CN114447150A - 一种光电探测器及其制备方法 - Google Patents

一种光电探测器及其制备方法 Download PDF

Info

Publication number
CN114447150A
CN114447150A CN202210051043.7A CN202210051043A CN114447150A CN 114447150 A CN114447150 A CN 114447150A CN 202210051043 A CN202210051043 A CN 202210051043A CN 114447150 A CN114447150 A CN 114447150A
Authority
CN
China
Prior art keywords
conductive medium
film
gap
graphene film
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210051043.7A
Other languages
English (en)
Other versions
CN114447150B (zh
Inventor
尹睿
王冬贤
朱宝
沈晓良
张卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai IC Manufacturing Innovation Center Co Ltd
Original Assignee
Shanghai IC Manufacturing Innovation Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai IC Manufacturing Innovation Center Co Ltd filed Critical Shanghai IC Manufacturing Innovation Center Co Ltd
Priority to CN202210051043.7A priority Critical patent/CN114447150B/zh
Publication of CN114447150A publication Critical patent/CN114447150A/zh
Application granted granted Critical
Publication of CN114447150B publication Critical patent/CN114447150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明提供了一种光电探测器及其制备方法,该方法包括:提供硅基底;在所述硅基底上制备非导电介质;在所述非导电介质的上表面依次设置石墨烯薄膜和金属电极,所述石墨烯薄膜具有缺口显露出所述非导电介质,所述金属电极位于所述缺口的两侧;在所述缺口内蒸镀金属钛薄膜,通过控制热处理温度,制备具有氧浓度梯度的钛氧化物薄膜。本发明通过通过在缺口内蒸镀金属钛薄膜,并且控制空气流速、氧化浓度和热处理温度,制备具有氧浓度梯度的钛氧化物薄膜,从而拓宽了宽谱吸收范围。由于蒸镀的金属薄膜具有与非导电介质良好的附着力,并且分布连续均匀,因此能够有效提高光电探测器的质量。

Description

一种光电探测器及其制备方法
技术领域
本发明涉及光电技术领域,尤其涉及一种光电探测器及其制备方法。
背景技术
二氧化钛(TiO2)作为一种研究最广泛的光电化学材料被广泛应用于光电探测器领域。但由于其较宽的带隙(约3.0-3.2eV),导致其只能吸收太阳光谱中能量占比不足5%的紫外区域。因此通过缩小TiO2的带隙可以有效提高其光的吸收能力。
目前,可以通过对TiO2纳米颗粒的金属/非金属元素掺杂、多离子掺杂、氢处理等,或者对低价钛盐TiH2或钛氧化物TiO、Ti2O3进行氧化退火等方法,降低TiO2的带隙宽度,从而达到拓宽TiO2的光谱吸收范围。但是,对钛氧化物的修饰、还原或氧化的过程,流程繁复工艺复杂,并且伴随较大的能源消耗和污染,所制备的依然是纳米颗粒,在进行光电探测器制备的过程中依然存在旋涂成膜团簇不均匀的问题。
发明内容
本发明的目的在于提供一种光电探测器及其制备方法,降低了制备成本,提高光电探测器的质量,拓宽了宽谱吸收范围。
为实现上述目的,第一方面,本发明提供了一种光电探测器的制备方法,包括:提供硅基底;
在所述硅基底上制备非导电介质;
在所述非导电介质的上表面依次设置石墨烯薄膜和金属电极,所述石墨烯薄膜具有缺口显露出所述非导电介质,所述金属电极位于所述缺口的两侧;
在所述缺口内蒸镀金属钛薄膜,通过控制空气流速、氧化浓度和热处理温度,制备具有氧浓度梯度的钛氧化物薄膜。
本发明的光电探测器的制备方法有益效果在于:在硅基底上依次设置非导电介质、石墨烯薄膜和金属电极,且石墨烯薄膜具有缺口显露出所述非导电介质,通过在缺口内蒸镀金属钛薄膜,并且控制空气流速、氧化浓度和热处理温度,制备具有氧浓度梯度的钛氧化物薄膜。该热氧工艺成本低廉,降低了生产成本,且这个制备过程简便污染极低,可高效制备出具有紫外-可见-红外宽谱吸收的连续钛氧化物薄膜,从而拓宽了宽谱吸收范围。由于蒸镀的金属薄膜具有与非导电介质良好的附着力,并且分布连续均匀,因此能够有效提高光电探测器的质量。
可选的,所述热处理温度的范围在100-400℃。其有益效果在于:通过将热处理温度设置在100-400℃,提高制备钛氧化物薄膜的可靠性。
可选的,在所述非导电介质的上表面依次设置石墨烯薄膜和金属电极,所述石墨烯薄膜具有缺口显露出所述非导电介质,所述金属电极位于所述缺口的两侧,包括:在所述非导电介质的上表面依次设置所述石墨烯薄膜和金属层,通过光刻所述金属层形成所述金属电极;通过光刻和氧化等离子体刻蚀在所述石墨烯薄膜刻上蚀出所述缺口。其有益效果在于:采用光刻工艺实现图形化,能够有效提高光电探测器的质量。
可选的,所述非导电介质的材料为二氧化硅、氮化硅、三氧化二铝、氟化镁中的一种。
在第二方面,本发明实施例提供一种光电探测器,包括:硅基底;非导电介质,设于所述硅基底;石墨烯薄膜,设于所述非导电介质,所述石墨烯薄膜具有缺口,所述缺口显露出所述非导电介质;金属电极设于所述石墨烯薄膜,且分别位于所述缺口的两侧;具有氧浓度梯度的钛氧化物薄膜,设于所述缺口。
本发明的光电探测器的有益效果在于:制备具有氧浓度梯度的钛氧化物薄膜,降低了生产成本,拓宽了宽谱吸收范围,有效提高光电探测器的质量。
可选的,所述非导电介质的材料为二氧化硅、氮化硅、三氧化二铝、氟化镁中的一种。
附图说明
图1为本发明提供的实施例光电探测器的制备方法的流程图;
图2为本发明提供的实施例在硅基底上形成设置所述石墨烯薄膜和金属层后的结构示意图;
图3为本发明提供的实施例形成金属电极后的结构示意图;
图4为本发明提供的实施例在石墨烯薄膜刻上蚀出缺口后的结构示意图;
图5为本发明提供的实施例蒸镀纳米级厚度的金属钛薄膜后的结构示意图;
图6为本发明提供的实施例光电探测器的结构示意图;
图7为本发明提供的实施例制备金属钛薄膜中氧化深度与其带隙宽度的对应关系图。
附图标记:
硅基底100、非导电介质200、石墨烯薄膜300、缺口301、金属层400、金属电极401、钛氧化物薄膜500。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。除非另外定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本文中使用的“包括”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
针对现有技术存在的问题,本发明的实施例提供了一种光电探测器的制备方法,参考图1所示,该制备方法包括:
S101:提供硅基底。
S102:在所述硅基底上制备非导电介质。
该步骤中,所述非导电介质的材料为二氧化硅、氮化硅、三氧化二铝、氟化镁中的一种。在本实施例中,采用的是二氧化硅作为非导电介质的材料。
S103:在所述非导电介质的上表面依次设置石墨烯薄膜和金属电极,所述石墨烯薄膜具有缺口显露出所述非导电介质,所述金属电极位于所述缺口的两侧。
具体的,结合图2所示,预先在所述非导电介质200的上表面依次设置所述石墨烯薄膜300和金属层400。结合图3所示,通过光刻所述金属层400形成所述金属电极401。结合图4所示,接着通过光刻和氧化等离子体刻蚀在所述石墨烯薄膜300刻上蚀出所述缺口301。
S104:在所述缺口内蒸镀金属钛薄膜,通过控制热处理温度,制备具有氧浓度梯度的钛氧化物薄膜。
该步骤中,结合图5所示,通过图形化工艺在金属电极400之间的所述缺口301内蒸镀纳米级厚度的金属钛薄膜。结合图6和图7所示所示,然后通过控制热处理温度,将其进行热氧处理。在本实施例中,热处理的温度可设置在100至400摄氏度之间的任意温度数值,制备具有氧浓度梯度的钛氧化物薄膜500。由于在热氧处理过程中,金属钛薄膜会首先在表面生产一层氧化物,随着氧化深度的逐渐增加,底部的金属层出现不完全氧化,从而整个体系中逐渐引入氧空位,实现氧浓度的梯度变化,从而达到逐渐降低钛氧化物薄膜500的带隙宽度,实现宽范围的光谱吸收。
在本实施例中,通过在缺口301内蒸镀金属钛薄膜,并且控制空气流速、氧化浓度和热处理温度,制备具有氧浓度梯度的钛氧化物薄膜500。该热氧工艺成本低廉,降低了生产成本,且这个制备过程简便污染极低,可高效制备出具有紫外-可见-红外宽谱吸收的连续钛氧化物薄膜500,从而拓宽了宽谱吸收范围。由于蒸镀的金属薄膜具有与非导电介质200良好的附着力,并且分布连续均匀,因此能够有效提高光电探测器的质量。
在本发明公开的又一个实施例中,一种光电探测器,参考图6所示,该光电探测器包括:硅基底100;非导电介质200,设于所述硅基底100;石墨烯薄膜300,设于所述非导电介质200,所述石墨烯薄膜300具有缺口301,所述缺口301显露出所述非导电介质200;金属电极400设于所述石墨烯薄膜300,且分别位于所述缺口301的两侧;具有氧浓度梯度的钛氧化物薄膜500,设于所述缺口301。
在本实施例中,通过制备具有氧浓度梯度的钛氧化物薄膜500,降低了生产成本,拓宽了宽谱吸收范围,有效提高光电探测器的质量。
可选的,所述非导电介质200的材料为二氧化硅、氮化硅、三氧化二铝、氟化镁中的一种。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何在本申请实施例揭露的技术范围内的变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (6)

1.一种光电探测器的制备方法,其特征在于,包括:
提供硅基底;
在所述硅基底上制备非导电介质;
在所述非导电介质的上表面依次设置石墨烯薄膜和金属电极,所述石墨烯薄膜具有缺口显露出所述非导电介质,所述金属电极位于所述缺口的两侧;
在所述缺口内蒸镀金属钛薄膜,通过控制热处理温度,制备具有氧浓度梯度的钛氧化物薄膜。
2.根据权利要求1所述的制备方法,其特征在于,所述热处理温度的范围在100-400℃。
3.根据权利要求2所述的制备方法,其特征在于,在所述非导电介质的上表面依次设置石墨烯薄膜和金属电极,所述石墨烯薄膜具有缺口显露出所述非导电介质,所述金属电极位于所述缺口的两侧,包括:
在所述非导电介质的上表面依次设置所述石墨烯薄膜和金属层,通过光刻所述金属层形成所述金属电极;
通过光刻和氧化等离子体刻蚀在所述石墨烯薄膜刻上蚀出所述缺口。
4.根据权利要求3所述的制备方法,其特征在于,所述非导电介质的材料为二氧化硅、氮化硅、三氧化二铝、氟化镁中的一种。
5.一种光电探测器,其特征在于,包括:
硅基底;
非导电介质,设于所述硅基底;
石墨烯薄膜,设于所述非导电介质,所述石墨烯薄膜具有缺口,所述缺口显露出所述非导电介质;
金属电极设于所述石墨烯薄膜,且分别位于所述缺口的两侧;
具有氧浓度梯度的钛氧化物薄膜,设于所述缺口。
6.根据权利要求5所述的光电探测器,其特征在于,所述非导电介质的材料为二氧化硅、氮化硅、三氧化二铝、氟化镁中的一种。
CN202210051043.7A 2022-01-17 2022-01-17 一种光电探测器及其制备方法 Active CN114447150B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210051043.7A CN114447150B (zh) 2022-01-17 2022-01-17 一种光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210051043.7A CN114447150B (zh) 2022-01-17 2022-01-17 一种光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN114447150A true CN114447150A (zh) 2022-05-06
CN114447150B CN114447150B (zh) 2024-08-30

Family

ID=81368686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210051043.7A Active CN114447150B (zh) 2022-01-17 2022-01-17 一种光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN114447150B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163639A (zh) * 2011-03-23 2011-08-24 吉林大学 TiO2-ZrO2复合氧化物薄膜紫外光探测器及其制备方法
CN104157721A (zh) * 2014-08-08 2014-11-19 浙江大学 基于石墨烯/硅/石墨烯的雪崩光电探测器及其制备方法
CN107818921A (zh) * 2017-10-20 2018-03-20 北京工业大学 一种基于二维平面异质结增强型场效应管的制备方法
KR101905419B1 (ko) * 2017-10-13 2018-10-08 한국세라믹기술원 녹색 계열의 색을 나타내는 티타니아 입자 및 그 제조방법
CN109574070A (zh) * 2018-12-07 2019-04-05 齐鲁工业大学 一种鳞片状二氧化钛纳米棒阵列材料的简易制备方法
CN111952384A (zh) * 2020-07-02 2020-11-17 深圳大学 光电探测器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163639A (zh) * 2011-03-23 2011-08-24 吉林大学 TiO2-ZrO2复合氧化物薄膜紫外光探测器及其制备方法
CN104157721A (zh) * 2014-08-08 2014-11-19 浙江大学 基于石墨烯/硅/石墨烯的雪崩光电探测器及其制备方法
KR101905419B1 (ko) * 2017-10-13 2018-10-08 한국세라믹기술원 녹색 계열의 색을 나타내는 티타니아 입자 및 그 제조방법
CN107818921A (zh) * 2017-10-20 2018-03-20 北京工业大学 一种基于二维平面异质结增强型场效应管的制备方法
CN109574070A (zh) * 2018-12-07 2019-04-05 齐鲁工业大学 一种鳞片状二氧化钛纳米棒阵列材料的简易制备方法
CN111952384A (zh) * 2020-07-02 2020-11-17 深圳大学 光电探测器及其制备方法

Also Published As

Publication number Publication date
CN114447150B (zh) 2024-08-30

Similar Documents

Publication Publication Date Title
Kim et al. Highly reproducible planar Sb 2 S 3-sensitized solar cells based on atomic layer deposition
US8563854B2 (en) Dye-sensitized photoelectric conversion apparatus and manufacturing method thereof
CN112736159A (zh) 一种选择性多晶硅厚度与掺杂浓度电池结构的制备方法
WO2012036146A1 (ja) 結晶太陽電池及びその製造方法
KR20060115990A (ko) 신규한 금속 스트립 제품
Yoo et al. Dewetted Au films form a highly active photocatalytic system on TiO2 nanotube-stumps
WO2013127220A1 (zh) 阵列基板、阵列基板的制备方法及显示装置
US9076916B2 (en) Method and device for manufacturing semiconductor devices, semiconductor device and transfer member
Huang et al. Antireflection and passivation property of titanium oxide thin film on silicon nanowire by liquid phase deposition
US11393935B2 (en) Oxide semiconductor phototransistor improved in visible light absorption rate and manufacturing method thereof
Mahmoudi et al. Design of experiment approach to the optimization of diffusion process on nanoscopic silicon solar cell
CN114447150A (zh) 一种光电探测器及其制备方法
JP2011233656A (ja) 半導体装置の製造方法
Lee et al. Improvement of haze ratio of DC (direct current)-sputtered ZnO: Al thin films through HF (hydrofluoric acid) vapor texturing
JP2005076105A (ja) 酸窒化チタン膜の成膜方法
CN114464693B (zh) 一种光电探测器及其制备方法
US20180350529A1 (en) Method of fabricating solar cell
WO2013094688A1 (ja) 薄膜トランジスタ及び薄膜トランジスタの製造方法
Lee et al. Retarded Crystallization Kinetics of One-Step Deposited MAPbCl3 Perovskite Enabling Fully Transparent Solar Cells
KR102117945B1 (ko) 화학기상증착법을 이용한 반사방지막 제조방법
JP2009158915A (ja) 太陽電池用基板の作製方法
KR100937799B1 (ko) 염료 감응형 태양전지용 복층구조 이산화티탄 전극 및 그제조방법과 이를 사용하여 제조된 염료 감응형 태양전지
JP6539181B2 (ja) 銀配線の黒化方法及びディスプレイ装置
TWI820777B (zh) 光電化學裝置
Lim et al. Facile preparation of a Nb 2 O 5 blocking layer for dye-sensitized solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant