WO2021155709A1 - 一种充电控制方法及电子设备 - Google Patents

一种充电控制方法及电子设备 Download PDF

Info

Publication number
WO2021155709A1
WO2021155709A1 PCT/CN2020/133561 CN2020133561W WO2021155709A1 WO 2021155709 A1 WO2021155709 A1 WO 2021155709A1 CN 2020133561 W CN2020133561 W CN 2020133561W WO 2021155709 A1 WO2021155709 A1 WO 2021155709A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
current
charging
electronic device
control device
Prior art date
Application number
PCT/CN2020/133561
Other languages
English (en)
French (fr)
Inventor
邱德荣
袁曜
马理猴
崔瑞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021155709A1 publication Critical patent/WO2021155709A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • This application relates to the technical field of battery charging, and in particular to a charging control method and electronic equipment.
  • the functions of mobile terminals such as mobile phones, tablet computers, and wearable devices have become more and more powerful, bringing convenience to users' lives and work.
  • the mobile terminal is usually equipped with a relatively large-capacity battery.
  • the charging power is increasing. High-power charging will cause the mobile phone to heat up, making the user's charging experience poor.
  • the charging current is too small, it may cause the charging speed to be extremely slow or even the less the battery is charged, making the charging speed experience worse.
  • the embodiments of the present application provide a charging control method and an electronic device, which can balance the charging speed experience and the charging thermal experience of the user in different scenarios.
  • the embodiments of the present application provide a charging control method, which can be applied to an electronic device with multiple devices; the method includes: determining a first use scenario of the electronic device when the electronic device is being charged; the first use scenario corresponds to the first use scenario A function group, the functions in the first function group are used to describe the temperature and current curve of at least one device in the first use scenario, and at least one device is a temperature control device in the first use scenario; according to the actual measurement of the at least one temperature control device Temperature and the first function group, adjust the charging current; when it is recognized that the electronic device is switched from the first use scene to the second use scene, adjust the charging according to the measured temperature of the temperature control device in the second use scene and the second function group Current; where the functions in the second function group are used to describe the temperature-current curve of the temperature control device in the second use scenario in the second use scenario, and the functions in the second function group are different from the functions in the first function group.
  • the charging control method can determine the usage scenario of the electronic device during charging, and determine the temperature control device and the temperature current curve corresponding to the usage scenario, and then the temperature control device corresponding to the usage scenario can be determined
  • the charging current is adjusted according to the actual measured temperature and temperature current curve of the use scene, and when the use scene changes, the charging current is adjusted according to the measured temperature and temperature current curve during the library period corresponding to the changed use scene, so as to realize the use of different
  • the charging control strategy is designed to balance the charging speed experience and charging thermal experience of users in different usage scenarios.
  • the charging control method provided by the embodiment of the present application further includes: obtaining a configuration file corresponding to the first usage scenario, and the configuration file includes a one-to-one correspondence between multiple temperatures and multiple currents under at least one device. Relationship; According to the one-to-one correspondence between multiple temperatures and multiple currents under at least one device, determine at least one temperature-current function corresponding to at least one device; determine at least one temperature-current function as the first group of functions.
  • the function group corresponding to the first usage scenario can be determined according to a preset configuration file.
  • the independent variable of the function in the first function group is the charging current
  • the dependent variable is the current limiting temperature
  • adjusting the charging current includes: The first function group determines at least one current limiting temperature corresponding to at least one temperature control device under the current charging current; determines the first current upper limit value according to the at least one current limiting temperature and the measured temperature of the at least one temperature control device; An upper limit of current, which limits the charging current.
  • the current limiting temperature corresponding to the current charging current of the temperature control device can be determined according to the function group, and the current upper limit value can be determined according to the current limiting temperature and the measured temperature of the temperature control device, so as The current upper limit adjusts the charging current, that is, in this implementation, the charging current is adjusted by tracking the current limit temperature corresponding to the current charging current, instead of tracking the fixed current limit temperature, which can realize the flexibility of the charging current Adjust to balance the user's charging speed experience and charging thermal experience.
  • the at least one temperature control device includes at least two devices, and the at least one current-limiting temperature includes the current-limiting temperature corresponding to the at least two devices;
  • the charging control method provided in the embodiment of the present application also Including: determining the temperature difference of each of the at least two devices, where the temperature difference of each device is the current limiting temperature corresponding to the device minus the actual measured temperature of the device; determining the at least two devices The temperature difference of the first device to be adjusted in the first device is the smallest; determining the first current upper limit value according to the at least one current-limiting temperature and the measured temperature of the at least one temperature control device includes: determining the first current upper limit value according to the temperature difference to be adjusted of the first device Limit.
  • the electronic device when it is charging, it can track the current limiting temperature and the measured temperature of two or more temperature control devices, and determine the temperature difference between the current limiting temperature and the measured temperature of each device , And the device with the smallest temperature difference between the current limit temperature and the measured temperature among the multiple temperature control devices is used as the target device, and the current is adjusted so that the temperature of each temperature control device caused by the adjusted current will not or have a greater probability Exceeding the respective corresponding current limit temperature can improve the user's charging experience.
  • the at least one temperature control device includes at least two devices, and the at least one current limiting temperature includes the current limiting temperature corresponding to the at least two devices;
  • the charging control method provided in the embodiment of the present application further includes : Determine that the current limiting temperature corresponding to the second device of the at least two devices is the smallest; determine that the second device is the target device; determine the first current limiting temperature based on the at least one current limiting temperature and the measured temperature of the at least one temperature control device
  • the limit value includes: determining the first current upper limit value according to the temperature difference to be adjusted of the target device.
  • the device with the lowest current limiting temperature among the plurality of temperature control devices is used as the target device, and the current adjustment is performed so that the temperature of each temperature control device caused by the adjusted current is likely not to be too high.
  • Each corresponding current limit temperature which can improve the user's charging heat experience.
  • determining the first current upper limit value according to the at least one current-limiting temperature and the measured temperature of the at least one temperature control device includes: according to the at least one current-limiting temperature and the measured temperature of the at least one temperature control device, The first algorithm is used to determine the first current upper limit; the first algorithm is any one or a combination of the following:
  • the proportional control term algorithm in the proportional integral derivative control algorithm the integral control term algorithm in the proportional integral derivative control algorithm, and the derivative control term algorithm in the proportional integral derivative control algorithm.
  • the PID algorithm can be used to adjust the charging current according to the measured temperature and temperature-current curve of the temperature control device, which can realize the continuous regulation of the charging current and avoid the excessive limitation of the charging current by the discrete adjustment regulation. flow.
  • the first use scene is one of the off-screen scene or the multiple bright-screen scenes.
  • the corresponding temperature control device and temperature-current curve can be selected to adjust the charging current, which can be balanced.
  • the power consumption of the same device or the highest power consumption device of the same device is different in different bright screen scenes of the multiple bright screen scenes.
  • multiple bright screen scenes include the following scenes:
  • Game scenes video playback scenes, video call scenes, and ordinary bright screen scenes.
  • determining the first usage scenario of the electronic device includes: determining the first usage scenario through a preset scenario recognition model according to the power consumption of multiple devices of the electronic device.
  • the electronic device can identify the charging scene of the electronic device according to the power consumption of its multiple devices, and can accurately identify the charging scene to select the appropriate temperature control device and temperature current curve. , To adjust the charging current, you can balance the user's charging speed experience and charging heat experience.
  • determining the first usage scenario of the electronic device includes: determining the first usage scenario according to a foreground running application of the electronic device.
  • the electronic device can identify the charging scene of the electronic device according to the application running in the foreground, and can accurately identify the charging scene, so as to select the appropriate temperature control device and temperature and current curve to adjust the charging.
  • Current can balance the user's charging speed experience and charging heat experience.
  • determining the first use scenario of the electronic device includes: determining the first use scenario according to the remaining power of the battery of the electronic device or the temperature of the external environment of the electronic device.
  • determining the first use scenario of the electronic device includes: determining the first use scenario in response to a scene selection operation initiated by the user.
  • the multiple components of the electronic device are at least one of the following:
  • On-chip system chip charging chip, battery, power amplifier.
  • one or more of the on-chip system chip, charging chip, battery, and power amplifier can be used as a temperature control device, so that when adjusting the charging current, you can Consider the temperature of one or more of the on-chip system chip, charging chip, battery, and power amplifier to control the overall temperature of the electronic device to ensure the user's charging experience.
  • an embodiment of the present application provides a charging control device, which is configured in an electronic device with multiple devices; the device includes: a first determining unit configured to determine the first use of the electronic device when the electronic device is being charged Scenario; the first use scenario corresponds to the first function group, the functions in the first function group are used to describe the temperature-current curve of at least one device in the first use scenario, and at least one device is a temperature control device in the first use scenario;
  • the adjustment unit is used to adjust the charging current according to the measured temperature of the at least one temperature control device and the first function group; the adjustment unit is also used to adjust the charging current according to the second use scene when it is recognized that the electronic device is switched from the first use scene to the second use scene Use the measured temperature of the temperature control device in the use scenario and the second function group to adjust the charging current; among them, the function in the second function group is used to describe the temperature and current of the temperature control device in the second use scenario in the second use scenario Curve, the function in the second function group is different from the function in
  • the device further includes: an obtaining unit, configured to obtain a configuration file corresponding to the first usage scenario, the configuration file including a one-to-one correspondence between multiple temperatures and multiple currents under at least one device;
  • the second determining unit is configured to determine at least one temperature current function corresponding to at least one device according to the one-to-one correspondence between multiple temperatures and multiple currents under at least one device;
  • the third determining unit is configured to determine at least one temperature current
  • the function is the first function group.
  • the independent variable of the function in the first function group is the charging current, and the dependent variable is the current limiting temperature; the adjustment unit is further configured to determine the current charging current of at least one temperature control device according to the first function group The adjustment unit is further configured to determine the first current upper limit value according to the at least one current limit temperature and the measured temperature of the at least one temperature control device; the adjustment unit is further configured to determine the first current upper limit value according to the first current limit temperature , Limit the charging current.
  • the at least one temperature control device includes at least two devices, and the at least one current limiting temperature includes the current limiting temperature corresponding to the at least two devices; the device further includes: a fourth determining unit configured to determine at least The temperature difference to be adjusted of each device in the two devices, where the temperature difference of each device is the difference of the current limiting temperature corresponding to the device minus the actual measured temperature of the device; the fifth determining unit is used to determine at least two The first device in the two devices has the smallest temperature difference to be adjusted; the adjustment unit is further configured to determine the first current upper limit value according to the temperature difference to be adjusted of the first device.
  • the at least one temperature control device includes at least two devices, and the at least one current limiting temperature includes the current limiting temperature corresponding to the at least two devices; the device further includes: a sixth determining unit, configured to determine at least The second device of the two devices has the smallest current limiting temperature; the seventh determining unit is used to determine that the second device is the target device; the adjustment unit is also used to determine the first current upper limit value according to the temperature difference of the target device to be adjusted.
  • the adjustment unit is further configured to adopt a first algorithm to determine the first current upper limit value according to the at least one current limiting temperature and the measured temperature of the at least one temperature control device;
  • the first algorithm is any of the following Item or combination of items:
  • the proportional control term algorithm in the proportional integral derivative control algorithm the integral control term algorithm in the proportional integral derivative control algorithm, and the derivative control term algorithm in the proportional integral derivative control algorithm.
  • the first use scene is one of the off-screen scene or the multiple bright-screen scenes.
  • the power consumption of the same device or the highest power consumption device of the same device is different in different bright screen scenes of the multiple bright screen scenes.
  • multiple bright screen scenes include the following scenes:
  • Game scenes video playback scenes, video call scenes, and ordinary bright screen scenes.
  • the first determining unit is further configured to determine the first usage scenario according to the power consumption of the multiple devices through a preset scenario recognition model.
  • the first determining unit is further configured to determine the first usage scenario according to the application running in the foreground of the electronic device.
  • the first determining unit is further configured to determine the first usage scenario according to the remaining power of the battery of the electronic device or the temperature of the external environment of the electronic device.
  • the first determining unit is further configured to determine the first use scene in response to a scene selection operation initiated by the user.
  • the multiple devices are at least one of the following:
  • On-chip system chip charging chip, battery, power amplifier.
  • the charging control device provided in the second aspect is used to execute the corresponding method provided in the first aspect. Therefore, the beneficial effects it can achieve can refer to the beneficial effects in the corresponding method provided in the first aspect. I won't repeat them here.
  • an electronic device including: a processor and a memory; the memory is used to store computer instructions; when the electronic device is running, the processor executes the computer instructions so that the electronic device executes the method provided in the first aspect.
  • the electronic device provided in the third aspect is used to execute the corresponding method provided in the first aspect. Therefore, the beneficial effects that it can achieve can refer to the beneficial effects in the corresponding method provided in the first aspect. I won't repeat it here.
  • an embodiment of the present application provides a computer storage medium.
  • the computer storage medium includes computer instructions.
  • the computer instructions run on an electronic device, the electronic device executes the method provided in the first aspect.
  • the computer storage medium provided in the fourth aspect is used to execute the corresponding method provided in the first aspect. Therefore, the beneficial effects that can be achieved can refer to the beneficial effects in the corresponding method provided in the first aspect. I won't repeat them here.
  • the embodiments of the present application provide a computer program product.
  • the program code contained in the computer program product is executed by a processor in an electronic device, the method described in the first aspect is implemented.
  • the computer program product provided in the fifth aspect is used to execute the corresponding method provided in the first aspect. Therefore, the beneficial effects it can achieve can refer to the beneficial effects in the corresponding method provided in the first aspect. I won't repeat them here.
  • the embodiments of the present application provide solutions that can determine the usage scenario of an electronic device when charging, and determine the temperature control device and temperature current curve corresponding to the usage scenario, and then the measured temperature and temperature current curve of the temperature control device corresponding to the usage scenario Adjusting the charging current realizes the adoption of different charging control strategies according to different usage scenarios to balance the charging speed experience and charging thermal experience of users in different usage scenarios.
  • Figure 1 shows a charging current control strategy
  • Figure 2 shows a hardware structure of an electronic device provided by an embodiment of the present application
  • Figure 3 shows an electronic device software structure provided by an embodiment of the present application
  • FIG. 4A shows a temperature and current curve in a charging scenario provided by an embodiment of the present application
  • FIG. 4B shows a temperature-current curve in a charging scenario provided by an embodiment of the present application
  • FIG. 5A shows a temperature and current curve of an SoC chip in a game scenario provided by an embodiment of the present application
  • FIG. 5B shows a temperature and current curve of a charging chip in a game scenario provided by an embodiment of the present application
  • FIG. 6A shows a temperature and current curve of a PA in an off-screen scenario provided by an embodiment of the present application
  • FIG. 6B shows a temperature and current curve of a charging chip in an off-screen scenario provided by an embodiment of the present application
  • FIG. 7A shows a temperature and current curve of the PA in an off-screen scenario provided by an embodiment of the present application
  • FIG. 7B shows a temperature and current curve of a charging chip in a screen-off scenario provided by an embodiment of the present application
  • FIG. 8A shows an example of using a temperature-current curve to determine the current-limiting temperature corresponding to the current charging current according to an embodiment of the present application
  • FIG. 8B shows an example of using a temperature-current curve to determine the current-limiting temperature corresponding to the current charging current according to an embodiment of the present application
  • FIG. 9 shows a schematic block diagram of a charging control device provided by an embodiment of the present application.
  • FIG. 10 shows a flowchart of a charging control method provided by an embodiment of the present application.
  • FIG. 11 shows a flowchart of a charging control method provided by an embodiment of the present application.
  • FIG. 12 shows a schematic block diagram of a charging control device provided by an embodiment of the present application.
  • FIG. 13 shows a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • the terms “including”, “including”, “having” and their variations all mean “including but not limited to”, unless otherwise specifically emphasized.
  • One type of charging control strategy is a discrete control strategy.
  • the upper limit of the charging current is used to limit the charging current.
  • multiple current upper limit values and current limit temperature thresholds corresponding to each current upper limit value are set to perform stepwise control of the charging current.
  • an exit temperature threshold is set for the current upper limit. The exit temperature threshold is lower than the limit temperature threshold corresponding to the current upper limit value.
  • the temperature interval between the exit temperature threshold of the current upper limit value and the current limit temperature threshold of the current upper limit value can be referred to as the current limit temperature zone.
  • the limitation on the charging current by the current upper limit value is exited.
  • the actual temperature of the temperature measurement point usually stays in the current-limiting temperature zone for a long time, so that a higher charging current cannot be used, and the charging speed is excessively limited.
  • Figure 1 shows a discrete control strategy.
  • the upper current limit is 8A
  • the actual temperature of device A is greater than 44°C
  • the upper current limit is 5A.
  • a current limiting temperature zone of 41-44°C is set. Only when the actual temperature of the device A is lower than 41°C, the current upper limit of the charging current is changed from 5A Adjust to 8A. If device A has a short-term high power consumption, the actual temperature of device A is greater than 44°C, and 5A is used to limit the charging current.
  • the upper limit of the charging current will be adjusted from 5A to 8A.
  • the cooling process of device A is very slow, and it takes a long time to drop from 44°C to 41°C.
  • the upper limit value of the charging current is 5A, which reduces the charging speed and makes the user's charging experience worse.
  • a charging control strategy is to use a constant target temperature and continuously control the charging current through a proportional integral differential (PID) controller to keep the actual temperature of the charge IC (charge IC) fluctuating up and down at the constant target temperature.
  • PID proportional integral differential
  • This charging control strategy only considers the temperature of the charging chip and fails to fully reflect the heat generation of the mobile terminal.
  • the temperature of other high-power devices other than the charging chip is higher, which also causes the local temperature of the mobile terminal to be higher, which seriously affects the user's charging heat experience.
  • SoC system-on-chip
  • the SoC system-on-chip
  • PA power amplifier
  • the current-limiting temperature tracked by the charging control strategy is constant. If the current-limiting temperature is set higher, the user's charging heat experience will be affected. If the current limit temperature setting is low, it will affect the user's charging speed experience, which is likely to result in a slow charging speed or even a smaller battery charge. For example, in the game scenario, devices such as mobile terminal SoC chips have high power consumption and heat generation. Due to the heat transfer effect, the temperature of the charging chip is also higher.
  • the charging control strategy is to maintain the actual temperature of the charging chip at the current limit. The temperature reduces the charging current to a very small value, and may even cause the charging to be interrupted, which seriously affects the user's charging speed experience.
  • the embodiment of the application provides a charging control method.
  • the current use scene of the electronic device can be identified, and one or more devices corresponding to the current use scene can be determined, and the one or more devices can be determined in the current Using the temperature-current curve in the scene, the current limiting temperature of the one or more devices under the current charging current can be determined, so that the charging current can be adjusted according to the determined current limiting temperature and the measured temperature of the one or more devices.
  • the temperature control device of the current use scene may be referred to as the temperature control device of the current use scene.
  • the electronic device can select different temperature control devices and different temperature and current curves in different charging scenarios, and can determine that the temperature control devices are in different positions according to the temperature and current curves. Different current-limiting temperatures under the charging current can then adjust the charging current according to different current-limiting temperatures and the measured temperature of the temperature control device, which can balance the user's charging speed experience and charging thermal experience under different usage scenarios.
  • the charging control method in the embodiments of this application can be applied to various electronic devices, including but not limited to mobile phones, tablet computers, personal digital assistants (personal digital assistant, PDA), wearable devices, laptop computers (laptop) and other portable electronic devices. equipment.
  • portable electronic devices include, but are not limited to, portable electronic devices equipped with iOS, android, microsoft or other operating systems.
  • the electronic equipment may also be other types of electronic equipment, such as household equipment such as refrigerators and washing machines, or automotive or industrial electronic equipment.
  • the embodiments of the present application do not specifically limit the type of electronic equipment.
  • FIG. 2 shows a schematic diagram of the structure of the electronic device 100.
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2.
  • Mobile communication module 150 wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, and Subscriber identification module (subscriber identification module, SIM) card interface 195, etc.
  • SIM Subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light Sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the electronic device 100.
  • the electronic device 100 may include more or fewer components than those shown in the figure, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU), etc.
  • AP application processor
  • GPU graphics processing unit
  • ISP image signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the different processing units may be independent devices or integrated in one or more processors.
  • the processor 110 may also be referred to as a system-on-chip.
  • the controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching instructions and executing instructions.
  • a memory may also be provided in the processor 110 to store instructions and data.
  • the memory in the processor 110 is a cache memory.
  • the memory can store instructions or data that have just been used or recycled by the processor 110. If the processor 110 needs to use the instruction or data again, it can be directly called from the memory. Repeated accesses are avoided, the waiting time of the processor 110 is reduced, and the efficiency of the system is improved.
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, and a universal asynchronous transmitter/receiver (universal asynchronous) interface.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter/receiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB Universal Serial Bus
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may include multiple sets of I2C buses.
  • the processor 110 may be coupled to the touch sensor 180K, charger, flash, camera 193, etc., respectively through different I2C bus interfaces.
  • the processor 110 may couple the touch sensor 180K through an I2C interface, so that the processor 110 and the touch sensor 180K communicate through the I2C bus interface to implement the touch function of the electronic device 100.
  • the I2S interface can be used for audio communication.
  • the processor 110 may include multiple sets of I2S buses.
  • the processor 110 may be coupled with the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170.
  • the audio module 170 may transmit audio signals to the wireless communication module 160 through an I2S interface, so as to realize the function of answering calls through a Bluetooth headset.
  • the PCM interface can also be used for audio communication to sample, quantize and encode analog signals.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 may also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a two-way communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • the UART interface is generally used to connect the processor 110 and the wireless communication module 160.
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to realize the Bluetooth function.
  • the audio module 170 may transmit audio signals to the wireless communication module 160 through a UART interface, so as to realize the function of playing music through a Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with the display screen 194, the camera 193 and other peripheral devices.
  • the MIPI interface includes a camera serial interface (camera serial interface, CSI), a display serial interface (display serial interface, DSI), and so on.
  • the processor 110 and the camera 193 communicate through a CSI interface to implement the shooting function of the electronic device 100.
  • the processor 110 and the display screen 194 communicate through a DSI interface to realize the display function of the electronic device 100.
  • the GPIO interface can be configured through software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193, the display screen 194, the wireless communication module 160, the audio module 170, the sensor module 180, and so on.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface that complies with the USB standard specification, and specifically may be a Mini USB interface, a Micro USB interface, a USB Type C interface, and so on.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 100, and can also be used to transfer data between the electronic device 100 and peripheral devices. It can also be used to connect earphones and play audio through earphones. This interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is merely a schematic description, and does not constitute a structural limitation of the electronic device 100.
  • the electronic device 100 may also adopt different interface connection modes in the foregoing embodiments, or a combination of multiple interface connection modes.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the charging management module 140 may receive the charging input of the wired charger through the USB interface 130.
  • the charging management module 140 may receive the wireless charging input through the wireless charging coil of the electronic device 100. While the charging management module 140 charges the battery 142, it can also supply power to the electronic device through the power management module 141.
  • the charging management module 140 may include a charging chip, and the charging chip may complete the voltage and/or current conversion of the charger's charging input (usually by buck/boost current conversion) to charge the battery 142 and pass The power management module 141 supplies power to the electronic device.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charge management module 140, and supplies power to the processor 110, the internal memory 121, the display screen 194, the camera 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, and battery health status (leakage, impedance).
  • the power management module 141 may also be provided in the processor 110.
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the electronic device 100 can be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor, and the baseband processor.
  • the antenna 1 and the antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the electronic device 100 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 can provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the electronic device 100.
  • the mobile communication module 150 may include at least one filter, a switch, a power amplifier, a low noise amplifier (LNA), and the like.
  • the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic waves for radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the application processor outputs a sound signal through an audio device (not limited to the speaker 170A, the receiver 170B, etc.), or displays an image or video through the display screen 194.
  • the modem processor may be an independent device.
  • the modem processor may be independent of the processor 110 and be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), and global navigation satellites. System (global navigation satellite system, GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 may also receive a signal to be sent from the processor 110, perform frequency modulation, amplify, and convert it into electromagnetic waves to radiate through the antenna 2.
  • the antenna 1 of the electronic device 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the electronic device 100 implements a display function through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is an image processing microprocessor, which is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations and is used for graphics rendering.
  • the processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos, and the like.
  • the display screen 194 includes a display panel.
  • the display panel can adopt liquid crystal display (LCD), organic light-emitting diode (OLED), active matrix organic light-emitting diode or active-matrix organic light-emitting diode (active-matrix organic light-emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • active-matrix organic light-emitting diode active-matrix organic light-emitting diode
  • AMOLED flexible light-emitting diode (FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (QLED), etc.
  • the electronic device 100 may include one or N display screens 194, and N is a positive integer greater than one.
  • the electronic device 100 can implement a shooting function through an ISP, a camera 193, a video codec, a GPU, a display screen 194, and an application processor.
  • the ISP is used to process the data fed back from the camera 193. For example, when taking a picture, the shutter is opened, the light is transmitted to the photosensitive element of the camera through the lens, the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing and is converted into an image visible to the naked eye.
  • ISP can also optimize the image noise, brightness, and skin color. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 193.
  • the camera 193 is used to capture still images or videos.
  • the object generates an optical image through the lens and is projected to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transfers the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats of image signals.
  • the electronic device 100 may include one or N cameras 193, and N is a positive integer greater than one.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device 100 selects the frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • the electronic device 100 may support one or more video codecs. In this way, the electronic device 100 can play or record videos in multiple encoding formats, such as: moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, and so on.
  • MPEG moving picture experts group
  • MPEG2 MPEG2, MPEG3, MPEG4, and so on.
  • NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • applications such as intelligent cognition of the electronic device 100 can be realized, such as image recognition, face recognition, voice recognition, text understanding, and so on.
  • the external memory interface 120 may be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example, save music, video and other files in an external memory card.
  • the internal memory 121 may be used to store computer executable program code, where the executable program code includes instructions.
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, an application program (such as a sound playback function, an image playback function, etc.) required by at least one function, and the like.
  • the data storage area can store data (such as audio data, phone book, etc.) created during the use of the electronic device 100.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, a universal flash storage (UFS), and the like.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by running instructions stored in the internal memory 121 and/or instructions stored in a memory provided in the processor.
  • the electronic device 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the earphone interface 170D, and the application processor. For example, music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into an analog audio signal for output, and is also used to convert an analog audio input into a digital audio signal.
  • the audio module 170 can also be used to encode and decode audio signals.
  • the audio module 170 may be provided in the processor 110, or part of the functional modules of the audio module 170 may be provided in the processor 110.
  • the speaker 170A also called “speaker” is used to convert audio electrical signals into sound signals.
  • the electronic device 100 can listen to music through the speaker 170A, or listen to a hands-free call.
  • the receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the electronic device 100 answers a call or voice message, it can receive the voice by bringing the receiver 170B close to the human ear.
  • the microphone 170C also called “microphone”, “microphone”, is used to convert sound signals into electrical signals.
  • the user can make a sound by approaching the microphone 170C through the human mouth, and input the sound signal into the microphone 170C.
  • the electronic device 100 may be provided with at least one microphone 170C. In other embodiments, the electronic device 100 may be provided with two microphones 170C, which can implement noise reduction functions in addition to collecting sound signals. In other embodiments, the electronic device 100 may also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and realize directional recording functions.
  • the earphone interface 170D is used to connect wired earphones.
  • the earphone interface 170D may be a USB interface 130, or a 3.5mm open mobile terminal platform (OMTP) standard interface, and a cellular telecommunications industry association (cellular telecommunications industry association of the USA, CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA, CTIA
  • the pressure sensor 180A is used to sense the pressure signal and can convert the pressure signal into an electrical signal.
  • the pressure sensor 180A may be provided on the display screen 194. Pressure sensor 180A
  • the capacitive pressure sensor may include at least two parallel plates with conductive materials.
  • the electronic device 100 determines the intensity of the pressure according to the change in capacitance.
  • the electronic device 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the electronic device 100 may also calculate the touched position according to the detection signal of the pressure sensor 180A.
  • touch operations that act on the same touch position but have different touch operation strengths may correspond to different operation instructions.
  • the gyro sensor 180B may be used to determine the movement posture of the electronic device 100.
  • the angular velocity of the electronic device 100 around three axes ie, x, y, and z axes
  • the gyro sensor 180B can be used for image stabilization.
  • the gyro sensor 180B detects the shake angle of the electronic device 100, calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the shake of the electronic device 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • the air pressure sensor 180C is used to measure air pressure.
  • the electronic device 100 calculates the altitude based on the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the electronic device 100 may use the magnetic sensor 180D to detect the opening and closing of the flip holster.
  • the electronic device 100 can detect the opening and closing of the flip according to the magnetic sensor 180D.
  • features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the electronic device 100 in various directions (generally three axes). When the electronic device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices, and apply to applications such as horizontal and vertical screen switching, pedometers, and so on.
  • the electronic device 100 can measure the distance by infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 may use the distance sensor 180F to measure the distance to achieve fast focusing.
  • the proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the electronic device 100 emits infrared light to the outside through the light emitting diode.
  • the electronic device 100 uses a photodiode to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the electronic device 100. When insufficient reflected light is detected, the electronic device 100 can determine that there is no object near the electronic device 100.
  • the electronic device 100 can use the proximity light sensor 180G to detect that the user holds the electronic device 100 close to the ear to talk, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in leather case mode, and the pocket mode will automatically unlock and lock the screen.
  • the ambient light sensor 180L is used to sense the brightness of the ambient light.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived brightness of the ambient light.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is in the pocket to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to implement fingerprint unlocking, access application locks, fingerprint photographs, fingerprint answering calls, and so on.
  • the temperature sensor 180J is used to detect temperature.
  • the electronic device 100 uses the temperature detected by the temperature sensor 180J to execute a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold value, the electronic device 100 reduces the performance of the processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • the electronic device 100 when the temperature is lower than another threshold, the electronic device 100 heats the battery 142 to avoid abnormal shutdown of the electronic device 100 due to low temperature.
  • the electronic device 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also called “touch device”.
  • the touch sensor 180K may be disposed on the display screen 194, and the touch screen is composed of the touch sensor 180K and the display screen 194, which is also called a “touch screen”.
  • the touch sensor 180K is used to detect touch operations acting on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • the visual output related to the touch operation can be provided through the display screen 194.
  • the touch sensor 180K may also be disposed on the surface of the electronic device 100, which is different from the position of the display screen 194.
  • the bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can obtain the vibration signal of the vibrating bone mass of the human voice.
  • the bone conduction sensor 180M can also contact the human pulse and receive the blood pressure pulse signal.
  • the bone conduction sensor 180M may also be provided in the earphone, combined with the bone conduction earphone.
  • the audio module 170 can parse the voice signal based on the vibration signal of the vibrating bone block of the voice obtained by the bone conduction sensor 180M, and realize the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beating signal obtained by the bone conduction sensor 180M, and realize the heart rate detection function.
  • the button 190 includes a power-on button, a volume button, and so on.
  • the button 190 may be a mechanical button. It can also be a touch button.
  • the electronic device 100 may receive key input, and generate key signal input related to user settings and function control of the electronic device 100.
  • the motor 191 can generate vibration prompts.
  • the motor 191 can be used for incoming call vibration notification, and can also be used for touch vibration feedback.
  • touch operations applied to different applications can correspond to different vibration feedback effects.
  • Acting on touch operations in different areas of the display screen 194, the motor 191 can also correspond to different vibration feedback effects.
  • Different application scenarios for example: time reminding, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 may be an indicator light, which may be used to indicate the charging status, power change, or to indicate messages, missed calls, notifications, and so on.
  • the SIM card interface 195 is used to connect to the SIM card.
  • the SIM card can be inserted into the SIM card interface 195 or pulled out from the SIM card interface 195 to achieve contact and separation with the electronic device 100.
  • the electronic device 100 may support 1 or N SIM card interfaces, and N is a positive integer greater than 1.
  • the SIM card interface 195 can support Nano SIM cards, Micro SIM cards, SIM cards, etc.
  • the same SIM card interface 195 can insert multiple cards at the same time. The types of the multiple cards can be the same or different.
  • the SIM card interface 195 can also be compatible with different types of SIM cards.
  • the SIM card interface 195 may also be compatible with external memory cards.
  • the electronic device 100 interacts with the network through the SIM card to implement functions such as call and data communication.
  • the electronic device 100 adopts an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 100 and cannot be separated from the electronic device 100.
  • the software system of the electronic device 100 may adopt a layered architecture, an event-driven architecture, a microkernel architecture, a microservice architecture, or a cloud architecture.
  • the embodiment of the present application takes an Android system with a layered architecture as an example to illustrate the software structure of the electronic device 100 by way of example.
  • FIG. 3 is a block diagram of the software structure of the electronic device 100 according to an embodiment of the present application.
  • the layered architecture divides the software into several layers, and each layer has a clear role and division of labor. Communication between layers through software interface.
  • the Android system is divided into four layers, from top to bottom, the application layer, the application framework layer, the Android runtime library and system library, and the kernel layer.
  • the application layer can include a series of application packages.
  • the application package can include applications such as calls, maps, instant messaging, cameras, videos, and music.
  • the application framework layer provides an application programming interface (application programming interface, API) and a programming framework for applications in the application layer.
  • the application framework layer includes some predefined functions.
  • the application framework layer can include content providers, view systems, and managers, where the managers include activity managers, phone managers ( telephony manager), notification manager (notification manager), resource manager (resoure manager), window manager (window manager), etc.
  • the content provider is used to store and retrieve data and make these data accessible to applications.
  • the data may include videos, images, audios, phone calls made and received, browsing history and bookmarks, phone book, etc.
  • the view system includes visual controls, such as controls that display text, controls that display pictures, and so on.
  • the view system can be used to build applications.
  • the display interface can be composed of one or more views.
  • a display interface that includes a short message notification icon may include a view that displays text and a view that displays pictures.
  • the activity manager is used to manage the life cycle of the application, and Activity stack management.
  • the phone manager is used to provide the communication function of the electronic device 100. For example, the management of the call status (including connecting, hanging up, etc.).
  • the notification manager enables the application to display notification information in the status bar, which can be used to convey notification-type messages, and it can automatically disappear after a short stay without user interaction.
  • the notification manager is used to notify download completion, message reminders, and so on.
  • the notification manager can also be a notification that appears in the status bar at the top of the system in the form of a chart or a scroll bar text, such as a notification of an application running in the background, or a notification that appears on the screen in the form of a dialog window. For example, text messages are prompted in the status bar, prompt sounds, electronic devices vibrate, and indicator lights flash.
  • the resource manager provides various resources for the application, such as localized strings, icons, pictures, layout files, video files, and so on.
  • the window manager is used to manage window programs.
  • the window manager can obtain the size of the display screen, determine whether there is a status bar, lock the screen, take a screenshot, etc.
  • Window manager content provider, view system, phone manager, resource manager, notification manager, etc.
  • Android Runtime includes core libraries and virtual machines. Android runtime is responsible for the scheduling and management of the Android system.
  • the core library consists of two parts: one part is the function functions that the java language needs to call, and the other part is the core library of Android.
  • the application layer and application framework layer run in a virtual machine.
  • the virtual machine executes the java files of the application layer and the application framework layer as binary files.
  • the virtual machine is used to perform functions such as object life cycle management, stack management, thread management, security and exception management, and garbage collection.
  • the system library may include charging control modules and other functional modules.
  • other functional modules may include a surface manager (surface manager), media libraries (media libraries), a three-dimensional graphics processing library (for example: OpenGL ES), a two-dimensional graphics engine (for example: SGL), and so on.
  • the surface manager is used to manage the display subsystem and provides a combination of 2D and 3D layers for multiple applications.
  • the media library supports playback and recording of a variety of commonly used audio and video formats, as well as still image files.
  • the media library can support multiple audio and video encoding formats, such as: MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, etc.
  • the 3D graphics processing library is used to implement 3D graphics drawing, image rendering, synthesis, and layer processing.
  • the two-dimensional graphics engine is a graphics engine for two-dimensional graphics.
  • the charging control module can identify the current usage scenario of the electronic device, and according to the current usage scenario, determine that one or more devices of the electronic device are temperature control devices, and can determine that the one or more devices are currently in use According to the temperature and current curve under the scene, the current limit temperature of the one or more devices under the current charging current can be determined, so that the current upper limit value can be determined according to the determined current limit temperature and the measured temperature of the one or more devices, so that The electronic device adjusts the charging current according to the upper limit value of the current.
  • the kernel layer is the layer between hardware and software.
  • the kernel layer can include SoC driver, PA driver, display driver, key mapping driver, camera driver, flash memory driver, Wi-Fi driver, Bluetooth driver, sensor driver, power manager driver, etc.
  • the sensor driving may include temperature sensor driving.
  • the charging control module in the system library can determine the temperature control devices corresponding to different usage scenarios and the temperature-current relationship corresponding to each temperature control device in different usage scenarios from the configuration file.
  • the charging control module can generate temperature-current curves corresponding to the temperature-control devices in different usage scenarios according to the temperature-current relationships of the temperature-control devices in different usage scenarios, to obtain a temperature-current curve group.
  • the voltage and current of any one of the multiple devices of the electronic device 100 can be reported to the charging control module through the power management drive of the core layer or the drive of the device (for example, the PA drive of the PA, the SoC drive of the SoC).
  • the charging control module can calculate the power consumption of the device according to the voltage and current of the device.
  • the charging control module can obtain the power consumption of multiple devices.
  • the charging control module can determine the current usage scenario according to the power consumption of multiple devices.
  • the charging control module may obtain the package name of the foreground running application from the activity manager of the application framework layer, so as to determine the current usage scenario according to the foreground running application.
  • the charging control module can determine the temperature control device corresponding to the current use scene according to the current use scene, and determine the temperature and current curve corresponding to the temperature control device of the current use scene from the temperature and current curve group.
  • the charging chip can report the current charging current to the charging control module through the power manager in the core layer.
  • the charging control module can determine the current limit temperature of the temperature control device under the current charging current through the temperature and current curve corresponding to the temperature control device .
  • the temperature detected by the temperature sensor corresponding to the temperature control device can be driven and reported to the charging control module by the temperature sensor in the inner core layer.
  • the charging control module can adjust the charging current according to the temperature detected by the temperature sensor corresponding to the temperature control device and the current limiting temperature.
  • the charging current refers to the current flowing into the electronic device, that is, the charging current includes the current flowing into the battery and the current consumed by the device.
  • the overall temperature of the electronic device is the comprehensive performance of the temperature of each device of the electronic device.
  • the overall temperature of the electronic device can be directly sensed by the user, resulting in a user's thermal experience. It is easy to understand that when the electronic device is running, one or more devices (SoC chip, PA, etc.) in the electronic device perform related tasks and generate a certain amount of power consumption and generate heat. Especially for devices with higher power consumption, their temperature can affect the electronics.
  • the overall temperature of the device That is, when the electronic device is charging, if the electronic device is in an operating state, in addition to the temperature of the charging chip, battery and other devices, the factors affecting the overall temperature of the electronic device also include the temperature of the device with higher power consumption.
  • One or more devices in the electronic equipment can be set to one or more temperature control devices, and different limits of different temperature control devices can be configured respectively.
  • the corresponding relationship between different current-limiting temperatures and different charging currents can be called temperature-current relationships.
  • the one or more temperature control devices it corresponds to different current limiting temperatures under different charging currents. That is, when the current charged to the battery of the electronic device is different, the current limiting temperature corresponding to the arbitrary device is different.
  • the current-limiting temperature may also be referred to as the target temperature, which is a condition for adjusting the charging current.
  • the adjustment of the charging current is based on the premise that the measured temperature of the device does not exceed the current-limiting temperature of the device.
  • the usage scenario of the electronic device during charging may be referred to as a charging scenario.
  • different temperature control devices can be set according to different charging scenarios of the electronic device, and the temperature-current relationship of each temperature control device can be configured respectively.
  • any charging scenario if one or more components of the electronic device have a high temperature.
  • the device with a higher temperature in any charging scenario can be set as the temperature control device in the charging scenario.
  • the SoC chip of the electronic device when the electronic device performs a game task, the SoC chip of the electronic device has higher power consumption, and accordingly, the temperature is higher.
  • the SoC chip and the charging chip can be set as a temperature control device when the charging scene is a game scene.
  • the PA can also be set as a temperature control device when the charging scene is a game scene. That is, when the charging scene is a game scene, the temperature control device includes a PA, an SoC chip, and a charging chip.
  • the SoC chip of the electronic device when the electronic device performs a video playback task, the SoC chip of the electronic device has higher power consumption, and accordingly, the temperature is higher.
  • the SoC chip and the charging chip can be set as the temperature control device when the charging scene is the video playback scene.
  • the PA can also be set to
  • the charging scene is a temperature control device during the video playback scene. That is, when the charging scene is an online video playback scene, the temperature control device includes a PA, an SoC chip, and a charging chip.
  • the SoC chip of the electronic device when the electronic device performs a video call task, the SoC chip of the electronic device has higher power consumption, and accordingly, the temperature is higher.
  • the SoC chip and the charging chip can be set as a temperature control device when the charging scene is a video call scene.
  • the PA can also be set as a temperature control device when the charging scene is a video call scene. That is, when the charging scene is a video call scene, the temperature control device includes PA, SoC chip and charging chip.
  • the PA of the electronic device when the electronic device performs a telephone task, the PA of the electronic device has higher power consumption, and accordingly, the temperature is higher.
  • the PA and the charging chip can be set as a temperature control device when the charging scene is a phone scene.
  • the device with relatively high power consumption of the electronic device is the PA. That is, when the electronic device is in the off-screen state during charging, the temperature of the PA is one of the factors that affect the overall temperature of the electronic device. Therefore, the PA and the charging chip can be set as the temperature control device when the charging scene is the off-screen scene.
  • the electronic device when the electronic device performs tasks such as web browsing, e-book reading, and text editing, the device with relatively high power consumption of the electronic device is the SoC chip.
  • the SoC chip and the charging chip can be set as the temperature control device when the charging scene is a normal bright screen.
  • the temperature-current relationship of the temperature control devices in different charging scenarios can be configured separately or independently.
  • the device A1 can be used as a temperature control device for different charging scenarios.
  • the SoC chip and the charging chip can be used as a temperature control device for game scenes, video playback scenes, video call scenes, and ordinary bright screen scenes.
  • the temperature-current relationship corresponding to the device A1 in different charging scenarios can be independently configured. That is, in different charging scenarios, there is no necessary connection between the temperature-current relationship corresponding to the device A1, that is, it may be the same or different, and it is specifically determined by the respective configuration results of the different charging scenarios.
  • the charging scene, one or more temperature control devices in the charging scene, and the temperature-current relationship corresponding to each of the one or more temperature control devices may be recorded as information in the configuration file of the electronic device.
  • the temperature-current relationship corresponding to any temperature control device in any charging scenario may include at least two different current limiting temperatures and at least two different charging current corresponding relationships.
  • the data structure of the configuration file may be as shown in Table 1.
  • the markings of devices such as device B1, device C1 (or device C2), and device D1 (or device D2) are different, which only indicate the charging scene corresponding to the device.
  • the device B1, device C1 (or device C2), device D1 (or device D2) and other devices may be the same device of the electronic device, or may be different devices of the electronic device. For details, please refer to the above.
  • the current-limiting temperature corresponding to the temperature control device in the scenario can be set higher. Accelerate the charging speed. For another example, in a normal bright screen scene, the user is more sensitive to the heat of the electronic device, and the current limit temperature corresponding to the temperature control device in this scene can be set lower, so that the user has a better charging heat experience) , User charging experience history feedback, maintenance point feedback, etc., configure the temperature control device under any charging scenario and the temperature-current relationship corresponding to the temperature control device.
  • the temperature control device in the arbitrary charging scenario and the temperature-current relationship corresponding to the temperature control device can be continuously adjusted. In this way, a more suitable current temperature control device for this arbitrary charging scenario and the temperature-current relationship corresponding to the temperature control device can be obtained.
  • the charging control method provided by the embodiment of the application can be applied to multiple electronic devices configured as described above, and the multiple electronic devices can be distributed to volunteers, which can be combined with volunteers.
  • the user constantly adjusts the temperature-control device in the charging scenario and the temperature-current relationship corresponding to the temperature-control device. In this way, a more suitable current temperature control device for this arbitrary charging scenario and the temperature-current relationship corresponding to the temperature control device can be obtained.
  • the electronic device can generate a temperature-current curve according to the temperature-current relationship corresponding to any temperature control device in any charging scene, so that the temperature and current curve corresponding to each temperature control device in the arbitrary charging scene can be obtained, and the respective charging scenes can be obtained.
  • the temperature-current curve of any temperature-control device can be understood as a way to describe the corresponding relationship between the charging current of the electronic device and the current-limiting temperature of the temperature-control device.
  • the temperature-current curve can be used to determine the corresponding current-limiting temperature of the temperature control device under the charging current.
  • the corresponding relationship between the discrete current-limiting temperature and the charging current can be configured to obtain a continuous description of the corresponding relationship between the current-limiting temperature and the charging current, and the corresponding different limits of the temperature control device under different charging currents can be determined. Flow temperature to achieve continuous adjustment of the charging current.
  • the temperature-current curve may be a curve on a two-dimensional coordinate system, wherein the slope of each point in the curve continuously changes.
  • the temperature and current curve can be a broken line on a two-dimensional coordinate system, and the broken line can be composed of multiple straight line segments connected in sequence, wherein the slopes of adjacent straight line segments are different.
  • the temperature and current curve can also be a mixed line segment of a curve and a straight line segment on a two-dimensional coordinate system, where the curve can be located between two straight line segments. The slopes of the two straight line segments can be different or the same.
  • any temperature control device in any charging scene its temperature-current relationship can be represented by two-dimensional coordinates, and then fitting or connecting two adjacent coordinate points to obtain the The temperature current curve of the temperature control device.
  • a plurality of corresponding relationships between the current limiting temperature and the charging current are pre-configured.
  • multiple coordinate points can be obtained in a two-dimensional coordinate system.
  • multiple head and tail phases can be obtained.
  • a polyline composed of connected line segments. When there are many coordinate points or the coordinate points are denser, the obtained polyline can be approximated to a curve.
  • the independent variable (X-axis) of the two-dimensional coordinate system may be current
  • the dependent variable (Y-axis) may be temperature.
  • the temperature and current curves of each temperature control device in the same charging scene can be represented in one graph, that is, the temperature and current curves of each temperature control device correspond to different broken lines or curves in the same graph.
  • the charging scene can be set to scene B, and the temperature control devices in scene B are device B1 and device B2.
  • the temperature-current curve of scene B can be as shown in FIG. 4A.
  • the charging scenario can be set to scenario C, and the temperature control devices in scenario C are device C1 and device C2.
  • the temperature-current curve of scene B can be as shown in FIG. 4B.
  • the temperature and current curves of each temperature control device in the same charging scene can be represented in different graphs.
  • the temperature control devices in the game scene are the SoC chip and the charging chip, where the temperature and current curve of the SoC chip can be as shown in Figure 5A, and the temperature and current curve of the charging chip can be As shown in Figure 5B.
  • the temperature and current curve of any temperature control device in any scene may be a broken line or a curve.
  • the temperature control devices in the off-screen scene are the PA and the charging chip.
  • the temperature-current curve of the PA and the temperature-current curve of the charging chip can be represented by the broken lines shown in Figs. 6A and 6B, or can be represented by the curves shown in Figs. 7A and 7B.
  • the change of the slope of the temperature-current curve can be controlled to determine the charging strategy corresponding to the temperature-current curve.
  • the independent variable (X-axis) of the temperature-current curve can be current
  • the dependent variable (Y-axis) can be temperature as an example. If the current increases, the slope of the temperature-current curve increases from small to large, making the temperature-current curve appear It is a concave curve. In this case, the charging strategy tends to suppress the charging speed and keep the electronic equipment cool. As the current increases, the slope of the temperature-current curve increases from large to small, making the temperature-current curve appear as an upward convex curve. In this case, the charging strategy tends to increase the charging speed.
  • the charging strategy tends to suppress the charging speed and keep the electronic equipment cool.
  • the independent variable (X-axis) used to represent the two-dimensional coordinate system of the temperature control device may be temperature, and the dependent variable (Y-axis) may be current.
  • the expression manner of the temperature-current curve of each temperature control device in the same charging scene, the change of the slope when the temperature-current curve is a curve, etc. can be referred to the above-mentioned example, and will not be repeated here.
  • the temperature and current curve of each temperature control device in any charging scenario can be generated.
  • the electronic device can determine the corresponding current limiting temperature of the temperature control device under any charging current according to the temperature current curve of any temperature control device in any charging scene.
  • the electronic device determines the current-limiting temperature according to the temperature-current curve. Specifically, the current-limiting temperature may be determined according to the description method of the temperature-current curve.
  • the electronic device can pre-generate the temperature and current curves of each temperature control device in each charging scenario, and record (specifically, the description method (function, etc.) of the temperature and current curve can be recorded), so as to facilitate the subsequent steps according to For the determined charging scene, select the temperature-current curve of each temperature control device in the charging scene to determine the respective current limiting temperature of each temperature control device in the scene.
  • the electronic device can identify the current use scene, and obtain the temperature-current relationship corresponding to each temperature control device in the current use scene, and then generate a current linear relationship diagram corresponding to each temperature control device in the current use scene , In order to determine the current limiting temperature of each target device in the current use scene.
  • the charging scene and the application type may be associated in advance, for example, the game scene is associated with the game application, and the video playback application is associated with the video playback scene.
  • a usage scenario association list can be set, and the usage scenario association list includes multiple applications, and each application is associated with a charging scenario.
  • the electronic device can detect the current foreground running application and determine the application type to which the foreground running application belongs. For example, the package name (package name) of the application currently running in the foreground can be detected, and the application type to which the application currently running in the foreground belongs can be determined according to the package name of the application currently running in the foreground, so as to determine the current usage scenario. If there is no application currently running in the foreground, it is determined that the current usage scene is an off-screen scene.
  • the charging scene recognition model may be trained in advance.
  • the power consumption of the temperature control device in multiple scenes of the electronic device is used as a training sample, and the training sample has a scene label for supervised training to obtain a scene recognition model.
  • the input of each training sample may be a multi-dimensional vector. For any multi-dimensional vector, its dimension is the number of devices, and each element in the vector is the power consumption value of a device.
  • the output of each training sample is a scene label (game scene, video call scene, off-screen scene, etc.). Through supervised training, a scene recognition model can be obtained.
  • the power consumption value in the training sample may be the instantaneous power consumption or the average power consumption value within a period of time, for example, the average power consumption of 0.5 seconds.
  • the unit of the power consumption value may be mW or mA. Among them, when the power consumption value is mA, the power consumption of each device needs to be normalized by a voltage of 3.8V.
  • the electronic device can obtain the power consumption values of multiple devices, and input the power consumption values of multiple devices into the scene recognition model for scene recognition.
  • the scene recognition model can output the identified current terminal usage scene, so that the temperature control device and the temperature current curve can be determined.
  • the input power consumption value may be an instantaneous power consumption or an average power consumption value within a period of time, for example, an average power consumption of 0.5 seconds.
  • the charging scene determined by the application running in the foreground and the charging scene determined by the charging scene recognition model can be used independently or in conjunction. For example, when the current application is not on the use scene association list, the charging scene can be determined through the charging scene recognition model.
  • the electronic device when the electronic device is being charged, can determine the remaining power of its battery, and determine the usage scenario of the electronic device according to the remaining current of the electronic device. Exemplarily, if the remaining power of the battery is low (for example, less than 20%), it can be determined that the usage scenario of the electronic device is the preset usage scenario S1. If the remaining power of the battery is relatively large (for example, higher than 80%), it can be determined that the use scene of the electronic device is the preset use scene S2.
  • the use scenario S1 may correspond to a preset temperature and current function H1, and a temperature control device Q1 (for example, it may be a SoC chip, a charging chip, etc.), and the use scenario S2 may correspond to a preset temperature and current function H2, And the temperature control device Q1.
  • the temperature control device Q1 under the same charging current, the current limiting temperature obtained by the temperature current function H1 is greater than the current limiting temperature obtained by the temperature current function H2.
  • the usage scenario S1 may be the foregoing usage scenario with a faster charging speed, for example, a screen-off scenario.
  • the usage scenario S2 may be the foregoing usage scenario with a slow charging speed, such as a game scenario.
  • the use scenario determined by running the application in the foreground or by the power consumption of the device may not be considered or ignored, but the use scenario determined by the residual current of the battery This can improve the user's charging speed experience when the remaining power of the battery is low, and improve the user's charging heat experience when the remaining power of the battery is high.
  • the above examples are only examples and do not constitute limitations.
  • the corresponding relationship between the remaining power of the battery and the usage scenario, as well as the temperature current function and the temperature control device corresponding to the usage scenario can be set based on experience.
  • the electronic device can determine the temperature of the external environment where the electronic device is located.
  • a temperature sensor can be provided on or near the outer surface of the electronic device, and the temperature sensor can be used to detect the temperature of the external environment where the electronic device is located. .
  • the temperature of the external environment of the electronic device is relatively low (for example, lower than 10° C.)
  • the usage scenario of the electronic device is the preset usage scenario S3.
  • the temperature of the external environment of the electronic device is relatively high (for example, higher than 30° C.), it can be determined that the use scene of the electronic device is the preset use scene S4.
  • the use scenario S3 may correspond to a preset temperature and current function H3, and a temperature control device Q2 (for example, it may be a SoC chip, a charging chip, etc.), and the use scenario S4 may correspond to a preset temperature and current function H4, And the temperature control device Q2.
  • the temperature control device Q2 under the same charging current, the current limiting temperature obtained by the temperature current function H3 is greater than the current limiting temperature obtained by the temperature current function H4.
  • the usage scenario S3 may be the foregoing usage scenario with a faster charging speed, for example, a screen-off scenario.
  • the usage scenario S4 may be the foregoing usage scenario with a slow charging speed, such as a game scenario.
  • the use scenarios determined by running the application in the foreground or determined by the power consumption of the device can be ignored or ignored, but the use determined by the external environmental temperature The scenario prevails, so that when the external environment temperature is low, the user's charging speed experience can be improved, and when the external environment temperature is high, the user's charging heat experience can be improved.
  • the electronic device when the electronic device is being charged, may display a usage scenario selection interface.
  • the usage scenario selection interface may include multiple usage scenarios.
  • the user can select a usage scenario from multiple usage scenarios, and the electronic device can determine the scenario selected by the user as the usage scenario of the electronic device.
  • the electronic device can determine the usage scene of the electronic device in response to the usage scene selection operation initiated by the user.
  • the temperature measurement point may be set inside the device, or the temperature measurement point may be set outside the device (for example, 5mm-10mm away from the device).
  • the temperature measuring point is provided with a temperature sensor.
  • the temperature sensor may specifically be a thermistor (thermistors), such as a negative temperature coefficient (NTC) thermistor, a positive temperature coefficient (PTC) thermistor, and so on.
  • NTC negative temperature coefficient
  • PTC positive temperature coefficient
  • the temperature detected at the temperature measurement point of the device can be used as the actual measured temperature of the device.
  • the instantaneous temperature detected at the temperature measurement point can be used as the actual measured temperature of the corresponding device.
  • the average value of the temperature detected at the temperature measurement point within a time period (for example, a time period of 0.5 seconds) can be used as the actual measured temperature of the corresponding device.
  • the temperature inside the SoC chip fluctuates drastically.
  • the temperature detected by the temperature measurement point of the SoC chip may not be used, but the temperature measurement point outside the SoC chip (for example, set on the motherboard, and the distance between the SoC chip and the SoC chip is between 5mm-10mm). Temperature measurement point) The detected temperature is used as the actual measured temperature of the SoC chip.
  • the method of simulation plus fitting can be used to simulate the temperature of these devices.
  • the method of finite element simulation and linear regression can be adopted. First, the finite element thermal simulation is used to simulate the internal temperature distribution of the electronic device to generate multiple training data.
  • each training data is the temperature value of each device with temperature measurement point (the temperature detected by the temperature measurement point of the device), and the output is the temperature of the device to be simulated; then through linear regression, the passing temperature measurement point is obtained.
  • the detected temperature can then be used to calculate the temperature value of the device to be simulated.
  • the temperature and current curves of each temperature control device in the charging scene can be determined.
  • the current charging current I1 can be obtained.
  • the current limiting temperature of each temperature control device under the current charging current I1 is determined by the temperature current curve of each temperature control device in the current use scenario.
  • the measured temperature of each temperature control device can also be obtained.
  • the temperature difference to be adjusted of each temperature control device can be determined according to the current limiting temperature of each temperature control device under the current charging current I1 and the actual measured temperature of each temperature control device.
  • the current limit temperature of the temperature control device under the current charging current I1 can be subtracted from the actual temperature of the temperature control device to obtain the temperature difference of the temperature control device to be adjusted.
  • the current limit temperature of the temperature control device under the current charging current I1 can be multiplied by a preset coefficient J1, and then the actual measured temperature of the temperature control device can be subtracted to obtain the temperature The temperature difference of the control device to be adjusted.
  • the actual measured temperature of the temperature control device can be multiplied by the preset coefficient J2 to obtain the weighted actual measured temperature.
  • the current limiting temperature of the temperature control device under the current charging current I1 can be subtracted from the weighted measured temperature to obtain the temperature difference to be adjusted of the temperature control device.
  • the target device may be determined according to the temperature difference to be adjusted of each temperature control device, so as to determine the upper limit of the charging current according to the temperature difference to be adjusted of the target device, that is, the upper limit of the current is determined.
  • the minimum temperature difference to be adjusted may be determined from the temperature difference to be adjusted corresponding to each temperature control device.
  • ⁇ T A is less than ⁇ T B, that is, ⁇ T A minimum temperature difference to be adjusted.
  • the device corresponding to the smallest temperature difference to be adjusted can be used as the target device.
  • the temperature difference to be adjusted of the target device that is, the minimum temperature difference to be adjusted, can be used to determine the current upper limit value of the charging current adjustment.
  • the upper limit of the current for adjusting the charging current can be determined, which can ensure that when charging is performed using the determined charging current adjusted by the upper limit of the current.
  • the measured temperature of the temperature control device will not exceed the respective corresponding current limit temperature, which can ensure the user's charging experience.
  • the temperature control device of the current use scene includes three devices or more devices
  • two or more of the three devices or more devices with a smaller temperature difference to be adjusted can be used.
  • Each device is used as the target device.
  • the upper limit of the charging current adjustment current can be determined according to the temperature difference of two or more devices to be adjusted.
  • the average temperature difference of the to-be-adjusted temperature difference of the two or more devices can be calculated.
  • the average temperature difference may be a weighted average temperature. For example, the smaller the temperature difference between the two or more devices, the greater the weight of the device to be adjusted.
  • the average temperature difference can be used to determine the upper limit of the charging current adjustment.
  • each temperature control device in the current use scene may be used as the target device.
  • the average temperature difference of each temperature control device to be adjusted can be calculated.
  • the average temperature difference may be a weighted average temperature difference. For example, the smaller the temperature difference of each device to be adjusted, the greater the weight of the device.
  • the average temperature difference can be used to determine the upper limit of the charging current adjustment current.
  • the current limit temperature of each temperature control device under the current charging current I1 can be compared to determine the minimum current limit temperature, and the temperature control device corresponding to the minimum current limit temperature can be used as the target device.
  • the temperature difference to be adjusted corresponding to the device can be used to determine the upper limit value of the current.
  • the electronic device may periodically execute the charging control method provided in the embodiments of the present application according to the regulation cycle to periodically determine the upper limit value of the current for adjusting the charging current, and to periodically regulate the charging current.
  • the duration of each regulation cycle is 0.5 seconds. In an example, the duration of each regulation cycle may be 1 second. Wait, I won't list them all this time.
  • a PID algorithm in any regulation period, can be used to determine the upper limit of the charging current adjustment current according to the temperature difference to be adjusted or the average temperature difference of the target device determined above.
  • the calculation process for determining the upper limit of the charging current adjustment is as follows.
  • the proportional control item P item can be determined by formula (1).
  • k p is the proportional coefficient.
  • k p may be a constant.
  • k p may be 1000.
  • ⁇ T is different
  • k p may also be different.
  • k p can be calculated by formula (2).
  • K p is a constant, such as 1000 (when the unit of the temperature value is degrees Celsius and the unit of the current value is mA).
  • the integral control item I item can be determined by formula (3).
  • I item k i ⁇ T+I item_last (3)
  • k i is the integral coefficient, which can be a constant. For example, when the unit of the temperature value is degrees Celsius and the unit of the current value is mA, k i can be 50.
  • I item_last is the integral control item determined in the previous regulation cycle of the current regulation cycle, where, when the current regulation cycle is the first regulation cycle, I item_last is the actual charging current of the electronic device in the current regulation cycle.
  • the derivative control item D item can be determined by formula (4).
  • k d is the differential coefficient, which can be a constant.
  • k d can be 5000.
  • the output control quantity Output can be determined by formula (5).
  • the output control quantity Output can be mA, and the output control quantity Output can be used as the current upper limit value.
  • the electronic device can adjust the current for charging the battery according to the upper limit of the current.
  • the current upper limit value can be determined according to the integral control item I item determined by formula (3).
  • the value of the integral control item I item may be used as the value of the current upper limit value.
  • the current upper limit value can be determined according to the proportional control item P item determined by formula (1).
  • the value of the proportional control item P item may be used as the value of the current upper limit value.
  • the current upper limit value can be determined according to the differential control item D item determined by formula (4).
  • the value of the differential control item D item can be used as the value of the current upper limit value.
  • the current upper limit value may be determined according to the integral control item I item determined according to formula (3) and the proportional control item P item determined according to formula (1).
  • the sum of the value of the integral control item I item and the proportional control item P item can be used as the value of the current upper limit value.
  • the current upper limit value may be determined according to the integral control item I item determined according to formula (3) and the differential control item D item determined according to formula (4).
  • the sum of the value of the integral control item I item and the derivative control item D item can be used as the value of the current upper limit value.
  • the upper limit of current mentioned above may also be referred to as the upper limit of current.
  • the above-mentioned current upper limit value can be used as one of the multiple current upper limit values.
  • the actual charging current finally adopted is the smallest current among multiple current upper limit values.
  • the charging control method provided by the embodiments of the present application adopts a continuous temperature-current curve to determine the upper limit of the current, and there is no temperature hysteresis interval, which can avoid excessive current limiting and improve charging efficiency.
  • multiple temperature control devices can be used for temperature control, which can more comprehensively reflect the overall temperature of the electronic equipment, and can avoid certain situations (for example, when the signal of the mobile phone is poor, the PA heats up and the overall temperature of the mobile phone is higher; the game is running At times, the SoC chip generates a lot of heat, resulting in a higher overall temperature of the mobile phone, etc.)
  • the overall temperature of the electronic device is high, which can improve the user's charging heat experience.
  • an embodiment of the present application provides a charging control device, which includes a temperature-current curve group generation module 901, a temperature detection module 903, a scene recognition module 905, a target device and target temperature selection module 907, and a control amount calculation Module 909.
  • the temperature-current curve group generation module 901 can be based on the temperature and current curves of each temperature control device in each charging scenario in the configuration file.
  • the specific generation process and the configuration method of the configuration file can be referred to the above description, which will not be repeated here.
  • the temperature and current curves of each temperature control device in each charging scenario form a temperature-current curve group.
  • the temperature detection module 903 can detect the actual measured temperature of multiple components of the electronic device. For details, please refer to the above description, which will not be repeated here.
  • the scene recognition module 905 can recognize the current charging scene of the electronic device.
  • One way of identification is to identify the current charging scene of the electronic device according to the current foreground running application of the electronic device.
  • Another way is the power consumption of multiple devices, using the charging scene recognition model to identify the current charging scene of the electronic device. For details, please refer to the above description, which will not be repeated here.
  • the target device and target temperature selection module 907 can select the temperature control device and the temperature current curve corresponding to the charging scene according to the charging scene identified by the scene identifying module 905.
  • the temperature current curve can be used to determine the current limiting temperature of the temperature control device under the actual charging current.
  • the temperature control device corresponding to the charging scene can be multiple devices. For each device in the plurality of devices, according to the current limiting temperature of the device under the actual charging current and the measured temperature of the device recently detected by the temperature detection module 903, the temperature difference to be adjusted of the device is determined. Then, the target device can be determined according to the temperature difference of the multiple devices to be adjusted, and the current limiting temperature of the device under the actual charging current can be used as the target temperature.
  • the temperature control device corresponding to the charging scene has only one device, it is determined that the device is the target device, and the current limiting temperature of the device under the actual charging current is taken as the target temperature.
  • the control amount calculation module 909 can calculate the current upper limit value of the charging current adjustment by using a preset algorithm according to the difference between the target temperature and the actual measured temperature of the target device, that is, the temperature difference of the target device to be adjusted. For details, please refer to the above description, which will not be repeated here.
  • the embodiment of the present application provides a charging control device, which can determine the usage scenario of an electronic device when charging, and determine the temperature control device and temperature current curve corresponding to the usage scenario, and then the actual temperature and temperature of the temperature control device corresponding to the usage scenario can be determined
  • the current curve adjusts the charging current and realizes that different charging control strategies are adopted according to different usage scenarios to balance the charging speed experience and charging thermal experience of users in different usage scenarios.
  • an embodiment of the present application provides a charging control method, which can be applied to electronic devices.
  • the method includes the following steps.
  • Step 1000 Generate a temperature-current curve group including temperature-current curves of each device in different scenarios according to thermal control configuration files in different scenarios of the electronic device.
  • step 1000 the scenario is the charging scenario described above
  • the thermal control configuration file is the configuration file described above
  • the device is the temperature control device described above.
  • the method for generating the temperature-current curve can refer to the above description, which will not be repeated here.
  • Step 1002 Detect the temperature of the SoC chip, charging chip, PA chip, battery and other devices in the current control cycle.
  • the detected temperature of each device can be referred to as the actual measured temperature of each device.
  • the specific detection method can refer to the above.
  • the control period can also be called the regulation period.
  • Step 1004 Identify the current charging scene of the electronic device by detecting the foreground application or detecting the power consumption of multiple devices. For details, please refer to the above.
  • Step 1006 According to the temperature-current curve corresponding to the charging scenario, the target device and the target temperature are selected.
  • the temperature control device and temperature current curve corresponding to the charging scene can be selected.
  • the temperature current curve can be used to determine the current limiting temperature of the temperature control device under the actual charging current.
  • the temperature control device corresponding to the current charging scene can be multiple devices. For each device in the plurality of devices, the temperature difference of the device to be adjusted is determined according to the current limiting temperature of the device under the actual charging current and the measured temperature of the device recently detected in step 1002. Then, the target device can be determined according to the temperature difference of the multiple devices to be adjusted, and the current limiting temperature of the device under the actual charging current can be used as the target temperature. For details, please refer to the above description, which will not be repeated here.
  • the temperature control device corresponding to the charging scene has only one device, it is determined that the device is the target device, and the current limiting temperature of the device under the actual charging current is taken as the target temperature.
  • Step 1008 According to the target device, the target temperature, and the current temperature of the target device, calculate the proportional control item, the integral control item, the derivative control item, and the output control value in the current control period, and limit the charging current.
  • the current temperature of the target device may be the actual measured temperature of the target device that is recently detected in step 1002.
  • step 1008 reference may be made to the above description, which will not be repeated here.
  • the embodiments of the present application provide a charging control method, which can determine the usage scenario of an electronic device when charging, and determine the temperature control device and temperature current curve corresponding to the usage scenario, and then the actual temperature and temperature of the temperature control device corresponding to the usage scenario can be determined
  • the current curve adjusts the charging current and realizes that different charging control strategies are adopted according to different usage scenarios to balance the charging speed experience and charging thermal experience of users in different usage scenarios.
  • the embodiment of the present application provides a charging control method, which can be applied to an electronic device with multiple devices.
  • the method includes the following steps.
  • Step 1100 When the electronic device is being charged, determine a first usage scenario of the electronic device; the first usage scenario corresponds to a first function group, and the functions in the first function group are used to describe that at least one device is in For the temperature-current curve in the first use scenario, the at least one device is a temperature control device in the first use scenario.
  • Step 1102 Adjust the charging current according to the measured temperature of the at least one temperature control device and the first function group.
  • Step 1104 When it is recognized that the electronic device switches from the first use scene to the second use scene, adjust the charging current according to the measured temperature of the temperature control device in the second use scene and the second function group. in,
  • the functions in the second function group are used to describe the temperature and current curves of the temperature control device in the second use scenario in the second use scenario, and the functions in the second function group are the same as those in the first use scenario.
  • the functions in the function group are different.
  • the charging control method further includes: obtaining a configuration file corresponding to the first usage scenario, the configuration file including a one-to-one correspondence between multiple temperatures and multiple currents under the at least one device; Determine at least one temperature current function corresponding to the at least one device according to the one-to-one correspondence between multiple temperatures and multiple currents under the at least one device; determine that the at least one temperature current function is the first function group .
  • the independent variable of the function in the first function group is the charging current, and the dependent variable is the current limiting temperature; the charging current is adjusted according to the measured temperature of the at least one temperature control device and the first function group
  • the method includes: determining, according to the first function group, at least one current limiting temperature corresponding to the at least one temperature control device under the current charging current; according to the at least one current limiting temperature and the measured temperature of the at least one temperature control device , Determine the first current upper limit value; according to the first current upper limit value, limit the charging current.
  • the at least one temperature control device includes at least two devices, and the at least one current limiting temperature includes the current limiting temperature corresponding to the at least two devices; the method further includes: determining The temperature difference to be adjusted of each device in the at least two devices, wherein the temperature difference to be adjusted for each device is the difference between the current limiting temperature corresponding to the device minus the actual measured temperature of the device; The first device has the smallest temperature difference to be adjusted; said determining the first current upper limit value according to the at least one current limiting temperature and the measured temperature of the at least one temperature control device includes: according to the first device to be adjusted The temperature difference determines the upper limit of the first current.
  • the at least one temperature control device includes at least two devices, and the at least one current limiting temperature includes the current limiting temperature corresponding to the at least two devices; the method further includes: determining The current limiting temperature corresponding to the second device of the at least two devices is the smallest; the second device is determined to be the target device; the determining is based on the at least one current limiting temperature and the measured temperature of the at least one temperature control device
  • the first upper current limit includes: determining the first upper current limit according to the temperature difference to be adjusted of the target device.
  • the determining the first current upper limit value according to the at least one current limiting temperature and the measured temperature of the at least one temperature control device includes: according to the at least one current limiting temperature and The measured temperature of the at least one temperature control device uses a first algorithm to determine a first current upper limit; the first algorithm is any one or a combination of the following:
  • the proportional control term algorithm in the proportional integral derivative control algorithm the integral control term algorithm in the proportional integral derivative control algorithm, and the derivative control term algorithm in the proportional integral derivative control algorithm.
  • the first use scene is an off-screen scene or one of multiple bright-screen scenes.
  • the electronic device has different power consumption of the same device or different highest power consumption devices in different bright-screen scenes among the multiple bright-screen scenes.
  • the multiple bright screen scenes include the following scenes:
  • Game scenes video playback scenes, video call scenes, and ordinary bright screen scenes.
  • the determining the first usage scenario of the electronic device includes: determining the first usage scenario through a preset scenario recognition model according to the power consumption of the multiple devices.
  • the determining the first usage scenario of the electronic device includes: determining the first usage scenario according to a foreground running application of the electronic device.
  • the determining the first usage scenario of the electronic device includes: determining the first usage scenario according to the remaining power of the battery of the electronic device or the temperature of the external environment of the electronic device.
  • the determining the first usage scenario of the electronic device includes: determining the first usage scenario in response to a scene selection operation initiated by a user.
  • the plurality of devices are at least one of the following:
  • On-chip system chip charging chip, battery, power amplifier.
  • the embodiments of the present application provide a charging control method, which can determine the usage scenario of an electronic device when charging, and determine the temperature control device and temperature current curve corresponding to the usage scenario, and then the actual temperature and temperature of the temperature control device corresponding to the usage scenario can be determined
  • the current curve adjusts the charging current and realizes that different charging control strategies are adopted according to different usage scenarios to balance the charging speed experience and charging thermal experience of users in different usage scenarios.
  • the embodiment of the present application provides a charging control device 1200.
  • the device 1200 can be configured in an electronic device with multiple devices. Referring to 12, the device 1200 includes:
  • the first determining unit 1210 is configured to determine a first usage scenario of the electronic device when the electronic device is being charged; the first usage scenario corresponds to a first function group, and the functions in the first function group are used for Describe a temperature-current curve of at least one device in the first use scenario, where the at least one device is a temperature control device in the first use scenario;
  • the adjustment unit 1220 is configured to adjust the charging current according to the measured temperature of the at least one temperature control device and the first function group;
  • the adjustment unit 1220 is further configured to: when it is recognized that the electronic device is switched from the first use scene to the second use scene, according to the measured temperature of the temperature control device in the second use scene and the second function group , Adjust the charging current; among them,
  • the functions in the second function group are used to describe the temperature and current curves of the temperature control device in the second use scenario in the second use scenario, and the functions in the second function group are the same as those in the first use scenario.
  • the functions in the function group are different.
  • each electronic device includes a hardware structure and/or software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the functional modules of electronic devices and the like according to the method embodiments shown in FIG. 11.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one.
  • Processing module can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the device provided by the embodiment of the application can determine the usage scenario of the electronic device when charging, and determine the temperature control device and temperature current curve corresponding to the usage scenario, and then can be based on the actual temperature and temperature current of the temperature control device corresponding to the usage scenario Curve adjustment of the charging current realizes the use of different charging control strategies according to different usage scenarios to balance the user's charging speed experience and charging thermal experience in different usage scenarios.
  • the electronic device may include a processor 1310 and a memory 1320.
  • the memory 1320 is used to store computer execution instructions; when the electronic device is running, the processor 1310 executes the computer execution instructions stored in the memory 1320, so that the electronic device executes the method shown in FIG. 11 .
  • the processor 1310 is configured to determine a first usage scenario of the electronic device when the electronic device is being charged; the first usage scenario corresponds to a first function group, and functions in the first function group are used To describe the temperature-current curve of at least one device in the first use scenario, the at least one device is a temperature control device in the first use scenario; the processor 1310 is further configured to Control the measured temperature of the device and the first function group to adjust the charging current; the processor 1310 is also configured to, when it is recognized that the electronic device is switched from the first use scene to the second use scene, according to the second use scene Use the measured temperature of the temperature control device under the scenario and the second function group to adjust the charging current; wherein the function in the second function group is used to describe the temperature control device under the second use scenario in the second Using the temperature current curve in the scene, the function in the second function group is different from the function in the first function group.
  • the electronic device further includes a communication bus 1330, wherein the processor 1310 can communicate with the memory 1320 via the communication bus 1330, so as to obtain a computer-executable instruction stored in the memory 1320 and execute the computer-executable instruction.
  • the use scenario of the electronic device during charging can be judged, and the temperature control device and temperature current curve corresponding to the use scenario can be determined, and the charging current can be adjusted according to the measured temperature and temperature current curve of the temperature control device corresponding to the use scenario. It realizes the use of different charging control strategies according to different usage scenarios to balance the charging speed experience and charging thermal experience of users in different usage scenarios.
  • the method steps in the embodiments of the present application can be implemented by hardware, and can also be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory (programmable rom) , PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or well-known in the art Any other form of storage medium.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer instructions can be sent from a website site, computer, server, or data center to another website site via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) , Computer, server or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Abstract

一种充电控制方法及电子设备。该方法包括:在电子设备充电时,确定电子设备的第一使用场景;第一使用场景对应第一函数组,第一函数组中的函数用于描述至少一个器件在第一使用场景下的温度电流曲线;根据至少一个温控器件的实测温度和第一函数组,调整充电电流;当识别到电子设备从第一使用场景切换到第二使用场景时,根据第二使用场景下的温控器件的实测温度和第二函数组,调整充电电流。电子设备可以在不同的使用场景下,根据不同使用场景下的温控器件的实测温度以及温度电流曲线,调整充电电流,从而可平衡用户在不同使用场景下的充电速度体验和充电热感体验。

Description

一种充电控制方法及电子设备
本申请要求于2020年02月04日提交中国专利局、申请号为202010079606.4、申请名称为“一种充电控制方法及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池充电技术领域,具体涉及一种充电控制方法及电子设备。
背景技术
随着通信技术和移动终端技术的发展,如手机、平板电脑、可穿戴设备等移动终端的功能也越来越强大,为用户的生活和工作带来了便利。目前,为了保证移动终端的续航能力,移动终端通常配置有较大容量的电池。同时为了缩短给移动终端的电池的充电时间,充电功率越来越大。而大功率充电会导致手机发热,使得用户的充电热度体验较差。但如果充电电流过小,可能导致充电速度极慢甚至电量越充越少,使得充电速度体验较差。
发明内容
本申请实施例提供了一种充电控制方法及电子设备,可平衡用户在不同场景下的充电速度体验和充电热感体验。
第一方面,本申请实施例提供了充电控制方法,可应用于具有多个器件的电子设备;该方法包括:在电子设备充电时,确定电子设备的第一使用场景;第一使用场景对应第一函数组,第一函数组中的函数用于描述至少一个器件在第一使用场景下的温度电流曲线,至少一个器件为第一使用场景下的温控器件;根据至少一个温控器件的实测温度和第一函数组,调整充电电流;当识别到电子设备从第一使用场景切换到第二使用场景时,根据第二使用场景下的温控器件的实测温度和第二函数组,调整充电电流;其中,第二函数组中的函数用于描述第二使用场景下的温控器件在第二使用场景下的温度电流曲线,第二函数组中的函数和第一函数组中函数不同。
也就是说,本申请实施例提供的充电控制方法,可以判断电子设备充电时的使用场景,并确定该使用场景对应的温控器件以及温度电流曲线,进而可根据该使用场景对应的温控器件的实测温度和温度电流曲线调整充电电流,并且当使用场景发生改变时,根据改变后的使用场景对应的文库期间的实测温度和温度电流曲线调整充电电流,从而实现了根据不同使用场景对采用不同的充电控制策略,以平衡用户在不同使用场景下的充电速度体验和充电热感体验。
在一种可能的实现方式中,本申请实施例提供的充电控制方法还包括:获取第一使用场景对应的配置文件,配置文件包括至少一个器件下的多个温度和多个电流的一一对应关系;根据至少一个器件下的多个温度和多个电流的一一对应关系,确定至少一个器件对应的至少一个温度电流函数;确定至少一个温度电流函数为第一函数组。
也就是说,在该实现方式中,可以根据预设的配置文件,来确定第一使用场景对应的函数组。
在一种可能的实现方式中,第一函数组中函数的自变量为充电电流,因变量为限流温度;根据至少一个温控器件的实测温度和第一函数组,调整充电电流包括:根据第一函数组,确定至少一个温控器件在当前充电电流下对应的至少一个限流温度;根据至少一个限流温度和 至少一个温控器件的实测温度,确定第一电流上限值;根据第一电流上限值,限制充电电流。
也就是说,在该实现方式中,可以根据函数组确定温控器件在当前充电电流下对应的限流温度,并根据温控器件的限流温度和实测温度,确定电流上限值,以便根据电流上限值对充电电流进行调整,即在该实现方式中,充电电流进行调整是通过追踪当前充电电流对应的限流温度,而非通过追踪固定的限流温度,可以实现对充电电流的灵活调整,平衡用户的充电速度体验和充电热感体验。
在一种可能的实现方式中,该至少一个温控器件包括至少两个器件,该至少一个限流温度包括该至少两个器件对应的限流温度;本申请实施例提供的充电控制方法方法还包括:确定该至少两个器件中各器件各自的待调温差,其中,每一个器件的待调温差为该器件对应的限流温度减去该器件的实测温度的差值;确定至少两个器件中的第一器件的待调温差最小;根据至少一个限流温度和至少一个温控器件的实测温度,确定第一电流上限值包括:根据第一器件的待调温差,确定第一电流上限值。
也就是说,在该实现方式中,电子设备在充电时,可以追踪两个或更多个温控器件的限流温度和实测温度,并确定各个器件的限流温度和实测温度之间的温差,以及将多个温控器件中限流温度和实测温度之间的温差最小的器件作为目标器件,进行电流调整,使得调整后的电流导致的各温控器件的温度不会或较大概率不超过各自对应的限流温度,可以提高用户的充电热度体验。
在一种可能的实现方式中,该至少一个温控器件包括至少两个器件,该至少一个限流温度包括该至少两个器件对应的限流温度;本申请实施例提供的充电控制方法还包括:确定该至少两个器件中第二器件对应的限流温度最小;确定该第二器件为目标器件;根据该至少一个限流温度和该至少一个温控器件的实测温度,确定第一电流上限值包括:根据该目标器件的待调温差,确定该第一电流上限值。
也就是说,在该实现方式中,将多个温控器件中限流温度最低的器件作为目标器件,进行电流调整,使得调整后的电流导致的各温控器件的温度较大概率不超高各自对应的限流温度,从而可以改善用户的充电热度体验。
在一种可能的实现方式中,根据至少一个限流温度和至少一个温控器件的实测温度,确定第一电流上限值包括:根据至少一个限流温度和至少一个温控器件的实测温度,采用第一算法,确定第一电流上限值;第一算法为以下任一项或多项的组合:
比例积分微分控制算法中的比例控制项算法、比例积分微分控制算法中的积分控制项算法、比例积分微分控制算法中的微分控制项算法。
也就是说,在该实现方式中,可以通过PID算法,根据温控器件的实测温度和温度电流曲线,调整充电电流,可以实现充电电流的连续调控,避免了离散调调控对充电电流的过度限流。
在一种可能的实现方式中,第一使用场景为灭屏场景或多种亮屏场景中的一种。
也就是说,在该实现方式中,可以在充电时的场景为灭屏场景或多种亮屏场景中的一种时,选择对应的温控器件和温度电流曲线,来调整充电电流,可平衡用户在不同场景下的充电速度体验和充电热感体验。
在一种可能的实现方式中,电子设备在多种亮屏场景中的不同亮屏场景下同一器件功耗不同或最高功耗器件不同。
在一种可能的实现方式中,多种亮屏场景包括以下场景:
游戏场景、视频播放场景、视频通话场景、普通亮屏场景。
在一种可能的实现方式中,确定电子设备的第一使用场景包括:根据电子设备的多个器件的功耗,通过预设的场景识别模型,确定第一使用场景。
也就是说,在该实现方式中,电子设备可以根据其多个器件的功耗,来识别电子设备充电时的场景,可准确识别充电时的场景,以选择合适的温控器件和温度电流曲线,来调整充电电流,可以平衡用户的充电速度体验和充电热度体验。
在一种可能的实现方式中,确定电子设备的第一使用场景包括:根据该电子设备的前台运行应用,确定第一使用场景。
也就是说,在该实现方式中,电子设备可以根据前台运行应用,来识别电子设备充电时的场景,可准确识别充电时的场景,以选择合适的温控器件和温度电流曲线,来调整充电电流,可以平衡用户的充电速度体验和充电热度体验。
在一种可能的实现方式中,确定电子设备的第一使用场景包括:根据电子设备电池的剩余电量或电子设备的外部环境温度,确定第一使用场景。
在一种可能的实现方式中,确定电子设备的第一使用场景包括:响应于用户起始的场景选择操作,确定第一使用场景。
在一种可能的实现方式中,电子设备的多个器件为以下至少一项:
片上系统芯片、充电芯片、电池、功率放大器。
也就是说,在该实现方式中,在不同的充电场景下,可以将片上系统芯片、充电芯片、电池、功率放大器中的一项或多项作为温控器件,使得在调整充电电流时,可以考虑片上系统芯片、充电芯片、电池、功率放大器中的一项或多项的温度,以控制电子设备的整体温度,以保障用户的充电热度体验。
第二方面,本申请实施例提供了一种充电控制装置,配置于具有多个器件的电子设备;该装置包括:第一确定单元,用于在电子设备充电时,确定电子设备的第一使用场景;第一使用场景对应第一函数组,第一函数组中的函数用于描述至少一个器件在第一使用场景下的温度电流曲线,至少一个器件为第一使用场景下的温控器件;调整单元,用于根据至少一个温控器件的实测温度和第一函数组,调整充电电流;调整单元还用于当识别到电子设备从第一使用场景切换到第二使用场景时,根据第二使用场景下的温控器件的实测温度和第二函数组,调整充电电流;其中,第二函数组中的函数用于描述第二使用场景下的温控器件在第二使用场景下的温度电流曲线,第二函数组中的函数和第一函数组中函数不同。
在一种可能的实现方式中,该装置还包括:获取单元,用于获取第一使用场景对应的配置文件,配置文件包括至少一个器件下的多个温度和多个电流的一一对应关系;第二确定单元,用于根据至少一个器件下的多个温度和多个电流的一一对应关系,确定至少一个器件对应的至少一个温度电流函数;第三确定单元,用于确定至少一个温度电流函数为第一函数组。
在一种可能的实现方式中,第一函数组中函数的自变量为充电电流,因变量为限流温度;调整单元还用于根据第一函数组,确定至少一个温控器件在当前充电电流下对应的至少一个限流温度;调整单元还用于根据至少一个限流温度和至少一个温控器件的实测温度,确定第一电流上限值;调整单元还用于根据第一电流上限值,限制充电电流。
在一种可能的实现方式中,至少一个温控器件包括至少两个器件,至少一个限流温度包括至少两个器件对应的限流温度;该装置还包括:第四确定单元,用于确定至少两个器件中各器件各自的待调温差,其中,每一个器件的待调温差为该器件对应的限流温度减去该器件的实测温度的差值;第五确定单元,用于确定至少两个器件中的第一器件的待调温差最小;调整单元还用于根据第一器件的待调温差,确定第一电流上限值。
在一种可能的实现方式中,至少一个温控器件包括至少两个器件,至少一个限流温度包括至少两个器件对应的限流温度;该装置还包括:第六确定单元,用于确定至少两个器件中第二器件对应的限流温度最小;第七确定单元,用于确定第二器件为目标器件;调整单元还用于根据目标器件的待调温差,确定第一电流上限值。
在一种可能的实现方式中,调整单元还用于根据至少一个限流温度和至少一个温控器件的实测温度,采用第一算法,确定第一电流上限值;第一算法为以下任一项或多项的组合:
比例积分微分控制算法中的比例控制项算法、比例积分微分控制算法中的积分控制项算法、比例积分微分控制算法中的微分控制项算法。
在一种可能的实现方式中,第一使用场景为灭屏场景或多种亮屏场景中的一种。
在一种可能的实现方式中,电子设备在多种亮屏场景中的不同亮屏场景下同一器件功耗不同或最高功耗器件不同。
在一种可能的实现方式中,多种亮屏场景包括以下场景:
游戏场景、视频播放场景、视频通话场景、普通亮屏场景。
在一种可能的实现方式中,第一确定单元还用于根据多个器件的功耗,通过预设的场景识别模型,确定第一使用场景。
在一种可能的实现方式中,第一确定单元还用于根据电子设备的前台运行应用,确定第一使用场景。
在一种可能的实现方式中,第一确定单元还用于根据电子设备电池的剩余电量或电子设备的外部环境温度,确定第一使用场景。
在一种可能的实现方式中,第一确定单元还用于响应于用户起始的场景选择操作,确定第一使用场景。
在一种可能的实现方式中,多个器件为以下至少一项:
片上系统芯片、充电芯片、电池、功率放大器。
可以理解地,第二方面提供的充电控制装置用于执行第一方面所提供的对应的方法,因此,其所能达到的有益效果可参考第一方面所提供的对应的方法中的有益效果,此处不再赘述。
第三方面,提供了一种电子设备,包括:处理器、存储器;存储器用于存储计算机指令;当电子设备运行时,处理器执行该计算机指令,使得电子设备执行第一方面提供的方法。
可以理解地,第三方面提供的电子设备用于执行第一方面所提供的对应的方法,因此,其所能达到的有益效果可参考第一方面所提供的对应的方法中的有益效果,此处不再赘述。
第四方面,本申请实施例提供了一种计算机存储介质,计算机存储介质包括计算机指令,当计算机指令在电子设备上运行时,使得电子设备执行第一方面提供的方法。
可以理解地,第四方面提供的计算机存储介质用于执行第一方面所提供的对应的方法,因此,其所能达到的有益效果可参考第一方面所提供的对应的方法中的有益效果,此处不再赘述。
第五方面,本申请实施例提供了一种计算机程序产品,计算机程序产品包含的程序代码被电子设备中的处理器执行时,实现第一方面所述的方法。
可以理解地,第五方面提供的计算机程序产品用于执行第一方面所提供的对应的方法,因此,其所能达到的有益效果可参考第一方面所提供的对应的方法中的有益效果,此处不再赘述。
本申请实施例提供方案,可以判断电子设备充电时的使用场景,并确定该使用场景对应 的温控器件以及温度电流曲线,进而可根据该使用场景对应的温控器件的实测温度和温度电流曲线调整充电电流,实现了根据不同使用场景对采用不同的充电控制策略,以平衡用户在不同使用场景下的充电速度体验和充电热感体验。
附图说明
图1示出了一种充电电流控制策略;
图2示出了本申请实施例提供的一种电子设备硬件结构;
图3示出了本申请实施例提供的一种电子设备软件结构;
图4A示出了本申请实施例提供的一种充电场景下的温度电流曲线;
图4B示出了本申请实施例提供的一种充电场景下的温度电流曲线;
图5A示出了本申请实施例提供的一种游戏场景下SoC芯片的温度电流曲线;
图5B示出了本申请实施例提供的一种游戏场景下充电芯片的温度电流曲线;
图6A示出了本申请实施例提供的一种灭屏场景下PA的温度电流曲线;
图6B示出了本申请实施例提供的一种灭屏场景下充电芯片的温度电流曲线;
图7A示出了本申请实施例提供的一种灭屏场景下PA的温度电流曲线;
图7B示出了本申请实施例提供的一种灭屏场景下充电芯片的温度电流曲线;
图8A示出了本申请实施例提供的一个利用温度电流曲线确定当前充电电流对应的限流温度实例;
图8B示出了本申请实施例提供的一个利用温度电流曲线确定当前充电电流对应的限流温度实例;
图9示出了本申请实施例提供的一种充电控制装置示意性框图;
图10示出了本申请实施例提供的一种充电控制方法流程图;
图11示出了本申请实施例提供的一种充电控制方法流程图;
图12示出了本申请实施例提供的一种充电控制装置示意性框图;
图13示出了本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
下面将结合附图,对本发明实施例中的技术方案进行描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
在本说明书的描述中“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。
其中,在本说明书的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
在本说明书的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
一种充电控制策略为离散控制策略。通过监控移动终端内部的测温点的温度,当测温点 的实际温度低于该测温点的限流温度阈值后,采用充电电流上限对充电电流进行限制。一般情况下,会设置多个电流上限值以及各电流上限值对应的限流温度阈值,以对充电电流进行阶梯式控制。同时,为了防止温度在限流温度阈值附近上下变动而导致充电电流大幅波动,为电流上限值设置有退出温度阈值。该退出温度阈值低于该电流上限值对应的限制温度阈值。可以将电流上限值的退出温度阈值和该电流上限值的限流温度阈值之间的温度间隔,称为限流温区。当测温点的实际温度低于退出温度阈值时,才退出该电流上限值对充电电流的限制。在某些场景下,通常存在测温点的实际温度长时间滞留在限流温区中,导致不能采用较高的充电电流,过度限制充电速度。
图1示出了一种离散控制策略。如图1所示,当器件A实际温度小于44℃时,电流上限值为8A;当器件A实际温度大于44℃时,电流上限值为5A。为了防止器件A实际温度在44℃波动导致的充电电流波动,设置了41-44℃限流温区,只有在器件A实际温度低于41℃时,才将充电电流的电流上限值从5A调整为8A。若器件A发生短时高功耗,使得器件A的实际温度大于44℃,而采用5A对充电电流进行限制。在此情况下,只有器件A实际温度低于41℃时,充电电流的电流上限值才会从5A调整为8A。通常,器件A降温的过程很缓慢,从44℃降到41℃需要花费较长时间。而在期间中,充电电流的电流上限值为5A,这降低了充电速度,使得用户充电体验较差。
一种充电控制策略为采用恒定的目标温度,通过比例积分微分(proportional integral differential,PID)控制器,连续控制充电电流,使充电芯片(charge IC)的实际温度保持在该恒定的目标温度上下波动。
该充电控制策略仅考虑充电芯片温度,未能全面反映移动终端的发热情况。在有些场景下,充电芯片之外的其他高功耗器件的温度较高,也使得移动终端局部温度较高,严重影响用户的充电热体验。例如,手机在进行后台下载任务、编译应用程序任务或游戏任务时,片上系统(system on chip,SoC)芯片功耗较高,相应地,温度也较高。再例如,手机信号较差时,调制解调器的功率放大器(power amplifier,PA)功耗较高,相应地,温度也较高,上述两种情况都有可能造成移动终端局部过热。
该充电控制策略跟踪的限流温度恒定,如果限流温度设置较高,则影响用户充电热体验。如果限流温度设置较低,影响用户充电速度体验,很可能导致充电速度慢甚至电量越充越小。例如在游戏场景下,移动终端SoC芯片等器件功耗较高,发热较大,由于热传递效应,使得充电芯片的温度也较高,而充电控制策略为了使充电芯片的实际温度维持在限流温度而将充电电流降到很小,甚至可能导致断充,严重影响用户的充电速度体验。
本申请实施例提供了一种充电控制方法,在电子设备充电时,可以识别电子设备的当前使用场景,并确定当前使用场景对应的一个或多个器件,以及确定该一个或多个器件在当前使用场景下温度电流曲线,进而可以确定该一个或多个器件在当前充电电流下的限流温度,从而可以根据确定的一个或多个器件的限流温度和实测温度,调整充电电流。为方便表述,可以将当前使用场景对应的一个或多个器件称为当前使用场景的温控器件。由此,根据本申请实施例提供的方案,电子设备可以在不同的充电场景下,选择不同的温控器件,并选择不同的温度电流曲线,并可根据温度电流曲线,确定温控器件在不同充电电流下的不同限流温度,进而可根据不同的限流温度和温控器件的实测温度,调整充电电流,可以平衡用户在不同使用场景下的充电速度体验和充电热感体验。
本申请实施例的充电控制方法可以应用于各种电子设备,包括但不限于手机、平板电脑、个人数字助理(personal digital assistant,PDA)、可穿戴设备、膝上型计算机(laptop)等便携式电 子设备。便携式电子设备的示例性实施例包括但不限于搭载iOS、android、microsoft或者其他操作系统的便携式电子设备。电子设备还可以是其它类型的电子设备,诸如冰箱、洗衣机等家用设备,或者汽车、工业用电子设备。本申请实施例对电子设备的类型不做具体限定。
图2示出了电子设备100的结构示意图。
电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。在一些实施例中,处理器110也可以称为片上系统芯片。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现电子设备100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。 在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现电子设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。在一些实施例中,充电管理模块140可以包括充电芯片,充电芯片可以完成充电器的充电输入的电压和/或电流变换(通常是通过buck/boost电流进行变换),以向电池142充电以及通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的, AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在内部存储器121的指令,和/或存储在设置于处理器中的存储器的指令,执行电子设备100的各种功能应用以及数据处理。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A
的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100 使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备100对电池142加热,以避免低温导致电子设备100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控器件”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不 同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备100中,不能和电子设备100分离。
电子设备100的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。本申请实施例以分层架构的Android系统为例,示例性说明电子设备100的软件结构。
图3是本申请实施例的电子设备100的软件结构框图。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android系统分为四层,从上至下分别为应用程序层,应用程序框架层,安卓运行时(Android runtime)库和系统库,以及内核层。
应用程序层可以包括一系列应用程序包。
如图3所示,应用程序包可以包括通话,地图,即时通讯、相机、视频、音乐等应用程序。
应用程序框架层为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。
如图3所示,应用程序框架层可以包括内容提供器(content providers)、视图系统(view system)以及管理器(managers),其中,管理器包括活动管理器(activity manager)、电话管理器(telephony manager)、通知管理器(notification manager)、资源管理器(resoure manager)、窗口管理器(window manager)等。
内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。所述数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。
视图系统包括可视控件,例如显示文字的控件,显示图片的控件等。视图系统可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。
活动管理器用于管理应用程序的生命周期,及Activity栈管理等。
电话管理器用于提供电子设备100的通信功能。例如通话状态的管理(包括接通,挂断等)。
通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在系统顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话窗口形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,电子设备振动,指示灯闪烁等。
资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件,视频文件等等。
窗口管理器用于管理窗口程序。窗口管理器可以获取显示屏大小,判断是否有状态栏,锁定屏幕,截取屏幕等。
窗口管理器,内容提供器,视图系统,电话管理器,资源管理器,通知管理器等。
安卓运行时(Android Runtime)包括核心库和虚拟机。Android runtime负责安卓系统的调度和管理。
核心库包含两部分:一部分是java语言需要调用的功能函数,另一部分是安卓的核心库。
应用程序层和应用程序框架层运行在虚拟机中。虚拟机将应用程序层和应用程序框架层的java文件执行为二进制文件。虚拟机用于执行对象生命周期的管理,堆栈管理,线程管理,安全和异常的管理,以及垃圾回收等功能。
系统库可以包括充电控制模块和其他功能模块。其中,其他功能模块可以包括表面管理器(surface manager),媒体库(media libraries),三维图形处理库(例如:OpenGL ES),二维图形引擎(例如:SGL)等。
表面管理器用于对显示子系统进行管理,并且为多个应用程序提供了2D和3D图层的融合。
媒体库支持多种常用的音频,视频格式回放和录制,以及静态图像文件等。媒体库可以支持多种音视频编码格式,例如:MPEG4,H.264,MP3,AAC,AMR,JPG,PNG等。
三维图形处理库用于实现三维图形绘图,图像渲染,合成,和图层处理等。
二维图形引擎是二维绘图的绘图引擎。
充电控制模块在电子设备充电时,可以识别电子设备的当前使用场景,并根据当前使用场景,确定电子设备的一个或多个器件为温控器件,并且可以确定该一个或多个器件在当前使用场景下温度电流曲线,进而可以确定该一个或多个器件在当前充电电流下的限流温度,从而可以根据确定的一个或多个器件的限流温度和实测温度,确定电流上限值,以便电子设备根据该电流上限值调整充电电流。
内核层是硬件和软件之间的层。内核层可以包括SoC驱动,PA驱动,显示驱动,键映射驱动,摄像头驱动,闪存驱动,Wi-Fi驱动,蓝牙驱动,传感器驱动,电源管理器驱动等。其中,传感器驱动可以包括温度传感器驱动。
下面结合本申请实施例提供的充电控制方法,示例性说明电子设备100软件以及硬件的工作流程。
系统库中充电控制模块可以从配置文件中确定不同使用场景对应的温控器件以及不同使用场景的各温控器件对应的温度电流关系。充电控制模块可以根据不同使用场景的各温控器件的温度电流关系生成不同使用场景的各温控器件对应的温度电流曲线,得到温度电流曲线组。
电子设备100的多个器件中任一器件的电压和电流可以通过内核层的电源管理驱动或者该器件的驱动(例如PA的PA驱动,SoC的SoC驱动)上报给充电控制模块。充电控制模块可以根据该器件的电压和电流,计算该器件的功耗。通过前述方式,充电控制模块可以得到多个器件的功耗。充电控制模块可以根据多个器件的功耗确定当前使用场景。或者,充电控制模块可以从应用程序框架层的活动管理器获取前台运行应用的包名(package name),以根据前台运行应用确定当前使用场景。
充电控制模块可以根据当前使用场景,确定当前使用场景对应的温控器件,以及从温度电流曲线组中确定当前使用场景的温控器件对应的温度电流曲线。充电芯片可以将当前充电电流通过内核层中的电源管理器驱动上报给充电控制模块,充电控制模块通过温控器件对应的温度电流曲线,可以确定该温控器件在当前充电电流下的限流温度。
温控器件对应的温度传感器检测到的温度可以通过内核层中的温度传感器驱动上报给充电控制模块。充电控制模块可以根据温控器件对应的温度传感器检测到的温度、限流温度,调整充电电流。
通常,来自电源或者经由充电设备的电流流入电子设备后,一部分流入电池,以向电池充电,另一部分可供电子设备的中具有功耗的器件消耗。如无特殊说明,在本申请实施例中, 充电电流是指流入电子设备中的电流,即充电电流包括流入电池的电流和器件消耗的电流。
接下来,在不同实施例中,对本申请实施例提供的充电控制方法进行举例说明。
电子设备的整体温度为电子设备的各个器件的温度综合表现。通常,电子设备的整体温度由用户可直接感知,产生用户热感体验。容易理解,在电子设备运行时,电子设备中的一个或多个器件(SoC芯片、PA等)执行相关任务,产生一定功耗而发热,特别是功耗较高的器件,其温度可影响电子设备的整体温度。即,在电子设备充电时,若电子设备处于运行状态,除充电芯片、电池等器件的温度外,影响电子设备整体温度的因素还包括器件功耗较高器件的温度。
可以将电子设备中的一个或多个器件,例如充电芯片、电池、SoC芯片、PA等一个或多个器件,设定为一个或多个温控器件,并分别配置不同温控器件的不同限流温度和不同充电电流的对应关系。为表述方便,可以将不同限流温度和不同充电电流的对应关系称为温度-电流关系。对于该一个或多个温控器件中的任意器件,其在不同充电电流下对应不同的限流温度。即当向电子设备的电池充电的电流不同时,该任意器件对应的限流温度不同。限流温度也可以称为目标温度,其为用于进行充电电流调整的一个条件,调整充电电流以器件的实测温度不超过该器件的限流温度为前提。
容易理解,电子设备在充电时,可以处于某一使用场景,例如游戏场景或电话场景。为表述方便,在本申请实施例中,可以将电子设备在充电时的使用场景称为充电场景。在一些实施例中,可以根据电子设备的不同充电场景,分别设定不同温控器件,并分别配置各个温控器件的温度-电流关系。在任一充电场景下,若电子设备的某一或多个器件温度较高。可以将在该任一充电场景下,温度较高的器件设定为该充电场景下的温控器件。
在一个说明性示例中,在电子设备执行游戏任务时,电子设备的SoC芯片具有较高功耗,相应地,温度较高。换言之,在充电时,若电子设备执行游戏任务,不但充电芯片的温度对电子设备整体温度具有较大影响,而且SoC芯片的温度对电子设备整体温度的影响也较大。因此,可以将SoC芯片和充电芯片设定为充电场景为游戏场景时的温控器件。
在该示例的一个例子中,充电场景为游戏场景时,若网络信号较差,PA具有较高功耗,因此,可以将PA也设置为充电场景为游戏场景时的温控器件。即,充电场景为游戏场景时,温控器件包括PA、SoC芯片和充电芯片。
在一个说明性示例中,在电子设备执行视频播放任务时,电子设备的SoC芯片具有较高功耗,相应地,温度较高。换言之,当充电时,若电子设备执行视频播放任务,不但充电芯片的温度对电子设备整体温度具有较大影响,而且SoC芯片的温度对电子设备整体温度的影响也较大。因此,可以将SoC芯片和充电芯片设定为充电场景为视频播放场景时的温控器件。
在该示例的一个例子中,当视频播放任务为在线视频播放任务时,即充电场景为在线视频播放场景时,若网络信号较差,PA具有较高功耗,因此,可以将PA也设置为充电场景为在视频播放场景时的温控器件。即,充电场景为在线视频播放场景时,温控器件包括PA、SoC芯片和充电芯片。
在一个说明性示例中,在电子设备执行视频通话任务时,电子设备的SoC芯片具有较高功耗,相应地,温度较高。换言之,当充电时,若电子设备执行视频通话任务,不但充电芯片的温度对电子设备整体温度具有较大影响,而且SoC芯片的温度对电子设备整体温度的影响也较大。因此,可以将SoC芯片和充电芯片设定为充电场景为视频通话场景时的温控器件。
在该示例的一个例子中,充电场景为视频通话场景时,若网络信号较差,PA具有较高功耗,因此,可以将PA也设置为充电场景为视频通话场景时的温控器件。即,充电场景为视频 通话场景时,温控器件包括PA、SoC芯片和充电芯片。
在一个说明性示例中,在电子设备执行电话任务时,电子设备的PA具有较高功耗,相应地,温度也较高。换言之,当充电时,若电子设备执行电话任务,不但充电芯片的温度对电子设备整体温度具有较大影响,而且PA的温度对电子设备整体温度的影响也较大。因此,可以将PA和充电芯片设定为充电场景为电话场景时的温控器件。
在一个说明性示例中,在灭屏场景下,电子设备功耗相对较高的器件为PA。即当充电时,电子设备处于灭屏状态时,PA的温度为影响电子设备整体温度的因素之一。因此,可以将PA和充电芯片设定为充电场景为灭屏场景时的温控器件。
在一个说明性示例中,在电子设备执行网页浏览、电子书阅读、文字编辑等任务时,电子设备功耗相对较高的器件为SoC芯片。可以设定执行网页浏览、电子书阅读、文字编辑等任务的电子设备处于普通亮屏场景。可以将SoC芯片和充电芯片设定为充电场景为普通亮屏时的的温控器件。
上文仅对本申请实施例提供的充电控制方法可应用的充电场景进行示例说明,并不构成限定。本申请实施例还可以应用于其他充电场景,此处不再一一列举。
在一些实施例中,不同充电场景的温控器件的温度-电流关系可以分别配置或者独立配置。如上所述,器件A1可以作为不同充电场景的温控器件,例如SoC芯片和充电芯片可以作为游戏场景、视频播放场景、视频通话场景、普通亮屏场景的温控器件。可以独立配置不同充电场景下的器件A1对应的温度-电流关系。即在不同充电场景下,器件A1对应的温度-电流关系之间无必然联系,即可以相同,也可以不同,具体由不同充电场景各自的配置结果而确定。
在一些实施例中,可以将充电场景,该充电场景下的一个或多个温控器件,该一个或多个温控器件各自对应的温度-电流关系作为电子设备配置文件中的信息进行记录。
示例性的,在配置文件中,对于任一充电场景下的任一温控器件对应的温度-电流关系可以包括至少两个不同限流温度和至少两个不同充电电流的对应关系。
示例性的,配置文件的数据结构可以如表1所示。
表1
Figure PCTCN2020133561-appb-000001
需要说明的是,在表1中,器件B1、器件C1(或器件C2)、器件D1(或器件D2)等器件的标记不同,仅是表示器件所对应的充电场景。器件B1、器件C1(或器件C2)、器件D1(或器件D2)等器件可以为电子设备的同一个器件,也可以为电子设备的不同器件,具体可以参考上文所述。
在一些实施例中,可以根据开发者的经验、认知(例如,在灭屏场景下,通常用户不接 触电子设备,可以将该场景下的温控器件对应的限流温度设置较高,已加快充电速度。再例如,在普通亮屏场景下,用户对电子设备发热比较敏感,可将该场景下温控器件对应的限流温度设置较低,以使用户有更好的充电热度体验),用户充电体验历史反馈,维修点的反馈等,配置任意充电场景下的温控器件以及温控器件对应的温度-电流关系。然后,可结合用户在该任意场景下对应用了前述配置的电子设备的充电体验,不断调整该任意充电场景下的温控器件以及温控器件对应的温度-电流关系。如此,可得到该任意充电场景较合适的温控目前器件以及温控器件对应的温度-电流关系。
在一个说明性示例中,可在经上述配置的多个电子设备中应用本申请实施例提供的充电控制方法(在下文进行描述),并将该多个电子设备分发给志愿者,可结合志愿者对前述电子设备的充电体验,不断调整充电场景下的温控器件以及温控器件对应的温度-电流关系。如此,可得到该任意充电场景较合适的温控目前器件以及温控器件对应的温度-电流关系。
电子设备可以根据任意充电场景下的任意温控器件对应的温度-电流关系,生成温度电流曲线,如此可得到该任意充电场景下的各个温控器件对应的温度电流曲线,以及得到各个充电场景各自的各个温控器件对应的温度电流曲线。任意温控器件的温度电流曲线可以理解为描述电子设备的充电电流和该温控器件的限流温度的对应关系的一种方式。当确定了电子设备的充电电流时,可以通过温度电流曲线,确定温控器件在该充电电流下对应的限流温度。如此,可以通过配置的离散的限流温度和充电电流的对应关系,可以得到连续的限流温度和充电电流的对应关系的描述方式,进而可以确定温控器件在不同充电电流下对应的不同限流温度,实现对充电电流的连续调整。
在一些实施例中,温度电流曲线可以为二维坐标系上的曲线,其中,曲线中各点的斜率连续变化。温度电流曲线可以为二维坐标系上的折线,该折线可以多条直线段依次相接组成,其中相邻的直线段的斜率不同。温度电流曲线也可以为二维坐标系上的曲线和直线段的混合线段,其中,曲线可以位于处于两条直线段之间。该两个直线段的斜率可以不同,也可以相同。
在一个说明性示例中,对于任意充电场景下的任意温控器件,可以将其温度-电流关系通过二维坐标表示,进行拟合或者连接相邻两个坐标点,得到该充电场景下的该温控器件的温度电流曲线。
在一个例子中,预先配置多个限流温度和充电电流的对应关系,如此,可以在二维坐标系上得到多个的坐标点,通过连接相邻两个坐标点,可以得到多个首尾相接的线段组成的折线。当坐标点较多或者说坐标点较为密集时,得到的折线可以近似于曲线。在一个说明性示例中,该二维坐标系的自变量(X轴)可以为电流,因变量(Y轴)可以为温度。
示例性的,可以将同一充电场景下的各温控器件的温度电流曲线在一个图中表示,即各温控器件的温度电流曲线对应于同一图中的不同折线或曲线。在一个例子中,可以设定充电场景为场景B,场景B下的温控器件为器件B1和器件B2。场景B的温度电流曲线可以如图4A所示。在一个例子中,可以设定充电场景为场景C,场景C下的温控器件为器件C1和器件C2。场景B的温度电流曲线可以如图4B所示。
示例性的,可以将同一充电场景下各温控器件的温度电流曲线在不同图中表示。在一个例子中,以充电场景为游戏场景为例,游戏场景下的温控器件为SoC芯片和充电芯片,其中,SoC芯片的温度电流曲线可以如图5A所示,充电芯片的温度电流曲线可以如图5B所示。
示例性的,任意场景下的任意温控器件的温度电流曲线可以为折线,也可以为曲线。在一个例子中,以充电场景为灭屏场景为例,灭屏场景下的温控器件为PA和充电芯片。PA的 温度电流曲线和充电芯片的温度电流曲线可以如图6A和图6B所示的折线表示,也可以如图7A和图7B所示的曲线表示。
在一个说明性示例中,在温控器件的温度电流曲线为曲线时,可以控制温度电流曲线的斜率(曲线上各点的切线斜率)变化,来确定该温度电流曲线对应的充电策略。以温度电流曲线的自变量(X轴)可以为电流,因变量(Y轴)可以为温度为例,若随着电流的增大,温度电流曲线的斜率由小到大,使得温度电流曲线呈现为下凹曲线。在这种情况下,充电策略为倾向于抑制充电速度、保持电子设备低温。随着电流的增大,温度电流曲线的斜率的由大到小,使得温度电流曲线呈现为上凸曲线。在这种情况下,充电策略为倾向于加快充电速度。
更具体的,以图7A所示的灭屏场景下PA的温度电流曲线为例,随着电流的增大,温度电流曲线的斜率由小到大,使得温度电流曲线呈现为下凹曲线。在这种情况下,充电策略为倾向于抑制充电速度、保持电子设备低温。
再以图7B所示的灭屏场景下充电芯片的温度电流曲线为例,随着电流的增大,温度电流的增大,温度电流曲线的斜率的由大到小,使得温度电流曲线呈现为上凸曲线。在这种情况下,充电策略为倾向于加快充电速度。在一个例子中,如上所述,可以通过预先配置较多个多个限流温度和充电电流的对应关系,得到近似于曲线的折线。因此,可以预先配置足够多的限流温度和充电电流的对应关系,得到近似于上凸曲线的折线(上凸曲线)或近似于下凹曲线的折线(下凹曲线)。
在一个说明性示例中,用于表示温控器件的二维坐标系的自变量(X轴)可以为温度,因变量(Y轴)可以为电流。在该示例中,同一充电场景下的各温控器件的温度电流曲线的表示方式、温度电流曲线为曲线时的斜率的变化等可以参考上述示例所述,在此不再赘述。
通过上述方式,可以生成任意充电场景下各温控器件的温度电流曲线。电子设备可以根据任意充电场景下的任意温控器件的温度电流曲线,确定该温控器件在任意充电电流下对应的限流温度。容易理解,任意温度电流曲线具有其描述方式。示例性的,描述方式可以为以充电电流为自变量,限流温度为因变量的函数,例如,可以设定在充电电流处于预设电流区间时,温度电流曲线的描述方式为y=f(x),其中,y表示限流温度,x表示充电电流。电子设备根据温度电流曲线确定限流温度,具体可以为根据温度电流曲线的描述方式,确定限流温度。
在一些实施例中,电子设备可以预先生成各个充电场景下各个温控器件的温度电流曲线,并记录(具体可以记录温度电流曲线的描述方式(函数等)),以方便在后续步骤中,根据确定的充电场景,选择该充电场景下各个温控器件的温度电流曲线,以确定该场景下各个温控器件各自的限流温度。
在一些实施例中,电子设备可以识别当前使用场景,并获取该当前使用场景下的各个温控器件对应的温度-电流关系,进而生成当前使用场景下的各个温控器件对应的电流线性关系图,以便确定当前使用场景下各个目标器件各自的限流温度。
接下来,在不同实施例中,举例介绍确定充电场景的方案。
在一些实施例中,可以预先将充电场景和应用类型进行关联,例如游戏场景和游戏类应用关联,视频播放应用和视频播放场景关联。在一个例子中,可以设置使用场景关联名单,该使用场景关联名单包括多个应用,其中每个应用关联有充电场景。
在实施时,电子设备可以检测当前前台运行应用,并确定前台运行应用所属的应用类型。例如,可以检测当前前台运行应用的包名(package name),并根据当前前台运行应用的包名, 确定当前前台运行应用所属的应用类型,进而可以确定当前使用场景。如当前没有前台运行应用,则确定当前使用场景为灭屏场景。
在一些实施例中,可以预先训练充电场景识别模型。在一个例子中,以电子设备的多个场景下的温控器件的功耗值为训练样本,该训练样本带有场景标签,以进行有监督训练,以得到场景识别模型。具体的,每个训练样本的输入可以是1个多维向量,对于任意多维向量,其维数为器件的个数,该向量中每个元素为一个器件的功耗值。每个训练样本的输出是场景标签(游戏场景、视频通话场景、灭屏场景等),通过有监督训练,可以得到场景识别模型。其中,训练样本中的功耗值可以为瞬时功耗,也可以为一时间段内的平均功耗值,例如0.5秒时长的平均功耗。在一个例子中,功耗值的单位可以为mW,也可以为mA。其中,当功耗值为mA时,需要通过3.8V电压对各器件功耗进行归一化。
电子设备可以获取多个器件的功耗值,将多个器件的功耗值输入到场景识别模型进行场景识别。该场景识别模型可以输出识别出的当前终端使用场景,从而可以确定温控器件以及温度电流曲线。输入的功耗值可以为瞬时功耗,也可以为一时间段内的平均功耗值,例如0.5秒时长的平均功耗。
在具体实现时,通过前台运行应用确定充电场景和通过充电场景识别模型确定充电场景可以各自独立使用,也可以配合使用。例如,当前台运行应用不在使用场景关联名单上时,可以通过充电场景识别模型确定充电场景。
在一些实施例中,在电子设备充电时,电子设备可以确定其电池的剩余电量,并根据电子的剩余电流确定电子设备的使用场景。示例性的,若电池的剩余电量较少(例如低于20%),可以确定电子设备的使用场景为预设的使用场景S1。若电池的剩余电量较多(例如高于80%),可以确定电子设备的使用场景为预设的使用场景S2。在一个例子中,使用场景S1可以对应有预设的温度电流函数H1,以及温控器件Q1(例如可以为SoC芯片、充电芯片等),使用场景S2可以对应有预设的温度电流函数H2,以及温控器件Q1。对于温控器件Q1,在相同的充电电流下,通过温度电流函数H1得到的限流温度大于通过温度电流函数H2得到的限流温度。在一个例子中,使用场景S1可以为上述充电速度较快的使用场景,例如灭屏场景。使用场景S2可以为上述充电速度较慢的使用场景,例如游戏场景。在该例子中,在电池的剩余电流较低或较高时,可以不考虑或忽略通过前台运行应用或通过器件功耗确定出的使用场景,而是以通过电池的剩余电流确定出的使用场景为准,从而可以在电池的剩余电量较低时,提高用户的充电速度体验,以及在电池的剩余电量较高时,提高用户的充电热体验。
需要说明的是。上述示例仅为举例说明,不构成限定。在实现时,可以根据经验设定电池的剩余电量和使用场景的对应关系,以及使用场景对应的温度电流函数和温控器件。
在一些实施例中,电子设备可以确定电子设备所在外部环境的温度,例如可以电子设备的外表面或者接近外表面处可设置有温度传感器,该温度传感器可以用于检测电子设备所在外部环境的温度。示例性的,电子设备外部环境的温度较低(例如低于10℃),可以确定电子设备的使用场景为预设的使用场景S3。若电子设备外部环境的温度较高(例如高于30℃),可以确定电子设备的使用场景为预设的使用场景S4。在一个例子中,使用场景S3可以对应有预设的温度电流函数H3,以及温控器件Q2(例如可以为SoC芯片、充电芯片等),使用场景S4可以对应有预设的温度电流函数H4,以及温控器件Q2。对于温控器件Q2,在相同的充电电流下,通过温度电流函数H3得到的限流温度大于通过温度电流函数H4得到的限流温度。在一个例子中,使用场景S3可以为上述充电速度较快的使用场景,例如灭屏场景。使用场景S4可以为上述充电速度较慢的使用场景,例如游戏场景。在该例子中,在电子设备的外 部环境温度较低或较高时,可以不考虑或忽略通过前台运行应用或通过器件功耗确定出的使用场景,而是以通过外部环境温度确定出的使用场景为准,从而可以在外部环境温度较低时,提高用户的充电速度体验,以及在外部环境温度较高时,提高用户的充电热体验。
需要说明的是。上述示例仅为举例说明,不构成限定。在实现时,可以根据经验设定外部环境温度和使用场景的对应关系,以及使用场景对应的温度电流函数和温控器件。
在一些实施例中,在电子设备充电时,电子设备可以显示使用场景选择界面。使用场景选择界面可以包括多种使用场景。用户可以从多种使用场景中选择一种使用场景,电子设备可以将用户选择的场景确定为电子设备的使用场景。具体而言,电子设备可以响应用户起始的使用场景选择操作,确定电子设备的使用场景。
在本申请实施例提供的充电控制方法中,还需要获取温控器件的实测温度。接下来,举例介绍各个器件实测温度的获取方案。
在一些实施例中,可以在器件内部设置测温点,或者在器件外部(例如相距器件5mm-10mm处)设置测温点。测温点设置有温度传感器。温度传感器具体可以为热敏电阻(thermistors),例如负温度系数(negative temperature coefficient,NTC)热敏电阻、正温度系数(positive temperature coefficient,PTC)热敏电阻等。可以将器件的测温点检测到的温度作为该器件的实测温度。在一个例子中,可以将测温点检测到的瞬时温度作为对应器件的实测温度。在一个例子中,可以将测温点在一时间段内(例如0.5秒时长的时间段)内检测到的温度的平均值,作为对应器件的实测温度。
在一个说明性示例中,虽然,SoC芯片内部通常设置有测温点,但由于SoC芯片内部的温度变动较为剧烈。在本示例中,可以不采用SoC芯片测温点检测到的温度,而是将SoC芯片外部的测温点(例如,设置在主板上,与SoC芯片之间的距离在5mm-10mm之间的测温点)检测到的温度,作为SoC芯片的实测温度。
在一些实施例中,若电子设备的某个或某些器件不宜设置测温点,例如,由于空间限制或所在电子设备中的位置限制或电磁干扰等因素,有些器件内部以及附近不宜放置热敏电阻。而这些器件的温度较高,可以影响用户充电的热度体验。针对前述情况,可以采用仿真加拟合的方法,模拟这些器件的温度。具体可以为采用有限元仿真和线性回归的方法,首先通过有限元热仿真,模拟电子设备内部温度分布情况,产生多个训练数据。每个训练数据的输入为各个具有测温点的器件的温度值(该器件的测温点检测到的温度),输出为所要模拟的器件的温度;之后通过线性回归,得出通过测温点检测到的温度,进而可以计算所要模拟的器件的温度值。接下来,举例介绍待调温差的确定方案。
在确定了当前使用场景时或之后,可以确定该充电场景下的各个温控器件的温度电流曲线。可以获取当前充电电流I1。通过当前使用场景下的各个温控器件的温度电流曲线,分别确定该各个温控器件在当前充电电流I1下的限流温度。
在一些实施例中,还可以获取该各个温控器件的实测温度。可根据各个温控器件在当前充电电流I1下的限流温度,和各个温控器件的实测温度,分别确定各个温控器件的待调温差。
在一个例子中,对于任一温控器件,可以将该温控器件的在当前充电电流I1下的限流温度减去该温控器件的实测温度,得到该温控器件的待调温差。
在一个例子中,对于任一温控器件,可以将该温控器件的在当前充电电流I1下的限流温度乘以预设系数J1后,减去该温控器件的实测温度,得到该温控器件的待调温差。
在一个例子中,对于任一温控器件,可以将该温控器件的实测温度乘以预设系数J2,得到加权实测温度。可以将该温控器件在当前充电电流I1下的限流温度,减去该加权实测温度, 得到该温控器件的待调温差。
在一些实施例中,可以根据各个温控器件的待调温差,确定目标器件,以便根据目标器件的待调温差确定充电电流的上限值,即确定电流上限值。
在一说明性示例中,可以从各个温控器件对应的待调温差中确定最小待调温差。
示例性的,参阅图8A和图8B,可以设定当前使用场景的温控器件为器件W1和器件W2,当前充电电流为6A(i=6A),器件W1的实测温度为44℃(T A=44℃),器件W2的实测温度为42℃(T B=42℃)。
通过器件W1的温度电流曲线,可确定器件W1在充电电流为6A下的限流温度为44.5℃(T target_W1(i)=44.5℃)。器件W1的待调温差ΔT A=T target_A(i)–T A=0.5℃。
通过器件W2的温度电流曲线,可确定器件W2在充电电流为6A下的限流温度为44℃(T target_W2(i)=44℃)。器件W2的待调温差ΔT B=T target_B(i)–T B=2℃。
ΔT A小于ΔT B,即为ΔT A最小待调温差。
可以将最小待调温差对应的器件作为目标器件。目标器件的待调温差,即最小待调温差可以用于确定充电电流调整的电流上限值。通过利用当前使用场景下各温控器件的待调温差中最小待调温差,确定调整充电电流的电流上限值,可以保证在使用确定得到的电流上限值调整的充电电流进行充电时,各温控器件的实测温度不会超过各自对应的限流温度,从而可以保证用户充电的热度体验。
在一个说明性示例中,当当前使用场景的温控器件包括三个器件或更多个器件时,可以将该三个器件或更多个器件中的待调温差较小的两个或更多个器件作为目标器件。可以根据两个或更多个器件的待调温差,确定充电电流调整的电流上限值。示例性的,可以计算该两个或更多个器件的待调温差的平均温差。该平均温差可以为加权平均温度,例如,两个或更多个器件中待调温差越小的器件具有的权重越大。该平均温差可以用于确定充电电流调整的电流上限值。
在一些实施例中,可以将当前使用场景的各个温控器件作为目标器件。可以计算各个温控器件的待调温差的平均温差。该平均温差可以为加权平均温差,例如,各个器件中待调温差越小的器件具有的权重越大。该平均温差可以用于确定充电电流调整的电流上限值。
在一些实施例中,可以将各个温控器件的在当前充电电流I1下的限流温度进行比较,确定出最小限流温度,并将最小限流温度对应的温控器件作为目标器件,该目标器件对应的待调温差可以用于确定电流上限值。
接下来,举例介绍确定电流上限值的方案。
电子设备可以按照调控周期,周期性执行本申请实施例提供的充电控制方法,以周期性确定调整充电电流的电流上限值,对充电电流进行周期性调控。在一个例子中,每一调控周期的时长为0.5秒。在一个例子中,每一调控周期的时长可以为1秒。等等,此次不再一一列举。
在一些实施例中,在任意调控周期中,可以采用PID算法,根据上文确定的目标器件的待调温差或平均温差,确定充电电流调整的电流上限值。
接下来,以上文确定的目标器件的待调温差或平均温差为ΔT为例,具体介绍计算过程。
根据ΔT,确定充电电流调整的电流上限值的计算过程具体如下。
可通过公式(1),确定比例控制项P item
P item=k p×ΔT     (1)
其中k p为比例系数。k p可以为常数,例如,当温度值的单位为摄氏度,电流值的单位为 mA时,k p可以为1000。在一个例子中,当ΔT不同时,k p可能也不同。k p可通过公式(2)计算得到。
[根据细则26改正21.04.2021] 
Figure WO-DOC-FIGURE-1
其中,K p为一常数,例如1000(在温度值的单位为摄氏度,电流值的单位为mA的情况下)。
可通过公式(3),确定积分控制项I item
I item=k i×ΔT+I item_last     (3)
其中,k i是积分系数,可以为常数,例如,当温度值的单位为摄氏度,电流值的单位为mA时,k i可以为50。I item_last为当前调控周期的前一调控周期中确定的积分控制项,其中,当当前调控周期为第一个调控周期时,I item_last为在当前调控周期中电子设备的的实际充电电流。
可通过公式(4),确定微分控制项D item
D item=k d×(ΔT-ΔT last)     (4)
其中,k d是微分系数,可以为常数,例如,当温度值的单位为摄氏度,电流值的单位为mA时,k d可以为5000。ΔT last是当前调控周期的前一调控周期确定的最小待调温差,其中,当当前调控周期为第一个调控周期时,ΔT last为当前调控周期确定的最小待调温差,ΔT last=ΔT。
可以通过公式(5),确定输出控制量Output。
Output=Pitem+Iitem+Ditem     (5)
其中,输出控制量Output可以为mA,可以将输出控制量Output作为电流上限值。
电子设备可以根据电流上限值,调整向电池充电的电流。
在一些实施例中,可以根据公式(3)确定的积分控制项I item,确定电流上限值。例如可以将积分控制项I item的值作为电流上限值的值。
在一些实施例中,可以根据公式(1)确定的比例控制项P item,确定电流上限值。例如可以将比例控制项P item的值作为电流上限值的值。
在一些实施例中,可以根据公式(4)确定的微分控制项D item,确定电流上限值。例如可以将微分控制项D item的值作为电流上限值的值。
在一些实施例中,可以根据公式(3)确定的积分控制项I item和根据公式(1)确定的比例控制项P item,确定电流上限值。可以将积分控制项I item的值和比例控制项P item的加和作为电流上限值的值。
在一些实施例中,可以根据公式(3)确定的积分控制项I item和根据公式(4)确定的微分控制项D item,确定电流上限值。可以将积分控制项I item的值和微分控制项D item的加和作为电流上限值的值。
上文仅对根据ΔT,确定充电电流调整的电流上限值的方案进行示例说明,并不构成限制。还可以采用其他的计算策略,根据ΔT,确定充电电流调整的电流上限值,此处不再一一列举。
上文所述的电流上限值也可以称为电流上限值。在充电电流的调整通常会有多个电流上限值,上文所述的电流上限值可作为该多个电流上限值中的一个。最终采取的实际充电电流是多个电流上限值中的最小电流。
综上所述,可知,本申请实施例提供的充电控制方法采用了连续的温度电流曲线,进行电流上限值的确定,不存在温度滞回区间,可避免过度限流情况,提高充电效率。并且可采用多个温控器件,进行温度控制,可更全面的反映电子设备整体温度,可以避免某些情况下(例如,手机信号差时,PA发热较大导致手机整体温度较高;游戏运行时,SoC芯片发热较大,导致手机整体温度较高等等)电子设备整体温度高,可改善用户充电热体验。以及根据不同的场景选择不同的温控器件以及温度电流曲线,实际充电电流不同,限流温度不同,而非采用固定的温控器件以及固定的限流温度,可以平衡用户在不同场景下的充电速度体验和充电热度体验。
参阅图9,本申请实施例提供的一种充电控制装置,该装置包括温度-电流曲线组生成模块901、温度检测模块903、场景识别模块905、目标器件与目标温度选择模块907、控制量计算模块909。
温度-电流曲线组生成模块901可以根据配置文件中各充电场景下各温控器件的温度电流曲线,具体生成过程以及配置文件的配置方式可以参考上文所述,在此不再赘述。各充电场景下各温控器件的温度电流曲线组成了温度-电流曲线组。
温度检测模块903可以检测电子设备多个器件的实测温度,具体可以参考上文所述,在此不再赘述。
场景识别模块905可以识别电子设备的当前充电场景。一种识别方式为根据电子设备的当前前台运行应用识别电子设备的当前充电场景。另一种方式为多个器件的功耗,利用充电场景识别模型,识别电子设备的当前充电场景。具体可以参考上文所述,在此不再赘述。
目标器件与目标温度选择模块907,可以根据场景识别模块905识别的充电场景,选取该充电场景对应的温控器件和温度电流曲线。可以利用温度电流曲线,确定温控器件在实际充电电流下的限流温度。充电场景对应的温控器件可以为多个器件。对于该多个器件中的每一个器件,根据该器件在实际充电电流下的限流温度和温度检测模块903最近检测到该器件的实测温度,确定该器件的待调温差。然后可以根据多个器件的待调温差确定目标器件,并将该器件在实际充电电流下的限流温度作为目标温度。具体可以参考上文所述,在此不再赘述。当充电场景对应的温控器件只有一个器件时,确定该器件为目标器件,以及将该器件在实际充电电流下的限流温度作为目标温度。
控制量计算模块909可以根据目标温度和目标器件的实测温度之间的差值,即目标器件的待调温差,利用预设算法,计算充电电流调整的电流上限值。具体可以参考上文所述,在此不再赘述。
本申请实施例提供充电控制装置,可以判断电子设备充电时的使用场景,并确定该使用场景对应的温控器件以及温度电流曲线,进而可根据该使用场景对应的温控器件的实测温度和温度电流曲线调整充电电流,实现了根据不同使用场景对采用不同的充电控制策略,以平衡用户在不同使用场景下的充电速度体验和充电热感体验。
参阅图10,本申请实施例提供了一种充电控制方法,可以应用于电子设备。该方法包括如下步骤。
步骤1000,根据电子设备不同场景热控配置文件,生成包括不同场景下各个器件的温度电流曲线的温度-电流曲线组。
在步骤1000中,场景为上文所述的充电场景,热控配置文件为上文所述配置文件,器件为上述温控器件。温度电流曲线的生成方法可以参考上文所述,在此不再赘述。
步骤1002,检测SoC芯片、充电芯片、PA芯片、电池等器件在当前控制周期内的温度。
在步骤1002中,检测的各器件的温度可以称为各器件的实测温度。具体检测方式可以参考上文所述。控制周期也可以称为调控周期。
步骤1004,通过检测前台应用程序,或检测多个器件功耗,识别电子设备的当前充电场景。具体可以参考上述所述。
步骤1006,根据充电场景对应的温度电流曲线,选择目标器件以及目标温度。
在步骤1006中,可以根据步骤1004识别的充电场景,选取该充电场景对应的温控器件和温度电流曲线。可以利用温度电流曲线,确定温控器件在实际充电电流下的限流温度。当前充电场景对应的温控器件可以为多个器件。对于该多个器件中的每一个器件,根据该器件在实际充电电流下的限流温度和步骤1002最近检测到该器件的实测温度,确定该器件的待调温差。然后可以根据多个器件的待调温差确定目标器件,并将该器件在实际充电电流下的限流温度作为目标温度。具体可以参考上文所述,在此不再赘述。当充电场景对应的温控器件只有一个器件时,确定该器件为目标器件,以及将该器件在实际充电电流下的限流温度作为目标温度。
步骤1008,根据所述目标器件、目标温度和目标器件当前温度,计算当前控制周期内的比例控制项、积分控制项、微分控制项、输出控制量,限制充电电流。
目标器件当前温度可以为步骤1002最近检测到的该目标器件的实测温度。步骤1008的具体实现过程可以参考上文所述,在此不再赘述。
本申请实施例提供充电控制方法,可以判断电子设备充电时的使用场景,并确定该使用场景对应的温控器件以及温度电流曲线,进而可根据该使用场景对应的温控器件的实测温度和温度电流曲线调整充电电流,实现了根据不同使用场景对采用不同的充电控制策略,以平衡用户在不同使用场景下的充电速度体验和充电热感体验。
本申请实施例提供了一种充电控制方法,可以应用于具有多个器件的电子设备。参阅图11,该方法包括如下步骤。
步骤1100,在所述电子设备充电时,确定所述电子设备的第一使用场景;所述第一使用场景对应第一函数组,所述第一函数组中的函数用于描述至少一个器件在所述第一使用场景下的温度电流曲线,所述至少一个器件为所述第一使用场景下的温控器件。
步骤1102,根据所述至少一个温控器件的实测温度和第一函数组,调整充电电流。
步骤1104,当识别到所述电子设备从所述第一使用场景切换到第二使用场景时,根据所述第二使用场景下的温控器件的实测温度和第二函数组,调整充电电流。其中,
所述第二函数组中的函数用于描述所述第二使用场景下的温控器件在所述第二使用场景下的温度电流曲线,所述第二函数组中的函数和所述第一函数组中函数不同。
在一些实施例中,该充电控制方法还包括:获取所述第一使用场景对应的配置文件,所述配置文件包括所述至少一个器件下的多个温度和多个电流的一一对应关系;根据所述至少一个器件下的多个温度和多个电流的一一对应关系,确定所述至少一个器件对应的至少一个温度电流函数;确定所述至少一个温度电流函数为所述第一函数组。
在一些实施例中,所述第一函数组中函数的自变量为充电电流,因变量为限流温度;所述根据所述至少一个温控器件的实测温度和第一函数组,调整充电电流包括:根据所述第一函数组,确定所述至少一个温控器件在当前充电电流下对应的至少一个限流温度;根据所述至少一个限流温度和所述至少一个温控器件的实测温度,确定第一电流上限值;根据所述第一电流上限值,限制充电电流。
在这些实施例的一个示例中,所述至少一个温控器件包括至少两个器件,所述至少一个 限流温度包括所述至少两个器件对应的限流温度;所述方法还包括:确定所述至少两个器件中各器件各自的待调温差,其中,每一个器件的待调温差为该器件对应的限流温度减去该器件的实测温度的差值;确定所述至少两个器件中的第一器件的待调温差最小;所述根据所述至少一个限流温度和所述至少一个温控器件的实测温度,确定第一电流上限值包括:根据所述第一器件的待调温差,确定所述第一电流上限值。
在这些实施例的又一个示例中,所述至少一个温控器件包括至少两个器件,所述至少一个限流温度包括所述至少两个器件对应的限流温度;所述方法还包括:确定所述至少两个器件中第二器件对应的限流温度最小;确定所述第二器件为目标器件;所述根据所述至少一个限流温度和所述至少一个温控器件的实测温度,确定第一电流上限值包括:根据所述目标器件的待调温差,确定所述第一电流上限值。
在这些实施例的又一个示例中,所述根据所述至少一个限流温度和所述至少一个温控器件的实测温度,确定第一电流上限值包括:根据所述至少一个限流温度和所述至少一个温控器件的实测温度,采用第一算法,确定第一电流上限值;所述第一算法为以下任一项或多项的组合:
比例积分微分控制算法中的比例控制项算法、比例积分微分控制算法中的积分控制项算法、比例积分微分控制算法中的微分控制项算法。
在一些实施例中,所述第一使用场景为灭屏场景或多种亮屏场景中的一种。
在这些实施例的一个示例中,所述电子设备在所述多种亮屏场景中的不同亮屏场景下同一器件功耗不同或最高功耗器件不同。
在这些实施例的另一个示例中,所述多种亮屏场景包括以下场景:
游戏场景、视频播放场景、视频通话场景、普通亮屏场景。
在一些实施例中,所述确定所述电子设备的第一使用场景包括:根据所述多个器件的功耗,通过预设的场景识别模型,确定所述第一使用场景。
在一些实施例中,所述确定所述电子设备的第一使用场景包括:根据所述电子设备的前台运行应用,确定所述第一使用场景。
在一些实施例中,所述确定所述电子设备的第一使用场景包括:根据所述电子设备电池的剩余电量或所述电子设备的外部环境温度,确定所述第一使用场景。
在一些实施例中,所述确定所述电子设备的第一使用场景包括:响应于用户起始的场景选择操作,确定所述第一使用场景。
在一些实施例中,所述多个器件为以下至少一项:
片上系统芯片、充电芯片、电池、功率放大器。
本申请实施例提供充电控制方法,可以判断电子设备充电时的使用场景,并确定该使用场景对应的温控器件以及温度电流曲线,进而可根据该使用场景对应的温控器件的实测温度和温度电流曲线调整充电电流,实现了根据不同使用场景对采用不同的充电控制策略,以平衡用户在不同使用场景下的充电速度体验和充电热感体验。
本申请实施例提供了一种充电控制装置1200。该装置1200可配置于具有多个器件的电子设备。参阅12,该装置1200包括:
第一确定单元1210,用于在所述电子设备充电时,确定所述电子设备的第一使用场景;所述第一使用场景对应第一函数组,所述第一函数组中的函数用于描述至少一个器件在所述第一使用场景下的温度电流曲线,所述至少一个器件为所述第一使用场景下的温控器件;
调整单元1220,用于根据所述至少一个温控器件的实测温度和第一函数组,调整充电电 流;
所述调整单元1220还用于当识别到所述电子设备从所述第一使用场景切换到第二使用场景时,根据所述第二使用场景下的温控器件的实测温度和第二函数组,调整充电电流;其中,
所述第二函数组中的函数用于描述所述第二使用场景下的温控器件在所述第二使用场景下的温度电流曲线,所述第二函数组中的函数和所述第一函数组中函数不同。
上文主要从方法流程的角度对本申请实施例提供的装置1200进行了介绍。可以理解的是,各个电子设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据图11所示的各方法实施例对电子设备等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
本申请实施例提供的装置,可以判断电子设备充电时的使用场景,并确定该使用场景对应的温控器件以及温度电流曲线,进而可根据该使用场景对应的温控器件的实测温度和温度电流曲线调整充电电流,实现了根据不同使用场景对采用不同的充电控制策略,以平衡用户在不同使用场景下的充电速度体验和充电热感体验。
本申请实施例提供了一种电子设备,该电子设备具有多个器件。参阅图13,该电子设备可以包括处理器1310、存储器1320。所述存储器1320用于存储计算机执行指令;当所述电子设备运行时,所述处理器1310执行所述存储器1320存储的所述计算机执行指令,以使所述电子设备执行图11所示的方法。其中,所述处理器1310用于在所述电子设备充电时,确定所述电子设备的第一使用场景;所述第一使用场景对应第一函数组,所述第一函数组中的函数用于描述至少一个器件在所述第一使用场景下的温度电流曲线,所述至少一个器件为所述第一使用场景下的温控器件;所述处理器1310还用于根据所述至少一个温控器件的实测温度和第一函数组,调整充电电流;所述处理器1310还用于当识别到所述电子设备从所述第一使用场景切换到第二使用场景时,根据所述第二使用场景下的温控器件的实测温度和第二函数组,调整充电电流;其中,所述第二函数组中的函数用于描述所述第二使用场景下的温控器件在所述第二使用场景下的温度电流曲线,所述第二函数组中的函数和所述第一函数组中函数不同。
在一些实施例中,该电子设备还包括通信总线1330,其中,处理器1310可通过通信总线1330与存储器1320,从而可获取存储器1320存储的计算机执行指令,并执行该计算机执行指令。
本申请实施例的电子设备各个部件/器件的具体实施方式,可参照上文如图11所示的各方法实施例实现,此处不再赘述。
由此,可以判断电子设备充电时的使用场景,并确定该使用场景对应的温控器件以及温度电流曲线,进而可根据该使用场景对应的温控器件的实测温度和温度电流曲线调整充电电 流,实现了根据不同使用场景对采用不同的充电控制策略,以平衡用户在不同使用场景下的充电速度体验和充电热感体验。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable rom,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。

Claims (31)

  1. 一种充电控制方法,其特征在于,应用于具有多个器件的电子设备;所述方法包括:
    在所述电子设备充电时,确定所述电子设备的第一使用场景;所述第一使用场景对应第一函数组,所述第一函数组中的函数用于描述至少一个器件在所述第一使用场景下的温度电流曲线,所述至少一个器件为所述第一使用场景下的温控器件;
    根据所述至少一个温控器件的实测温度和第一函数组,调整充电电流;
    当识别到所述电子设备从所述第一使用场景切换到第二使用场景时,根据所述第二使用场景下的温控器件的实测温度和第二函数组,调整充电电流;其中,
    所述第二函数组中的函数用于描述所述第二使用场景下的温控器件在所述第二使用场景下的温度电流曲线,所述第二函数组中的函数和所述第一函数组中函数不同。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述第一使用场景对应的配置文件,所述配置文件包括所述至少一个器件下的多个温度和多个电流的一一对应关系;
    根据所述至少一个器件下的多个温度和多个电流的一一对应关系,确定所述至少一个器件对应的至少一个温度电流函数;
    确定所述至少一个温度电流函数为所述第一函数组。
  3. 根据权利要求1所述的方法,其特征在于,所述第一函数组中函数的自变量为充电电流,因变量为限流温度;
    所述根据所述至少一个温控器件的实测温度和第一函数组,调整充电电流包括:
    根据所述第一函数组,确定所述至少一个温控器件在当前充电电流下对应的至少一个限流温度;
    根据所述至少一个限流温度和所述至少一个温控器件的实测温度,确定第一电流上限值;
    根据所述第一电流上限值,限制充电电流。
  4. 根据权利要求3所述的方法,其特征在于,所述至少一个温控器件包括至少两个器件,所述至少一个限流温度包括所述至少两个器件对应的限流温度;所述方法还包括:
    确定所述至少两个器件中各器件各自的待调温差,其中,每一个器件的待调温差为该器件对应的限流温度减去该器件的实测温度的差值;
    确定所述至少两个器件中的第一器件的待调温差最小;
    所述根据所述至少一个限流温度和所述至少一个温控器件的实测温度,确定第一电流上限值包括:
    根据所述第一器件的待调温差,确定所述第一电流上限值。
  5. 根据权利要求3所述的方法,其特征在于,所述至少一个温控器件包括至少两个器件,所述至少一个限流温度包括所述至少两个器件对应的限流温度;所述方法还包括:
    确定所述至少两个器件中第二器件对应的限流温度最小;
    确定所述第二器件为目标器件;
    所述根据所述至少一个限流温度和所述至少一个温控器件的实测温度,确定第一电流上限值包括:
    根据所述目标器件的待调温差,确定所述第一电流上限值。
  6. 根据权利要求3所述的方法,其特征在于,所述根据所述至少一个限流温度和所述至少一个温控器件的实测温度,确定第一电流上限值包括:根据所述至少一个限流温度和所述至少一个温控器件的实测温度,采用第一算法,确定第一电流上限值;
    所述第一算法为以下任一项或多项的组合:
    比例积分微分控制算法中的比例控制项算法、比例积分微分控制算法中的积分控制项算法、比例积分微分控制算法中的微分控制项算法。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一使用场景为灭屏场景或多种亮屏场景中的一种。
  8. 根据权利要求7所述的方法,其特征在于,所述电子设备在所述多种亮屏场景中的不同亮屏场景下同一器件功耗不同或最高功耗器件不同。
  9. 根据权利要求7所述的方法,其特征在于,所述多种亮屏场景包括以下场景:
    游戏场景、视频播放场景、视频通话场景、普通亮屏场景。
  10. 根据权利要求1-6任一项所述的方法,其特征在于,所述确定所述电子设备的第一使用场景包括:
    根据所述多个器件的功耗,通过预设的场景识别模型,确定所述第一使用场景。
  11. 根据权利要求1-6任一项所述的方法,其特征在于,所述确定所述电子设备的第一使用场景包括:
    根据所述电子设备的前台运行应用,确定所述第一使用场景。
  12. 根据权利要求1-6任一项所述的方法,其特征在于,所述确定所述电子设备的第一使用场景包括:
    根据所述电子设备电池的剩余电量或所述电子设备的外部环境温度,确定所述第一使用场景。
  13. 根据权利要求1-6任一项所述的方法,其特征在于,所述确定所述电子设备的第一使用场景包括:
    响应于用户起始的场景选择操作,确定所述第一使用场景。
  14. 根据权利要求1-6任一项所述的方法,其特征在于,所述多个器件为以下至少一项:
    片上系统芯片、充电芯片、电池、功率放大器。
  15. 一种充电控制装置,其特征在于,配置于具有多个器件的电子设备;所述装置包括:
    第一确定单元,用于在所述电子设备充电时,确定所述电子设备的第一使用场景;所述第一使用场景对应第一函数组,所述第一函数组中的函数用于描述至少一个器件在所述第一使用场景下的温度电流曲线,所述至少一个器件为所述第一使用场景下的温控器件;
    调整单元,用于根据所述至少一个温控器件的实测温度和第一函数组,调整充电电流;
    所述调整单元还用于当识别到所述电子设备从所述第一使用场景切换到第二使用场景时,根据所述第二使用场景下的温控器件的实测温度和第二函数组,调整充电电流;其中,
    所述第二函数组中的函数用于描述所述第二使用场景下的温控器件在所述第二使用场景下的温度电流曲线,所述第二函数组中的函数和所述第一函数组中函数不同。
  16. 根据权利要求15所述的装置,其特征在于,所述装置还包括:
    获取单元,用于获取所述第一使用场景对应的配置文件,所述配置文件包括所述至少一个器件下的多个温度和多个电流的一一对应关系;
    第二确定单元,用于根据所述至少一个器件下的多个温度和多个电流的一一对应关系,确定所述至少一个器件对应的至少一个温度电流函数;
    第三确定单元,用于确定所述至少一个温度电流函数为所述第一函数组。
  17. 根据权利要求15所述的装置,其特征在于,所述第一函数组中函数的自变量为充电电流,因变量为限流温度;
    所述调整单元还用于根据所述第一函数组,确定所述至少一个温控器件在当前充电电流下对应的至少一个限流温度;
    所述调整单元还用于根据所述至少一个限流温度和所述至少一个温控器件的实测温度,确定第一电流上限值;
    所述调整单元还用于根据所述第一电流上限值,限制充电电流。
  18. 根据权利要求17所述的装置,其特征在于,所述至少一个温控器件包括至少两个器件,所述至少一个限流温度包括所述至少两个器件对应的限流温度;所述装置还包括:
    第四确定单元,用于确定所述至少两个器件中各器件各自的待调温差,其中,每一个器件的待调温差为该器件对应的限流温度减去该器件的实测温度的差值;
    第五确定单元,用于确定所述至少两个器件中的第一器件的待调温差最小;
    所述调整单元还用于根据所述第一器件的待调温差,确定所述第一电流上限值。
  19. 根据权利要求17所述的装置,其特征在于,所述至少一个温控器件包括至少两个器件,所述至少一个限流温度包括所述至少两个器件对应的限流温度;所述装置还包括:
    第六确定单元,用于确定所述至少两个器件中第二器件对应的限流温度最小;
    第七确定单元,用于确定所述第二器件为目标器件;
    所述调整单元还用于根据所述目标器件的待调温差,确定所述第一电流上限值。
  20. 根据权利要求17所述的装置,其特征在于,所述调整单元还用于根据所述至少一个限流温度和所述至少一个温控器件的实测温度,采用第一算法,确定第一电流上限值;
    所述第一算法为以下任一项或多项的组合:
    比例积分微分控制算法中的比例控制项算法、比例积分微分控制算法中的积分控制项算法、比例积分微分控制算法中的微分控制项算法。
  21. 根据权利要求15-20任一项所述的装置,其特征在于,所述第一使用场景为灭屏场景或多种亮屏场景中的一种。
  22. 根据权利要求21所述的装置,其特征在于,所述电子设备在所述多种亮屏场景中的不同亮屏场景下同一器件功耗不同或最高功耗器件不同。
  23. 根据权利要求21所述的装置,其特征在于,所述多种亮屏场景包括以下场景:
    游戏场景、视频播放场景、视频通话场景、普通亮屏场景。
  24. 根据权利要求15-20任一项所述的装置,其特征在于,所述第一确定单元还用于根据所述多个器件的功耗,通过预设的场景识别模型,确定所述第一使用场景。
  25. 根据权利要求15-20任一项所述的装置,其特征在于,所述第一确定单元还用于根据所述电子设备的前台运行应用,确定所述第一使用场景。
  26. 根据权利要求15-20任一项所述的装置,其特征在于,所述第一确定单元还用于根据所述电子设备电池的剩余电量或所述电子设备的外部环境温度,确定所述第一使用场景。
  27. 根据权利要求15-20任一项所述的装置,其特征在于,所述第一确定单元还用于响应于用户起始的场景选择操作,确定所述第一使用场景。
  28. 根据权利要求15-20任一项所述的装置,其特征在于,所述多个器件为以下至少一项:
    片上系统芯片、充电芯片、电池、功率放大器。
  29. 一种电子设备,其特征在于,包括:处理器、存储器;
    所述存储器用于存储计算机指令;
    当所述电子设备运行时,所述处理器执行所述计算机指令,使得所述电子设备执行权利要求1-14任一项所述的方法。
  30. 一种计算机存储介质,其特征在于,所述计算机存储介质包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行权利要求1-14任一项所述的方法。
  31. 一种计算机程序产品,其特征在于,所述计算机程序产品包含的程序代码被电子设备中的处理器执行时,实现权利要求1-14任一项所述的方法。
PCT/CN2020/133561 2020-02-04 2020-12-03 一种充电控制方法及电子设备 WO2021155709A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010079606.4 2020-02-04
CN202010079606.4A CN113224804B (zh) 2020-02-04 2020-02-04 一种充电控制方法及电子设备

Publications (1)

Publication Number Publication Date
WO2021155709A1 true WO2021155709A1 (zh) 2021-08-12

Family

ID=77085398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133561 WO2021155709A1 (zh) 2020-02-04 2020-12-03 一种充电控制方法及电子设备

Country Status (2)

Country Link
CN (1) CN113224804B (zh)
WO (1) WO2021155709A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116885826A (zh) * 2023-09-06 2023-10-13 荣耀终端有限公司 充电方法、电子设备及计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103513668A (zh) * 2012-06-29 2014-01-15 凹凸电子(武汉)有限公司 温度控制电路、方法以及充电系统
CN103812199A (zh) * 2014-03-05 2014-05-21 联想(北京)有限公司 充电控制方法和充电控制设备
CN103972967A (zh) * 2014-05-23 2014-08-06 深圳市中兴移动通信有限公司 一种根据应用场景控制充电的方法
CN105071500A (zh) * 2015-09-07 2015-11-18 小米科技有限责任公司 终端的充电方法、装置及终端
US20150340893A1 (en) * 2014-05-23 2015-11-26 Htc Corporation Portable device and method for controlling charging current thereof
CN110048473A (zh) * 2018-01-17 2019-07-23 中兴通讯股份有限公司 充电电流控制方法、终端及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112717370B (zh) * 2019-03-18 2023-07-14 荣耀终端有限公司 一种控制方法和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103513668A (zh) * 2012-06-29 2014-01-15 凹凸电子(武汉)有限公司 温度控制电路、方法以及充电系统
CN103812199A (zh) * 2014-03-05 2014-05-21 联想(北京)有限公司 充电控制方法和充电控制设备
CN103972967A (zh) * 2014-05-23 2014-08-06 深圳市中兴移动通信有限公司 一种根据应用场景控制充电的方法
US20150340893A1 (en) * 2014-05-23 2015-11-26 Htc Corporation Portable device and method for controlling charging current thereof
CN105071500A (zh) * 2015-09-07 2015-11-18 小米科技有限责任公司 终端的充电方法、装置及终端
CN110048473A (zh) * 2018-01-17 2019-07-23 中兴通讯股份有限公司 充电电流控制方法、终端及存储介质

Also Published As

Publication number Publication date
CN113224804A (zh) 2021-08-06
CN113224804B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2020211701A1 (zh) 模型训练方法、情绪识别方法及相关装置和设备
EP3872807A1 (en) Voice control method and electronic device
WO2020108356A1 (zh) 一种应用显示方法及电子设备
JP7252331B2 (ja) 任意的な端末充電方法、グラフィカルユーザーインターフェース、および電子装置
CN111543042B (zh) 通知消息的处理方法及电子设备
WO2021036770A1 (zh) 一种分屏处理方法及终端设备
CN114449599B (zh) 基于电子设备位置的网络链路切换方法和电子设备
WO2021209047A1 (zh) 传感器调整方法、装置和电子设备
WO2021159746A1 (zh) 文件共享方法、系统及相关设备
WO2021052070A1 (zh) 一种帧率识别方法及电子设备
WO2021258814A1 (zh) 视频合成方法、装置、电子设备及存储介质
CN113704205B (zh) 日志存储的方法、芯片、电子设备和可读存储介质
WO2021218540A1 (zh) 天线功率调节方法、终端设备及存储介质
CN111522425A (zh) 一种电子设备的功耗控制方法及电子设备
WO2020024108A1 (zh) 一种应用图标的显示方法及终端
CN111316199A (zh) 一种信息处理方法及电子设备
WO2020042112A1 (zh) 一种终端对ai任务支持能力的评测方法及终端
CN115333941B (zh) 获取应用运行情况的方法及相关设备
CN113641271A (zh) 应用窗口的管理方法、终端设备及计算机可读存储介质
CN111524528B (zh) 防录音检测的语音唤醒方法及装置
WO2021155709A1 (zh) 一种充电控制方法及电子设备
CN114422686A (zh) 参数调整方法及相关装置
CN114828098B (zh) 数据传输方法和电子设备
WO2022170856A1 (zh) 建立连接的方法与电子设备
CN113590346A (zh) 处理业务请求的方法和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917716

Country of ref document: EP

Kind code of ref document: A1