁珠体系的特异性表达,使得本发明的表面增强拉曼散射检测基底及包含该基底的检测系统在癌症检测与诊断尤其胰腺癌早期诊断中具有高精度、高均匀性、出错率低、稳定性好等优点;尤其,本发明的表面增强拉曼散射检测基底的结构和制备方法特别适合制备大面积的表面增强拉曼散射检测基底。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。以下,结合附图来详细说明本发明的实施方案,其中:
图1为本发明一个或多个实施例中的表面增强拉曼散射检测基底的剖视图;
图2为本发明一个或多个实施例中的表面增强拉曼散射检测基底的制备流程图;
图3为本发明制备的功能磁珠体系(制备例1)的扫描电子显微镜照片顶视图;
图4为本发明的功能磁珠体系(制备例1)分别在本发明表面增强拉曼散射检测系统(制备例2)获得的拉曼光谱图(上方曲线)和在载玻片上获得的拉曼增强光谱图(下方曲线);
其中,图1和图2中,110-金属基材;120-凹坑结构阵列;130-纳米 银颗粒;140-石墨烯薄膜;150-功能磁珠体系。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。
除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。本发明所使用的试剂或原料均可通过常规途径购买获得,如无特殊说明,本发明所使用的试剂或原料均按照本领域常规方式使用或者按照产品说明书使用。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。如无特殊说明,实施例中具有相同命名的材料视为相同的材料,不因实施例的排序而受到影响。文中所述的较佳实施方法与材料仅作示范之用。
在本发明的一个或多个实施方式中,本发明提供了一种表面增强拉曼散射检测基底,其结构可以如图1所示,包括金属基材110、凹坑结构阵列120、银纳米颗粒130、石墨烯薄膜140和功能磁珠体系150,或由上述结构构成。其中,免疫功能磁珠体系落入凹坑结构阵列中。该表面增强拉曼散射检测基底可用于癌症早期诊断,比如,在本发明的一些实施方式中,可用于胰腺癌早期诊断。
在本发明的一个或多个实施方式中,所述金属基材为硬度较低,方便压印成型,且具有拉曼增强功能的面心立方金属,如金、银、铜等。
在本发明的一个或多个实施方式中,凹坑结构形状统一,均为微透镜结 构,其直径为磁珠直径的1.1-1.5倍,在一些优选地实施方式中,凹坑结构的直径为免疫功能磁珠直径(粒径)的1.5倍;在一些实施方式中,凹坑结构分布均匀,呈线性阵列分布在金属基材表面,间距为0.2-1.5μm。凹坑结构对功能磁珠体系的限位作用能够保证功能磁珠体系的分布具有均匀性和有序性,减少表面增强拉曼散射检测基底检测时的随机误差,增强基底的检测稳定性。在本发明的一些实施方式中,当凹坑结构的直径以及凹坑的间距过大或过小均影响基底的均匀有序性,增加表面增强拉曼散射检测时的误差和精度。
在本发明的一个或多个实施方式中,银纳米颗粒为类球形,粒径均匀且分布均匀,粒径范围为10-100nm,无聚集现象;在一些优选的实施方式中,该粒径范围为30-70nm。比如,银纳米颗粒可以通过水热法直接在凹坑结构表面生长。
在本发明的一个或多个实施方式中,石墨烯在银纳米颗粒上表面旋涂形成厚度均匀的石墨烯薄膜,其厚度为10-60nm。过厚或过薄都难以实现其与纳米银颗粒的双层增强作用,影响信号增强效果。在一些优选地实施方式中,该厚度为10-40nm。
在本发明的一个或多个实施方式中,功能磁珠体系所用的免疫功能磁珠粒径均匀,尺寸可调,范围为200nm-3μm。
在本发明的一个或多个实施方式中,本发明提供了制备一种表面增强拉曼散射检测基底的方法,其步骤包括:金属热压印过程、水热法生长银纳米颗粒、旋涂石墨烯薄膜、刮涂功能磁珠体系,在一些实施方式中,可以如图 2中所示流程进行操作获得可以直接进行拉曼测试的均匀基底。在一些更为具体地实施方式中,所述制备方法包括:在金属基材110表面采用热压印技术获得均匀的微透镜凹坑阵列120,对铜片进行等离子体处理,采用水热法在凹坑结构内表面生长一层银纳米颗粒130,然后利用旋涂工艺在表面再涂覆一层石墨烯薄膜140,最后将功能磁珠体系150刮涂进入凹坑结构阵列中。
在本发明的一个或多个实施方式中,所述制备表面增强拉曼散射检测基底的方法中,在金属热压印过程中,压印速度为150~1000r/min,压印间隙为0.1~0.3mm,辊子温度为0~100℃;在一些实施方式中,压印速度可以为150~500r/min或者500~1000r/min,压印间隙为0.1~0.3mm,辊子温度为50~100℃或者0~50℃。
在本发明的一个或多个实施方式中,所述制备表面增强拉曼散射检测基底的方法中,在旋涂工艺中,旋涂速度为10~400r/min;在一些实施方式中,旋涂速度可以为10-200r/min或者200~400r/min。
在本发明的一个或多个实施方式中,所述制备表面增强拉曼散射检测基底的方法中,在刮涂工艺中,刮涂速度为0.1~100mm/s;在一些实施方式中,刮涂速度可以为0.1~3mm/s或者3~50mm/s或者3~100mm/s。
以下将选取本发明实施方式中的若干个进行示例性展示。
制备例1
一种功能磁珠体系,其结构为免疫功能磁珠-外泌体-4-MBA@纳米银颗粒,通过以下步骤获得:纳米银颗粒和4-MBA结合,然后用NHS和EDC激活4-MBA的羧基,在其上连接GPC-1抗体,形成SERS标记。再取链霉 亲和素磁珠(直径2μm)与CD-63抗体结合,形成CD-63功能化磁珠,并捕获外泌体。将SERS标记与捕获外泌体后的功能磁珠混匀孵育,用磁力架将磁珠提纯,清洗后获得功能磁珠体系。其扫描电子显微镜照片顶视图如图3所示。
制备例2
一种表面增强拉曼散射检测基底,其通过如下步骤制备:在金属基材110(铜片)表面采用热压印技术获得均匀的微透镜凹坑结构阵列120,对铜片进行等离子体处理,采用水热法在凹坑结构内表面生长一层银纳米颗粒130,然后利用旋涂工艺在表面再涂覆一层石墨烯薄膜140,最后将功能磁珠体系150(实施例1制备)刮涂进入凹坑结构阵列中,获得可以直接进行拉曼测试的均匀基底。在金属热压印过程中,压印速度为150r/min,压印间隙为0.1mm,辊子温度为100℃;在旋涂工艺中,旋涂速度为200r/min;在刮涂工艺中,刮涂速度为3mm/s。
其中,表面增强拉曼散射检测基底中微透镜凹坑结构阵列中,凹坑结构直径为磁珠直径(直径2μm)的1.5倍,深度为1.8μm,间距为0.5μm;银纳米颗粒直径为50nm;石墨烯薄膜厚度为10nm。
制备例3
一种表面增强拉曼散射检测基底,与实施例2相比,不同之处在于,石墨烯薄膜厚度为20nm。
制备例4
一种表面增强拉曼散射检测基底,与实施例2相比,不同之处在于,石 墨烯薄膜厚度为30nm。
制备例5
一种表面增强拉曼散射检测基底,与实施例4相比,不同之处在于,石墨烯薄膜厚度为40nm。
制备例6
一种表面增强拉曼散射检测基底,与实施例4相比,不同之处在于,磁珠直径为3μm。
制备例7
一种表面增强拉曼散射检测基底,与实施例4相比,不同之处在于,石墨烯薄膜厚度为20nm,磁珠直径为3μm。
制备例8
一种表面增强拉曼散射检测基底,与实施例4相比,不同之处在于,石墨烯薄膜厚度为30nm,磁珠直径为3μm。
制备例9
一种用于胰腺癌早期诊断的表面增强拉曼散射检测基底,与实施例4相比,不同之处在于,石墨烯薄膜厚度为40nm,磁珠直径为3μm。
对比例1
一种表面增强拉曼散射检测基底,与实施例4相比,不同之处在于,基底中无微透镜凹坑阵列、银纳米颗粒和石墨烯薄膜。
对比例2
一种表面增强拉曼散射检测基底,与实施例4相比,不同之处在于,基 底中无银纳米颗粒和石墨烯薄膜。
对比例3
一种表面增强拉曼散射检测基底,与实施例4相比,不同之处在于,基底中无石墨烯薄膜。
实施例1
以上述制备例和对比例中的表面增强拉曼检测基底作为检测系统进行检测。从上述制备例以及对比例的样品(表面增强拉曼散射检测基底)上选取五个点进行拉曼测试,通过对功能磁珠体系中的4-MBA进行检测,判断是否患病。检测时,激光波长633nm,激发功率1mW,积分时间5s,并根据1594cm -1处的峰强计算不同制备例和对比例的增强因子。图4是癌症病人的拉曼光谱图,上方的曲线是功能磁珠体系在表面增强拉曼散射检测系统获取的光谱,下方的曲线是功能磁珠体系在载玻片上获得的光谱,表面增强拉曼散射检测系统1594cm -1处的峰强是载玻片的3.5倍,从而认为表面增强拉曼散射检测系统的灵敏度更高。
表1是实施例2-9、对比例1-3制备的胰腺癌早期诊断的表面增强拉曼检测系统检测基底增强因子(EF)以及同一样品多点测试的相对标准偏差(RSD)统计表。表面增强拉曼检测系统检测基底增强因子(EF)越高,可认为检测系统更灵敏;相对标准偏差越低,可认为检测系统的精密度越高。
表1胰腺癌早期诊断的表面增强拉曼检测系统检测基底EF以及RSD统计表
Figure PCTCN2021096129-appb-000001
Figure PCTCN2021096129-appb-000002
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种表面增强拉曼散射检测基底,其结构由金属基材、凹坑结构、纳米银颗粒、石墨烯薄膜和功能磁珠体系自下而上排布组成,其中功能磁珠体系落入凹坑结构之中。
  2. 根据权利要求1所述的表面增强拉曼散射检测基底,其特征在于,所述凹坑结构为微透镜结构,当其多于一个时组成阵列分布在金属基材表面。
  3. 根据权利要求1所述的表面增强拉曼散射检测基底,其特征在于,所述功能磁珠体系中包含免疫功能磁珠,单个凹坑结构中仅分布一个免疫功能磁珠。
  4. 根据权利要求1所述的表面增强拉曼散射检测基底,其特征在于,所述功能磁珠体系中包括免疫功能磁珠、外泌体、4-MBA和纳米银颗粒。
  5. 一种制备权利要求1至4中任一项所述的表面增强拉曼散射检测基底的方法,其包括:将凹坑结构阵列转移到金属基材上,对金属基材进行等离子体处理,然后将纳米银颗粒分布在凹坑结构阵列表面,并在凹坑结构阵列的纳米银颗粒表面上分布石墨烯形成石墨烯薄膜,进一步在石墨烯薄膜上分布功能磁珠体系。
  6. 根据权利要求5所述的方法,其特征在于,所述方法包括:采用将金属热压印技术将凹坑结构阵列转移到金属基材上,对金属基材进行等离子体处理,然后将采用水热法使纳米银颗粒生长在凹坑结构阵列表面,并在凹坑结构阵列的纳米银颗粒表面上旋涂石墨烯形成石墨烯薄膜,进一步通过刮涂工艺在石墨烯薄膜上分布功能磁珠体系,并去除表面多余磁 珠。
  7. 根据权利要求5或6所述的方法,其特征在于,所述功能磁珠体系的制备方法包括:将纳米银颗粒和4-MBA结合,然后用NHS和EDC激活4-MBA的羧基,在4-MBA上连接GPC-1抗体,形成SERS标记,再取链霉亲和素磁珠与CD-63抗体结合,形成CD-63功能化磁珠,并捕获外泌体;将SERS标记与捕获外泌体后的功能化磁珠混匀孵育,用磁力架将磁珠提纯,清洗后获得功能磁珠体系。
  8. 权利要求1至4中任一项所述的表面增强拉曼散射检测基底在制备用于诊断癌症的检测系统中的应用。
  9. 根据权利要求8所述的应用,其特征在于,所述癌症为胰腺癌,尤其为胰腺癌早期。
  10. 一种用于胰腺癌早期诊断的表面增强拉曼散射检测系统,其包括权利要求1至4中任一项所述的表面增强拉曼散射检测基底。
PCT/CN2021/096129 2020-12-02 2021-05-26 一种表面增强拉曼散射检测基底、系统及其制备方法和其在癌症诊断中的应用 WO2022116484A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021346298A AU2021346298B2 (en) 2020-12-02 2021-05-26 Surface-enhanced Raman scattering detection substrate, system, preparation method thereof and application in cancer diagnosis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011394373.3A CN112666148B (zh) 2020-12-02 2020-12-02 一种表面增强拉曼散射检测基底、系统及其制备方法和其在癌症诊断中的应用
CN202011394373.3 2020-12-02

Publications (1)

Publication Number Publication Date
WO2022116484A1 true WO2022116484A1 (zh) 2022-06-09

Family

ID=75400934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096129 WO2022116484A1 (zh) 2020-12-02 2021-05-26 一种表面增强拉曼散射检测基底、系统及其制备方法和其在癌症诊断中的应用

Country Status (3)

Country Link
CN (1) CN112666148B (zh)
AU (1) AU2021346298B2 (zh)
WO (1) WO2022116484A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990489A (zh) * 2022-06-15 2022-09-02 安徽农业大学 一种有序的金@银纳米颗粒@氢氧化钴纳米花阵列的制备方法及应用
CN116879257A (zh) * 2023-05-12 2023-10-13 重庆工商大学 用于病原微生物定量检测的sers芯片及其制备方法和应用
CN117607121A (zh) * 2023-11-10 2024-02-27 元珵科技(北京)有限公司 一种生物组织拉曼光谱扫描专用载玻片

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112666148B (zh) * 2020-12-02 2022-03-29 山东大学 一种表面增强拉曼散射检测基底、系统及其制备方法和其在癌症诊断中的应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103785492A (zh) * 2014-02-25 2014-05-14 重庆大学 基于pdms三维微纳天线的表面增强拉曼散射微流控系统
WO2014080519A1 (ja) * 2012-11-26 2014-05-30 独立行政法人産業技術総合研究所 ナノカーボンを用いた臨床検査
CN103969241A (zh) * 2014-05-20 2014-08-06 中国科学技术大学 一种拉曼基底
CN104730059A (zh) * 2015-03-18 2015-06-24 苏州大学 一种点阵列表面增强拉曼基底及制备方法
CN107037032A (zh) * 2017-05-31 2017-08-11 厦门大学 一种快速制备大面积石墨烯/金属复合结构表面增强拉曼散射基底的方法
CN108519366A (zh) * 2018-04-10 2018-09-11 西安交通大学苏州研究院 利用基于石墨烯的复合衬底检测肽的方法
CN108956579A (zh) * 2018-10-30 2018-12-07 中国人民解放军国防科技大学 一种表面增强拉曼散射基底及其制备方法
CN109467043A (zh) * 2018-11-14 2019-03-15 重庆大学 一种集成微凹面镜的sers基底及其制备方法
CN110044869A (zh) * 2019-04-19 2019-07-23 山东大学 柔性表面增强拉曼检测基底及其制备方法与制备系统
CN112051254A (zh) * 2020-08-24 2020-12-08 长春理工大学 一种拉曼增强结构及其制备方法和应用
CN112666148A (zh) * 2020-12-02 2021-04-16 山东大学 一种表面增强拉曼散射检测基底、系统及其制备方法和其在癌症诊断中的应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208985A (ja) * 2010-03-29 2011-10-20 Panasonic Corp 生体分子検出方法
CN104949957A (zh) * 2015-04-07 2015-09-30 上海大学 嵌入式纳米点阵列表面增强拉曼活性基底及其制备方法
CN107300548B (zh) * 2017-06-19 2018-04-20 华中科技大学 一种柔性表面增强拉曼基底材料及制备方法和应用
CN108072643A (zh) * 2017-12-28 2018-05-25 厦门大学 一种基于数字微流控技术和表面增强拉曼散射技术的靶标检测方法及系统
CN108613959B (zh) * 2018-03-22 2020-03-24 苏州天际创新纳米技术有限公司 一种sers芯片及其制备方法
CN110044872B (zh) * 2019-05-10 2021-02-12 山东大学 一种表面增强拉曼基底及其制备方法与应用
CN111965156B (zh) * 2019-05-20 2023-10-13 万德辉 一种高增益表面拉曼散射装置及其制造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080519A1 (ja) * 2012-11-26 2014-05-30 独立行政法人産業技術総合研究所 ナノカーボンを用いた臨床検査
CN103785492A (zh) * 2014-02-25 2014-05-14 重庆大学 基于pdms三维微纳天线的表面增强拉曼散射微流控系统
CN103969241A (zh) * 2014-05-20 2014-08-06 中国科学技术大学 一种拉曼基底
CN104730059A (zh) * 2015-03-18 2015-06-24 苏州大学 一种点阵列表面增强拉曼基底及制备方法
CN107037032A (zh) * 2017-05-31 2017-08-11 厦门大学 一种快速制备大面积石墨烯/金属复合结构表面增强拉曼散射基底的方法
CN108519366A (zh) * 2018-04-10 2018-09-11 西安交通大学苏州研究院 利用基于石墨烯的复合衬底检测肽的方法
CN108956579A (zh) * 2018-10-30 2018-12-07 中国人民解放军国防科技大学 一种表面增强拉曼散射基底及其制备方法
CN109467043A (zh) * 2018-11-14 2019-03-15 重庆大学 一种集成微凹面镜的sers基底及其制备方法
CN110044869A (zh) * 2019-04-19 2019-07-23 山东大学 柔性表面增强拉曼检测基底及其制备方法与制备系统
CN112051254A (zh) * 2020-08-24 2020-12-08 长春理工大学 一种拉曼增强结构及其制备方法和应用
CN112666148A (zh) * 2020-12-02 2021-04-16 山东大学 一种表面增强拉曼散射检测基底、系统及其制备方法和其在癌症诊断中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU SHA, HUO YAPENG, KANG WEIJUN, GAO ZHIXIAN: "Recent advances in surface-enhanced Raman spectroscopy for the detection of tumor markers", SCIENCE BULLETIN, vol. 65, no. 15, 18 May 2020 (2020-05-18), CN , pages 1448 - 1462, XP055937469, ISSN: 0023-074X, DOI: 10.1360/TB-2019-0640 *
WANG ZHILE, ZONG SHENFEI, WANG YUJIE, LI NA, LI LANG, LU JU, WANG ZHUYUAN, CHEN BAOAN, CUI YIPING: "Screening and multiple detection of cancer exosomes using an SERS-based method", NANOSCALE, vol. 10, no. 19, 9 April 2018 (2018-04-09), United Kingdom , pages 9053 - 9062, XP055937473, ISSN: 2040-3364, DOI: 10.1039/C7NR09162A *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990489A (zh) * 2022-06-15 2022-09-02 安徽农业大学 一种有序的金@银纳米颗粒@氢氧化钴纳米花阵列的制备方法及应用
CN116879257A (zh) * 2023-05-12 2023-10-13 重庆工商大学 用于病原微生物定量检测的sers芯片及其制备方法和应用
CN117607121A (zh) * 2023-11-10 2024-02-27 元珵科技(北京)有限公司 一种生物组织拉曼光谱扫描专用载玻片

Also Published As

Publication number Publication date
CN112666148B (zh) 2022-03-29
AU2021346298A1 (en) 2022-06-16
CN112666148A (zh) 2021-04-16
AU2021346298B2 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
WO2022116484A1 (zh) 一种表面增强拉曼散射检测基底、系统及其制备方法和其在癌症诊断中的应用
Kahraman et al. Fundamentals and applications of SERS-based bioanalytical sensing
Zhao et al. Detection of foodborne pathogens by surface enhanced raman spectroscopy
Liu et al. Flexible surface‐enhanced Raman scattering substrates: A review on constructions, applications, and challenges
Hong et al. Nanobiosensors based on localized surface plasmon resonance for biomarker detection
Narayanan et al. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays
Yamazoe et al. Large-area surface-enhanced Raman spectroscopy imaging of brain ischemia by gold nanoparticles grown on random nanoarrays of transparent boehmite
Chan et al. SERS detection of biomolecules by highly sensitive and reproducible Raman-enhancing nanoparticle array
Godoy et al. Ultrasensitive inkjet-printed based SERS sensor combining a high-performance gold nanosphere ink and hydrophobic paper
US20160025634A1 (en) Composite Nanoparticle Structures for Chemical and Biological Sensing
US20130242297A1 (en) Substrate for optical sensing by surface enhanced raman spectroscopy (sers) and methods for forming the same
Wang et al. Tape‐imprinted hierarchical lotus seedpod‐like arrays for extraordinary surface‐enhanced Raman spectroscopy
CN109650325B (zh) 表面增强拉曼散射基底、制备方法及3d富集与检测方法
CN104502323A (zh) 一种透明柔性表面增强拉曼活性基底及其制备方法
Zhang et al. Gold nanoparticle (AuNP)-based surface-enhanced Raman scattering (SERS) probe of leukemic lymphocytes
CN111896523A (zh) 表面增强拉曼散射基底及其制备方法和应用
Jin et al. Lotus Seedpod Inspired SERS Substrates: A Novel Platform Consisting of 3D Sub‐10 nm Annular Hot Spots for Ultrasensitive SERS Detection
Lin et al. Rapid synthesis of a highly active and uniform 3-dimensional SERS substrate for on-spot sensing of dopamine
Wang et al. Detection of IL-8 in human serum using surface-enhanced Raman scattering coupled with highly-branched gold nanoparticles and gold nanocages
Mussi et al. Silver-coated silicon nanowire platform discriminates genomic DNA from normal and malignant human epithelial cells using label-free Raman spectroscopy
Allayla et al. Construction of insulin-like growth factor nanocomposite biosensor by Raman spectroscopy
Geng et al. A disposable paper-based hydrophobic substrate for highly sensitive surface-enhanced Raman scattering detection
Yang et al. Ultrasensitive multiplex SERS immunoassay based on porous Au–Ag alloy nanoparticle–amplified Raman signal probe and encoded photonic crystal beads
Jia et al. Fixed Escherichia coli bacterial templates enable the production of sensitive SERS-based gold nanostructures
Deng et al. Enhanced flow cytometry-based bead immunoassays using metal nanostructures

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021346298

Country of ref document: AU

Date of ref document: 20210526

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899527

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.02.2024)