CN114436274A - 一种氯丁胶包裹硅颗粒制备硅碳纳米杂化材料的方法、锂离子电池负极 - Google Patents

一种氯丁胶包裹硅颗粒制备硅碳纳米杂化材料的方法、锂离子电池负极 Download PDF

Info

Publication number
CN114436274A
CN114436274A CN202210242886.5A CN202210242886A CN114436274A CN 114436274 A CN114436274 A CN 114436274A CN 202210242886 A CN202210242886 A CN 202210242886A CN 114436274 A CN114436274 A CN 114436274A
Authority
CN
China
Prior art keywords
silicon
chloroprene rubber
solution
sio
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210242886.5A
Other languages
English (en)
Other versions
CN114436274B (zh
Inventor
李彩霞
张德庆
王磊
任俊锋
张超
范雅琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202210242886.5A priority Critical patent/CN114436274B/zh
Publication of CN114436274A publication Critical patent/CN114436274A/zh
Application granted granted Critical
Publication of CN114436274B publication Critical patent/CN114436274B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开一种由Si纳米颗粒和氯丁橡胶为原料,通过简单的工艺制备锂离子电池硅碳杂化负极材料的方法,属于锂电技术领域。本发明所制备的硅碳复合材料具备明显核壳结构,所述核为纳米硅,所述壳中间层为SiO2,所述壳外层为多孔碳材料。具体合成过程包括以下步骤:将Si纳米颗粒分散在盛有30ml去离子水的烧杯中,超声搅拌30min,得到溶液A。按照Si:氯丁橡胶质量比为1:3的比例,把氯丁橡胶乳液加入到A溶液中,充分搅拌30min,得到溶液B。快速向溶液B中加入乙醇溶液,氯丁橡胶在乙醇中迅速析出,包裹Si纳米颗粒,形成Si@氯丁橡胶的结构。把Si@氯丁橡胶放入管式炉中煅烧,Si纳米颗粒表面被部分氧化,形成Si@SiO2的结构,继续加热生成目标产物Si@SiO2@C3作为锂电负极。

Description

一种氯丁胶包裹硅颗粒制备硅碳纳米杂化材料的方法、锂离 子电池负极
技术领域
本发明属于功能性纳米复合材料用于电化学领域,更具体的说,是一种基于硅纳米颗粒和高分子材料来制备硅碳杂化负极材料的方法及其在锂离子电池中的应用。
技术背景
为了满足便携式电子设备日益增长的需求,锂离子电池高容量和长使用寿命成为迫切需求。石墨是目前商业化锂离子电池中使用最广泛的负极材料,然而,工业石墨缓慢的插层动力学和低的理论比容量(372mAh/g)限制了锂离子电池的倍率能力。作为替代材料,Si因其适当的脱锂电势(0.4V vs Li/Li+)和4200 mAh/g的高理论容量而受到广泛关注。然而,充放电循环过程中巨大的体积变化 (>300%)和固有的低导电性,限制了锂离子电池循环稳定性和动力学的提高。从本质上将,由于硅材料的膨胀和收缩,导致硅在粒子和电极水平上发生破裂,大量的硅表面接触电解液,重新生成新的SEI膜,新的SEI膜的生成会消耗锂离子和电解液,长此以往导致硅负极性能的迅速下降。
为了解决上述问题,研究者采取了多种策略,包括硅的纳米化、多孔硅材料的制备和硅复合材料的结构设计等,旨在显著提高离子/电子导电性,减轻硅体积变化造成的破坏,从而增强电极结构稳定性。而在众多的方法中,硅碳杂化材料被认为是解决硅基问题最有前景的方式之一,因为碳材料具有优异的柔韧性,高化学稳定性和导电性。把碳材料引入硅阳极不仅能提高电子和离子的输运能力,而且能保持充放电过程中电极的结构完整性。在此背景下,硅碳复合材料在下一代锂离子电池负极材料中被广泛研究。另外,与Si相比,SiO2具有体积膨胀/收缩小的优点,可以抑制不良的副反应,提高电化学循环稳定性,所以在Si 基负极材料中引入氧元素,也是提高电极循环稳定性的有效方式。尽管近年来报道了一系列硅碳杂化材料的制备方式,但是到目前为止,硅碳杂化材料的一步合成并同时引入氧元素的方法还没有被报道。
发明内容
本论文利用Si纳米颗粒为Si源,以氯丁橡胶为碳源,利用氯丁橡胶在乙醇中易析出的特性,通过高温热解,制备了电化学性能优异的硅碳杂化负极材料 (Si@SiO2@C)。在该材料中,硅纳米颗粒的表面被一层薄薄的SiO2包裹,并且整个包裹结构均匀地嵌入在氯丁橡胶衍生碳骨架内,一方面,SiO2的包裹有效抑制了Si的巨大体积膨胀,另一方面,具有柔性和导电特性的氯丁橡胶衍生碳为电极内部电子和离子的传输提供了快速通道。经过电化学性能测试,该硅碳杂化电极材料具有优异的循环稳定性和倍率性能。
为了提高硅基负极材料的电化学性能,本发明以硅纳米颗粒和氯丁橡胶为原料制备硅碳杂化负极材料的方法,可以通过以下技术路线实现:
(1)硅纳米颗粒均匀水溶液的制备:将Si纳米颗粒分散在盛有30ml去离子水的烧杯中,超声搅拌30min。使得硅纳米颗粒在去离子水中分散均匀,得到溶液 A;这里超声搅拌是一起进行的,目的是使得Si纳米粒子在去离子水中分散均匀。 (2)Si纳米粒子与氯丁橡胶的均匀混合:按照Si:氯丁橡胶质量比为1:3的比例,把氯丁橡胶乳液缓慢加入到A溶液中,然后充分搅拌30min,使之均匀混合,得到溶液B。
(3)Si@氯丁橡胶前驱体的制备:在搅拌的情况下,快速向溶液B中加入乙醇溶液,氯丁橡胶在乙醇中迅速析出,并把硅纳米颗粒包裹在其中,形成Si@氯丁橡胶的包裹结构。
(4)通过煅烧制备目标产物:把Si@氯丁橡胶放入管式炉中煅烧,生成目标产物Si@SiO2@C3(因步骤2中Si:氯丁橡胶质量比为1:3,故命名为Si@SiO2@C。氯丁橡胶中的含氧官能团在高温下分解,使得Si纳米颗粒表面部分氧化,形成 Si@SiO2的结构)。
作为本发明的第一步特征:所述步骤(1)通过搅拌加超声的方式得到的硅纳米颗粒分散水溶液,液体呈现黄色,无沉淀生成。
作为本发明的第一步特征:所述步骤(2)氯丁橡胶乳液逐滴加入到A溶液中,这样做的目的是使硅纳米粒子均匀地分散在氯丁橡胶的乳液中。
作为本发明的第一步特征:所述步骤(3)在搅拌的过程中,乙醇可以迅速加入,氯丁橡胶可以在数秒内从乳液里析出,并将硅纳米颗粒包裹在其中。
作为本发明的第一步特征:所述步骤(4)管式炉的煅烧条件为:温度设置为800℃,升温速率为5℃/min,气氛为氩气,煅烧时间为2h。
由于采用以上技术方案,本发明具有以下有益效果:
作为本发明的第一步特征,通过步骤(4)制备的Si@SiO2@C3复合材料,具有优异的电化学性能,在2A/g的电流密度下,循环500圈后,其可逆容量为 1042mAh/g,在12A/g的电流密度下,可以达到798mAh/g的优异倍率性能。
制备的Si@SiO2@C3复合材料,其原理是利用了氯丁橡胶在乙醇溶液中的迅速析出的特性,当氯丁橡胶逐滴加入Si纳米颗粒分散水溶液中,在搅拌的作用下,Si纳米颗粒会与氯丁橡胶的溶液充分混合,通过乙醇的加入,氯丁橡胶会在溶液中析出,在析出的过程中,把硅纳米颗粒均匀地包裹在其内部,经过干燥煅烧的过程,得到Si@SiO2@C3复合材料,通过电化学性能测试,该材料在2A/g 的电流密度下,循环500圈后,其可逆容量为1042mAh/g,即使在12A/g的电流密度下,也可以达到798mAh/g的可逆容量,这表明Si@SiO2@C3电极具有优异的循环稳定性和倍率性能。这主要有两个原因,第一,在煅烧的过程中,由于氯丁橡胶中含氧官能团的存在导致的Si纳米颗粒表面部分氧化而生成的共形 SiO2层可以有效缓冲Si纳米颗粒在充放电过程中的体积膨胀,防止了电极的粉化。第二,氯丁橡胶衍生碳具有柔韧性和高导电性的特点,进一步抑制了硅纳米颗粒的巨大体积变化,有效弥补了硅纳米颗粒导电性不好的缺陷。
具体实施方式
下面结合具体实验方案和附图阐述本发明的技术特点,但本发明并不局限于此,下面实施例所述实验方法,如无特殊说明,均为常规方法,所述仪器及材料,如无特殊说明,均可从商业途径购买。
实施例1
一种以硅纳米颗粒和氯丁橡胶为原料制备锂离子电池硅碳纳米杂化负极材料的方法,包括以下步骤:
(1)硅纳米颗粒均匀水溶液的制备:将Si纳米颗粒分散在盛有30ml去离子水的烧杯中,超声搅拌30min。使得硅纳米颗粒在去离子水中分散均匀,得到溶液A。
(2)Si纳米粒子与氯丁橡胶的均匀混合:按照Si:氯丁橡胶质量比为1:3 的比例,把氯丁橡胶乳液加入到A溶液中,然后充分搅拌30min,使之均匀混合,得到溶液B。
(3)Si@氯丁橡胶前驱体的制备:在搅拌的情况下,快速向溶液B中加入乙醇溶液,氯丁橡胶在乙醇中迅速析出,并把硅纳米颗粒包裹在其中,形成Si@ 氯丁橡胶的结构。
(4)煅烧制备目标产物并进行性能测试:把Si@氯丁橡胶放入管式炉中煅烧,生成目标产物Si@SiO2@C3。Si@SiO2@C3杂化负极材料的形貌如其扫描电镜图所示(图1),硅纳米颗粒被均匀地嵌入在碳骨架中,通过透射电镜图(图2) 进一步表征了材料的微观形貌。其中硅纳米颗粒的表面被一层薄薄的SiO2包裹,并且整个包裹结构均匀地嵌入在氯丁橡胶衍生碳骨架内。Si@SiO2@C3复合材料的XRD图(图3)显示Si所有特征衍射峰都与Si(JCPDScard no.27-1402)卡片的(111)、(220)、(311)、(400)和(331)晶面相匹配。在24°左右的宽峰是由于碳的存在,说明硅相和碳相复合完好。如图4为Si@SiO2@C3电极的高分辨XPS光谱图(Si 2p),可以看出位于99eV和103.5eV的峰分别代表了Si-Si键和Si-O 键,其中Si-O键主要来源于Si纳米颗粒表面的SiO2层。图5为Si@SiO2@C3 电极的长循环性能图,在2A/g的电流密度下,循环500圈后,其可逆容量为1042 mAh/g。即使在12A/g的大电流密度下,其可逆容量为798mAh/g,当电流重新回到2A/g时,其可逆容量也能很好的保持,说明Si@SiO2@C3电极具有优异的倍率性能(图6)。
实施例2
一种以硅纳米颗粒和氯丁橡胶为原料制备锂离子电池硅碳纳米杂化负极材料的方法,包括以下步骤:
(1)Si纳米颗粒水溶液的制备同实施例1
(2)按照Si:氯丁橡胶质量比为1:1的比例,把氯丁橡胶乳液加入到A溶液中,然后充分搅拌30min。
(3)Si@氯丁橡胶前驱体的制备同实施例1
(4)把Si@氯丁橡胶放入管式炉中煅烧,生成目标产物Si@SiO2@C1。
实施例3
一种以硅纳米颗粒和氯丁橡胶为原料制备锂离子电池硅碳纳米杂化负极材料的方法,包括以下步骤:
(1)Si纳米颗粒水溶液的制备同实施例1
(2)按照Si:氯丁橡胶质量比为1:5的比例,把氯丁橡胶乳液加入到A溶液中,然后充分搅拌30min。
(3)Si@氯丁橡胶前驱体的制备同实施例1
(4)把Si@氯丁橡胶放入管式炉中煅烧,生成目标产物Si@SiO2@C5。
实施例4
一种以硅纳米颗粒和氯丁橡胶为原料制备锂离子电池硅碳纳米杂化负极材料的方法,包括以下步骤:
(1)Si纳米颗粒水溶液的制备同实施例1
(2)按照Si:氯丁橡胶质量比为1:10的比例,把氯丁橡胶乳液加入到A溶液中,然后充分搅拌30min。
(3)Si@氯丁橡胶前驱体的制备同实施例1
(4)把Si@氯丁橡胶放入管式炉中煅烧,生成目标产物Si@SiO2@C10。
实施例5
一种以硅纳米颗粒和氯丁橡胶为原料制备锂离子电池硅碳纳米杂化负极材料的方法,包括以下步骤:
(1)Si纳米颗粒水溶液的制备同实施例1
(2)按照Si:氯丁橡胶质量比为1:20的比例,把氯丁橡胶乳液加入到A溶液中,然后充分搅拌30min。
(3)Si@氯丁橡胶前驱体的制备同实施例1
(4)把Si@氯丁橡胶放入管式炉中煅烧,生成目标产物Si@SiO2@C20。
对本发明中所公开的实施方式的描述并非为了限制本发明的范围,而是用于描述本发明。相应地,本发明的范围不受以上实施方式的限制,而是由权利要求或其等同物进行限定。
附图说明:
图1:实施例1中得到的Si@SiO2@C3杂化材料的扫描电镜图;
图2:实施例1中得到的Si@SiO2@C3杂化材料的透射电镜图;
图3:实施例1中得到的Si@SiO2@C3杂化材料的XRD谱图
图4:实施例1中得到的Si@SiO2@C3杂化材料的高分辨XPS光谱图(Si 2p);
图5:实施例1中得到的Si@SiO2@C3杂化材料的长循环性能图;
图6:实施例1中得到的Si@SiO2@C3杂化材料的倍率性能图。

Claims (11)

1.一种氯丁胶包裹硅颗粒制备硅碳纳米杂化材料的方法、锂离子电池负极,其特征在于,所述壳为氯丁胶胶乳或其他具备类似结构特征的高分子材料,核为硅纳米颗粒。所述高分子材料在常温下、乙醇加入时可迅速实现聚合并将纳米硅紧紧包裹,成为制备复合材料的原料,反应过程简单、迅速;所述硅碳杂化材料制备过程为在高分子热解碳化温度下实现结构转变,从而获得碳/硅复合负极材料。
2.根据权利要求1,所述硅碳复合材料硅纳米颗粒尺寸约为100nm。
3.根据权利要求1,具体包括以下步骤:
(1)将Si纳米颗粒分散在盛有30ml去离子水的烧杯中,超声搅拌30min。使得硅纳米颗粒在去离子水中分散均匀,得到溶液A。
(2)按照Si:氯丁橡胶质量比为1:3的比例,把氯丁橡胶乳液加入到A溶液中,然后充分搅拌30min,使之均匀混合,得到溶液B。
(3)在搅拌的情况下,快速向溶液B中加入乙醇溶液,氯丁橡胶在乙醇中迅速析出,并把硅纳米颗粒包裹在其中,形成Si@氯丁橡胶前驱体。
(4)把Si@氯丁橡胶前驱体放入管式炉中煅烧,生成目标产物Si@SiO2@C3(Si:氯丁橡胶质量比为1:3,故命名为C3)。
4.根据权利要求书3所述的方法,所述步骤(1)中,Si纳米颗粒在水中的分散过程中,搅拌和超声是同时进行的。
5.根据权利要求书3所述的方法,所述步骤(2)中,氯丁橡胶乳液是逐滴加入到A溶液中的。
6.根据权利要求书3所述的方法,所述步骤(3)中,乙醇可以迅速加入,氯丁橡胶可以在数秒内从乳液中析出。
7.根据权利要求书3所述的方法,所述步骤(4)中,管式炉的煅烧条件为:温度设置为800℃,升温速率为5℃/min,气氛为氩气,煅烧时间为2h。
8.根据权利要求7,硅纳米颗粒在高温下及与氯丁胶等高分子材料紧密接触条件下,实现部分表面氧化,转变为Si@SiO2。具体为,氯丁橡胶中的含氧官能团在高温下分解,使得Si纳米颗粒表面部分氧化,形成Si@SiO2的结构。
9.根据权利要求7,SiO2层厚度为10-20nm,起到循环过程中缓冲体积膨胀的作用。
10.根据权利要求1,所得碳材料作为基体,将硅材料紧密包裹,实现快速电子传导作用。
11.根据权利要求书3所述的制备方法,其特征在于:经过步骤(4)得到的Si@SiO2@C3杂化材料,通过组装成锂半电池进行电化学性能测试,在0.2A/g的电流密度下,循环500圈后,其可逆容量为1042mAh/g,在12A/g的电流密度下,可以达到798mAh/g的优异倍率性能。
CN202210242886.5A 2022-03-11 2022-03-11 一种氯丁胶包裹硅颗粒制备硅碳纳米杂化材料的方法、锂离子电池负极 Active CN114436274B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210242886.5A CN114436274B (zh) 2022-03-11 2022-03-11 一种氯丁胶包裹硅颗粒制备硅碳纳米杂化材料的方法、锂离子电池负极

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210242886.5A CN114436274B (zh) 2022-03-11 2022-03-11 一种氯丁胶包裹硅颗粒制备硅碳纳米杂化材料的方法、锂离子电池负极

Publications (2)

Publication Number Publication Date
CN114436274A true CN114436274A (zh) 2022-05-06
CN114436274B CN114436274B (zh) 2023-08-11

Family

ID=81358832

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210242886.5A Active CN114436274B (zh) 2022-03-11 2022-03-11 一种氯丁胶包裹硅颗粒制备硅碳纳米杂化材料的方法、锂离子电池负极

Country Status (1)

Country Link
CN (1) CN114436274B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319012A (ja) * 1999-04-30 2000-11-21 Mizusawa Ind Chem Ltd 球状シリカゲル系粒子及びその製法
CN102217005A (zh) * 2008-09-11 2011-10-12 格雷斯股份有限两合公司 金属氧化物分散体
CN103097296A (zh) * 2010-09-16 2013-05-08 旭化成化学株式会社 二氧化硅系材料及其制造方法以及贵金属负载物和使用其作为催化剂的羧酸类的制造方法
CN110140241A (zh) * 2016-10-07 2019-08-16 克雷多斯公司 石墨与iva族复合颗粒以及制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319012A (ja) * 1999-04-30 2000-11-21 Mizusawa Ind Chem Ltd 球状シリカゲル系粒子及びその製法
CN102217005A (zh) * 2008-09-11 2011-10-12 格雷斯股份有限两合公司 金属氧化物分散体
CN103097296A (zh) * 2010-09-16 2013-05-08 旭化成化学株式会社 二氧化硅系材料及其制造方法以及贵金属负载物和使用其作为催化剂的羧酸类的制造方法
CN110140241A (zh) * 2016-10-07 2019-08-16 克雷多斯公司 石墨与iva族复合颗粒以及制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAPGATE, B.P.等: "Reinforced chloroprene rubber by in situ generated silica particles: Evidence of bound rubber on the silica surface", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 133, pages 1 - 10 *
张鹏飞等: "二氧化硅超细短纤维/氯丁橡胶复合材料的结构与性能", 橡胶工业, vol. 59, no. 3, pages 133 - 137 *

Also Published As

Publication number Publication date
CN114436274B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
Han et al. Subnanoscopically and homogeneously dispersed SiOx/C composite spheres for high-performance lithium ion battery anodes
CN111525121B (zh) 一种绒毛结构的硅负极材料及其制备方法
Zhang et al. FeS nanosheets as positive electrodes for all-solid-state lithium batteries
Shen et al. Ionic liquid assist to prepare Si@ N-doped carbon nanoparticles and its high performance in lithium ion batteries
CN111063872A (zh) 一种硅炭负极材料及其制备方法
Shi et al. High-safety lithium-ion sulfur battery with sulfurized polyacrylonitrile cathode, prelithiated SiOx/C anode and carbonate-based electrolyte
Yang et al. Self-assembled FeF3 nanocrystals clusters confined in carbon nanocages for high-performance Li-ion battery cathode
Wang et al. Simple preparation of Si/CNTs/C composite derived from photovoltaic waste silicon powder as high-performance anode material for Li-ion batteries
CN109950503B (zh) 一种CoMoOx/碳/硫复合纳米材料的制备方法、锂离子电池负极及锂离子半电池
CN111969193A (zh) 一种Si@MXene纳米复合材料及其制备方法
Han et al. Preparation of multifunctional structural P-CF@ ZnCo2O4 composites used as structural anode materials
CN105810918B (zh) 一种原位合成TiO2介晶‑碳‑石墨烯纳米复合材料的方法及其应用
Li et al. A self-assembly strategy for fabricating highly stable silicon/reduced graphene oxide anodes for lithium-ion batteries
CN108539170B (zh) 锂离子电池纳米片负极材料的形成方法
CN114142161A (zh) 一种改性锂离子电池隔膜的制备方法
Fan et al. Deposition of nanocrystal Co3O4 on graphene nanosheets as anode materials for lithium ion batteries
CN113410459A (zh) 一种内嵌MoSx纳米片的三维有序大孔类石墨烯炭材料、制备与应用
Jo et al. Electrochemical performance of graphite/silicon/pitch anode composite prepared by metal etching process
CN114975907A (zh) 一种硼化钒包覆镍钴锰酸锂正极材料及其制备方法
CN114436274B (zh) 一种氯丁胶包裹硅颗粒制备硅碳纳米杂化材料的方法、锂离子电池负极
He et al. Oxygen vacancy-rich Fe3O4 nanoparticle synthesized via facile electrochemical method as anode material for high-performance lithium-ion batteries
Lang et al. Study on the electrochemical performance of lead-acid battery with micro/nanostructure tetrabasic lead sulfate prepared via sol-gel method
CN115108536B (zh) 一种碳封装氮化钼表面修饰少层硒化钼纳米片储钠材料及其形成方法和应用
CN113972362B (zh) 一种用于锂离子电池的活性复合材料及其制备方法
CN110120507B (zh) 一种石墨烯改性的异质复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant