CN114448015B - 温度补偿方法、装置、终端设备及可读存储介质 - Google Patents

温度补偿方法、装置、终端设备及可读存储介质 Download PDF

Info

Publication number
CN114448015B
CN114448015B CN202110904522.4A CN202110904522A CN114448015B CN 114448015 B CN114448015 B CN 114448015B CN 202110904522 A CN202110904522 A CN 202110904522A CN 114448015 B CN114448015 B CN 114448015B
Authority
CN
China
Prior art keywords
value
temperature
temperature value
compensation
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110904522.4A
Other languages
English (en)
Other versions
CN114448015A (zh
Inventor
陈东国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honor Device Co Ltd
Original Assignee
Honor Device Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honor Device Co Ltd filed Critical Honor Device Co Ltd
Priority to CN202110904522.4A priority Critical patent/CN114448015B/zh
Publication of CN114448015A publication Critical patent/CN114448015A/zh
Application granted granted Critical
Publication of CN114448015B publication Critical patent/CN114448015B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00038Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors
    • H02J7/00041Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors in response to measured battery parameters, e.g. voltage, current or temperature profile
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种温度补偿方法、装置、终端设备及可读存储介质,应用于终端技术领域。该方法通过从补偿关系对照表中查找到的目标补偿参数,对电池保护板的第一温度值进行非线性补偿,得到第二温度值,并在第二温度值与第三温度值的差值大于温度变化门限值时,对第三温度值与温度变化门限值进行求和,而在第三温度值与第二温度值的差值大于温度变化门限值时,计算第三温度值与温度变化门限值的差值,得到目标温度值。采用非线性补偿和平滑处理的方式,使得补偿后得到的目标温度值更接近于电芯的实际温度,从而提高电芯的充电速度,减少充电时长,提升电芯充满后的可用容量。

Description

温度补偿方法、装置、终端设备及可读存储介质
技术领域
本申请涉及终端技术领域,尤其涉及一种温度补偿方法、装置、终端设备及可读存储介质。
背景技术
在终端设备的充放电过程中,为了防止电池温度过高导致充电性能下降以及电池安全等问题,需要对电芯的温度进行检测。
目前,是通过设置在电池保护板上的温度检测器件检测电池保护板的温度,将电池保护板的温度作为电芯的温度,以实现对电芯温度的检测。
但是,在大功率充电过程中,电池保护板的温度与电芯的温度差异较大,若根据电池保护板的温度来进行温控限流操作,会影响电芯的充电时长和电芯充满后的可用容量等。
发明内容
本申请实施例提供了一种温度补偿方法、装置、终端设备及可读存储介质,可提高电芯温度检测的准确性,以提高充电速度,减少充电时间,提升电芯充满后的可用容量。
第一方面,本申请实施例提出一种温度补偿方法,包括:终端设备获取电池保护板的第一温度值以及电芯的目标电流值,目标电流值为对电芯充电时的充电电流值或电芯放电时的放电电流值;终端设备从补偿关系对照表中查找目标电流值对应的目标补偿参数;终端设备根据目标补偿参数对第一温度值进行补偿,得到第二温度值;当第二温度值为终端设备唤醒后第n次采集的第一温度值补偿后得到的温度值时,终端设备获取第n-1次采集的第一温度值补偿后得到的第三温度值,n为大于1的正整数;当第二温度值与第三温度值的差值大于温度变化门限值时,终端设备对第三温度值与温度变化门限值进行求和,得到电芯的目标温度值;当第三温度值与第二温度值的差值大于温度变化门限值时,终端设备将第三温度值与温度变化门限值的差值,确定为电芯的目标温度值。其中,补偿关系对照表可以是第一关系对照表,目标补偿参数可以为目标补偿温度值;或者,补偿关系对照表是第二关系对照表,目标补偿参数为目标补偿温度系数。
这样,本申请通采用非线性补偿和平滑处理的方式,对采集到的电池保护板的第一温度值进行补偿,使得补偿后得到的目标温度值更接近于电芯的实际温度,从而提高电芯的充电速度,减少充电时长,提升电芯充满后的可用容量。
在一种可选的实现方式中,目标补偿参数为目标补偿温度值;终端设备将第一温度值与目标补偿温度值的差值,确定为第二温度值。这样,提供一种差值计算的方式,对电池保护板的第一温度值进行非线性补偿。
在一种可选的实现方式中,目标补偿参数为目标补偿温度系数;终端设备将第一温度值与目标补偿温度系数的比值,确定为第二温度值。这样,提供一种比值计算的方式,对电池保护板的第一温度值进行非线性补偿。
在一种可选的实现方式中,当目标电流值大于或等于目标设定电流值时,终端设备将目标设定电流值对应的补偿参数确定为目标电流值对应的目标补偿参数;目标设定电流值为补偿关系对照表中小于目标电流值,且与目标电流值差值的绝对值最小的设定电流值。
在一种可选的实现方式中,终端设备获取生成的补偿关系对照表;补偿关系对照表包括多个设定电流值以及每个设定电流值对应的补偿参数;其中,补偿关系对照表是通过对不同测试电流值下所采集的电池保护板的第一测试温度值和电芯的第二测试温度值测试得到的;补偿参数为同一等级的测试电流值对应的各个测试温度参数的平均值,测试温度参数是根据同一测试电流值对应的第一测试温度值与第二测试温度值计算得到的;同一等级的测试电流值表示测试电流值的整数位相等的各个测试电流值,设定电流值等于同一等级的测试电流值的整数位。其中,补偿参数为补偿温度值或补偿温度系数。这样,预先通过测试生成补偿关系对照表,在对电池保护板的第一温度值进行非线性补偿时,可直接从预先生成的补偿关系对照表获取到对应的补偿参数进行补偿,提高补偿的速度。
在一种可选的实现方式中,测试温度参数为测试温度差值,测试温度差值为同一测试电流值对应的第一测试温度值与第二测试温度值的差值。这样,可基于测试温度差值来生成第一关系对照表。
在一种可选的实现方式中,测试温度参数为测试温度系数,测试温度系数为同一测试电流值对应的第一测试温度值与第二测试温度值的比值。这样,可基于测试温度系数来生成第二关系对照表。
在一种可选的实现方式中,温度变化门限值为各个温度补偿偏差的平均值,温度补偿偏差是根据对应的补偿参数对第一测试温度值补偿后得到的第三测试温度值与对应的第二测试温度值的差值。
在一种可选的实现方式中,当第二温度值为终端设备唤醒后前m次采集的第一温度值补偿后得到的温度值时,终端设备将第二温度值确定为电芯的目标温度值,m为正整数,且m小于n。这样,可改善因采用休眠前的第三温度值进行休眠处理导致平滑处理后得到的温度值与电芯实际的温度值不否,提高补偿后得到的目标温度值的准确性。
第二方面,本申请实施例提出一种温度补偿装置,包括:获取单元,用于获取电池保护板的第一温度值以及电芯的目标电流值,目标电流值为对电芯充电时的充电电流值或电芯放电时的放电电流值;处理单元,用于从补偿关系对照表中查找目标电流值对应的目标补偿参数;根据目标补偿参数对第一温度值进行补偿,得到第二温度值;当第二温度值为终端设备唤醒后第n次采集的第一温度值补偿后得到的温度值时,获取第n-1次采集的第一温度值补偿后得到的第三温度值,n为大于1的正整数;当第二温度值与第三温度值的差值大于温度变化门限值时,对第三温度值与温度变化门限值进行求和,得到电芯的目标温度值;当第三温度值与第二温度值的差值大于温度变化门限值时,将第三温度值与温度变化门限值的差值,确定为电芯的目标温度值。
在一种可选的实现方式中,目标补偿参数为目标补偿温度值;处理单元,具体用于将第一温度值与目标补偿温度值的差值,确定为第二温度值。
在一种可选的实现方式中,目标补偿参数为目标补偿温度系数;处理单元,具体用于将第一温度值与目标补偿温度系数的比值,确定为第二温度值。
在一种可选的实现方式中,处理单元,具体用于当目标电流值大于或等于目标设定电流值时,将目标设定电流值对应的补偿参数确定为目标电流值对应的目标补偿参数;目标设定电流值为补偿关系对照表中小于目标电流值,且与目标电流值差值的绝对值最小的设定电流值。
在一种可选的实现方式中,获取单元,还用于获取生成的补偿关系对照表;补偿关系对照表包括多个设定电流值以及每个设定电流值对应的补偿参数;其中,补偿关系对照表是通过对不同测试电流值下所采集的电池保护板的第一测试温度值和电芯的第二测试温度值测试得到的;补偿参数为同一等级的测试电流值对应的各个测试温度参数的平均值,测试温度参数是根据同一测试电流值对应的第一测试温度值与第二测试温度值计算得到的;同一等级的测试电流值表示测试电流值的整数位相等的各个测试电流值,设定电流值等于同一等级的测试电流值的整数位。
在一种可选的实现方式中,测试温度参数为测试温度差值,测试温度差值为同一测试电流值对应的第一测试温度值与第二测试温度值的差值。
在一种可选的实现方式中,测试温度参数为测试温度系数,测试温度系数为同一测试电流值对应的第一测试温度值与第二测试温度值的比值。
在一种可选的实现方式中,温度变化门限值为各个温度补偿偏差的平均值,温度补偿偏差是根据对应的补偿参数对第一测试温度值补偿后得到的第三测试温度值与对应的第二测试温度值的差值。
在一种可选的实现方式中,处理单元,还用于当第二温度值为终端设备唤醒后前m次采集的第一温度值补偿后得到的温度值时,将第二温度值确定为电芯的目标温度值,m为正整数,且m小于n。
第三方面,本申请实施例提出一种终端设备,包括存储器和处理器,存储器用于存储计算机程序,处理器用于调用计算机程序,以执行上述的温度补偿方法。
第四方面,本申请实施例提出一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令被运行时,实现上述的温度补偿方法。
应当理解的是,本申请的第二方面至第四方面与本申请的第一方面的技术方案相对应,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1为本申请实施例提供的电池的结构示意图;
图2为本申请实施例提供的实现电池保护板的温度检测的等效电路图;
图3为本申请实施例提供的终端设备硬件系统结构示意图;
图4为本申请实施例提供的终端设备软件系统与硬件层的结构示意图;
图5为本申请实施例提供的一种采用非线性补偿和平滑处理进行温度补偿的流程图;
图6为本申请实施例提供的另一种采用非线性补偿和平滑处理进行温度补偿的流程图;
图7为本申请实施例提供的一种温度补偿方法的流程图;
图8为本申请实施例提供的一种温度补偿装置的结构示意图;
图9为本申请实施例提供的一种终端设备的硬件结构示意图。
具体实施方式
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一芯片和第二芯片仅仅是为了区分不同的芯片,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提供的温度补偿方法,可以应用具有电池的终端设备中,如图1所示,电池10包括电芯11、电池保护板12和壳体13。其中,电芯11包括电芯本体111和设置在电芯本体111一侧的正极耳112和负极耳113,电芯11是电池10中主要存储电量和进行放电的器件;电池保护板12用于在电芯11进行充电或放电时,对电芯11进行保护,如过压保护、欠压保护、短路保护、放电过流保护、充电过流保护等;壳体13用于对电芯11进行封装保护。
可以将电芯11中的电芯本体111设置壳体13内,电芯11中的正极耳112和负极耳113伸出壳体13,通过将电池保护板12与电芯11中的正极耳112和负极耳113焊接,以实现电芯11与电池保护板12的连接,此时,电池保护板12位于壳体13外;当然,也可以先将电池保护板12与电芯11的正极耳112和负极耳113焊接,再将电芯11和电池保护板12均设置在壳体13内。
在终端设备的充放电过程中,为了改善电池10温度过高导致充电性能下降以及电池安全等问题,需要对电芯11的温度进行检测。由于电池10本身的结构设计限制,目前无法直接在电芯11上设置温度检测器件来直接检测电芯11的温度,即电芯11真实的温度无法采集到,而是通过设置在电池保护板12上的温度检测器件检测电池保护板12的温度,将电池保护板12的温度来近似代替电芯11的温度,以实现对电芯11温度的检测。
但是,电池保护板12的温度实际上与电芯11的温度并不完全相同,当充放电回路上的电流较小时,电池保护板12的温度可以近似等于电芯11的温度,但是,当充放电回路上的电流增大时,例如,尤其是在大功率充电过程(如充电功率为40W、66W或100W等)中,经过电池保护板12充入至电芯11的电流较大,导致电池保护板12的温度快速升高,但是,电芯11的温度实际上并没有升高太多,导致电池保护板12的温度与电芯11的温度差异较大,即电池保护板12的温度实际上比电芯11的温度高很多,此时,如果依旧采用电池保护板12的温度近似为电芯11的温度,会产生较大的检测误差。具体分析过程详见下面的描述。
如图2所示,R0和R1是电池保护板12的等效电阻,R2是电池保护板12到电芯11的等效电阻,R3是设置在电池保护板12上的热敏电阻,R4是设置在主板20上的上拉电阻,主板20实际上是与电池保护板12连接的,GND1表示电池保护板12的接地端,GND2表示终端设备的接地端。其中,上拉电阻R4的第一端与上拉电源Vref连接,上拉电阻R4的第二端与热敏电阻R3的第一端连接,热敏电阻R3的第二端与电池保护板12的接地端GND1连接,且热敏电阻R3与上拉电阻R4之间的节点V0与模数转换器(analog to digital converter,ADC)连接。ADC可以集成在控制芯片中,也可以与控制芯片单独设置。
需要说明的是,假设电池保护板的接地端GND1与终端设备的接地端GND2等地,则V0节点的电压V0等于VR3,V0表示热敏电阻R3与上拉电阻R4之间的节点,VR3表示热敏电阻R3两端的电压差。但是实际硬件设计时,电池保护板的接地端GND1与终端设备的接地端GND2不是等地的,在电池保护板的接地端GND1与终端设备的接地端GND2之间存在一个等效电阻R5,使得在充电或放电的过程中,电池保护板的接地端GND1的电压大于终端设备的接地端GND2的电压。
如图2所示,在电池的充电或放电过程中,图2所示的结构中会存在两路电流,其中一路电流依次经过等效电阻R0、等效电阻R1、等效电阻R2和等效电阻R5流至接地端GND2,其对应的电流值为i,另一路电流依次经过上拉电阻R4、热敏电阻R3、等效电阻R5流至接地端GND2,其对应的电流值为i’。
因此,可以得知,在充电或放电过程中,热敏电阻R3与上拉电阻R4之间的节点的电压V0=i’×R3+(i+i’)×R5=VR3+(i+i’)×R5,由于i远大于i’,则上述公式可等效为V0=VR3+i×R5,因此,热敏电阻R3两端的电压差VR3=V0-i×R5;并且,热敏电阻R3与上拉电阻R4之间的节点的电压还可以为V0=Vref-i’×R4,因此,VR3=V0-i×R5=Vref-i’×R4-i×R5。R3表示热敏电阻R3的阻值,R4表示上拉电阻R4的阻值,R5表示电池保护板的接地端GND1与终端设备的接地端GND2之间的等效电阻R5的阻值,i表示充电回路或放电回路上的电流值,i’表示上拉电源Vref到终端设备的接地端GND2之间流经的电流的电流值。
一方面,热敏电阻R3一般为负温度系数(negative temperature coefficient,NTC)热敏电阻,温度与阻值呈反比,由于在充放电过程中,当充电电流或放电电流越大时,电池温度上升的越高,导致热敏电阻R3的阻值越低。而电流值i’=Vref/(R4+R3+R5),电压值Vref、阻值R4和R5均为定值,因此,当热敏电阻R3的阻值R3越低时,会导致电流值i’越高,则上拉电阻R4两端的电压差i’×R4越大。
另一方面,当充电回路或放电回路上的电流值i越大时,电池保护板的接地端GND1与终端设备的接地端GND2之间的压差i×R5越大。
因此,在充放电过程中,针对VR3=Vref-i’×R4-i×R5,当电流值i’和电流值i均越高时,使得热敏电阻R3两端的电压差VR3就越小。
ADC通过检测热敏电阻R3与上拉电阻R4之间的节点的电压V0,然后基于电量计采集电流值i,依据VR3=V0-i×R5,可计算得到热敏电阻R3两端的电压差VR3,然后,终端设备根据热敏电阻R3两端的电压差VR3,通过查表的方式,从电压温度对照表中查找VR3对应的温度值,将VR3对应的温度值确定为电池保护板12的温度。其中,电压温度对照表电压温度对照表包括多个电压值以及与每个电压值对应的温度值,且电压值与温度值呈反比关系,即当电压值越大时,温度值越小,当电压值越小时,温度值越大。
因此,在充放电过程中,当电流值i越大时,热敏电阻R3两端的电压差VR3就越小,使得根据热敏电阻R3两端的电压差VR3从电压温度对照表中查找到的电池保护板的温度值就越大。
而在电池未进行充放电的过程中,电池保护板的接地端GND1与终端设备的接地端GND2之间不存在压差,则此时热敏电阻R3两端的电压差VR3=V0,此时,根据热敏电阻R3两端的电压差VR3从电压温度对照表中查找到的电池保护板的温度值也就近似为电芯的实际温度。
因此,可以得知,当充电回路或放电回路上的电流值i越大时,热敏电阻R3两端的电压差与未进行充放电时热敏电阻R3两端的电压差的差异越大,进而导致在充放电过程中根据热敏电阻R3两端的电压差查找到的电池保护板的温度与电芯的实际温度的差异也就越大。
在终端设备的充电过程中,充电电流与电芯的温度相关,相关规范将电芯温度划分为不同区间,每个区间基于充电性能考虑和电池健康考虑,规定了不同的充电曲线,例如,针对某一型号电池,其充电要求如下表一所示:
Figure BDA0003201058140000061
表一
其中,假设电芯的额定容量为5000mAh,电芯温度在0~5℃的情况下,以充电倍率0.1C对电芯进行充电,即此时电芯的充电电流为0.5A,类似的,电芯温度在5℃~10℃的情况下,以充电倍率0.3C对电芯进行充电,即此时电芯的充电电流为1.5A。
在对电芯进行充电时,一般会经过两个阶段,分别为恒流充电阶段和恒压充电阶段,在恒流充电阶段以恒定电流进行充电,随着充电时间的增长,充电电压逐渐升高,当充电电压升高到截止电压时,就进入恒压充电阶段,在恒压充电阶段以恒定电压充电,随着充电时间的继续增长,充电电流逐渐降低,当充电电流降低至截止电流时,表示充电完成,停止继续充电。
当电芯处于不同的温度,其对应的充电电流、截止电流和截止电压有所不同。因此,当检测到的电芯温度不准时,会导致充电时的充电电流、截止电流和截止电压也不准,则会出现充电速度慢,充电时长较长,以及充满时的电池容量小等问题。
例如,当检测到电池保护板的温度为40℃,若直接将电池保护板的温度近似为电芯的温度,则在对电芯充电时,先采用3.1C的充电电流对电芯进行充电,当充电电压上升到4.25V时,切换至2.0C的充电电流对电芯进行充电,当充电电压上升到4.30V时,然后,切换至1.5C的充电电流对电芯进行充电,当充电电压继续上升到4.38V时,接着,切换至1.2C的充电电流对电芯进行充电,当充电电压继续上升到4.45V时,切换至1.0C的充电电流对电芯进行充电,当充电电压继续上升到4.48V时,进入恒压充电阶段,以4.48V的恒定电压对电芯进行充电,在恒压充电过程中,充电电流会逐渐降低,当充电电流降低至0.261C时,表示充电完成,停止充电。而实际上,电芯实际的温度为30℃,在恒压充电过程中,充电电流降低至0.225C时才会停止充电,若直接根据电池保护板的温度40℃时对应的充电方式进行充电,充电电流降低至0.261C时就停止充电,导致电芯充满后的可用容量较小。
另外,假设检测到电池保护板的温度为50℃,而电芯实际的温度为40℃,则从表一中可以看出,相对于电芯实际的温度40℃对应的充电方式,直接根据电池保护板的温度50℃对应的充电方式进行充电,其对应的充电电流仅为0.35C,远小于40℃对应的充电电流,从而导致电芯的充电速度慢,充电时长较长的问题。
基于此,本申请实施例提供了一种温度补偿方法,以对电池保护板的温度进行补偿,使得补偿后得到的温度值更接近于电芯的实际温度,从而提高电芯的充电速度,减少充电时长,提升电芯充满后的可用容量。所提供的温度补偿方法,可以适用于手机、平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、手持计算机、上网本、个人数字助理(Personal Digital Assistant,PDA)、可穿戴电子设备、智能手表等具有电池的终端设备。
为了能够更好地理解本申请实施例,下面对本申请实施例的终端设备的结构进行介绍。示例性的,图3为本申请实施例提供的一种终端设备的结构示意图。
终端设备300可以包括处理器310,外部存储器接口320,内部存储器321,通用串行总线(universal serial bus,USB)接口330,充电管理模块340,电源管理模块341,电池342,天线1,天线2,移动通信模块350,无线通信模块360,音频模块370,扬声器370A,受话器370B,麦克风370C,耳机接口370D,传感器模块380,按键390,马达391,指示器392,摄像头393,显示屏394,以及用户标识模块(subscriberidentification module,SIM)卡接口395等。其中传感器模块380可以包括压力传感器380A,陀螺仪传感器380B,气压传感器380C,磁传感器380D,加速度传感器380E,距离传感器380F,接近光传感器380G,指纹传感器380H,温度传感器380J,触摸传感器380K,环境光传感器380L,骨传导传感器380M等。
可以理解的是,本申请实施例示意的结构并不构成对终端设备300的具体限定。在本申请另一些实施例中,终端设备300可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器310可以包括一个或多个处理单元,例如:处理器310可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processingunit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器310中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器310中的存储器为高速缓冲存储器。该存储器可以保存处理器310刚用过或循环使用的指令或数据。如果处理器310需要再次使用该指令或数据,可从存储器中调用。避免了重复存取,减少了处理器310的等待时间,因而提高了系统的效率。
在一些实施例中,处理器310可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integratedcircuitsound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purposeinput/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器310可以包含多组I2C总线。处理器310可以通过不同的I2C总线接口分别耦合触摸传感器380K,充电器,闪光灯,摄像头393等。例如:处理器310可以通过I2C接口耦合触摸传感器380K,使处理器310与触摸传感器380K通过I2C总线接口通信,实现终端设备300的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器310可以包含多组I2S总线。处理器310可以通过I2S总线与音频模块370耦合,实现处理器310与音频模块370之间的通信。在一些实施例中,音频模块370可以通过I2S接口向无线通信模块360传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块370与无线通信模块360可以通过PCM总线接口耦合。在一些实施例中,音频模块370也可以通过PCM接口向无线通信模块360传递音频信号,实现通过蓝牙耳机接听电话的功能。I2S接口和PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器310与无线通信模块360。例如:处理器310通过UART接口与无线通信模块360中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块370可以通过UART接口向无线通信模块360传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器310与显示屏394,摄像头393等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(displayserial interface,DSI)等。在一些实施例中,处理器310和摄像头393通过CSI接口通信,实现终端设备300的拍摄功能。处理器310和显示屏394通过DSI接口通信,实现终端设备300的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器310与摄像头393,显示屏394,无线通信模块360,音频模块370,传感器模块380等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口330是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口330可以用于连接充电器为终端设备300充电,也可以用于终端设备300与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,是示意性说明,并不构成对终端设备300的结构限定。在本申请另一些实施例中,终端设备300也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块340用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块340可以通过USB接口330接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块340可以通过终端设备300的无线充电线圈接收无线充电输入。充电管理模块340为电池342充电的同时,还可以通过电源管理模块341为终端设备供电。
电源管理模块341用于连接电池342,充电管理模块340与处理器310。电源管理模块341接收电池342和/或充电管理模块340的输入,为处理器310,内部存储器321,显示屏394,摄像头393,和无线通信模块360等供电。电源管理模块341还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块341也可以设置于处理器310中。在另一些实施例中,电源管理模块341和充电管理模块340也可以设置于同一个器件中。
终端设备300的无线通信功能可以通过天线1,天线2,移动通信模块350,无线通信模块360,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。终端设备300中的天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块350可以提供应用在终端设备300上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块350可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块350可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块350还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块350的至少部分功能模块可以被设置于处理器310中。在一些实施例中,移动通信模块350的至少部分功能模块可以与处理器310的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器370A,受话器370B等)输出声音信号,或通过显示屏394显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器310,与移动通信模块350或其他功能模块设置在同一个器件中。
无线通信模块360可以提供应用在终端设备300上的包括无线局域网(wirelesslocal area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块360可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块360经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器310。无线通信模块360还可以从处理器310接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,终端设备300的天线1和移动通信模块350耦合,天线2和无线通信模块360耦合,使得终端设备300可以通过无线通信技术与网络以及其他设备通信。无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(codedivision multiple access,CDMA),宽带码分多址(wideband code divisionmultipleaccess,WCDMA),时分码分多址(time-division code division multipleaccess,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidounavigation satellite system,BDS),准天顶卫星系统(quasi-zenithsatellitesystem,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
终端设备300通过GPU,显示屏394,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏394和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器310可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏394用于显示图像、显示视频和接收滑动操作等。显示屏394包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organiclight-emittingdiode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrixorganic light emitting diod,AMOLED),柔性发光二极管(flex light-emittingdiode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dotlightemitting diodes,QLED)等。在一些实施例中,终端设备300可以包括1个或N个显示屏394,N为大于1的正整数。
终端设备300可以通过ISP,摄像头393,视频编解码器,GPU,显示屏394以及应用处理器等实现拍摄功能。
ISP用于处理摄像头393反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头393中。
摄像头393用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,终端设备300可以包括1个或N个摄像头393,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当终端设备300在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。终端设备300可以支持一种或多种视频编解码器。这样,终端设备300可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现终端设备300的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口320可以用于连接外部存储卡,例如Micro SD卡,实现扩展终端设备300的存储能力。外部存储卡通过外部存储器接口320与处理器310通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器321可以用于存储计算机可执行程序代码,可执行程序代码包括指令。内部存储器321可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储终端设备300使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器321可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器310通过运行存储在内部存储器321的指令,和/或存储在设置于处理器中的存储器的指令,执行终端设备300的各种功能应用以及数据处理。
终端设备300可以通过音频模块370,扬声器370A,受话器370B,麦克风370C,耳机接口370D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块370用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块370还可以用于对音频信号编码和解码。在一些实施例中,音频模块370可以设置于处理器310中,或将音频模块370的部分功能模块设置于处理器310中。
扬声器370A,也称“喇叭”,用于将音频电信号转换为声音信号。终端设备300可以通过扬声器370A收听音乐,或收听免提通话。
受话器370B,也称“听筒”,用于将音频电信号转换成声音信号。当终端设备300接听电话或语音信息时,可以通过将受话器370B靠近人耳接听语音。
麦克风370C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风370C发声,将声音信号输入到麦克风370C。终端设备300可以设置至少一个麦克风370C。在另一些实施例中,终端设备300可以设置两个麦克风370C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,终端设备300还可以设置三个,四个或更多麦克风370C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口370D用于连接有线耳机。耳机接口370D可以是USB接口330,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器380A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器380A可以设置于显示屏394。压力传感器380A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器380A,电极之间的电容改变。终端设备300根据电容的变化确定压力的强度。当有触摸操作作用于显示屏394,终端设备300根据压力传感器380A检测触摸操作强度。终端设备300也可以根据压力传感器380A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。
陀螺仪传感器380B可以用于确定终端设备300的运动姿态。在一些实施例中,可以通过陀螺仪传感器380B确定终端设备300围绕三个轴(即,x、y和z轴)的角速度。陀螺仪传感器380B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器380B检测终端设备300抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消终端设备300的抖动,实现防抖。陀螺仪传感器380B还可以用于导航,体感游戏场景。
气压传感器380C用于测量气压。在一些实施例中,终端设备300通过气压传感器380C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器380D包括霍尔传感器。终端设备300可以利用磁传感器380D检测翻盖皮套的开合。在一些实施例中,当终端设备300是翻盖机时,终端设备300可以根据磁传感器380D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器380E可检测终端设备300在各个方向上(一般为三轴)加速度的大小。当终端设备300静止时可检测出重力的大小及方向。还可以用于识别终端设备姿态,应用于横竖屏切换,计步器等应用程序。
距离传感器380F,用于测量距离。终端设备300可以通过红外或激光测量距离。在一些实施例中,拍摄场景,终端设备300可以利用距离传感器380F测距以实现快速对焦。
接近光传感器380G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。终端设备300通过发光二极管向外发射红外光。终端设备300使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定终端设备300附近有物体。当检测到不充分的反射光时,终端设备300可以确定终端设备300附近没有物体。终端设备300可以利用接近光传感器380G检测用户手持终端设备300贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器380G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器380L用于感知环境光亮度。终端设备300可以根据感知的环境光亮度自适应调节显示屏394亮度。环境光传感器380L也可用于拍照时自动调节白平衡。环境光传感器380L还可以与接近光传感器380G配合,检测终端设备300是否在口袋里,以防误触。
指纹传感器380H用于采集指纹。终端设备300可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器380J用于检测温度。在一些实施例中,终端设备300利用温度传感器380J检测的温度,执行温度处理策略。例如,当温度传感器380J上报的温度超过阈值,终端设备300执行降低位于温度传感器380J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,终端设备300对电池342加热,以避免低温导致终端设备300异常关机。在其他一些实施例中,当温度低于又一阈值时,终端设备300对电池342的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器380K,也称“触控器件”。触摸传感器380K可以设置于显示屏394,由触摸传感器380K与显示屏394组成触摸屏,也称“触控屏”。触摸传感器380K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏394提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器380K也可以设置于终端设备300的表面,与显示屏394所处的位置不同。
骨传导传感器380M可以获取振动信号。在一些实施例中,骨传导传感器380M可以获取人体声部振动骨块的振动信号。骨传导传感器380M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器380M也可以设置于耳机中,结合成骨传导耳机。音频模块370可以基于骨传导传感器380M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于骨传导传感器380M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键390包括开机键,音量键等。按键390可以是机械按键。也可以是触摸式按键。终端设备300可以接收按键输入,产生与终端设备300的用户设置以及功能控制有关的键信号输入。
马达391可以产生振动提示。马达391可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用程序(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏394不同区域的触摸操作,马达391也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器392可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口395用于连接SIM卡。SIM卡可以通过插入SIM卡接口395,或从SIM卡接口395拔出,实现和终端设备300的接触和分离。终端设备300可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口395可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口395可以同时插入多张卡。多张卡的类型可以相同,也可以不同。SIM卡接口395也可以兼容不同类型的SIM卡。SIM卡接口395也可以兼容外部存储卡。终端设备300通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,终端设备300采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在终端设备300中,不能和终端设备300分离。
终端设备300的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构,等。本申请实施例以分层架构的Android系统为例,示例性说明终端设备300的软件结构。
图4是本申请实施例的终端设备300的软件与硬件层的结构框图。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android系统分为四层,从上至下分别为应用层,应用程序框架层,安卓运行时(Android runtime)和系统库,以及内核层。
应用层可以包括一系列应用程序包。
如图4所示,应用程序包可以包括电话、邮箱、日历、相机等应用程序。
应用程序框架层为应用层的应用程序提供应用编程接口(applicationprogramming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。
如图2所示,应用程序框架层可以包括输入系统、活动管理器、位置管理器、包管理器、通知管理器、资源管理器、电话管理器和视图系统等。
输入系统用于管理输入设备的程序。例如,输入系统可以确定鼠标点击操作、键盘输入操作和触摸滑动等输入操作。
活动管理器用于管理各个应用程序的生命周期以及导航回退功能。负责Android的主线程创建,各个应用程序的生命周期的维护。
位置管理器用于为应用程序提供位置服务,包括查询上一个已知位置、注册和注销来自某个周期性的位置更新等。
包管理器用于系统内的程序管理,例如:应用程序安装、卸载和升级等。
通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在系统顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话窗口形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,终端设备振动,指示灯闪烁等。
资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件,视频文件等等。
电话管理器用于管理移动设备功能,包括:手机通话状态、获取电话信息(设备、sim卡、网络信息),监听电话状态以及调用电话拨号器拨打电话
视图系统包括可视控件,例如显示文字的控件,显示图片的控件等。视图系统可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。
Android runtime包括核心库和虚拟机。Android runtime负责安卓系统的调度和管理。
核心库包含两部分:一部分是java语言需要调用的功能函数,另一部分是安卓的核心库。
应用层和应用程序框架层运行在虚拟机中。虚拟机将应用层和应用程序框架层的java文件执行为二进制文件。虚拟机用于执行对象生命周期的管理,堆栈管理,线程管理,安全和异常的管理,以及垃圾回收等功能。
系统库可以包括多个功能模块。例如:图像绘制模块、图像渲染模块、图像合成模块、函数库、和输入处理库等。
图像绘制模块用于二维或三维图像的绘制。图像渲染模块用于二维或三维图像的渲染。图像合成模块用于二维或三维图像的合成。
可能的实现方式中,应用通过图像绘制模块对图像进行绘制,然后应用通过图像渲染模块对绘制后的图像进行渲染,然后应用将渲染后的图像发送显示合成进程的到缓存队列中。每当vsync信号到来时,显示合成进程(例如,surface flinger)从缓存队列中按顺序获取待合成的一帧图像,然后通过图像合成模块进行图像合成。
函数库提供C语言中所使用的宏、类型定义、字符串操作函数、数学计算函数以及输入输出函数等
输入处理库用于处理输入设备的库,可以实现鼠标、键盘和触摸输入处理等。
内核层是硬件层和软件之间的层。内核层至少包含触控面板驱动、LCD/LED屏幕驱动、显示驱动、蓝牙驱动、WIFI驱动、键盘驱动、共用存储器驱动、相机驱动和温度补偿驱动等。
如图4所示,硬件层可以包括音频设备、蓝牙设备、相机设备、传感器设备、ADC、电量计和电源管理模块等。
例如,在本申请实施例中,电量计可以采集电芯的目标电流值,ADC可以采集电池保护板的第一温度值,电量计将采集到的电芯的目标电流值输入至温度补偿驱动,ADC将采集到的电池保护板的第一温度值也输入至温度补偿驱动,温度补偿驱动根据电芯的目标电流值,对电池保护板的第一温度值进行非线性补偿和平滑处理,得到电芯的目标温度值,温度补偿驱动将目标温度值输出给电源管理模块,基于电源管理模块进行相应的温度控制策略。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以独立实现,也可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
示例性的,图5为本申请实施例提供的一种采用非线性补偿和平滑处理进行温度补偿的流程图。在图5对应的实施例中,是以补偿参数为补偿温度值来进行非线性补偿的,且本申请实施例可调用位于内核层中的温度补偿驱动来对采集到的电池保护板的第一温度值进行补偿。
如图5所示,温度补偿方法可以包括如下步骤:
步骤501,终端设备获取电池保护板的第一温度值和电芯的目标电流值。
在本申请实施例中,电芯的目标电流值i可通过电量计检测得到,目标电流值i为对电芯充电时的充电电流值或电芯放电时的放电电流值。在主板上设置有电量计,基于电量计可采集在对电芯进行充电时充电回路中的充电电流值,以及采集电芯在放电时放电回路中的放电电流值。具体的,是在充放电回路中设置有采样电阻,电量计分别与采样电阻的两端连接,根据检测到的采样电阻两端的电压值,除以采样电阻的阻值,得到充电回路的充电电流值或放电回路的放电电流值。
可采用图2所示的方式,基于主板上设置的ADC,检测热敏电阻R3与上拉电阻R4之间的节点的电压V0,根据VR3=V0-i×R5,计算得到热敏电阻R3两端的电压差VR3,然后,终端设备根据热敏电阻R3两端的电压差VR3,通过查表的方式,从电压温度对照表中查找VR3对应的温度值,将VR3对应的温度值确定为电池保护板的第一温度值t。
实际上,热敏电阻R3可以为NTC热敏电阻,热敏电阻R3也可以为正温度系数(positive temperature coefficient,PTC)热敏电阻。
步骤502,终端设备从第一关系对照表中查找目标电流值对应的目标补偿温度值。
在本申请实施例中,预先生成有第一关系对照表,终端设备获取生成的第一关系对照表,第一关系对照表包括多个设定电流值以及每个设定电流值对应的补偿温度值。
第一关系对照表的生成过程如下:首先,在对电芯进行充电时,检测电池处于不同的测试电流值下,电池保护板的温度值和电芯的温度值,电池保护板的温度值可基于图2所示的热敏电阻R3两端的电压差VR3,从电压温度对照表中查找VR3对应的温度值,电池保护板的温度值也可以采用点温枪测量得到,将测试时电池保护板的温度值称为第一测试温度值,而电芯的温度值可采用点温枪测量得到,将测试时电芯的温度值称为第二测试温度值。
然后,将同一测试电流值对应的第一测试温度值减去第二测试温度值,得到测试温度差值。在对电池进行测试时,各个测试电流值对应的第一测试温度值、第二测试温度值和测试温度差值如下表二所示:
Figure BDA0003201058140000151
表二
然后,将同一等级的测试电流值对应的各个测试温度差值取平均值,得到同一等级的测试电流值对应的补偿温度值。同一等级的测试电流值表示测试电流值的整数位相等的各个测试电流值,设定电流值等于同一等级的测试电流值的整数位。
例如,表二所示的测试电流值10.650A、10.339A、10.300A、10.441A和10.424A属于同一等级,其对应的设定电流值为10A,则设定电流值10A对应各个测试温度差值的平均值为(11.5℃+10.9℃+10.9℃+8.8℃+10.3℃)/5=10.48℃,可直接将平均值10.48℃作为设定电流值10A对应的补偿温度值,也可以对平均值10.48℃向下取整,将10℃作为设定电流值10A对应的补偿温度值;相应的,表二所示的测试电流值5.543A、5.513A、5.680A、5.648A和5.610A属于同一等级,其对应的设定电流值为5A,则设定电流值5A对应各个测试温度差值的平均值为(3.5℃+3.4℃+3.1℃+3.2℃+3.9℃)/5=3.42℃,可直接将平均值3.42℃作为设定电流值5A对应的补偿温度值,也可以对平均值3.42℃向下取整,将3℃作为设定电流值5A对应的补偿温度值。
可以理解的是,在实际测试过程中,同一等级的测试电流值以及对应的第一测试温度值和第二测试温度值的数量很多,只是为了说明本方案如何测试得到同一等级的测试电流值对应的补偿温度值,在表二中,同一等级的测试电流值以及对应的第一测试温度值和第二测试温度值仅示出了5项数据;另外,表二仅示出了10A和5A对应的第一测试温度值和第二测试温度值,在实际测试时,还会采集9A、8A、7A以及6A等不同等级的测试电流值对应的第一测试温度值和第二测试温度,并基于不同等级的测试电流值对应的第一测试温度值和第二测试温度,计算得到各个设定电流值对应的补偿温度值。
因此,按照上述采集和计算方式,可得到如下表三所示的第一关系对照表:
设定电流值(A) 补偿温度值(℃)
I<sub>1</sub> T<sub>1</sub>
I<sub>2</sub> T<sub>2</sub>
I<sub>3</sub> T<sub>3</sub>
I<sub>4</sub> T<sub>4</sub>
I<sub>5</sub> T<sub>5</sub>
I<sub>6</sub> T<sub>6</sub>
表三
可选的,根据实际需求,将设定电流值划分为n档,n为大于1的正整数,例如,可将设定电流值划分为6挡,得到如表三所示的设定电流值I1、I2、I3、I4、I5和I6
示例性的,I1为10A,T1为10℃,I2为9A,T2为8℃,I3为8A,T3为6℃,I4为7A,T4为6℃,I5为6A,T5为4℃,I6为5A,T6为3℃。在实际测试过程中,各个设定电流值的间隔也可以不设置成1A,例如,第一关系对照表中的设定电流值I1为10A,I2为9.5A,I3为9A,I4为8.5A等,此时,相邻两个设定电流值之间的差值为0.5A,第一关系对照表中相邻两个设定电流值的差值还可设置为2A、0.2A等,本申请实施例对此不作限制。
另外,在测量得到表三所示的第一关系对照表时,可通过对一个电池的电池保护板的第一测试温度值和电芯的第二测试温度值测试得到,也可以通过对多个电池的电池保护板的第一测试温度值和电芯的第二测试温度值测试得到,此时,可以是对多个电池在同一设定电流值下的各个测试温度差值取平均值(或取平均值后向下取整),得到补偿温度值。
需要说明的是,上述第一关系对照表的生成过程可通过一测试设备生成,该测试设备生成后,可将第一关系对照表的相关信息编写在内核层的温度补偿驱动中。
在温度补偿过程中,在获取电池保护板的第一温度值t和电芯的目标电流值i之后,从表三所示的第一关系对照表中查找目标电流值i对应的目标补偿温度值。
具体的,当电芯的目标电流值i大于或等于目标设定电流值时,将目标设定电流值对应的补偿温度值确定为目标电流值i对应的目标补偿温度值;目标设定电流值为第一关系对照表中小于目标电流值i,且与目标电流值i差值的绝对值最小的设定电流值。
假设表二中的设定电流值I1、I2、I3、I4、I5至In是依次减小的,当电芯的目标电流值i大于或等于设定电流值I1时,相对于目标电流值i与设定电流值I2、I3、I4、I5至In的差值的绝对值,目标电流值i与设定电流值I1的差值的绝对值最小,则此时的目标电流值i对应的目标补偿温度值为T1;当电芯的目标电流值i小于设定电流值I1,且电芯的目标电流值i大于或等于设定电流值I2时,相对于目标电流值i与设定电流值I3、I4、I5至In的差值的绝对值,目标电流值i与设定电流值I2的差值的绝对值最小,则此时的目标电流值i对应的目标补偿温度值为T2;以此类推,当电芯的目标电流值i小于设定电流值In-1,且电芯的目标电流值i大于或等于设定电流值In时,则此时的目标电流值i对应的目标补偿温度值为Tn
例如,第一关系对照表中的设定电流值分别为10A、9A、8A、7A、6A和5A,电芯的目标电流值i为9.5A,则目标电流值i大于设定电流值9A、8A、7A、6A和5A,但是,各个设定电流值中与目标电流值i的差值的绝对值最小的设定电流值为9A,则将9A确定为目标设定电流值,目标设定电流值9A对应的补偿温度值为8℃,则目标电流值9.5A对应的目标补偿温度值为8℃。
步骤503,终端设备将第一温度值与目标补偿温度值的差值,确定为第二温度值。
在本申请实施例中,终端设备在从第一关系对照表中查找目标电流值i对应的目标补偿温度值之后,采用第一温度值t减去目标补偿温度值,将第一温度值t与目标补偿温度值的差值,确定为第二温度值current_temp。
当从第一关系对照表查找到的目标电流值i对应的目标补偿温度值为T1时,则第二温度值current_temp=t-T1,当从第一关系对照表查找到的目标电流值i对应的目标补偿温度值为T2时,则第二温度值current_temp=t-T2,以此类推,当从第一关系对照表查找到的目标电流值i对应的目标补偿温度值为Tn时,则第二温度值current_temp=t-Tn
例如,第一温度值t为40℃,电芯的目标电流值i为9.5A,目标电流值9.5A对应的目标补偿温度值为8℃,则此时的第二温度值current_temp=40℃-8℃=32℃。
经测试发现,当仅执行步骤501至步骤503,对电池保护板的第一温度值t进行非线性补偿,补偿后得到的第二温度值current_temp与电芯的实际温度值的差值依旧会比较大。
以设定电流值10A对应的补偿温度值为10℃,设定电流值5A对应的补偿温度值为3℃为例,补偿温度值10℃和补偿温度值3℃分别对表二所示的第一测试温度值进行补偿,得到的第三测试温度值,第三测试温度值为第一测试温度值与其对应的设定电流值的补偿温度值的差值,因此,各个测试电流值对应的第三测试温度值、第二测试温度值和温度补偿偏差如下表四所示:
Figure BDA0003201058140000171
Figure BDA0003201058140000181
表四
从表四中可以看出,在不同的测试电流值下,仅根据测试电流值所对应的补偿温度值对第一测试温度值进行非线性补偿,补偿后得到的第三测试温度值与电芯的第二测试温度值的温度补偿偏差依旧较大。因此,在实际使用过程中,若仅根据目标补偿温度值对电池保护板的第一温度值t进行非线性补偿,补偿后得到的第二温度值current_temp与电芯的实际温度值的差值依旧会比较大,因此,需要对第一温度值t补偿后的温度值进行平滑处理,使得平滑处理后得到的温度值与电芯的实际温度值的差值进一步减小。
步骤504,判断第二温度值是否为终端设备唤醒后前m次采集的第一温度值补偿后得到的温度值。
在对非线性补偿后的温度值进行平滑处理之前,首先,需要判断第二温度值current_temp是否为终端设备唤醒后首次采集的第一温度值t补偿后得到的温度值。终端设备唤醒指的是终端设备在熄屏后,从熄屏状态再次变为亮屏状态。
由于终端设备在休眠后,终端设备中存储的last_temp不再更新,则此时的last_temp指的就是终端设备休眠前最后一次采集的电池保护板的第一温度值进行非线性补偿后得到的温度值,终端设备处于休眠状态下,电芯的温度已经下降,为了避免根据休眠前的last_temp进行平滑处理,而导致的平滑处理后得到的温度值与电芯实际的温度值不否,因此,需要先判断第二温度值是否为终端设备唤醒后首次采集的第一温度值补偿后得到的温度值。
当然,可以理解的是,本申请实施例不局限于仅对终端设备唤醒后首次采集的第一温度值补偿后得到的温度值不进行平滑处理,其也可以对前m次采集到的第一温度值补偿后得到的温度值都不进行平滑处理,因此,需要判断第二温度值current_temp是否为终端设备唤醒后前m次采集的第一温度值补偿后得到的温度值。
其中,m为正整数,m的具体数值根据经验值设定,例如,m可以为1、2或3等,当m为2时,则需要判断第二温度值current_temp是否为终端设备唤醒后前两次采集的第一温度值t补偿后得到的温度值。
步骤505,当第二温度值为终端设备唤醒后第n次采集的第一温度值补偿后得到的温度值时,终端设备计算第二温度值与第n-1次采集的第一温度值补偿后得到的第三温度值的差值的绝对值。
当确定第二温度值current_temp为终端设备唤醒后第n次采集的第一温度值补偿后得到的温度值时,n大于m,由于m为正整数,则n也就是大于1的正整数,即第二温度值不是终端设备唤醒后前m次采集的第一温度值补偿后得到的温度值,获取第n-1次采集的第一温度值补偿后得到的第三温度值last_temp,然后计算第二温度值current_temp与第三温度值last_temp的差值的绝对值,即△T=|current_temp-last_temp|。
当第二温度值current_temp是终端设备唤醒后第2次采集的第一温度值补偿后得到的温度值时,第三温度值last_temp是终端设备唤醒后第1次采集的第一温度值补偿后得到的温度值;当第二温度值current_temp是终端设备唤醒后第3次采集的第一温度值补偿后得到的温度值时,第三温度值last_temp是终端设备唤醒后第2次采集的第一温度值补偿后得到的温度值,以此类推。
需要说明的是,对第n-1次采集的第一温度值补偿后得到的第三温度值last_temp所对应的补偿方式,与对第n次采集的第一温度值补偿后得到的第二温度值current_temp所对应的补偿方式类似,都是根据目标电流值从第一关系对照表查询对应的目标补偿温度值,并根据目标补偿温度值进行补偿,为了区分相邻两次非线性补偿后得到的温度值,将本次非线性补偿后得到的温度值称为第二温度值,将上一次非线性补偿后得到的温度值称为第三温度值。
另外,终端设备采集电池保护板的第一温度值和电芯的目标电流值的间隔时间也根据经验值设定或人为设定,如采集电池保护板的第一温度值和电芯的目标电流值的间隔时间为1分钟、2分钟、5分钟等,本申请实施例对此不作限制。
步骤506,当第二温度值与第三温度值的差值的绝对值大于温度变化门限值,且第二温度值大于第三温度值时,终端设备对第三温度值与温度变化门限值进行求和,得到电芯的目标温度值。
当第二温度值current_temp与第三温度值last_temp的差值的绝对值△T大于温度变化门限值T0,且第二温度值current_temp大于第三温度值last_temp时,也就是说第二温度值current_temp与第三温度值last_temp的差值大于温度变化门限值T0,说明电池的温度正在升高,为了避免温度因某些原因导致大幅度波动而使得温度一次上升太多,每次允许在第三温度值last_temp的基础上升高温度变化门限值T0,则终端设备对第三温度值last_temp与温度变化门限值T0进行求和,得到电芯的目标温度值,即此时的目标温度值为last_temp+T0
而温度变化门限值T0需要根据各个测试电流值下的温度补偿偏差计算得到。具体的,首先,将第一测试温度值减去其对应的设定电流值下的补偿温度值,得到第三测试温度值,然后,将各个第三测试温度值减去对应的第二测试温度值,得到表四中的各个测试电流值下的温度补偿偏差,最后,对各个温度补偿偏差求平均值,得到温度变化门限值T0
以表四所示的温度补偿偏差为例,则温度变化门限值T0=(1.5℃+0.9℃+0.9℃-1.2℃+0.3℃+0.5℃+0.4℃+0.1℃+0.2℃+0.9℃)/10=0.45℃。
例如,第二温度值current_temp为32℃,第三温度值last_temp为31℃,温度变化门限值为0.45℃时,则此时电芯的目标温度值为31℃+0.45℃=31.45℃。
需要说明的是,在计算得到各个设定电流值下的补偿温度值后,也可以再次测试电池在处于不同测试温度值下的电池保护板的测试温度值和电芯的测试温度值,根据补偿温度值对这次测试得到的电池保护板的测试温度值进行补偿后,将补偿后的测试温度值减去电芯的测试温度值来计算温度补偿偏差,以得到温度变化门限值T0
步骤507,当第二温度值与第三温度值的差值的绝对值大于温度变化门限值,且第二温度值小于第三温度值时,终端设备将第三温度值与温度变化门限值的差值,确定为电芯的目标温度值。
当第二温度值current_temp与第三温度值last_temp的差值的绝对值△T大于温度变化门限值T0,且第二温度值current_temp小于第三温度值last_temp时,也就是第三温度值last_temp与第二温度值current_temp的差值大于温度变化门限值,说明电池的温度正在降低,为了避免温度因某些原因导致大幅度波动而使得温度一次下降太多,每次允许在第三温度值last_temp的基础下降温度变化门限值T0,则终端设备将第三温度值last_temp减去温度变化门限值T0,得到电芯的目标温度值,即此时的目标温度值为last_temp-T0
例如,第二温度值current_temp为30℃,第三温度值last_temp为31℃,温度变化门限值为0.45℃时,则此时电芯的目标温度值为31℃-0.45℃=30.55℃。
步骤508,当第二温度值为终端设备唤醒后前m次采集的第一温度值补偿后得到的温度值时,终端设备将第二温度值确定为电芯的目标温度值。
在步骤504之后,当确定第二温度值current_temp是终端设备唤醒后首次采集的第一温度值补偿后得到的温度值时,为避免根据休眠前的last_temp对第二温度值进行平滑处理而导致的平滑处理后得到的温度值与电芯实际的温度值不否,因此,对终端设备唤醒后首次采集的第一温度值补偿后得到的第二温度值current_temp不进行平滑处理,直接将第二温度值current_temp确定为电芯的目标温度值。
当然,可以理解的是,在一些场景中,也可以是对终端设备唤醒后的前m次采集到的第一温度值补偿后得到的第二温度值current_temp都不进行平滑处理,m为正整数。
步骤509,当第二温度值与第三温度值的差值的绝对值小于或等于温度变化门限值时,终端设备将第二温度值确定为电芯的目标温度值。
在步骤505之后,当终端设备确定第二温度值current_temp与第三温度值last_temp的差值的绝对值△T小于或等于温度变化门限值T0时,说明电池的温度变化在正常的范围内,此时,也不进行平滑处理,直接将第二温度值current_temp确定为电芯的目标温度值。
步骤510,终端设备根据电芯的目标温度值更新第三温度值。
在根据步骤506、步骤507、步骤508或步骤509得到电芯的目标温度值之后,终端设备根据计算到的目标温度值更新第三温度值last_temp,则下一次采集得到的电池保护板的第一温度值t进行非线性补偿后得到的第二温度值current_temp,需要与本次更新的第三温度值last_temp进行比较。
经检测,在对采集的电池保护板的第一温度值t进行非线性补偿和平滑处理后,得到的目标温度值更接近于电芯的实际温度值,具体测试结果如下表五所示:
Figure BDA0003201058140000201
表五
可以看出,表五中所示的温度偏差小于表四中所示的温度补偿偏差,也就是说,相对于仅通过非线性补偿方法对电池保护板的第一温度值进行补偿,本申请实施例采用非线性补偿和平滑处理的方法对电池保护板的第一温度值进行补偿,其补偿后得到的目标温度值与电芯的实际温度值更接近。
示例性的,图6为本申请实施例提供的另一种采用非线性补偿和平滑处理进行温度补偿的流程图。在图6对应的实施例中,是以补偿参数为补偿温度系数来进行非线性补偿的,且本申请实施例可调用位于内核层中的温度补偿驱动来对采集到的电池保护板的第一温度值进行补偿。
如图6所示,温度补偿方法可以包括如下步骤:
步骤601,终端设备获取电池保护板的第一温度值和电芯的目标电流值。
此步骤与上述步骤501原理类似,在此不再赘述。
步骤602,终端设备从第二关系对照表中查找目标电流值对应的目标补偿温度系数。
在本申请实施例中,预先生成有第二关系对照表,终端设备获取生成的第二关系对照表,第二关系对照表包括多个设定电流值以及每个设定电流值对应的补偿温度系数。
第二关系对照表的生成过程如下:首先,在对电芯进行充电时,检测电池处于不同的测试电流值下,电池保护板的第一测试温度值和电芯的第二测试温度值;然后,将同一测试电流值对应的第一测试温度值除以第二测试温度值,得到测试温度系数;将同一等级的测试电流值对应的各个测试温度系数取平均值,得到同一等级的测试电流值对应的补偿温度系数。同一等级的测试电流值表示测试电流值的整数位相等的各个测试电流值,设定电流值等于同一等级的测试电流值的整数位。
例如,按照上述采集和计算方式,可得到如下表六所示的第二关系对照表:
设定电流值(A) 补偿温度系数
I<sub>1</sub> K<sub>1</sub>
I<sub>2</sub> K <sub>2</sub>
I<sub>3</sub> K <sub>3</sub>
I<sub>4</sub> K <sub>4</sub>
I<sub>n</sub> K<sub>n</sub>
表六
根据实际需求,将设定电流值划分为n档,n为大于1的正整数,其对应的补偿温度系数也为n个,其分别为补偿温度系数K1、补偿温度系数K2、补偿温度系数K3至补偿温度系数Kn
需要说明的是,第二关系对照表中相邻两个设定电流值之间的差值可以为1A,也可以为0.5A、2A等;在测量得到表六所示的第二关系对照表时,可以是根据一个电池的测试结果统计得到的,也可以是根据多个电池的测试结果统计得到的;上述第二关系对照表的生成过程可通过一测试设备生成,该测试设备生成后,可将第二关系对照表的相关信息编写在内核层的温度补偿驱动中。
在温度补偿过程中,在获取电池保护板的第一温度值t和电芯的目标电流值i之后,从表六所示的第二关系对照表中查找目标电流值i对应的目标补偿温度系数。
具体的,当电芯的目标电流值i大于或等于目标设定电流值时,将目标设定电流值对应的补偿温度系数确定为目标电流值i对应的目标补偿温度系数;目标设定电流值为第二关系对照表中小于目标电流值i,且与目标电流值i差值的绝对值最小的设定电流值。
假设表六中的设定电流值I1、I2、I3、I4至In是依次减小的,当电芯的目标电流值i大于或等于设定电流值I1时,相对于目标电流值i与设定电流值I2、I3、I4至In的差值的绝对值,目标电流值i与设定电流值I1的差值的绝对值最小,则此时的目标电流值i对应的目标补偿温度系数为K1;当电芯的目标电流值i小于设定电流值I1,且电芯的目标电流值i大于或等于设定电流值I2时,相对于目标电流值i与设定电流值I3、I4至In的差值的绝对值,目标电流值i与设定电流值I2的差值的绝对值最小,则此时的目标电流值i对应的目标补偿温度系数为K2;以此类推,当电芯的目标电流值i小于设定电流值In-1,且电芯的目标电流值i大于或等于设定电流值In时,则此时的目标电流值i对应的目标补偿温度系数为Kn
步骤603,终端设备将第一温度值与目标补偿温度系数的比值,确定为第二温度值。
在本申请实施例中,终端设备在从第二关系对照表中查找目标电流值i对应的目标补偿温度系数之后,采用第一温度值t除以目标补偿温度系数,将第一温度值t与目标补偿温度系数的比值,确定为第二温度值current_temp。
当从第二关系对照表查找到的目标电流值i对应的目标补偿温度系数为K1时,则第二温度值current_temp=t/K1,当从第二关系对照表查找到的目标电流值i对应的目标补偿温度系数为K2时,则第二温度值current_temp=t/K2,以此类推,当从第二关系对照表查找到的目标电流值i对应的目标补偿温度系数为Kn时,则第二温度值current_temp=t/Kn
步骤604,判断第二温度值是否为终端设备唤醒后前m次采集的第一温度值补偿后得到的温度值。
步骤605,当第二温度值为终端设备唤醒后第n次采集的第一温度值补偿后得到的温度值时,终端设备计算第二温度值与第n-1次采集的第一温度值补偿后得到的第三温度值的差值的绝对值。
步骤606,当第二温度值与第三温度值的差值的绝对值大于温度变化门限值,且第二温度值大于第三温度值时,终端设备对第三温度值与温度变化门限值进行求和,得到电芯的目标温度值。
温度变化门限值T0需要根据各个测试电流值下的温度补偿偏差计算得到。具体的,首先,将第一测试温度值除以其对应的设定电流值下的补偿温度系数,得到第三测试温度值,然后,将各个第三测试温度值减去对应的第二测试温度值,得到各个测试电流值下的温度补偿偏差,最后,对各个温度补偿偏差求平均值,得到温度变化门限值T0
步骤607,当第二温度值与第三温度值的差值的绝对值大于温度变化门限值,且第二温度值小于第三温度值时,终端设备将第三温度值与温度变化门限值的差值,确定为电芯的目标温度值。
步骤608,当第二温度值为终端设备唤醒后前m次采集的第一温度值补偿后得到的温度值时,终端设备将第二温度值确定为电芯的目标温度值。
步骤609,当第二温度值与第三温度值的差值的绝对值小于或等于温度变化门限值时,终端设备将第二温度值确定为电芯的目标温度值。
步骤610,终端设备根据电芯的目标温度值更新第三温度值。
步骤604至步骤610与上述的步骤504至步骤510的过程类似,为避免重复,在此不再赘述。
本申请实施例的温度补偿方法主要适用于对电芯的充电场景中,当然,也可适用于电芯的放电场景中。上述设定电流值与补偿温度值的第一关系对照表、设定电流值与补偿温度系数的第二关系对照表以及温度变化门限值,均是在对电芯进行充电时测试得到的。
可以理解的是,电芯放电场景中的温度补偿方法,其非线性补偿过程中需要的关系对照表可以为充电测试时得到的第一关系对照表或第二关系对照表,其平滑处理过程中需要的温度变化门限值也可以为充电测试时得到的温度变化门限值;当然,也可以在电芯放电时进行测试得到,具体测试过程可参照充电测试过程。
终端设备在采用本申请实施例的温度补偿方法得到电芯的目标温度值之后,可根据目标温度值实际调节充电时的充电电流值,实现最高效的充电并保持电池的安全。
在一些场景中,在得到电芯的目标温度值之后,可将目标温度值与预设温度门限进行比较,基于充放电控制逻辑执行相应的热限流措施。示例性的,在充电过程中,当目标温度值大于预设温度门限时,限制快充时的最大充电电流、退出快充、限制充满截止电压以及限制充满截止电流等。
例如,当电芯的目标温度值大于45℃时,退出快充模式,退出后采用5V2A的方式进行充电;在放电过程中,当目标温度值大于预设温度门限时,可弹出提示框提醒用户电芯温度过高或强制终端设备关机,从而保护电芯,改善电芯放电时因温度过高而发生损坏。
基于上述实施例中所描述的内容,为了更好的理解本申请各实施例,示例性的,图7为本申请实施例提供的一种温度补偿方法的流程示意图。
如图7所示,该温度补偿方法包括如下步骤:
步骤701,终端设备获取电池保护板的第一温度值和电芯的目标电流值,目标电流值对电芯充电时的充电电流值或电芯放电时的放电电流值。
电芯的目标电流值可基于充放电回路中设置的采样电阻以及采样电阻两端连接的电量计采集得到,电池保护板的第一温度值可基于电池保护板上设置的热敏电阻与主板上设置的ADC检测得到。
步骤702,终端设备从补偿关系对照表中查找目标电流值对应的目标补偿参数。
在本申请实施例中,补偿关系对照表包括多个设定电流值以及每个设定电流值对应的补偿参数。补偿关系对照表是通过对不同测试电流值下所采集的电池保护板的第一测试温度值和电芯的第二测试温度值测试得到的;补偿参数为同一等级的测试电流值对应的各个测试温度参数的平均值,测试温度参数是根据同一测试电流值对应的第一测试温度值与第二测试温度值计算得到的;同一等级的测试电流值表示测试电流值的整数位相等的各个测试电流值,设定电流值等于同一等级的测试电流值的整数位。
可选的,补偿关系对照表可以是表三所示的设定电流值与补偿温度值对应的第一关系对照表,此时,补偿参数为补偿温度值,测试温度参数为测试温度差值。补偿温度值为同一等级的测试电流值对应的各个测试温度差值的平均值,测试温度差值为同一测试电流值对应的第一测试温度值与第二测试温度值的差值。
该补偿关系对照表还可以是表六所示的设定电流值与补偿温度系数对应的第二关系对照表,此时,补偿参数为补偿温度系数,测试温度参数为测试温度系数。补偿温度系数为同一等级的测试电流值对应的各个测试温度系数的平均值,测试温度系数为同一测试电流值对应的第一测试温度值与第二测试温度值的比值。
当终端设备采用第一关系对照表来进行非线性补偿时,终端设备从第一关系对照表中查找的是目标电流值对应的目标补偿温度值,即此时的目标补偿参数为目标补偿温度值;当终端设备采用第二关系对照表来进行非线性补偿时,终端设备从第二关系对照表中查找到的是目标电流值对应的目标补偿温度系数,即此时的目标补偿参数为目标补偿温度系数。
步骤703,终端设备根据目标补偿参数对第一温度值进行补偿,得到第二温度值。
一种可选的实施方式中,目标补偿参数为目标补偿温度值,则终端设备将第一温度值与目标补偿温度值的差值,确定为第二温度值。
另一种可选的实施例方式中,目标补偿参数为目标补偿温度系数,则终端设备将第一温度值与目标补偿温度系数的比值,确定为第二温度值。
步骤704,当第二温度值为终端设备唤醒后第n次采集的第一温度值补偿后得到的温度值时,终端设备获取第n-1次采集的第一温度值补偿后得到的第三温度值;n为大于1的正整数。
首先,在对第一温度值进行非线性补偿得到第二温度值之后,判断第二温度值是否为终端设备唤醒后前m次采集的第一温度值t补偿后得到的温度值,当第二温度值是终端设备唤醒后第n次采集的第一温度值补偿后得到的温度值时,n大于m,m为正整数,获取上一次(即第n-1次)采集的第一温度值补偿后得到的第三温度值。
步骤705,当第二温度值与第三温度值的差值大于温度变化门限值时,终端设备对第三温度值与温度变化门限值进行求和,得到电芯的目标温度值。
当第二温度值与第三温度值的差值的绝对值大于温度变化门限值,且第二温度值大于第三温度值时,为了避免温度因一些原因导致大幅度波动,仅允许在第三温度值的基础上升高温度变化门限值,即对第三温度值与温度变化门限值进行求和,得到电芯的目标温度值。
其中,温度变化门限值为各个温度补偿偏差的平均值,温度补偿偏差是根据对应的补偿参数对第一测试温度值补偿后得到的第三测试温度值与对应的第二测试温度值的差值。第三测试温度值可以是第一测试温度值与其对应的设定电流值下的补偿温度值的差值,第三测试温度值也可以是第一测试温度值与其对应的设定电流值下的补偿温度系数的比值。
步骤706,当第三温度值与第二温度值的差值大于温度变化门限值时,终端设备将第三温度值与温度变化门限值的差值,确定为电芯的目标温度值。
当第二温度值与第三温度值的差值的绝对值大于温度变化门限值,且第二温度值小于第三温度值时,为了避免温度因一些原因导致大幅度波动,仅允许在第三温度值的基础下降温度变化门限值,则将第三温度值与温度变化门限值的差值,确定为电芯的目标温度值。
可选的,当第二温度值为终端设备唤醒后前m次采集的第一温度值补偿后得到的温度值时,终端设备将第二温度值确定为电芯的目标温度值。
上面已对本申请实施例的温度补偿方法进行了说明,下面对本申请实施例提供的执行上述温度补偿方法的装置进行描述。本领域技术人员可以理解,方法和装置可以相互结合和引用,本申请实施例提供的温度补偿装置可以执行上述温度补偿方法的步骤。
图8为本申请实施例提供的一种温度补偿装置的结构示意图,该温度补偿装置800包括:获取单元801和处理单元802。
其中,获取单元801,用于获取电池保护板的第一温度值以及电芯的目标电流值,目标电流值为对电芯充电时的充电电流值或电芯放电时的放电电流值;处理单元802,用于从补偿关系对照表中查找目标电流值对应的目标补偿参数;根据目标补偿参数对第一温度值进行补偿,得到第二温度值;当第二温度值为终端设备唤醒后第n次采集的第一温度值补偿后得到的温度值时,获取第n-1次采集的第一温度值补偿后得到的第三温度值,n为大于1的正整数;当第二温度值与第三温度值的差值大于温度变化门限值时,对第三温度值与温度变化门限值进行求和,得到电芯的目标温度值;当第三温度值与第二温度值的差值大于温度变化门限值时,将第三温度值与温度变化门限值的差值,确定为电芯的目标温度值。
可选的,目标补偿参数为目标补偿温度值;处理单元802,具体用于将第一温度值与目标补偿温度值的差值,确定为第二温度值。
可选的,目标补偿参数为目标补偿温度系数;处理单元802,具体用于将第一温度值与目标补偿温度系数的比值,确定为第二温度值。
可选的,处理单元802,具体用于当目标电流值大于或等于目标设定电流值时,将目标设定电流值对应的补偿参数确定为目标电流值对应的目标补偿参数;目标设定电流值为补偿关系对照表中小于目标电流值,且与目标电流值差值的绝对值最小的设定电流值。
可选的,获取单元801,还用于获取生成的补偿关系对照表;补偿关系对照表包括多个设定电流值以及每个设定电流值对应的补偿参数;其中,补偿关系对照表是通过对不同测试电流值下所采集的电池保护板的第一测试温度值和电芯的第二测试温度值测试得到的;补偿参数为同一等级的测试电流值对应的各个测试温度参数的平均值,测试温度参数是根据同一测试电流值对应的第一测试温度值与第二测试温度值计算得到的;同一等级的测试电流值表示测试电流值的整数位相等的各个测试电流值,设定电流值等于同一等级的测试电流值的整数位。
可选的,测试温度参数为测试温度差值,测试温度差值为同一测试电流值对应的第一测试温度值与第二测试温度值的差值。
可选的,测试温度参数为测试温度系数,测试温度系数为同一测试电流值对应的第一测试温度值与第二测试温度值的比值。
可选的,温度变化门限值为各个温度补偿偏差的平均值,温度补偿偏差是根据对应的补偿参数对第一测试温度值补偿后得到的第三测试温度值与对应的第二测试温度值的差值。
可选的,处理单元802,还用于当第二温度值为终端设备唤醒后前m次采集的第一温度值补偿后得到的温度值时,将第二温度值确定为电芯的目标温度值,m为正整数,且m小于n。
本实施例的装置对应地可用于执行上述方法实施例中执行的步骤,其实现原理和技术效果类似,此处不再赘述。
图9为本申请实施例提供的一种终端设备的硬件结构示意图。图9所示的终端设备900包括:存储器901、处理器902和通信接口903,其中,存储器901、处理器902、通信接口903可以通信;示例性的,存储器901、处理器902和通信接口903可以通过通信总线通信。
存储器901可以是只读存储器(Read Only Memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(Random Access Memory,RAM)。存储器901可以存储计算机程序,由处理器902来控制执行,并由通信接口903来执行通信,从而实现本申请上述实施例提供的温度补偿方法。
处理器902可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),图形处理器(graphics processing unit,GPU)或者一个或多个集成电路。
处理器902还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请的温度补偿方法的功能可以通过处理器902中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器902还可以是通用处理器、数字信号处理器(digital signalprocessing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(field programmable gatearray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请下文实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请下文实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器901,处理器902读取存储器901中的信息,结合其硬件完成本申请实施例的温度补偿方法的功能。
芯片中的通信接口903可以为输入/输出接口、管脚或电路等。
本申请实施例还提供了一种计算机可读存储介质。上述实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,则功能可以作为一个或多个指令或代码存储在计算机可读介质上或者在计算机可读介质上传输。计算机可读介质可以包括计算机存储介质和通信介质,还可以包括任何可以将计算机程序从一个地方传送到另一个地方的介质。存储介质可以是可由计算机访问的任何目标介质。
一种可能的实现方式中,计算机可读介质可以包括RAM,ROM,只读光盘(compactdisc read-only memory,CD-ROM)或其它光盘存储器,磁盘存储器或其它磁存储设备,或目标于承载的任何其它介质或以指令或数据结构的形式存储所需的程序代码,并且可由计算机访问。而且,任何连接被适当地称为计算机可读介质。例如,如果使用同轴电缆,光纤电缆,双绞线,数字用户线(Digital Subscriber Line,DSL)或无线技术(如红外,无线电和微波)从网站,服务器或其它远程源传输软件,则同轴电缆,光纤电缆,双绞线,DSL或诸如红外,无线电和微波之类的无线技术包括在介质的定义中。如本文所使用的磁盘和光盘包括光盘,激光盘,光盘,数字通用光盘(Digital Versatile Disc,DVD),软盘和蓝光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光光学地再现数据。上述的组合也应包括在计算机可读介质的范围内。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理单元以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理单元执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
以上的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (18)

1.一种温度补偿方法,其特征在于,包括:
终端设备获取电池保护板的第一温度值以及电芯的目标电流值;所述目标电流值为对所述电芯充电时的充电电流值或所述电芯放电时的放电电流值;
所述终端设备从补偿关系对照表中查找所述目标电流值对应的目标补偿参数;所述补偿关系对照表包括多个设定电流值以及每个所述设定电流值对应的补偿参数;
所述终端设备根据所述目标补偿参数对所述第一温度值进行补偿,得到第二温度值;
当所述第二温度值为所述终端设备唤醒后第n次采集的所述第一温度值补偿后得到的温度值时,所述终端设备获取第n-1次采集的第一温度值补偿后得到的第三温度值;所述n为大于1的正整数;
当所述第二温度值与所述第三温度值的差值大于温度变化门限值时,所述终端设备对所述第三温度值与所述温度变化门限值进行求和,得到所述电芯的目标温度值;
当所述第三温度值与所述第二温度值的差值大于所述温度变化门限值时,所述终端设备将所述第三温度值与所述温度变化门限值的差值,确定为所述电芯的目标温度值;
在所述终端设备根据所述目标补偿参数对所述第一温度值进行补偿,得到第二温度值之后,还包括:
当所述第二温度值为终端设备唤醒后前m次采集的所述第一温度值补偿后得到的温度值时,所述终端设备将所述第二温度值确定为所述电芯的目标温度值,所述m为正整数,且所述m小于所述n。
2.根据权利要求1所述的方法,其特征在于,所述目标补偿参数为目标补偿温度值;所述终端设备根据所述目标补偿参数对所述第一温度值进行补偿,得到第二温度值,包括:
所述终端设备将所述第一温度值与所述目标补偿温度值的差值,确定为第二温度值。
3.根据权利要求1所述的方法,其特征在于,所述目标补偿参数为目标补偿温度系数;所述终端设备根据所述目标补偿参数对所述第一温度值进行补偿,得到第二温度值,包括:
所述终端设备将所述第一温度值与所述目标补偿温度系数的比值,确定为第二温度值。
4.根据权利要求1所述的方法,其特征在于,所述终端设备从补偿关系对照表中查找所述目标电流值对应的目标补偿参数,包括:
当所述目标电流值大于或等于目标设定电流值时,所述终端设备将所述目标设定电流值对应的补偿参数确定为所述目标电流值对应的目标补偿参数;所述目标设定电流值为所述补偿关系对照表中小于所述目标电流值,且与所述目标电流值差值的绝对值最小的设定电流值。
5.根据权利要求1所述的方法,其特征在于,在所述终端设备从补偿关系对照表中查找所述目标电流值对应的目标补偿参数之前,还包括:
所述终端设备获取生成的所述补偿关系对照表;其中,所述补偿关系对照表是通过对不同测试电流值下所采集的电池保护板的第一测试温度值和电芯的第二测试温度值测试得到的;所述补偿参数为同一等级的所述测试电流值对应的各个所述测试温度参数的平均值,所述测试温度参数是根据同一所述测试电流值对应的所述第一测试温度值与所述第二测试温度值计算得到的;所述同一等级的所述测试电流值表示所述测试电流值的整数位相等的各个所述测试电流值,所述设定电流值等于所述同一等级的测试电流值的整数位。
6.根据权利要求5所述的方法,其特征在于,所述测试温度参数为测试温度差值,所述测试温度差值为同一所述测试电流值对应的所述第一测试温度值与所述第二测试温度值的差值。
7.根据权利要求5所述的方法,其特征在于,所述测试温度参数为测试温度系数,所述测试温度系数为同一所述测试电流值对应的所述第一测试温度值与所述第二测试温度值的比值。
8.根据权利要求5所述的方法,其特征在于,所述温度变化门限值为各个温度补偿偏差的平均值,所述温度补偿偏差是根据对应的补偿参数对所述第一测试温度值补偿后得到的第三测试温度值与对应的所述第二测试温度值的差值。
9.一种温度补偿装置,其特征在于,包括:
获取单元,用于获取电池保护板的第一温度值以及电芯的目标电流值;所述目标电流值为对所述电芯充电时的充电电流值或所述电芯放电时的放电电流值;
处理单元,用于从补偿关系对照表中查找所述目标电流值对应的目标补偿参数;所述补偿关系对照表包括多个设定电流值以及每个所述设定电流值对应的补偿参数;
根据所述目标补偿参数对所述第一温度值进行补偿,得到第二温度值;
当所述第二温度值为终端设备唤醒后第n次采集的所述第一温度值补偿后得到的温度值时,获取第n-1次采集的第一温度值补偿后得到的第三温度值,所述n为大于1的正整数;当所述第二温度值与所述第三温度值的差值大于温度变化门限值时,对所述第三温度值与所述温度变化门限值进行求和,得到所述电芯的目标温度值;当所述第三温度值与所述第二温度值的差值大于所述温度变化门限值时,将所述第三温度值与所述温度变化门限值的差值,确定为所述电芯的目标温度值;
所述处理单元,还用于当所述第二温度值为终端设备唤醒后前m次采集的所述第一温度值补偿后得到的温度值时,将所述第二温度值确定为所述电芯的目标温度值,所述m为正整数,且所述m小于所述n。
10.根据权利要求9所述的装置,其特征在于,所述目标补偿参数为目标补偿温度值;所述处理单元,具体用于将所述第一温度值与所述目标补偿温度值的差值,确定为第二温度值。
11.根据权利要求9所述的装置,其特征在于,所述目标补偿参数为目标补偿温度系数;所述处理单元,具体用于将所述第一温度值与所述目标补偿温度系数的比值,确定为第二温度值。
12.根据权利要求9所述的装置,其特征在于,所述处理单元,具体用于当所述目标电流值大于或等于目标设定电流值时,将所述目标设定电流值对应的补偿参数确定为所述目标电流值对应的目标补偿参数;所述目标设定电流值为所述补偿关系对照表中小于所述目标电流值,且与所述目标电流值差值的绝对值最小的设定电流值。
13.根据权利要求9所述的装置,其特征在于,所述获取单元,还用于获取生成的所述补偿关系对照表;其中,所述补偿关系对照表是通过对不同测试电流值下所采集的电池保护板的第一测试温度值和电芯的第二测试温度值测试得到的;所述补偿参数为同一等级的所述测试电流值对应的各个所述测试温度参数的平均值,所述测试温度参数是根据同一所述测试电流值对应的所述第一测试温度值与所述第二测试温度值计算得到的;所述同一等级的所述测试电流值表示所述测试电流值的整数位相等的各个所述测试电流值,所述设定电流值等于所述同一等级的测试电流值的整数位。
14.根据权利要求13所述的装置,其特征在于,所述测试温度参数为测试温度差值,所述测试温度差值为同一所述测试电流值对应的所述第一测试温度值与所述第二测试温度值的差值。
15.根据权利要求13所述的装置,其特征在于,所述测试温度参数为测试温度系数,所述测试温度系数为同一所述测试电流值对应的所述第一测试温度值与所述第二测试温度值的比值。
16.根据权利要求13所述的装置,其特征在于,所述温度变化门限值为各个温度补偿偏差的平均值,所述温度补偿偏差是根据对应的补偿参数对所述第一测试温度值补偿后得到的第三测试温度值与对应的所述第二测试温度值的差值。
17.一种终端设备,其特征在于,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,以执行如权利要求1至8中任一项所述的温度补偿方法。
18.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被运行时,实现如权利要求1至8中任一项所述的温度补偿方法。
CN202110904522.4A 2021-08-06 2021-08-06 温度补偿方法、装置、终端设备及可读存储介质 Active CN114448015B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110904522.4A CN114448015B (zh) 2021-08-06 2021-08-06 温度补偿方法、装置、终端设备及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110904522.4A CN114448015B (zh) 2021-08-06 2021-08-06 温度补偿方法、装置、终端设备及可读存储介质

Publications (2)

Publication Number Publication Date
CN114448015A CN114448015A (zh) 2022-05-06
CN114448015B true CN114448015B (zh) 2023-01-24

Family

ID=81362709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110904522.4A Active CN114448015B (zh) 2021-08-06 2021-08-06 温度补偿方法、装置、终端设备及可读存储介质

Country Status (1)

Country Link
CN (1) CN114448015B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116031966B (zh) * 2022-05-30 2023-10-13 荣耀终端有限公司 温度补偿方法及电子设备
CN115513571B (zh) * 2022-11-23 2023-06-13 荣耀终端有限公司 电池温度的控制方法和终端设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105633498A (zh) * 2016-03-15 2016-06-01 北京小米移动软件有限公司 电池温度检测方法及装置
CN109449518A (zh) * 2018-11-02 2019-03-08 奇瑞汽车股份有限公司 一种动力电池系统温度修正方法
CN110687942A (zh) * 2019-10-24 2020-01-14 北京嘉洁能科技股份有限公司 一种碳纤维控制器温度补偿方法
CN110793660A (zh) * 2019-11-08 2020-02-14 锐迪科微电子(上海)有限公司 电池温度检测电路
CN111725573A (zh) * 2019-03-22 2020-09-29 东莞新能安科技有限公司 温度补偿方法、具有充电电池的设备及存储介质
CN112292604A (zh) * 2018-10-31 2021-01-29 华为技术有限公司 电池电压的补偿方法、装置和终端设备
CN112713322A (zh) * 2019-10-24 2021-04-27 北京小米移动软件有限公司 电池温度确定方法、电池温度确定装置及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10338669B2 (en) * 2015-10-27 2019-07-02 Dell Products, L.P. Current sense accuracy improvement for MOSFET RDS (on) sense based voltage regulator by adaptive temperature compensation
CN106356915A (zh) * 2016-08-30 2017-01-25 宇龙计算机通信科技(深圳)有限公司 温度控制装置、温度补偿方法、温度补偿装置和终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105633498A (zh) * 2016-03-15 2016-06-01 北京小米移动软件有限公司 电池温度检测方法及装置
CN112292604A (zh) * 2018-10-31 2021-01-29 华为技术有限公司 电池电压的补偿方法、装置和终端设备
CN109449518A (zh) * 2018-11-02 2019-03-08 奇瑞汽车股份有限公司 一种动力电池系统温度修正方法
CN111725573A (zh) * 2019-03-22 2020-09-29 东莞新能安科技有限公司 温度补偿方法、具有充电电池的设备及存储介质
CN110687942A (zh) * 2019-10-24 2020-01-14 北京嘉洁能科技股份有限公司 一种碳纤维控制器温度补偿方法
CN112713322A (zh) * 2019-10-24 2021-04-27 北京小米移动软件有限公司 电池温度确定方法、电池温度确定装置及存储介质
CN110793660A (zh) * 2019-11-08 2020-02-14 锐迪科微电子(上海)有限公司 电池温度检测电路

Also Published As

Publication number Publication date
CN114448015A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
CN109061481B (zh) 电池的荷电状态确定方法、装置及存储介质
CN112017615A (zh) 电子设备的环境光亮度校准方法及电子设备
CN114448015B (zh) 温度补偿方法、装置、终端设备及可读存储介质
CN111371938A (zh) 一种故障检测方法及电子设备
CN116069139B (zh) 温度预测方法、装置、电子设备及介质
CN113596242A (zh) 传感器调整方法、装置和电子设备
CN111865646A (zh) 终端升级方法及相关装置
CN116070035A (zh) 数据处理方法和电子设备
CN111104295A (zh) 一种页面加载过程的测试方法及设备
CN115333941A (zh) 获取应用运行情况的方法及相关设备
WO2021155709A1 (zh) 一种充电控制方法及电子设备
CN114173286B (zh) 确定测试路径的方法、装置、电子设备及可读存储介质
CN113380240B (zh) 语音交互方法和电子设备
WO2022007757A1 (zh) 跨设备声纹注册方法、电子设备及存储介质
CN112579425B (zh) 一种用于对小程序方法接口进行测试的方法、装置及介质
CN115695640A (zh) 一种防关机保护方法及电子设备
CN114064381A (zh) 一种usb接口进水检测的方法及电子设备
CN115248693A (zh) 一种应用的管理方法和电子设备
CN114003241A (zh) 应用程序的界面适配显示方法、系统、电子设备和介质
CN114006976B (zh) 一种界面显示方法及终端设备
CN115513571B (zh) 电池温度的控制方法和终端设备
CN117706182A (zh) 参数调整方法及电子设备
CN113626115B (zh) 生成表盘的方法及相关装置
CN114285946B (zh) 携号转网号码显示方法、电子设备及存储介质
CN117154900B (zh) 充电控制方法及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant