CN114480475B - 一种鲜味物质丰富的重组条斑紫菜藻株及构建方法与应用 - Google Patents

一种鲜味物质丰富的重组条斑紫菜藻株及构建方法与应用 Download PDF

Info

Publication number
CN114480475B
CN114480475B CN202111633448.3A CN202111633448A CN114480475B CN 114480475 B CN114480475 B CN 114480475B CN 202111633448 A CN202111633448 A CN 202111633448A CN 114480475 B CN114480475 B CN 114480475B
Authority
CN
China
Prior art keywords
porphyra yezoensis
strain
recombinant
nyampd
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111633448.3A
Other languages
English (en)
Other versions
CN114480475A (zh
Inventor
王广策
何帮翔
郑阵兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Oceanology of CAS
Original Assignee
Institute of Oceanology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Oceanology of CAS filed Critical Institute of Oceanology of CAS
Priority to CN202111633448.3A priority Critical patent/CN114480475B/zh
Publication of CN114480475A publication Critical patent/CN114480475A/zh
Application granted granted Critical
Publication of CN114480475B publication Critical patent/CN114480475B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8206Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated
    • C12N15/8207Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated by mechanical means, e.g. microinjection, particle bombardment, silicon whiskers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • C12Y305/04006AMP deaminase (3.5.4.6)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于海洋生物领域,具体涉及一种鲜味物质丰富的重组条斑紫菜藻株及构建方法与应用。将条斑紫菜内源性NyAMPD基因完整的CDS插入转化载体中,而后导入至条斑紫菜野生藻株中,即获得鲜味物质丰富的重组条斑紫菜藻株。本发明构建的鲜味物质丰富的重组条斑紫菜藻株是通过遗传转化实现NyAMPD在条斑紫菜藻株中的过表达,使重组后藻株的IMP含量得到显著提升,同时生长速度也显著加快,具有重要的经济价值。

Description

一种鲜味物质丰富的重组条斑紫菜藻株及构建方法与应用
技术领域
本发明属于海洋生物领域,具体涉及一种鲜味物质丰富的重组条斑紫菜藻株及构建方法与应用。
背景知识
条斑紫菜(Neopyropia yezoensis)是一种重要的大型经济海藻,其营养丰富、味道鲜美。条斑紫菜的鲜味主要来源于谷氨酸盐和肌苷5’-单核苷酸(IMP)两种物质,在谷氨酸盐饱和的情况下,IMP含量与紫菜鲜味呈线性关系。IMP是5’-单磷酸腺苷(AMP)在腺苷酸脱氨酶(AMPD)的催化下进行脱氨反应的直接产物。因此,提高AMPD基因的表达量,则有望提高IMP的含量从而提升紫菜的口感。
在紫菜采收过程中,最早收割的紫菜(称为头水紫菜)口感最好,往后口感依次递减。目前紫菜等大型海藻的良种选育大多采用自然选育和诱变育种等方式,尚无通过精准分子育种方式提升紫菜经济性状的报道。
发明内容
本发明提供了一种鲜味物质丰富的重组条斑紫菜藻株及构建方法与应用。
为获得上述藻株,本发明采用技术方案为:
一种鲜味物质丰富的重组条斑紫菜藻株的构建方法,将条斑紫菜内源性NyAMPD基因完整的CDS插入转化载体中,而后导入至条斑紫菜野生藻株中,即获得鲜味物质丰富的重组条斑紫菜藻株。
所述内源性NyAMPD基因的GenBank序列号为:AB599724.1;
所述遗传转化的初始载体的启动子为PyAct1,终止子为NOS。
所述遗传转化的初始载体为pEA7-NyAct1::AmCFP。
将条斑紫菜内源性NyAMPD基因完整的CDS替换初始载体中的报告基因AmCFP片段,使NyAMPD基因的完整CDS插入到转化载体的启动子和终止子之间获得NyAMPD过表达质粒,通过基因枪法将重组载体转入条斑紫菜野生型中,而后经过抗生素筛选,即得NyAMPD过表达重组条斑紫菜藻株。
所述NyAMPD过表达质粒包裹于金粉粒子上,利用基因枪将其轰击至条斑紫菜叶状体细胞。
所述的抗生素筛选过程是以含终浓度为1mg/ml潮霉素的培养基培养转化后材料,每星期换一次培养基,经过6-8周的筛选后,挑取存活单株材料分开培养用作后续验证。
所述DNA水平验证是收集存活单株培养的材料进行基因组DNA的提取和纯化,以此为模板进行PCR验证,对在目的片段处出现明亮单一条带的扩增样本进行DNA测序以确认。
所述RNA水平验证是收集阳性突变株材料,进行RNA的提取和cDNA反转,再通过荧光定量的方法测定NyAMPD基因的表达量。
所述生长速度测定是分别测量初始和培养3周后突变株与野生型的鲜重和叶片长、宽,用以衡量生长差异。
一种按所述方法通过高表达内源性腺苷酸脱氨酶(NyAMPD)构建获得鲜味物质丰富的重组条斑紫菜藻株。
一种所述鲜味物质丰富的重组条斑紫菜藻株在调控藻株生长中的应用。
本发明的优点:
本发明构建的鲜味物质丰富的重组条斑紫菜藻株是通过遗传转化实现NyAMPD在条斑紫菜藻株中的过表达,使重组后藻株的IMP含量得到显著提升,同时生长速度也显著加快,具有重要的经济价值。该重组株有望成为国际上大型海藻中首例通过分子精准育种获得的具有重要经济性状的优良品系。
附图说明
图1为本发明实施例提供的NyAMPD过表达重组载体菌液PCR电泳图。“1-5”泳道为NyAMPD过表达载体(2470bp),“M”泳道为Marker。
图2为本发明实施例提供的NyAMPD存活单株DNA水平验证电泳图,其中“1”泳道为阳性条带(2470bp)且经过DNA测序验证,“M”泳道为Marker。
图3为本发明实施例提供的AMD2-2藻株鲜重变化。“**”代表该组数据与野生型组数据存在极显著差异(p<0.01)。
图4为本发明实施例提供的AMD2-2叶片长、宽增长变化。“**”代表该组数据与野生型组数据存在极显著的差异(p<0.01),“*”代表该组数据与野生型组数据存在显著差异(p<0.05)。
图5为本发明实施例提供的AMD2-2鲜味物质IMP含量的变化。“**”代表该组数据与野生型组数据存在极显著的差异(p<0.01)。
具体实施方式
以下结合实例对本发明的具体实施方式做进一步说明,应当指出的是,此处所描述的具体实施方式只是为了说明和解释本发明,并不局限于本发明。
下述实施例中内源性NyAMPD基因的GenBank序列号为:AB599724.1。
实施例1
1.构建质粒:利用In-fusion cloning反应,将NyAMPD的CDS连接到pEA7-NyAct1::AmCFP初始载体的PyAct1启动子与NOS终止子之间,转至感受态,挑取阳性单克隆菌株进行提质粒和测序验证,获得过表达NyAMPD的重组质粒。具体步骤如下:
(1)初始载体线性化:利用PIV引物对(PIV-F:GAGCTCGAATT
TCCCCGATCG;PIV-R:GGATCCGGGCTTGCTCAT),以初始载体pEA7-NyAct1::AmCFP的菌液为模板,使用KOD OneTM PCR Master Mix(TOYOBO,日本)高保真反应体系进行PCR扩增,对扩增产物进行凝胶电泳和胶回收,胶回收按照Omega Bio-tek(美国)Gel Extraction Kit说明书进行,最终获得初始载体线性化产物;
(2)目标片段扩增:根据目标基因序列设计相应的带有15bp同源臂的引物对(AD-oF2:GTCACCTTCGCCACC ATGCTTTCCACCGCC
GTTG;AD-oR:GGGAAATTCGAGCTCTCAACCCGTCTTGCCATACGAC),以条斑紫菜cDNA为模板,使用KOD One高保真体系进行PCR扩增,对产物进行凝胶电泳和胶回收,获得目标片段产物;
(3)载体连接:利用无缝克隆技术(试剂盒:
Figure BDA0003441737960000031
HD Cloning Kit,TaKaRa,日本),将功能基因序列与初始载体中的AmCFP片段进行置换。反应体系10μL:线性化载体80ng,目的片段60ng,反应液2μL,剩余用ddH2O补足。金属浴50℃反应15min后置于冰上待用;
(4)感受态细胞转化:吸取50μL DH5-α感受态细胞,加入2μL步骤(3)反应液,冰上放置30min,42℃水浴90s,再冰上放置2min,加500μL无氨苄霉素的LB液体培养基,37℃,180转/分钟摇菌1h;
(5)涂板与单菌落挑取:吸取(4)所摇菌液100μL至含氨苄霉素的固体LB平板,均匀涂布(无菌操作),放置于37℃培养箱过夜培养。第二天若板中长出菌落,使用灭菌牙签无菌环境挑取单个菌落至1mL含氨苄霉素的液体培养基,摇菌4-6h;
(6)菌液PCR验证:使用Total验证引物对(表5-1),以步骤(5)所摇菌液为模板,使用南京诺唯赞2×Taq Master Mix(Dye Plus)体系进行PCR扩增,扩增产物进行凝胶电泳(参见图1);
(7)测序验证:每个载体选取2-3个条带大小正确的菌液,进行DNA测序验证,测序公司为上海生工,最终选择测序正确的重组质粒用于基因枪轰击。
2.微弹制备:
(1)称取30mg的金粉(直径约为0.6μm,伯乐,美国)至1.5mL无菌EP管中,加入1mL70%的乙醇,涡旋混匀3-5min,再静置15min,10000g离心5s,去除上清;
(2)向沉淀中加入1mL无菌双蒸水,涡旋1min,10000g离心1min,弃上清,重复此步骤3次;
(3)向洗涤后的金粉中加入500μL无菌甘油(50%浓度),快速涡旋混匀,使金粉浓度浓缩为60mg/mL,置于冰上待用;
(4)转移50μL(约为3mg)的金粉悬液至新的1.5mL EP管中,然后快速加入20μL亚精胺(0.1M),50μL氯化钙(2.5M)和10-20μg提取的目标质粒,涡旋混匀2-3min,静置1min,然后10000g离心2s,去除上清;
(5)向上述沉淀中加入140μL 70%的无水乙醇,10000g离心5s,去除上清;
(6)再加入140μL的无水乙醇,10000g离心5s,去除上清;
(7)加入48μL的无水乙醇,涡旋重悬2-3s,完成微弹的制备,置于冰上,尽快轰击。
3.基因枪轰击
(1)收集野生型条斑紫菜叶片,将其均匀铺至圆形玻璃纤维膜上(Whatman,英国),在轰击前用无尘纸在膜背面将多余海水吸干;
(2)将制备好的微弹涡旋混匀,取10μL平铺于载体膜上,风干后尽快轰击;
(3)按照基因枪操作方法,将载体膜、叶片膜等安装好,进行轰击,每个质粒轰击5次,一档2次,二挡2次,三挡1次,每次轰击完,及时将叶片刮下,置于新鲜培养基中(50mL细胞培养瓶含有约30mL培养基),做好标记;
(4)完成所有轰击后,将紫菜材料置于15℃培养箱遮光恢复培养。
4.抗生素筛选:对轰击后的紫菜叶片遮光恢复培养2天后,再转至正常光照下培养5-7天,然后更换培养基,并施加终浓度为1mg/ml的潮霉素(上海源叶),进行筛选。其后,每周更换一次培养基和潮霉素,筛选6-8周,直至有肉眼可见的存活叶片出现。
5.单株挑取:当筛选足够时间后,绝大多数数的紫菜叶片都发白死亡,而获得成功转化的潜在阳性株,因为能够表达潮霉素抗性基因而存活并逐渐长大。在筛选6-8周后,如果培养瓶中出现肉眼可见的存活叶片,则在倒置显微镜下及时挑取单个叶片至新鲜培养基,做好标记,置于15℃光照培养箱进行培养,以供后续验证。
6.DNA水平验证:当挑取的存活单株培养至一定密度时,对其进行基因组DNA的提取和PCR验证。基因组DNA的提取按照HP Plant DNA Kit(OMEGA)试剂盒的说明书进行。PCR反应采用2×Taq Master Mix(Dye Plus)(南京诺唯赞)预装反应液,验证引物为Total引物对(Total-F:CTGGCGTAATAGCGAAGAG;Total-R:TATGCGGC
ATCAGAGCA),该引物可以扩增包含PyAct1启动子、目标片段、NOS终止子的整个表达区域(参见图2)。经过凝胶电泳后,若条带大小正确,则对PCR产物进一步测序,以确认是否为目标突变株。
7.RNA水平验证:对经过基因组DNA验证正确的突变株,进行扩大培养,收集足够材料用于RNA水平的验证。RNA的提取按照RNAprep Pure Plant Kit(天根,中国)试剂盒说明书进行,RNA的反转录按照PrimeScriptTMRT reagent Kit with gDNA Eraser(PerfectReal Time)试剂盒说明书进行(TaKaRa,日本)。验证引物对为“F:TGCTCGCTCGTGTCCAACC;R:GCGACAGTGCCACCATCTCA”,内参引物对为18S rRNA(F:TGATAGTCCTGGGTCGGAAG;R:TGATGACCTGCGCCTACAAG)。使用iQTM5多色实时PCR检测系统(Bio-Rad,USA)进行qRT-PCR检测,试剂盒为Fast-Start-Essential-DNA-Green-Master(罗氏,瑞士)。反应体系总体积为20μL,含有以下组分:1μL cDNA模板、10μL 2×SYBR Green Master Mix、上下游引物每个1μL(10μmol/μL)和7μL不含RNase的水。程序设定如下:95℃10min,40个扩增循环反应(9510s,60℃15s,72℃25s),然后61个溶解循环(65℃30s)。每组设置3个计数重复,以熔融曲线分析确认扩增产物的特异性,相对表达量的计算采用2-ΔΔCt法。
结果显示重组条斑紫菜藻株(AMD2-2)NyAMPD基因表达量相较于野生型上调了8.03倍(参见表1)。
表1 NyAMPD阳性突变株RNA水平验证结果
Figure BDA0003441737960000051
由图1、图2和表1表明重组条斑紫菜藻株(AMPD2-2)是阳性过表达突变株,其目标基因NyAMPD的表达量得到显著提升。
对上述获得藻株进行性能测试:
1)生长速度测定:选择AMD2-2和野生型藻株,在250mL三角瓶,添加200mL培养基,每个瓶中添加20mg鲜重的叶状体,进行培养。温度设置为15℃,光照强度设置为20μmolphotons m-2s-1。每个培养瓶中,挑选最大的5片叶状体,测量其长度和宽度。每种藻株设置三个生物学重复。每星期更换新鲜培养基,分别测量初始和培养第3周藻体的鲜重、长度与宽度,统计鲜重变化和长宽增长情况。
2)IMP含量测定:选择AMD2-2和野生型藻株,采用HPLC法测定IMP含量,色谱仪为Rigol L3000高效液相色谱仪,色谱柱为Kromasil C18反相色谱柱(250mm*4.6mm,5μm),按以下步骤进行:
(1)样品提取:称取约0.1g鲜重的样本加入1mL乙酸水(pH=3)冰浴匀浆,超声1h,8000g离心15min,取上清液,针头试过滤器过滤后使用HPLC液相测定;
(2)流动相配制:0.4753g四丁基硫酸氢铵、1.36g磷酸二氢钾溶于980mL水加300μL磷酸和20mL甲醇;
(3)上样检测:进样量10μL,流速0.8mL/min,柱温25℃,走样时间为60min,紫外检测波长254nm;
(4)计算公式:IMP:y=6.6861x-0.0444;R2=0.9999;保留时间5.127min。
“y”为峰面积,“x”为样品含量(ug)。
测量显示AMD2-2藻株其生长速度和IMP都得到显著提升(参见图3-5)。
由图3-5所示,获得的NyAMPD阳性过表达突变株(AMPD2-2)的生长速度和鲜味物质IMP含量都显著提升,具有重要经济价值。

Claims (6)

1.一种鲜味物质丰富的重组条斑紫菜藻株的构建方法,其特征在于:将条斑紫菜内源性NyAMPD基因完整的CDS插入转化载体中,而后导入至条斑紫菜野生藻株中,即获得鲜味物质丰富的重组条斑紫菜藻株。
2.按权利要求1所述的鲜味物质丰富的重组条斑紫菜藻株的构建方法,其特征在于:所述内源性NyAMPD基因的GenBank序列号为:AB599724.1;
所述转化载体的启动子为PyAct1,终止子为NOS。
3.按权利要求2所述的鲜味物质丰富的重组条斑紫菜藻株的构建方法,其特征在于:所述转化载体为pEA7-NyAct1::AmCFP。
4.按权利要求1-3任意一项所述的鲜味物质丰富的重组条斑紫菜藻株的构建方法,其特征在于:将条斑紫菜内源性NyAMPD基因完整的CDS替换初始载体中的报告基因AmCFP片段,使NyAMPD基因的完整CDS插入到转化载体的启动子和终止子之间获得NyAMPD过表达质粒,通过基因枪法将重组载体转入条斑紫菜野生型中,而后经过抗生素筛选,即得NyAMPD过表达重组条斑紫菜藻株。
5.按权利要求4所述的鲜味物质丰富的重组条斑紫菜藻株的构建方法,其特征在于:所述NyAMPD过表达质粒包裹于金粉粒子上,利用基因枪将其轰击至条斑紫菜叶状体细胞。
6.一种权利要求1的方法构建的鲜味物质丰富的重组条斑紫菜藻株。
CN202111633448.3A 2021-12-29 2021-12-29 一种鲜味物质丰富的重组条斑紫菜藻株及构建方法与应用 Active CN114480475B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111633448.3A CN114480475B (zh) 2021-12-29 2021-12-29 一种鲜味物质丰富的重组条斑紫菜藻株及构建方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111633448.3A CN114480475B (zh) 2021-12-29 2021-12-29 一种鲜味物质丰富的重组条斑紫菜藻株及构建方法与应用

Publications (2)

Publication Number Publication Date
CN114480475A CN114480475A (zh) 2022-05-13
CN114480475B true CN114480475B (zh) 2023-05-30

Family

ID=81495116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111633448.3A Active CN114480475B (zh) 2021-12-29 2021-12-29 一种鲜味物质丰富的重组条斑紫菜藻株及构建方法与应用

Country Status (1)

Country Link
CN (1) CN114480475B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9818003D0 (en) * 1998-08-18 1998-10-14 Zeneca Ltd Polynucleotide sequences
CN105861408A (zh) * 2016-06-22 2016-08-17 安徽农业大学 发酵生产咖啡碱的工程菌、其构建方法及应用
TW201904444A (zh) * 2017-06-30 2019-02-01 銘友科技有限公司 褐藻類萃取物調味料之製造方法及使用該方法製成之調味料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19912636A1 (de) * 1999-03-20 2000-09-21 Aventis Cropscience Gmbh Bicyclische Heterocyclen, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide und pharmazeutische Mittel
WO2017180743A1 (en) * 2016-04-12 2017-10-19 Regents Of The University Of Colorado, A Body Corporate Targeting amp deaminase 2 for ameliorating craving for sugar and other substances
KR102368348B1 (ko) * 2016-05-31 2022-03-02 기꼬만 가부시키가이샤 핵산 함유 발효 조미료 및 그 제조 방법
CN111278297A (zh) * 2017-08-23 2020-06-12 三菱商事生命科学株式会社 调味料的制造方法
CN110747223A (zh) * 2019-11-29 2020-02-04 中国科学院海洋研究所 一种紫菜功能基因沉默的方法及其应用
CN110777162A (zh) * 2019-11-29 2020-02-11 中国科学院海洋研究所 一种紫菜功能基因过表达质粒的构建方法和应用
CN112342224B (zh) * 2020-11-24 2022-09-20 中国科学院海洋研究所 一种坛紫菜谷氨酸脱氢酶基因及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9818003D0 (en) * 1998-08-18 1998-10-14 Zeneca Ltd Polynucleotide sequences
CN105861408A (zh) * 2016-06-22 2016-08-17 安徽农业大学 发酵生产咖啡碱的工程菌、其构建方法及应用
TW201904444A (zh) * 2017-06-30 2019-02-01 銘友科技有限公司 褐藻類萃取物調味料之製造方法及使用該方法製成之調味料

Also Published As

Publication number Publication date
CN114480475A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
CN100486994C (zh) 硅藻的硝酸盐转运蛋白及其编码基因与应用
CN110511947B (zh) 草莓液泡加工酶编码基因FaVPE3及其应用
CN101942455B (zh) 甘蓝型油菜tt16基因家族及其应用
CN114480475B (zh) 一种鲜味物质丰富的重组条斑紫菜藻株及构建方法与应用
CN116640195B (zh) 柑橘CsPIF4基因及其编码的蛋白与应用
CN110951701B (zh) 茉莉酸-异亮氨酸羟基化酶编码基因片段及其沉默载体在提高马铃薯产量中的应用
CN107400671A (zh) 梨果实糖转运蛋白基因PbTMT4及其应用
Mühlbach et al. Contitions for optimal growth of a PSTV-infected potato cell suspension and detection of viroid-complementary longer-than-unit-length RNA in these cells
US20130097732A1 (en) Composition and Method for Prolonging the Shelf Life of Banana by Using Interfering RNA
CN116478260A (zh) 一种小麦糖转运蛋白、基因及其应用
CN114480486B (zh) 一种植物抗病毒rna沉默相关转录因子筛选方法及应用
CN110156883A (zh) 烟草SLs信号转导蛋白NtDAD2及其编码基因,重组表达载体、基因编辑载体及应用
CN105274135A (zh) 一种广泛用于多种植物基因沉默的RNAi载体及其应用
CN114703198A (zh) 一种番茄转运蛋白SlZIF1的克隆及其应用
CN103555716B (zh) 增强表达的内含子序列及其用途
CN105586347A (zh) 一种烟草干旱响应基因NtRDP1及其编码蛋白和应用
JP5164093B2 (ja) イネの病原菌に対する抵抗性を高める方法及び病原菌耐性イネ形質転換体
CN114807218B (zh) 一种转入外源基因来提高三角褐指藻藻种高温抗性的方法
CN114686516B (zh) 水稻马铃薯卷叶病毒2侵染性克隆及其构建方法和应用
CN117363631B (zh) Glyma.08g111100基因在鉴定大豆耐盐碱性中的应用
CN114908106B (zh) 一种玫瑰耐盐基因RrLBD40及其应用
CN116024260A (zh) 拟南芥AteIF4E基因在提高植物氮素利用效率和产量中的用途
CN117904138A (zh) 一种调控葡萄花色苷合成的基因及其在育种中的应用
CN116987712A (zh) 蒲公英TmHY5基因及其表达蛋白和应用
CN117987449A (zh) 一种玉米氨基酸转运蛋白及其编码基因在植物抗病中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant