CN114432265A - 负载日蟾蜍他灵的仿生纳米递送系统及其制备方法和应用 - Google Patents
负载日蟾蜍他灵的仿生纳米递送系统及其制备方法和应用 Download PDFInfo
- Publication number
- CN114432265A CN114432265A CN202210145364.3A CN202210145364A CN114432265A CN 114432265 A CN114432265 A CN 114432265A CN 202210145364 A CN202210145364 A CN 202210145364A CN 114432265 A CN114432265 A CN 114432265A
- Authority
- CN
- China
- Prior art keywords
- delivery system
- bufotalin
- loaded
- daily
- bionic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0052—Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/58—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
- A61K31/585—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin containing lactone rings, e.g. oxandrolone, bufalin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6923—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5063—Compounds of unknown constitution, e.g. material from plants or animals
- A61K9/5068—Cell membranes or bacterial membranes enclosing drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nanotechnology (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Medical Informatics (AREA)
- Zoology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Virology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明涉及负载日蟾蜍他灵的仿生纳米递送系统,其包括石墨烯量子点、抗癌药物、光热剂和仿生膜,抗癌药物为日蟾蜍他灵,光热剂为吲哚菁绿,且仿生纳米递送系统的粒径为100nm~120nm。本发明还提供了负载日蟾蜍他灵的仿生纳米递送系统的制备方法,包括将日蟾蜍他灵和吲哚菁绿加到活化后的石墨烯量子点的分散液中制得负载日蟾蜍他灵及吲哚菁绿的纳米递送系统,然后将负载日蟾蜍他灵和吲哚菁绿的纳米递送系统和仿生膜混合搅拌进行生物伪装即得仿生纳米递送系统。本发明的仿生纳米递送系统能诱导胃癌细胞凋亡,实现大部分肿瘤消融,且该仿生纳米递送系统能够靶向、释控地递送抗癌药物,并联合光热治疗实现对胃癌的多元疗法。
Description
技术领域
本发明涉及生物医药技术领域,具体说是负载日蟾蜍他灵的仿生纳米递送系统及其制备方法和应用。
背景技术
胃癌是全球第五大常见癌症和第三大常见癌症死亡原因,是一种全球性的重要疾病。中国是全球胃癌高发国家,其发病率和死亡率在中国排名第二。目前,胃癌主要的治疗手段为手术切除并配合放疗及多种化疗药物进行系统性治疗,而术前化疗增加了根治性切除的机会,消除了早期的显微扩散,并允许对治疗进行体内反应评估,然而,化疗也带来了低剂量的较差预后性或高剂量使用的较大毒副作用。因此,仍然非常需要制定有效的策略来应对当前的挑战。
蟾蜍属动物耳后腺分泌的白色浆液,干燥后可制成传统中药蟾酥。其主要含有的活性成分为II型强心甾类成分,即蟾毒甾烯类成分。该类成分多具有强心、局部麻醉、抗休克、抗病毒和抗肿瘤等多种药理活性。其抗肿瘤机制主要是通过诱导细胞凋亡、促进细胞分化、增加机体免疫能力和抑制血管增生和内皮细胞增生等。日蟾蜍它灵作为一种蟾蜍二烯羟酸内酯的主要衍生物,抗肿瘤效果十分明显,但与其他化疗药物相比,全身给药时存在较大心脏毒性。因此急需新型的治疗方式来解决日蟾毒他灵治疗胃癌在临床上所遇到的问题。
靶向药物输送系统是指通过输送载体或者给药技术,将化疗药物富集于特定组织或器官的给药系统。靶向药物输送系统能够降低药物有效剂量,减少药物对正常细胞的毒副作用,提高药品的安全性、有效性、可靠性和顺从性。目前为止,纳米材料作为公认最有希望的靶向输送药物的载体,其小的比表面积、较高的反应活性、优异的催化效率和较强吸附能力强等特性使其有望帮助化疗药物实现器官靶向、高效和低毒等革命性的突破。
石墨烯是一种广泛应用于材料学、能源和生物医学的功能材料。氧化石墨烯,作为石墨烯的前体,具有电子、sp2π-π相互作用和荧光猝灭等特性。此外,氧化石墨烯具有合成简单、水分散性高、胶体稳定性好、表面官能化易调节和良好的生物相容性等独特特性,非常有利于生物应用。有趣的是,氧化石墨烯和疏水药物之间的sp2π-π相互作用使得其可以作为药物载体应用。与片层氧化石墨烯相比,氧化石墨烯量子点在保留前者优良特性的同时,其优异的光电性能、低毒、高生物相容性和高光漂白能力使其被广泛应用于生物医学、生物成像和传感器等领域。
发明内容
针对上述问题,本发明提供一种具备较长血液循环周期和良好靶向能力,且有效杀伤胃癌细胞的负载日蟾蜍他灵的仿生纳米递送系统及其制备方法,并且,相应地提供了一种上述负载日蟾蜍他灵的仿生纳米递送系统在制备热/化疗联合的靶向胃癌治疗纳米药剂中的应用。
本发明解决上述技术问题所采用的技术方案为:负载日蟾蜍他灵的仿生纳米递送系统,所述仿生纳米递送系统包括石墨烯量子点、抗癌药物、光热剂和仿生膜,所述抗癌药物为日蟾蜍他灵,所述光热剂为吲哚菁绿。
作为优选,所述仿生纳米递送系统的粒径为100nm~120nm。
本发明还提供了上述负载日蟾蜍他灵的仿生纳米递送系统的制备方法,包括以下步骤:
S1、将收集的红细胞膜与胃癌细胞膜超声破碎,通过在PBS中搅拌反应制得仿生膜;
S2、在石墨烯量子点水溶液中分别加入1-乙基-3-(3-二甲基氨基丙基)碳二亚胺和N-羟基琥珀酰亚胺,搅拌以活化石墨烯量子点的羧基,再在溶液中加入NH2-PEG2000-NH2,室温避光搅拌后,经过透析得到PEG修饰的石墨烯量子点;
S3、在PEG修饰的石墨烯量子点的缓冲液中加入吲哚菁绿水溶液,避光室温搅拌及透析后得到负载吲哚菁绿的石墨烯量子点,在所得负载吲哚菁绿的石墨烯量子点溶液中加入日蟾蜍他灵,搅拌及透析后得到负载日蟾蜍他灵及吲哚菁绿的纳米递送系统;
S4、将负载日蟾蜍他灵及吲哚菁绿的纳米递送系统与步骤S1制得的仿生膜水浴避光搅拌,经离心分散后得到负载日蟾蜍他灵的仿生纳米递送系统。
作为优选,所述步骤S1中,所述红细胞膜和胃癌细胞膜的质量比为1∶0.5~1,所述步骤S2中,所述石墨烯量子点和1-乙基-3-(3-二甲基氨基丙基)碳二亚胺、N-羟基琥珀酰亚胺的质量比为1:40:10,所述步骤S3中,所述石墨烯量子点与吲哚菁绿的质量比为5∶1~5,石墨烯量子点与日蟾蜍他灵的质量比为5∶1~5,所述步骤S4中,所述仿生膜和所述负载日蟾蜍他灵及吲哚菁绿的纳米递送系统的质量比为1∶5~10。
作为优选,所述步骤S1中,超声功率为80W~100W,超声时间为1min~2min,所述搅拌反应的温度为30℃~37℃,所述搅拌反应的转速为500rpm~600rpm,所述搅拌反应的时间为2h~3h。
作为优选,所述步骤S2中,每一所述搅拌反应的转速为400rpm~600rpm,第一次搅拌反应的时间为0.5h~2h,第二次搅拌反应的时间为20h~24h,所述透析分子量为2500D,所述透析时间为2d~3d。
作为优选,所述步骤S3中,每一所述搅拌反应的转速为400rpm~600rpm,每一所述搅拌反应的时间为20h~24h,每一所述透析分子量为2500D,每一所述透析时间为0.5d~1d。
作为优选,所述步骤S4中,所述搅拌反应的温度为30℃~37℃,所述搅拌反应的转速为500rpm~800rpm,所述搅拌反应的时间为2h~4h,所述离心的转速为10000rpm~13000rpm。
本发明还提供了负载日蟾蜍他灵的仿生纳米递送系统和/或按照上述制备方法制备得到的负载日蟾蜍他灵的仿生纳米递送系统在制备热/化疗联合的靶向胃癌治疗纳米药剂中的应用。
与现有技术相比,本发明具有以下有益效果:
1、本发明的纳米递送系统由石墨烯量子点通过π-π堆叠与化疗药物日蟾蜍他灵和光热剂吲哚菁绿相互作用,实现对抗癌药物的高负载,由同源癌细胞和红细胞的细胞膜构成的仿生膜生物伪装在纳米递送系统的最外层,同源癌细胞的归巢效应使纳米递送系统主动靶向肿瘤病灶,红细胞膜的引入增强纳米纳米递送系统的血液循环周期,以最大地提高药物日蟾蜍他灵的生物利用度;
2、本发明的负载日蟾蜍他灵的仿生纳米递送系统可用于特异性靶向和高效杀伤胃癌细胞,同时又能改善药剂的血液半衰期和肿瘤靶向效果,为开发抗癌药剂及相关临床检测治疗提供新理论支持,具有重要的科学意义、实用价值和经济价值。
附图说明
图1为仿生膜的双膜融合荧光成像图;
图2为石墨烯量子点(GOQD)、负载日蟾蜍他灵和吲哚菁绿的石墨烯量子点(GIC)、负载日蟾蜍他灵的仿生纳米递送系统(GIC@HM)的透射电镜图;
图3为吲哚菁绿(ICG)、负载日蟾蜍他灵和吲哚菁绿的石墨烯量子点(GIC)、负载日蟾蜍他灵的仿生纳米递送系统(GIC@HM)的升温曲线(808nm近红外激发,1W/cm2);
图4为日蟾蜍他灵(CS-6)、吲哚菁绿(ICG)、负载日蟾蜍他灵和吲哚菁绿的石墨烯量子点(GIC)、负载日蟾蜍他灵的仿生纳米递送系统(GIC@HM)在有/无近红外激光刺激下对胃癌细胞(BGC-823)的细胞毒性;
图5为吲哚菁绿(ICG)、负载日蟾蜍他灵和吲哚菁绿的石墨烯量子点(GIC)、负载日蟾蜍他灵的仿生纳米递送系统(GIC@HM)在小鼠体内的血液半衰期;
图6为负载日蟾蜍他灵和吲哚菁绿的石墨烯量子点(GIC)和负载日蟾蜍他灵的仿生纳米递送系统(GIC@HM)在小鼠体内的生物分布及其定量;
图7为不同处理治疗体内皮下宫颈癌模型的肿瘤相对大小,且在治疗期结束的实体瘤照片。
具体实施方式
下面将结合图1-7详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定,以下实施例中,若无特别说明,所采用的原料和仪器均为市售,浓度单位M为mol/L。
负载日蟾蜍他灵的仿生纳米递送系统,仿生纳米递送系统包括石墨烯量子点、抗癌药物、光热剂和仿生膜,且抗癌药物为日蟾蜍他灵,光热剂为吲哚菁绿,仿生纳米递送系统的粒径优选为100nm~120nm。
实施例1
(1)制备上述负载日蟾蜍他灵的仿生纳米递送系统,包括以下步骤:
S1、制备仿生膜分散液
BALB/c小鼠的新鲜血液在4℃,2000rpm转速下离心10min,用PBS多次洗涤沉淀;然后,将0.25×PBS与沉淀混合置于冰上2h;以12000rpm,4℃离心5min,取第二层溶液得到红细胞膜(RBC M)。采用膜蛋白提取试剂盒制备胃癌细胞膜(BGC-823M),将胃癌细胞重悬在膜提取试剂A(含1%PMSF)中,冰上放置1h后,在-80℃与37℃环境中反复冻融5次,每次各30min。以12000rpm,4℃离心30min得到胃癌细胞膜,将两者(按照重量比1:1)的混合物冰上以80W的超声功率超声2min,在37℃和600rpm转速下混合搅拌2h以得到仿生膜分散液(记作:HM);
S2、制备PEG修饰的石墨烯量子点
在1mL石墨烯量子点水溶液(1mg/mL)中分别加入40mg 1-乙基-3-(3-二甲基氨基丙基)碳二亚胺和10mg N-羟基琥珀酰亚胺,第一次以600rpm的转速搅拌30min以活化石墨烯量子点的羧基,再在溶液中加入10mg NH2-PEG2000-NH2,第二次室温避光以600rpm的转速搅拌24h后,用2500D的透析膜避光透析3d得到PEG修饰的石墨烯量子点(记作:pGOQD);
S3、制备负载日蟾蜍他灵及吲哚菁绿的纳米递送系统
在1mL PEG修饰的石墨烯量子点的PBS缓冲溶液中加入8μl吲哚菁绿水溶液(25mg/mL),避光室温以600rpm转速搅拌24h后,用2500D的透析膜避光透析1d,以得到负载吲哚菁绿的石墨烯量子点分散液(记作:GI)。在上述分散液中加入8μL日蟾蜍他灵(25mg/mL)以600rpm转速搅拌24h,随后用2500D的透析膜避光透析1d,得到负载日蟾蜍他灵和吲哚菁绿的石墨烯量子点分散液(记作:GIC);
S4、制备负载日蟾蜍他灵的仿生纳米递送系统
将1mL负载日蟾蜍他灵和吲哚菁绿的石墨烯量子点分散液与200μL仿生膜(HM)37℃水浴避光以600rpm转速搅拌2h,再以12000rpm转速离心分散得到负载日蟾蜍他灵的仿生纳米递送系统(记作:GIC@HM)。
(2)负载日蟾蜍他灵的仿生纳米递送系统的表征
如图1所示,对本实施例制得的仿生膜融合情况进行荧光显微镜观察,其结果表明红色荧光标记红细胞膜(RBC M),绿色荧光标记胃癌细胞膜(BGC-823M),两种荧光出现较好的融合呈黄色,说明两者细胞膜的成功融合制备。
如图2所示,对本实施例中的石墨烯量子点(GOQD)、负载日蟾蜍他灵和吲哚菁绿的石墨烯量子点(GIC)、负载日蟾蜍他灵的仿生纳米递送系统(GIC@HM)进行透射电镜成像分析,其结果表明石墨烯量子点的大小在5nm左右,粒径极小,在负载上日蟾蜍他灵及吲哚菁绿后,粒径增加到15nm~20nm左右。仿生膜对上述负载日蟾蜍他灵和吲哚菁绿的纳米递送系统进行伪装后,粒径增大至120nm左右。同时,可观察到所制得的仿生纳米递送系统在仿生膜内出现多个量子点核心。
(3)负载日蟾蜍他灵的仿生纳米递送系统的光热性能
如图3所示,对本实施例中所得的吲哚菁绿(ICG)、负载日蟾蜍他灵和吲哚菁绿的石墨烯量子点(GIC)、负载日蟾蜍他灵的仿生纳米递送系统(GIC@HM)进行光热评估,结果表明,在808nm近红外光照射5min后,吲哚菁绿(ICG)、负载日蟾蜍他灵和吲哚菁绿的石墨烯量子点(GIC)、负载日蟾蜍他灵的仿生纳米递送系统(GIC@HM)的温度升高分别为11.5℃,14.2℃和13.8℃,而PBS的温度仅升高2.5℃,表明负载日蟾蜍他灵的仿生纳米递送系统(GIC@HM)具有优异的光热性能,在近红外光照射下,该纳米复合材料能将光能转化为热能,表现出优异的光热效应,还可进一步触发并加速日蟾蜍他灵的释放,实现更加强烈的抗肿瘤作用。
实施例2
采用实施例1制得的负载日蟾蜍他灵的仿生纳米递送系统在制备热/化疗联合的靶向胃癌治疗纳米药剂中的应用。
用MTT法检测负载日蟾蜍他灵的仿生纳米递送系统对BGC-823胃癌细胞的细胞毒性。所有细胞均在37℃下,5%CO2中培养;BGC-823细胞与含有日蟾蜍他灵(CS-6),吲哚菁绿(ICG)和负载日蟾蜍他灵的仿生纳米递送系统(GIC@HM)(CS-6:100nM;ICG:2μg/mL)的培养基孵育4h,激光组的每孔用激光(1W/cm2,808nm)照射5min;继续孵育20h后,使用MTT试验评估各组分的细胞毒性。如图4所示,激光辐射不影响CS-6组的细胞活力。而其余药物处理组在激光辐射后细胞活力出现明显下降,说明ICG的光热作用对肿瘤细胞具有一定作用。与单独的ICG(细胞生存率95.1%)和单独的CS-6(细胞生存率73.6%)相比,GIC的细胞生存率为47.5%,证明ICG和CS-6在GOQD石墨烯量子点的聚集下,能够发挥大于单独药物的作用,在给予激光照射之后,细胞生存率仅为22.4%。由于仿生膜的药物缓释效果,使得GIC@HM(细胞生存率63.5%)在激光处理前的细胞杀伤效果低于GIC组(细胞生存率47.5%)。然而,在激光处理后,GIC@HM组的细胞存活率仅剩下15.7%,发挥了优异的胃癌细胞杀伤效果。
实施例3
采用实施例1制得的负载日蟾蜍他灵的仿生纳米递送系统,通过检测荧光强度的半定量手段对复合材料的血液半衰期和生物分布进行测定。
尾静脉注射150uL吲哚菁绿(ICG),负载日蟾蜍他灵和吲哚菁绿的石墨烯量子点(GIC),负载日蟾蜍他灵的仿生纳米递送系统(GIC@HM)(ICG浓度为5mg/kg)处理之后,在0.5h、1h、2h、3h、4h、6h、8h,12h,24h时采集血样,进行荧光可视化成像。如图5显示,根据图中荧光定量计算出ICG,GIC,GIC@HM的血液循环半衰期分别为0.5±0.2h,1.5±0.2h和2.8±0.6h。与ICG和GIC相比,GIC@HM的血液循环周期明显延长,是PCDICy5.5的2倍左右。同时,图6的体内荧光图像显示,48h后的GIC@HM在肿瘤组织中富集,累积量明显高于GIC。这些结果说明,负载日蟾蜍他灵的仿生纳米递送系统(GIC@HM)具备较长的血液半衰期和良好的靶向能力。
实施例4
采用实施例1制得的负载日蟾蜍他灵的仿生纳米递送系统用于体内皮下胃癌肿瘤治疗,其中IC:吲哚菁绿(ICG)与日蟾蜍他灵(CS-6)的混合物;GI@HM:仿生膜包裹的负载吲哚菁绿的石墨烯量子点;GC@HM:仿生膜包裹的负载日蟾蜍他灵的石墨烯量子点。
尾静脉注射100uL IC、GI@HM、GC@HM或GIC@HM(CS-6:2mg/kg;ICG:5mg/kg)用于荷瘤裸鼠的皮下胃癌治疗,并且对肿瘤部位进行808nm近红外辐射(1W/cm2,5min)。如图7所示,PBS处理组小鼠在12天时肿瘤生长的体积相比第一天扩大了6倍左右,而GIC@HM+L处理组小鼠在12天时肿瘤生长的体积降到了第一天的体积之下,由此可见负载日蟾蜍他灵的仿生纳米递送系统联合光热治疗(GIC@HM+L)的肿瘤生长十分缓慢。
通过以上实施例可知本发明负载日蟾蜍他灵的仿生纳米递送系统能诱导胃癌细胞凋亡,实现大部分肿瘤消融,并且,该仿生纳米递送系统能够靶向、释控地递送抗癌药物,并联合光热治疗实现对胃癌的多元疗法。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明的精神实质和技术方案的情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。
Claims (9)
1.负载日蟾蜍他灵的仿生纳米递送系统,其特征在于:所述仿生纳米递送系统包括石墨烯量子点、抗癌药物、光热剂和仿生膜,所述抗癌药物为日蟾蜍他灵,所述光热剂为吲哚菁绿。
2.根据权利要求1所述负载日蟾蜍他灵的仿生纳米递送系统,其特征在于:所述仿生纳米递送系统的粒径为100nm~120nm。
3.根据权利要求1或2任意一项所述负载日蟾蜍他灵的仿生纳米递送系统的制备方法,其特征在于,包括以下步骤:
S1、将收集的红细胞膜与胃癌细胞膜超声破碎,通过在PBS中搅拌反应制得仿生膜;
S2、在石墨烯量子点水溶液中分别加入1-乙基-3-(3-二甲基氨基丙基)碳二亚胺和N-羟基琥珀酰亚胺,搅拌以活化石墨烯量子点的羧基,再在溶液中加入NH2-PEG2000-NH2,室温避光搅拌后,经过透析得到PEG修饰的石墨烯量子点;
S3、在PEG修饰的石墨烯量子点的缓冲液中加入吲哚菁绿水溶液,避光室温搅拌及透析后得到负载吲哚菁绿的石墨烯量子点,在所得负载吲哚菁绿的石墨烯量子点溶液中加入日蟾蜍他灵,搅拌及透析后得到负载日蟾蜍他灵及吲哚菁绿的纳米递送系统;
S4、将负载日蟾蜍他灵及吲哚菁绿的纳米递送系统与步骤S1制得的仿生膜水浴避光搅拌,经离心分散后得到负载日蟾蜍他灵的仿生纳米递送系统。
4.根据权利要求3所述负载日蟾蜍他灵的仿生纳米递送系统的制备方法,其特征在于:所述步骤S1中,所述红细胞膜和胃癌细胞膜的质量比为1∶0.5~1,所述步骤S2中,所述石墨烯量子点和1-乙基-3-(3-二甲基氨基丙基)碳二亚胺、N-羟基琥珀酰亚胺的质量比为1:40:10,所述步骤S3中,所述石墨烯量子点与吲哚菁绿的质量比为5∶1~5,石墨烯量子点与日蟾蜍他灵的质量比为5∶1~5,所述步骤S4中,所述仿生膜和所述负载日蟾蜍他灵及吲哚菁绿的纳米递送系统的质量比为1∶5~10。
5.根据权利要求4所述负载日蟾蜍他灵的仿生纳米递送系统,其特征在于:所述步骤S1中,超声功率为80W~100W,超声时间为1min~2min,所述搅拌反应的温度为30℃~37℃,所述搅拌反应的转速为500rpm~600rpm,所述搅拌反应的时间为2h~3h。
6.根据权利要求4所述负载日蟾蜍他灵的仿生纳米递送系统,其特征在于:所述步骤S2中,每一所述搅拌反应的转速为400rpm~600rpm,第一次搅拌反应的时间为0.5h~2h,第二次搅拌反应的时间为20h~24h,所述透析分子量为2500D,所述透析时间为2d~3d。
7.根据权利要求4所述负载日蟾蜍他灵的仿生纳米递送系统,其特征在于:所述步骤S3中,每一所述搅拌反应的转速为400rpm~600rpm,每一所述搅拌反应的时间为20h~24h,每一所述透析分子量为2500D,每一所述透析时间为0.5d~1d。
8.根据权利要求4所述负载日蟾蜍他灵的仿生纳米递送系统,其特征在于:所述步骤S4中,所述搅拌反应的温度为30℃~37℃,所述搅拌反应的转速为500rpm~800rpm,所述搅拌反应的时间为2h~4h,所述离心的转速为10000rpm~13000rpm。
9.根据权利要求1~2中任意一项所述负载日蟾蜍他灵的仿生纳米递送系统和/或按照权利要求3~8任意一项所述制备方法制备得到的负载日蟾蜍他灵的仿生纳米递送系统在制备热/化疗联合的靶向胃癌治疗纳米药剂中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210145364.3A CN114432265B (zh) | 2022-02-17 | 2022-02-17 | 负载日蟾蜍他灵的仿生纳米递送系统及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210145364.3A CN114432265B (zh) | 2022-02-17 | 2022-02-17 | 负载日蟾蜍他灵的仿生纳米递送系统及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114432265A true CN114432265A (zh) | 2022-05-06 |
CN114432265B CN114432265B (zh) | 2023-09-05 |
Family
ID=81373116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210145364.3A Active CN114432265B (zh) | 2022-02-17 | 2022-02-17 | 负载日蟾蜍他灵的仿生纳米递送系统及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114432265B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115737594A (zh) * | 2022-11-08 | 2023-03-07 | 湖南万欧科技有限公司 | 一种负载华蟾毒精的仿生普鲁士蓝纳米复合材料及其制备方法和应用 |
CN115990136A (zh) * | 2022-10-31 | 2023-04-21 | 中南大学湘雅三医院 | 一种抗肿瘤组合物、纳米制剂、制备方法和用途 |
CN117461649A (zh) * | 2023-11-09 | 2024-01-30 | 中国农业大学 | 一种小分子抑制剂在抑制S-RNase活性及提高苹果自花结实性中的应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150328234A1 (en) * | 2012-12-26 | 2015-11-19 | The Fourth Military Medical University | Bufalin liposome, preparation method therefor and application thereof |
CN108815521A (zh) * | 2018-06-21 | 2018-11-16 | 暨南大学 | 一种用于肿瘤联合治疗的光敏型细胞膜仿生的靶向纳米药物及其制备 |
WO2021115070A1 (zh) * | 2019-12-12 | 2021-06-17 | 深圳先进技术研究院 | 一种用于近红外二区荧光检测的吲哚菁绿脂质体及其制备方法和用途 |
CN113456614A (zh) * | 2021-07-08 | 2021-10-01 | 湖南万欧科技有限公司 | 一种基于plga的粒径可变型抗肿瘤仿生纳米制剂及其制备方法和应用 |
-
2022
- 2022-02-17 CN CN202210145364.3A patent/CN114432265B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150328234A1 (en) * | 2012-12-26 | 2015-11-19 | The Fourth Military Medical University | Bufalin liposome, preparation method therefor and application thereof |
CN108815521A (zh) * | 2018-06-21 | 2018-11-16 | 暨南大学 | 一种用于肿瘤联合治疗的光敏型细胞膜仿生的靶向纳米药物及其制备 |
WO2021115070A1 (zh) * | 2019-12-12 | 2021-06-17 | 深圳先进技术研究院 | 一种用于近红外二区荧光检测的吲哚菁绿脂质体及其制备方法和用途 |
CN113456614A (zh) * | 2021-07-08 | 2021-10-01 | 湖南万欧科技有限公司 | 一种基于plga的粒径可变型抗肿瘤仿生纳米制剂及其制备方法和应用 |
Non-Patent Citations (3)
Title |
---|
CHENGHAO LIU 等: "Pressure-Controlled Encapsulation of Graphene Quantum Dots into Liposomes by the Reverse-Phase Evaporation Method", 《LANGMUIR》 * |
CHENGHAO LIU 等: "Pressure-Controlled Encapsulation of Graphene Quantum Dots into Liposomes by the Reverse-Phase Evaporation Method", 《LANGMUIR》, 21 November 2021 (2021-11-21) * |
韩翠平;杭银辉;张杜娟;丁佳正;王克英;: "负载吲哚菁绿纳米材料在肿瘤诊断和治疗中的研究进展", 中国医药导报, no. 17, pages 25 - 27 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115990136A (zh) * | 2022-10-31 | 2023-04-21 | 中南大学湘雅三医院 | 一种抗肿瘤组合物、纳米制剂、制备方法和用途 |
CN115737594A (zh) * | 2022-11-08 | 2023-03-07 | 湖南万欧科技有限公司 | 一种负载华蟾毒精的仿生普鲁士蓝纳米复合材料及其制备方法和应用 |
CN117461649A (zh) * | 2023-11-09 | 2024-01-30 | 中国农业大学 | 一种小分子抑制剂在抑制S-RNase活性及提高苹果自花结实性中的应用 |
CN117461649B (zh) * | 2023-11-09 | 2024-03-19 | 中国农业大学 | 一种小分子抑制剂在抑制S-RNase活性及提高苹果自花结实性中的应用 |
Also Published As
Publication number | Publication date |
---|---|
CN114432265B (zh) | 2023-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Recent progress on NIR-II photothermal therapy | |
CN114432265A (zh) | 负载日蟾蜍他灵的仿生纳米递送系统及其制备方法和应用 | |
Ji et al. | Physically-triggered nanosystems based on two-dimensional materials for cancer theranostics | |
Fu et al. | Functionalized boron nanosheets as an intelligent nanoplatform for synergistic low-temperature photothermal therapy and chemotherapy | |
CN106512023B (zh) | 双功能介孔硅球复合靶向给药系统的制备方法 | |
Yang et al. | Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy | |
CN110522910B (zh) | 基于金属有机框架纳米给药系统及其制备方法和应用 | |
Fan et al. | Tumor microenvironment-responsive manganese-based nanomaterials for cancer treatment | |
CN101130082A (zh) | 具有携氧功能的新型光敏剂 | |
EA016541B1 (ru) | Композиции магнитных наночастиц и их применения | |
Wang et al. | Genetically engineered bacteria-mediated multi-functional nanoparticles for synergistic tumor-targeting therapy | |
CN113289017B (zh) | 一种共负载日蟾蜍他灵和吲哚美辛的仿生普鲁士蓝复合材料及其制备方法和应用 | |
Chen et al. | Nanomaterials: small particles show huge possibilities for cancer immunotherapy | |
Aghda et al. | Design of smart nanomedicines for effective cancer treatment | |
CN111744010B (zh) | 一种纳米-细菌的杂合体系的制备方法 | |
Kim et al. | Upconverting nanoparticle-containing erythrocyte-sized hemoglobin microgels that generate heat, oxygen and reactive oxygen species for suppressing hypoxic tumors | |
CN110368501A (zh) | 一种rgd肽修饰的硼载药体系及其制备和应用 | |
Li et al. | Cell membrane-based biomimetic technology for cancer phototherapy: mechanisms, recent advances and perspectives | |
CN114470231B (zh) | 一种叶酸-羟烷基淀粉大分子稳定共载光敏剂和小分子前药的纳米载药系统、其制备和应用 | |
Li et al. | Oxygen-and bubble-generating polymersomes for tumor-targeted and enhanced photothermal–photodynamic combination therapy | |
CN111110630A (zh) | 新型跨血脑屏障药物递送体系及其制备方法和应用 | |
Dai et al. | GM-CSF augmented the photothermal immunotherapeutic outcome of self-driving gold nanoparticles against a mouse CT-26 colon tumor model | |
CN113456614A (zh) | 一种基于plga的粒径可变型抗肿瘤仿生纳米制剂及其制备方法和应用 | |
Kang et al. | Applications of nanocomposites based on zeolitic imidazolate framework-8 in photodynamic and synergistic anti-tumor therapy | |
CN104587466A (zh) | 蛋白-聚吡咯复合物及蛋白-聚吡咯复合物衍生物的制备方法与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |