CN114447140A - 一种单晶太阳能电池片的扩散工艺 - Google Patents

一种单晶太阳能电池片的扩散工艺 Download PDF

Info

Publication number
CN114447140A
CN114447140A CN202011184301.6A CN202011184301A CN114447140A CN 114447140 A CN114447140 A CN 114447140A CN 202011184301 A CN202011184301 A CN 202011184301A CN 114447140 A CN114447140 A CN 114447140A
Authority
CN
China
Prior art keywords
diffusion
furnace
temperature
nitrogen
set temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011184301.6A
Other languages
English (en)
Inventor
刘照敏
刘杰
张泽泽
刘栩瑞
申争浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Luan Solar Energy Technology Co Ltd
Original Assignee
Shanxi Luan Solar Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Luan Solar Energy Technology Co Ltd filed Critical Shanxi Luan Solar Energy Technology Co Ltd
Priority to CN202011184301.6A priority Critical patent/CN114447140A/zh
Publication of CN114447140A publication Critical patent/CN114447140A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • H01L21/2256Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides through the applied layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及太阳能电池生产领域。一种单晶太阳能电池片的扩散工艺,将硅片进行制绒处理,装入扩散电阻炉;将扩散炉炉腔内的温度升高至第一设定温度,稳定后通入氮气和氧气进行氧化反应;将扩散炉炉腔内的温度设置成三种不同的温度,通入氧气、三氯氧磷和氮气,三次扩散;将扩散炉炉腔内的温度升高至第五设定温度,对磷原子进行高温推进。本发明主要对硅片进行三次扩散,分别制备出N11区、N+12区和N++13区PN结结构,并且还通过控制磷源的流量改变其最外层杂质磷的扩散浓度,形成重掺杂的N++13区,与其正电极形成较为理想的欧姆接触,从而使得短路电流增大。

Description

一种单晶太阳能电池片的扩散工艺
技术领域
本发明涉及太阳能电池生产领域。
背景技术
作为一种新型的绿色电池,单晶太阳能电池片利用光生伏特效应可直接将太阳辐射能转化电能,具有较高的光转换效率、较低的成本和较为简单的工艺流程等优点,在光伏行业中得到了迅速的发展。现近多数生产单晶太阳能电池片工艺过程主要经过制绒、扩散、碱抛、氧化、镀膜以及丝网等流程,其扩散作为最重要一道的工序之一,主要是在硅片表面扩散沉积形成PN结,通过控制硅片表面扩散沉积掺杂元素的浓度变化量,制造出多层的PN结结构,形成多层次掺杂元素的浓度差,从而降低前表面复合和光生载流子的分离,提高硅片的内建场电压。现今多数的扩散工艺均采用不同压力制备多层的PN结结构,但在不同的压力条件下制造出多层的PN结结构,需要对硅片进行多次的降压处理,由于扩散工艺本身就是采用低压扩散,进一步降低炉内压力,很容易导致硅片表面掺杂元素的浓度增大、PN结加深,从而产生扩散区域能带收缩、晶格畸变和硅片内部缺陷增加等问题,并且扩散炉长时间的低压力工作,会使得炉子的气密性变差和使用寿命降低。
发明内容
本发明所要解决的技术问题是:如何在低压扩散过程中避免扩散区域能带收缩、晶格畸变和硅片内部缺陷增加等问题。
本发明所采用的技术方案是:一种单晶太阳能电池片的扩散工艺,包括如下步骤
步骤一、将放置有硅片的石英舟载体放入扩散炉中,通入氮气对炉腔内部进行清洗,防止空气中的灰层和杂质气体影响扩散工艺的结果;
步骤二、将扩散炉腔内的温度升高至第一设定温度即780 ℃,继续通入氮气,再次对炉腔内部进行清洗;
步骤三、将扩散炉炉腔内温度保持在第一温度,并向炉内通入氮气和氧气,开始对硅片进行氧化反应,反应时间590 – 620 s s;
步骤四、将扩散炉炉腔内的温度升高至第二设定温度即795 – 815 ℃,并保持第二设定温度,通入氧气、三氯氧磷和氮气,进行第一次扩散反应,反应时间200 – 350 s ,压力保持100 – 120 mbar;
步骤五、将扩散炉炉腔内的温度降低15 ℃至第三设定温度即780 – 800 ℃,并保持第三设定温度,通入氧气、三氯氧磷和氮气,进行第二次扩散反应,反应时间200 – 350 s ,压力保持100 – 120 mbar;
步骤六、将扩散炉炉腔内的温度降低15 ℃至第四设定温度即765 – 785 ℃,并保持第四设定温度,通入氧气、三氯氧磷和氮气,进行第三次扩散反应,反应时间200 – 350 s ,压力保持100 – 120 mbar;
步骤七、将扩散炉炉腔内的温度升高115℃至第五设定温度即880 – 900 ℃,并保持第五设定温度,通入氮气,对磷原子进行高温推进,高温推进时间为1600 – 1800 s,压力保持100 – 120 mbar;
步骤八、对扩散炉炉腔进行降温即降温到750℃,通入氧气和氮气,进行氧化反应;
步骤九、出炉。
升温和降温的速度均为0.18 – 0.22 ℃/S。升温和降温太快会导致硅片内的均匀性较差,并且降温过快还会使得硅片表面析出多余的杂质成为捕获电子的陷阱,提高表面复合,影响硅片的效率和质量。
步骤三中氧气的流量为590 – 650 ml/min,主要目的在于硅片表面可以生成一层均匀的SiO2氧化膜薄层,使其在扩散反应时,该表面的掺杂元素沉积更加均匀。步骤四-步骤六氧气的通入量均为710–730ml/min,主要目的能够参与POCl3的反应,分解POCl3反应生成的PCl5,避免其对硅片表面的腐蚀破坏,析出硅表面的部分金属杂质。
步骤四三氯氧磷的流量为700 – 850 ml/min,步骤五三氯氧磷的流量为650 –750 ml/min,上述步骤六三氯氧磷的流量为550 – 650ml/min,步骤四–步骤六磷源的流量均逐渐降低,其目的主要减少硅表面磷原子的掺杂浓度,有效避免磷源的浪费,降低扩散工艺成本。
步骤一和步骤二中氮气流量为5000 sccm,步骤三中氮气流量为2000sccm,步骤四中氮气流量为1000-1100sccm,步骤五中氮气流量为900-1000sccm,步骤六中氮气流量为800-900sccm,步骤七中氮气流量为2000sccm,步骤八中氮气流量为2000sccm,步骤九中氮气流量为500sccm。
本发明的有益效果是:通过改变通源部的温度,对硅片进行多次扩散,制备出多层次的PN结结构,并且还通过控制磷源的流量改变其最外层杂质磷的扩散浓度,形成重掺杂的N++区域,与其正电极形成较为理想的欧姆接触,从而使得短路电流增大。同时还降低前表面复合和光生载流子的分离,使得开路电压提高,增加单晶电池片的转换效率,并且还可以有效避免炉内过低压带来的危害。
具体实施方式
本发明主要提供制备一种单晶太阳能电池片的扩散工艺,其主要通过改变通源部的温度,对硅片进行多次扩散,制备出多层次的PN结结构,并且还通过控制磷源的流量改变其最外层杂质磷的扩散浓度,形成重掺杂的N++13区域,与其正电极形成较为理想的欧姆接触,从而使得短路电流增大。同时还降低前表面复合和光生载流子的分离,使得开路电压提高,增加单晶电池片的转换效率,并且还可以有效避免过低压带来的危害。
三次扩散反应在硅表面分别形成N11、N+12和N++13 PN结结构,其中三次扩散反应所需要的温度和所需磷源的流量均逐渐减小,不仅可以有效避免PN结的结深过深和最外层的N++13表面浓度过高,还可以减小N11和N+12 PN结之间掺杂浓度,增加太阳能电池的短波响应,同时还增加了该两层次的PN结磷掺杂的浓度差,有利于光生载流子的收集和分离。
实例1
表1示出了本实例1的扩散工艺。本实例的扩散工艺主要保持通源部的压力不变(压力值为100 mbar),通过三次调节扩散温度控制PN结的结深和掺杂浓度,其三次扩散的温度分为800 ℃、785 ℃和770 ℃,上述温度变化可以使得硅片表面N11区和N+12区PN结之间掺杂浓度减小,增加太阳能电池的短波响应,还增加了该层次PN结之间磷掺杂的浓度差,有利于光生载流子的收集和分离。三次扩散温度逐渐降低,使得硅表面的PN结的掺杂浓度从内到外依次增加,从而增加电池片的内建电场电压,降低前表面复合和光生载流子的分离,提高开路电压。最后一次降温处理,使得硅表面形成重掺杂的N++13区域,与其正电极形成较为理想的欧姆接触,从而使得短路电流增大,提高单晶电池片的转换效率。
同时为避免硅片表面的掺杂元素的浓度增大和PN结过深,本实例1扩散工艺通过调节氮气和磷源的流量来控制,其氮气的流量分别为1000 sccm、900 sccm和800 sccm,磷源的流量分别为750 sccm、650 sccm和550 sccm,三次扩散氧气的流量均为720 sccm,为保证三次扩散后,硅片的均匀性一致,炉口的温度均比炉中和炉尾高2 ℃。三次扩散时间分别为330 s、250 s和250 s,其目的保证三次扩散不同温度下,通源部反应所需的时间一致。
表1 实例1扩散工艺
Figure 822598DEST_PATH_IMAGE002
实例2
表2示出了本实例2的扩散工艺。本实例的扩散工艺主要保持通源部的压力不变(压力值为100 mbar),通过三次调节扩散温度控制PN结的结深和掺杂浓度,其三次扩散的温度分为810℃、795℃和780℃,上述温度变化可以使得硅片表面N11区和N+12区PN结之间掺杂浓度减小,增加太阳能电池的短波响应,还增加了该层次PN结之间磷掺杂的浓度差,有利于光生载流子的收集和分离。三次扩散温度逐渐降低,使得硅表面的PN结的掺杂浓度从内到外依次增加,从而增加电池片的内建电场电压,降低前表面复合和光生载流子的分离,提高开路电压。最后一次降温处理,使得硅表面形成重掺杂的N++13区域,与其正电极形成较为理想的欧姆接触,从而使得短路电流增大,提高单晶电池片的转换效率。
同时为避免硅片表面的掺杂元素的浓度增大和PN结过深,本实例2扩散工艺通过调节氮气和磷源的流量来控制,其氮气的流量分别为1100 sccm、1000 sccm和900 sccm,磷源的流量分别为800 sccm、700 sccm和600 sccm,三次扩散氧气的流量均为720 sccm,为保证三次扩散后,硅片的均匀性一致,炉口的温度均比炉中和炉尾高2 ℃。三次扩散时间分别为330 s、250 s和250s,其目的保证三次扩散不同温度下,磷源反应的所需的时间一致。
Figure DEST_PATH_IMAGE003
本发明主要提供一种制备单晶太阳能电池片的扩散工艺,其主要通过改变通源部的温度,对硅片进行多次扩散,制备出多层次的PN结结构,并且还通过控制磷源的流量改变其最外层杂质磷的扩散浓度,形成重掺杂的N++13区域,与其正电极形成较为理想的欧姆接触,从而使得短路电流增大。同时还降低前表面复合和光生载流子的分离,使得开路电压提高,增加单晶电池片的转换效率,并且还可以有效避免炉内过低压带来的危害。

Claims (5)

1.一种单晶太阳能电池片的扩散工艺,其特征在于:包括如下步骤
步骤一、将放置有硅片的石英舟载体放入扩散炉中,通入氮气对炉腔内部进行清洗,防止空气中的灰层和杂质气体影响扩散工艺的结果;
步骤二、将扩散炉腔内的温度升高至第一设定温度即780 ℃,继续通入氮气,再次对炉腔内部进行清洗;
步骤三、将扩散炉炉腔内温度保持在第一温度,并向炉内通入氮气和氧气,开始对硅片进行氧化反应,反应时间590 – 620 s;
步骤四、将扩散炉炉腔内的温度升高至第二设定温度即795 – 815 ℃,并保持第二设定温度,通入氧气、三氯氧磷和氮气,进行第一次扩散反应,反应时间200 – 350 s,压力保持100 – 120 mbar;
步骤五、将扩散炉炉腔内的温度降低15 ℃至第三设定温度即780 – 800 ℃,并保持第三设定温度,通入氧气、三氯氧磷和氮气,进行第二次扩散反应,反应时间200 – 350 s,压力保持100 – 120 mbar s;
步骤六、将扩散炉炉腔内的温度降低15 ℃至第四设定温度即765 – 785 ℃,并保持第四设定温度,通入氧气、三氯氧磷和氮气,进行第三次扩散反应,反应时间200 – 350 s,压力保持100 – 120 mbar s;
步骤七、将扩散炉炉腔内的温度升高115℃至第五设定温度即880 – 900 ℃,并保持第五设定温度,通入氮气,对磷原子进行高温推进,高温推进时间为1600 – 1800 s ,压力保持100 – 120 mbar;
步骤八、对扩散炉炉腔进行降温即降温到750℃,通入氧气和氮气,进行氧化反应;
步骤九、出炉。
2.根据权利要求1所述的一种单晶太阳能电池片的扩散工艺,其特征在于:升温和降温的速度均为0.18 – 0.22 ℃/S。
3.根据权利要求1所述的一种单晶太阳能电池片的扩散工艺,其特征在于:步骤三中氧气的流量为590 – 650 ml/min,步骤四-步骤六氧气的通入量均为710–730ml/min。
4.根据权利要求1所述的一种单晶太阳能电池片的扩散工艺,其特征在于:步骤四三氯氧磷的流量为700 – 850 ml/min,步骤五三氯氧磷的流量为650 – 750 ml/min,上述步骤六三氯氧磷的流量为550 – 650ml/min,步骤四– 步骤六磷源的流量均逐渐降低,其目的主要减少硅表面磷原子的掺杂浓度,有效避免磷源的浪费,降低扩散工艺成本。
5.根据权利要求1所述的一种单晶太阳能电池片的扩散工艺,其特征在于:步骤一和步骤二中氮气流量为5000 sccm,步骤三中氮气流量为2000sccm,步骤四中氮气流量为1000-1100sccm,步骤五中氮气流量为900-1000sccm,步骤六中氮气流量为800-900sccm,步骤七中氮气流量为2000sccm,步骤八中氮气流量为2000sccm,步骤九中氮气流量为500sccm。
CN202011184301.6A 2020-10-30 2020-10-30 一种单晶太阳能电池片的扩散工艺 Pending CN114447140A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011184301.6A CN114447140A (zh) 2020-10-30 2020-10-30 一种单晶太阳能电池片的扩散工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011184301.6A CN114447140A (zh) 2020-10-30 2020-10-30 一种单晶太阳能电池片的扩散工艺

Publications (1)

Publication Number Publication Date
CN114447140A true CN114447140A (zh) 2022-05-06

Family

ID=81358172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011184301.6A Pending CN114447140A (zh) 2020-10-30 2020-10-30 一种单晶太阳能电池片的扩散工艺

Country Status (1)

Country Link
CN (1) CN114447140A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172518A (zh) * 2022-07-08 2022-10-11 酒泉正泰新能源科技有限公司 一种太阳能电池的多次氧化扩散方法、制备方法
CN117276057A (zh) * 2023-11-20 2023-12-22 江苏微导纳米科技股份有限公司 一种扩散方法及扩散设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102270701A (zh) * 2011-07-25 2011-12-07 江苏伯乐达光伏有限公司 选择性发射极晶硅太阳能电池的一次性扩散工艺
CN103474509A (zh) * 2013-09-13 2013-12-25 山西潞安太阳能科技有限责任公司 一种晶体硅太阳能电池激光扩散方法
CN103606596A (zh) * 2013-11-26 2014-02-26 英利集团有限公司 磷掺杂硅片、其制作方法、太阳能电池片及其制作方法
CN109873042A (zh) * 2019-03-28 2019-06-11 深圳市拉普拉斯能源技术有限公司 一种适用于选择发射极太阳能电池扩散工艺
CN110828607A (zh) * 2019-08-27 2020-02-21 横店集团东磁股份有限公司 一种高转换效率se-perc太阳能电池的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102270701A (zh) * 2011-07-25 2011-12-07 江苏伯乐达光伏有限公司 选择性发射极晶硅太阳能电池的一次性扩散工艺
CN103474509A (zh) * 2013-09-13 2013-12-25 山西潞安太阳能科技有限责任公司 一种晶体硅太阳能电池激光扩散方法
CN103606596A (zh) * 2013-11-26 2014-02-26 英利集团有限公司 磷掺杂硅片、其制作方法、太阳能电池片及其制作方法
CN109873042A (zh) * 2019-03-28 2019-06-11 深圳市拉普拉斯能源技术有限公司 一种适用于选择发射极太阳能电池扩散工艺
CN110828607A (zh) * 2019-08-27 2020-02-21 横店集团东磁股份有限公司 一种高转换效率se-perc太阳能电池的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172518A (zh) * 2022-07-08 2022-10-11 酒泉正泰新能源科技有限公司 一种太阳能电池的多次氧化扩散方法、制备方法
CN117276057A (zh) * 2023-11-20 2023-12-22 江苏微导纳米科技股份有限公司 一种扩散方法及扩散设备

Similar Documents

Publication Publication Date Title
CN112289895B (zh) 一种n型高效太阳能电池及制备方法
CN109449246B (zh) 一种硅晶体片磷扩散方法
AU2011306011A1 (en) Method of fabricating an emitter region of a solar cell
CN109411341B (zh) 一种改善se电池扩散方阻均匀性的方法
CN114447140A (zh) 一种单晶太阳能电池片的扩散工艺
CN111384210B (zh) 一种perc叠加se的高开压扩散高方阻工艺
CN102130211B (zh) 一种改善太阳能电池表面扩散的方法
WO2010046284A1 (en) Semiconductor device manufacturing method, semiconductor device and semiconductor device manufacturing installation
WO2022166040A1 (zh) 一种适用于hbc电池的硼扩散方法
CN113421944B (zh) 一种提高晶硅太阳能电池转换效率的氧化退火工艺
CN112071954A (zh) 一种钝化接触结构及其太阳能电池的制备方法
CN108470800B (zh) 一种降低pecvd机台tma耗量的方法
CN114823969B (zh) 一种提升钝化接触结构性能的低温氢等离子体辅助退火方法和TOPCon太阳能电池
CN109616543A (zh) 太阳能电池片扩散工艺
CN111128697A (zh) 一种TopCon太阳能电池非原位磷掺杂的方法
CN112071953A (zh) 一种板式设备制备钝化接触太阳能电池的方法及装置
CN109873052B (zh) 一种太阳能电池扩散后退火工艺
CN116288251A (zh) 一种管式变温硼扩散沉积工艺
CN114695598B (zh) 一种浅结扩散发射极的晶硅太阳能电池的制备方法及其应用
CN115692533A (zh) 一种TOPCon电池及其制备方法
CN112768565B (zh) 一种钝化接触结构制备方法和具有钝化接触结构的晶体硅
CN110943141A (zh) 硅片的扩散方法、太阳能电池及其制备方法
CN113571411B (zh) N型TOPCon太阳能电池的制作方法
CN115976649A (zh) 提升单晶硅perc电池发射极方阻均匀性的扩散工艺
CN116314436A (zh) 一种采用湿法氧化进行高温硼扩散的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220506