CN114426682A - 一种MXene高强度复合水凝胶及其制备方法和应用 - Google Patents

一种MXene高强度复合水凝胶及其制备方法和应用 Download PDF

Info

Publication number
CN114426682A
CN114426682A CN202210116414.5A CN202210116414A CN114426682A CN 114426682 A CN114426682 A CN 114426682A CN 202210116414 A CN202210116414 A CN 202210116414A CN 114426682 A CN114426682 A CN 114426682A
Authority
CN
China
Prior art keywords
mxene
hydrogel
strength composite
composite hydrogel
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210116414.5A
Other languages
English (en)
Other versions
CN114426682B (zh
Inventor
叶谦
高敬得
何宝罗
刘淑娟
周峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202210116414.5A priority Critical patent/CN114426682B/zh
Publication of CN114426682A publication Critical patent/CN114426682A/zh
Application granted granted Critical
Publication of CN114426682B publication Critical patent/CN114426682B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/24Homopolymers or copolymers of amides or imides
    • C09D133/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Plant Pathology (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种Mxene高强度复合水凝胶及其制备方法和应用,属于纳米复合材料技术领域。该制备方法为:将原始Mxene加入到水中,空气气氛下低温超声处理得到剥离后的Mxene纳米片溶液;向该溶液加入4‑((烯丙氨基)甲基)苯‑1,2‑二醇、无水乙醇,通过多巴胺基团的锚固作用,得到表面功能化的Mxene纳米片;将其分散到水中,然后再加入单体、交联剂,混合均匀得到水凝胶预聚液,在水凝胶预聚液中加入引发剂,室温静置发生聚合反应,得到Mxene高强度复合水凝胶。通过本发明的制备方法,MXene在水凝胶中均匀分布,且制备得到的Mxene高强度复合水凝胶力学性能大幅提高的同时赋予其功能化特性。

Description

一种MXene高强度复合水凝胶及其制备方法和应用
技术领域
本发明涉及纳米复合材料技术领域,更具体的涉及一种Mxene高强度复合水凝胶及其制备方法和应用。
背景技术
水凝胶材料是一种具有三维交联网络的湿软材料,具有极强的亲水性,其组分中水的含量占相当大的比重,具有优异的生物相容性,在生物材料、可穿戴器件、智能传感器等领域有广泛的应用前景。然而传统化学交联的水凝胶力学性能较差且缺乏功能性,限制了水凝胶在许多方面的应用。
纳米微粒是一种广泛应用的聚合物填充材料,将纳米颗粒添加到聚合物系统,得到的纳米复合材料可以使得机械性能,热稳定性,抗老化性等发生明显的提高。水凝胶系统是一种含水量高的聚合物系统,因此选择亲水性高的纳米颗粒可以有效提升水凝胶的物理化学性能。
MXene是一类新型的二维过渡金属碳/氮化物,通过对其前驱体MAX陶瓷材料刻蚀,去掉其中的金属元素得到,其化学式可表示为Mn+1XnTx,M代表过渡金属元素(如钛、钼、钒等),X代表碳或氮元素,T代表刻蚀过程中在表面产生的官能团(如-F、-OH、=O等),n一般为1、2、3。MXene具有出色的机械强度、高亲水性和比表面积、丰富的表面活性位点,将MXene加入到水凝胶中是一种改善水凝胶力学性能,拓宽水凝胶应用范围的良好且高效的方法。但是高浓度的MXene添加到水凝胶中易发生自聚集、难以得到均匀分布的MXene复合水凝胶。
发明内容
针对以上问题,本发明提供一种Mxene高强度复合水凝胶及其制备方法和应用,MXene在水凝胶中均匀分布,且制备得到的Mxene高强度复合水凝胶力学性能大幅提高的同时赋予其功能化特性。
本发明的第一个目的是提供一种Mxene高强度复合水凝胶的制备方法,按照以下步骤制备:
步骤1、将原始Mxene加入到水中,空气气氛下低温超声处理得到剥离后的Mxene纳米片溶液;
向剥离后的Mxene纳米片溶液加入4-((烯丙氨基)甲基)苯-1,2-二醇、无水乙醇,通过多巴胺基团的锚固作用,得到表面功能化的Mxene纳米片;
步骤2、将表面功能化的Mxene纳米片分散到水中,然后再加入单体、交联剂,混合均匀得到水凝胶预聚液,在水凝胶预聚液中加入引发剂,室温静置发生聚合反应,得到Mxene高强度复合水凝胶。
优选的,步骤1中Mxene为Ti3C2Tx,所述Ti3C2Tx是通过HCl和氟化物盐溶液对Ti3AlC2刻蚀得到。
优选的,步骤1中,原始Mxene与水的比例为4-6mg:1mL;超声时间为30-40min;
原始Mxene纳米片、4-((烯丙氨基)甲基)苯-1,2-二醇、无水乙醇的比例为4-6mg:2-12mg:1mL,反应时间为12-24h。
优选的,步骤1中,4-((烯丙氨基)甲基)苯-1,2-二醇是由盐酸多巴胺与丙烯酰氯在硼砂水溶液中发生取代反应得到的;反应温度为室温,反应时间为12-48h。
优选的,步骤2中、所述水凝胶预聚液中,表面功能化的Mxene纳米片、单体、交联剂、水的比例为20-40mg:60-70mmol:0-9.24mg:10mL。
优选的,步骤2中,所述单体为丙烯酰胺、N-异丙基丙烯酰胺、N,N-二甲基丙烯酰胺、丙烯酸、甲基丙烯酸中的一种或几种。
优选的,步骤2中,所述交联剂为N,N-亚甲基双丙烯酰胺。
优选的,步骤2中,所述引发剂为过硫酸铵、过硫酸钾、过硫酸钠中的一种,所述引发剂的质量为单体添加量的0.2-1%。
本发明的第二个目的是提供一种根据上述制备方法制备得到的Mxene高强度复合水凝胶。
本发明的第三个目的是提供上述Mxene高强度复合水凝胶在制备生物润滑剂及抗菌涂层中的应用。
本发明的机理为:
本发明首先通过HCl和氟化物盐溶液刻蚀MAX材料得到MXene,并将盐酸多巴胺与丙烯酰氯在硼砂水溶液中发生取代反应得到含多巴胺结构的丙烯酰胺—4-((烯丙氨基)甲基)苯-1,2-二醇。通过多巴胺基团的锚固作用,使4-((烯丙氨基)甲基)苯-1,2-二醇接枝在MXene表面,得到表面功能化的MXene纳米片。将表面功能化的MXene纳米片加入水凝胶预聚液中,通过聚合反应得到MXene复合水凝胶,高比表面积的MXene纳米片和聚合物具有分子间相互作用,起到动态交联的效果,产生密集缠结的聚合物网络结构。
与现有技术相比,本发明具有以下有益效果:
(1)、本发明的水凝胶力学性能优异,具有较宽的应变范围,拉伸应变最大可达1070%,拉伸应力最大可达73kPa
(2)、本发明的水凝胶具有良好的抗菌效果及自修复性能
(3)、本发明的水凝胶制备工艺简单,不需要光热引发,室温下可快速凝胶。
附图说明
图1为实施例1-2及对比例2-3制备的水凝胶的扫描电镜图,其中图1a为对比例2制备的水凝胶的扫描电镜图,图1b为实施例1制备的水凝胶的扫描电镜图,图1c为对比例3制备的水凝胶的扫描电镜图,图1d为实施例2制备的水凝胶的扫描电镜图;
图2为不同水凝胶的力学性能图;
图3为不同水凝胶及生理盐水对大肠杆菌的抗菌结果,其中,图3a为生理盐水的抗菌效果,图3b为对比例1制备的PAA+NIPAM的抗菌效果,图3c为对比例2制备的Ti3C2Tx/PAA+PNIPAM的抗菌效果,图3d为实施例1制备的AMBD-Ti3C2Tx/PAA+PNIPAM的抗菌效果;
图4为不同水凝胶及生理盐水对金黄色葡萄球菌的抗菌结果,其中,图4a为生理盐水的抗菌效果,图4b为对比例1制备的PAA+NIPAM的抗菌效果,图4c为对比例2制备的Ti3C2Tx/PAA+PNIPAM的抗菌效果,图4d为实施例1制备的AMBD-Ti3C2Tx/PAA+PNIPAM的抗菌效果;
图5为实施例3制备的MXene高强度复合水凝胶的自修复性能。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明所用Mxene为Ti3C2Tx,所述Ti3C2Tx通过对Ti3AlC2经过HCl和氟化物盐溶液刻蚀得到,具体的制备方法为将5gNaF和5gNH4F加入100mL 12M盐酸中,在55℃条件下搅拌72h以剥离Al相得到手风琴状的多层Ti3C2Tx纳米片。将剥离产物在超纯水中反复离心(3500r/min,5min)洗涤至上清液pH值大于6。
实施例1
将100mg Ti3C2Tx加入20mL超纯水中定向超声(超声时间30min,功率320w,温度5℃)。超声结束后加入20mL无水乙醇与50mg表面修饰剂AMBD,在室温下搅拌24h,分别用超纯水和无水乙醇离心洗涤3次(离心转速10000r/min,离心时间5min),然后在真空干燥箱中40℃烘干12h,得到表面功能化的MXene纳米片,记为AMBD-Ti3C2Tx
将40mgAMBD-Ti3C2Tx加入25mL烧杯中,加入10mL超纯水定向超声(超声时间30min,功率320w,温度5℃),然后加入4.32g(60mmol)丙烯酸,1.13g(10mmol)N-异丙基丙烯酰胺,9.24mgN,N-亚甲基双丙烯酰胺,混合均匀后补加适量超纯水配制成20mL的水凝胶预聚液,在真空干燥箱中抽负压保持30min除去预聚液中的气泡后加入54.5mg(单体添加量的1%)的过硫酸铵,然后以两块间隔为2mm的玻璃板为模具将预聚液加入玻璃板间,室温下静置30min得到MXene高强度复合水凝胶,记为AMBD-Ti3C2Tx/PAA+PNIPAM。
本实施例中表面修饰剂AMBD的制备方法为:
在250mL的圆底烧瓶中加入3.83g(10mmol)硼砂后加入100mL超纯水,使用氮气脱气30min后加入1.90g(10mmol)盐酸多巴胺,搅拌15min使盐酸多巴胺完全溶解后加入3.99g(10mmol)Na2CO3·10H2O以调节pH至9-10。之后将圆底烧瓶放置在冰水浴装置中,缓慢加入0.81mL(10mmol)丙烯酰氯,在氩气保护下反应24h,在反应开始6h后补加1.50gNa2CO3·10H2O(2.9mmol)以维持pH在9-10。反应结束后使用2M稀盐酸酸化溶液使pH达到2后使用乙酸乙酯萃取三次,收集上层有机提取物,用无水硫酸镁干燥后在旋转蒸发仪上旋蒸得到棕黄色的粗产物。将粗产物通过硅胶柱层析(甲醇:三氯甲烷=1:20)后旋蒸得到白色粉末状表面修饰剂AMBD。
实施例2
将100mg Ti3C2Tx加入20mL超纯水中定向超声(超声时间30min,功率320w,温度5℃)。超声结束后加入20m L无水乙醇与50mg表面修饰剂AMBD,在室温下搅拌24h,分别用超纯水和无水乙醇离心洗涤3次(离心转速10000r/min,离心时间5min),然后在真空干燥箱中烘干12h(温度40℃)即得到表面功能化的MXene纳米片,记为AMBD-Ti3C2Tx
将40mgAMBD-Ti3C2Tx加入25mL烧杯中,加入10mL超纯水定向超声(超声时间30min,功率320w,温度5℃),然后加入4.26g(60mmol)丙烯酰胺,1.13g(10mmol)N-异丙基丙烯酰胺,9.24mg N,N-亚甲基双丙烯酰胺,混合均匀后补加适量超纯水配制成20mL的水凝胶预聚液,在真空干燥箱中抽负压保持30min除去预聚液中的气泡后加入54.5mg(单体添加量的1%)的过硫酸铵,然后以两块间隔为2mm的玻璃板为模具将预聚液加入玻璃板间,室温下静置30min得到MXene高强度复合水凝胶,记为AMBD-Ti3C2Tx/PAAm+PNIPAM。
本实施例中所用表面修饰剂AMBD的制备方法与实施例1相同。
实施例3
将100mg Ti3C2Tx加入20mL超纯水中定向超声(超声时间30min,功率320w,温度5℃)。超声结束后加入20m L无水乙醇与50mg表面修饰剂AMBD,在室温下搅拌24h,分别用超纯水和无水乙醇离心洗涤3次(离心转速10000r/min,离心时间5min),然后在真空干燥箱中烘干12h(温度40℃)即得到表面功能化的MXene纳米片AMBD-Ti3C2Tx
将40mgAMBD-Ti3C2Tx加入25mL烧杯中,加入10mL超纯水定向超声(超声时间30min,功率320w,温度5℃),然后加入4.32g(60mmol)丙烯酸,1.13g(10mmol)N-异丙基丙烯酰胺,混合均匀后补加适量超纯水配制成20mL的水凝胶预聚液,在真空干燥箱中抽负压保持30min除去预聚液中的气泡后加入54.5mg(单体添加量的1%)的过硫酸铵,然后加入到玻璃培养皿中,室温下静置30min得到MXene高强度复合水凝胶。
本实施例中所用表面修饰剂AMBD的制备方法与实施例1相同。
实施例4
将80mg Ti3C2Tx加入20mL超纯水中定向超声(超声时间40min,功率320w,温度5℃)。超声结束后加入20mL无水乙醇与80mg表面修饰剂AMBD,在室温下搅拌24h,分别用超纯水和无水乙醇离心洗涤3次(离心转速10000r/min,离心时间5min),然后在真空干燥箱中40℃烘干12h,得到表面功能化的MXene纳米片,记为AMBD-Ti3C2Tx
将20mgAMBD-Ti3C2Tx加入25mL烧杯中,加入10mL超纯水定向超声(超声时间30min,功率320w,温度5℃),然后加入6.94g(70mmol)N,N-二甲基丙烯酰胺,5.76mg N,N-亚甲基双丙烯酰胺,混合均匀后补加适量超纯水配制成20mL的水凝胶预聚液,在真空干燥箱中抽负压保持30min除去预聚液中的气泡后加入13.9mg(单体添加量的0.2%)的过硫酸铵,然后以两块间隔为2mm的玻璃板为模具将预聚液加入玻璃板间,室温下静置30min得到MXene高强度复合水凝胶。
本实施例中所用表面修饰剂AMBD的制备方法与实施例1相同。
实施例5
将60mg Ti3C2Tx加入10mL超纯水中定向超声(超声时间30min,功率320w,温度5℃)。超声结束后加入10mL无水乙醇与120mg表面修饰剂AMBD,在室温下搅拌12h,分别用超纯水和无水乙醇离心洗涤3次(离心转速10000r/min,离心时间5min),然后在真空干燥箱中40℃烘干12h,得到表面功能化的MXene纳米片,记为AMBD-Ti3C2Tx
将20mgAMBD-Ti3C2Tx加入25mL烧杯中,加入10mL超纯水定向超声(超声时间30min,功率320w,温度5℃),然后加入4.32g(60mmol)丙烯酸,9.24mgN,N-亚甲基双丙烯酰胺,混合均匀后补加适量超纯水配制成20mL的水凝胶预聚液,在真空干燥箱中抽负压保持30min除去预聚液中的气泡后加入43.2mg(单体添加量的1%)的过硫酸铵,然后以两块间隔为2mm的玻璃板为模具将预聚液加入玻璃板间,室温下静置30min得到MXene高强度复合水凝胶。
本实施例中所用表面修饰剂AMBD的制备方法与实施例1相同,区别仅在于,在氩气保护下反应12h。
实施例6
将80mg Ti3C2Tx加入20mL超纯水中定向超声(超声时间35min,功率320w,温度5℃)。超声结束后加入20mL无水乙醇与40mg表面修饰剂AMBD,在室温下搅拌24h,分别用超纯水和无水乙醇离心洗涤3次(离心转速10000r/min,离心时间5min),然后在真空干燥箱中40℃烘干12h,得到表面功能化的MXene纳米片,记为AMBD-Ti3C2Tx
将30mgAMBD-Ti3C2Tx加入25mL烧杯中,加入10mL超纯水定向超声(超声时间30min,功率320w,温度5℃),然后加入5.60g(65mmol)甲基丙烯酸,9.24mgN,N-亚甲基双丙烯酰胺,混合均匀后补加适量超纯水配制成20mL的水凝胶预聚液,在真空干燥箱中抽负压保持30min除去预聚液中的气泡后加入44.8mg(单体添加量的0.8%)的过硫酸铵,然后以两块间隔为2mm的玻璃板为模具将预聚液加入玻璃板间,室温下静置30min得到MXene高强度复合水凝胶。
本实施例中所用表面修饰剂AMBD的制备方法与实施例5相同,区别仅在于,在氩气保护下反应24h。
实施例7
将100mg Ti3C2Tx加入20mL超纯水中定向超声(超声时间30min,功率320w,温度5℃)。超声结束后加入20mL无水乙醇与200mg表面修饰剂AMBD,在室温下搅拌18h,分别用超纯水和无水乙醇离心洗涤3次(离心转速10000r/min,离心时间5min),然后在真空干燥箱中40℃烘干12h,得到表面功能化的MXene纳米片,记为AMBD-Ti3C2Tx
将40mgAMBD-Ti3C2Tx加入25mL烧杯中,加入10mL超纯水定向超声(超声时间30min,功率320w,温度5℃),然后加入4.32g(60mmol)丙烯酸,1.13g(10mmol)N-异丙基丙烯酰胺,9.24mg N,N-亚甲基双丙烯酰胺,混合均匀后补加适量超纯水配制成20mL的水凝胶预聚液,在真空干燥箱中抽负压保持30min除去预聚液中的气泡后加入54.5mg(单体添加量的1%)的过硫酸钠,然后以两块间隔为2mm的玻璃板为模具将预聚液加入玻璃板间,室温下静置30min得到MXene高强度复合水凝胶。
本实施例中所用表面修饰剂AMBD的制备方法与实施例5相同,区别仅在于,在氩气保护下反应48h。
实施例8
将90mg Ti3C2Tx加入15mL超纯水中定向超声(超声时间30min,功率320w,温度5℃)。超声结束后加入15mL无水乙醇与60mg表面修饰剂AMBD,在室温下搅拌20h,分别用超纯水和无水乙醇离心洗涤3次(离心转速10000r/min,离心时间5min),然后在真空干燥箱中40℃烘干12h,得到表面功能化的MXene纳米片,记为AMBD-Ti3C2Tx
将40mgAMBD-Ti3C2Tx加入25mL烧杯中,加入10mL超纯水定向超声(超声时间30min,功率320w,温度5℃),然后加入4.32g(60mmol)丙烯酸,1.13g(10mmol)N-异丙基丙烯酰胺,9.24mg N,N-亚甲基双丙烯酰胺,混合均匀后补加适量超纯水配制成20mL的水凝胶预聚液,在真空干燥箱中抽负压保持30min除去预聚液中的气泡后加入54.5mg(单体添加量的1%)的过硫酸钾,然后以两块间隔为2mm的玻璃板为模具将预聚液加入玻璃板间,室温下静置30min得到MXene高强度复合水凝胶。
本实施例中所用表面修饰剂AMBD的制备方法与实施例5相同,区别仅在于,在氩气保护下反应18h。
对比例1
本对比例制备的是未添加MXene的水凝胶
在10mL超纯水加入4.32g(60mmol)丙烯酸,1.13g(10mmol)N-异丙基丙烯酰胺,9.24mg N,N-亚甲基双丙烯酰胺,混合均匀后补加适量超纯水配制成20mL的水凝胶预聚液,在真空干燥箱中抽负压保持30min除去预聚液中的气泡后加入54.5mg(单体添加量的1%)的过硫酸铵,然后以两块间隔为2mm的玻璃板为模具将预聚液加入玻璃板间,室温下静置30min得到水凝胶,记为PAA+PNIPAM。
对比例2
将100mg Ti3C2Tx加入20mL超纯水中定向超声(超声时间30min,功率320w,温度5℃)。超声结束后分别用超纯水和无水乙醇离心洗涤3次(离心转速10000r/min,离心时间5min),然后在真空干燥箱中烘干12h(温度40℃)即得到未表面功能化的单层及少层MXene纳米片。
将40mg未表面功能化的单层及少层MXene纳米片加入25mL烧杯中,加入10mL超纯水定向超声(超声时间30min,功率320w,温度5℃),然后加入4.32g(60mmol)丙烯酸,1.13g(10mmol)N-异丙基丙烯酰胺,9.24mgN,N-亚甲基双丙烯酰胺,混合均匀后补加适量超纯水配制成20mL的水凝胶预聚液,在真空干燥箱中抽负压保持30min除去预聚液中的气泡后加入54.5mg(单体添加量的1%)的过硫酸铵,然后以两块间隔为2mm的玻璃板为模具将预聚液加入玻璃板间,室温下静置30min得到MXene高强度复合水凝胶,记为Ti3C2Tx/PAA+PNIPAM。
对比例3
将100mg Ti3C2Tx加入20mL超纯水中定向超声(超声时间30min,功率320w,温度5℃)。超声结束后分别用超纯水和无水乙醇离心洗涤3次(离心转速10000r/min,离心时间5min),然后在真空干燥箱中烘干12h(温度40℃)即得到未表面功能化的单层及少层MXene纳米片。
将40mg未表面功能化的单层及少层MXene纳米片加入25mL烧杯中,加入10mL超纯水定向超声(超声时间30min,功率320w,温度5℃),然后加入4.26g(60mmol)丙烯酰胺,1.13g(10mmol)N-异丙基丙烯酰胺,9.24mg N,N-亚甲基双丙烯酰胺,混合均匀后补加适量超纯水配制成20mL的水凝胶预聚液,在真空干燥箱中抽负压保持30min除去预聚液中的气泡后加入54.5mg(单体添加量的1%)的过硫酸铵,然后以两块间隔为2mm的玻璃板为模具将预聚液加入玻璃板间,室温下静置30min得到MXene高强度复合水凝胶,记为Ti3C2Tx/PAAm+PNIPAM。
图1为实施例1-2及对比例2-3制备的水凝胶的扫描电镜图,其中图1a为对比例2制备的水凝胶的扫描电镜图,即添加未表面修饰MXene的PAA+PNIPAM水凝胶(Ti3C2Tx/PAA+PNIPAM),图1b为实施例1制备的水凝胶的扫描电镜图,即为添加表面修饰剂MXene的PAA+PNIPAM水凝胶(AMBD-Ti3C2Tx/PAA+PNIPAM),图1c为对比例3制备的水凝胶的扫描电镜图,即为添加未表面修饰MXene的PAAm+PNIPAM水凝胶(Ti3C2Tx/PAAm+PNIPAM),图1d为实施例2制备的水凝胶的扫描电镜图,即为添加表面修饰剂MXene的PAAm+PNIPAM水凝胶(AMBD-Ti3C2Tx/PAAm+PNIPAM)。从图1中可以看出所制备的MXene高强度复合水凝胶具有均匀的三维交联网络,说明MXene纳米片均匀的分布在水凝胶系统中。
图2为不同水凝胶的力学性能图,可以看出未添加MXene时,PAA+NIPAM水凝胶发生断裂时的拉伸应力为40.30kPa,拉伸应变为513.5%。添加未进行表面修饰的MXene时,Ti3C2Tx/PAA+PNIPAM水凝胶发生断裂时的拉伸应力升高到71.53kPa,相比于PAA+NIPAM水凝胶增加了31.23kPa,拉伸应变升高到812.8%,相比于PAA+NIPAM水凝胶提升了300.3%。添加表面修饰后的MXene时,AMBD-Ti3C2Tx/PAA+PNIPAM水凝胶发生断裂时的拉伸应力增加至73.62kPa,相比于PAA+NIPAM水凝胶增加了33.32kPa,拉伸应变进一步增加至1070.4%,相比于PAA+NIPAM水凝胶提升了556.9%,显示出良好的形变能力,说明表面修饰MXene的加入显著提升了水凝胶的力学性能。
图3为不同水凝胶及生理盐水对大肠杆菌的抗菌结果,其中,图3a为生理盐水的抗菌效果,生理盐水作为空白对照样,图3b为对比例1制备的PAA+NIPAM的抗菌效果,图3c为对比例2制备的Ti3C2Tx/PAA+PNIPAM的抗菌效果,图3d为实施例1制备的AMBD-Ti3C2Tx/PAA+PNIPAM的抗菌效果。
图4为不同水凝胶及生理盐水对金黄色葡萄球菌的抗菌结果,其中,图4a为生理盐水的抗菌效果,生理盐水作为空白对照样,图4b为对比例1制备的PAA+NIPAM的抗菌效果,图4c为对比例2制备的Ti3C2Tx/PAA+PNIPAM的抗菌效果,图4d为实施例1制备的AMBD-Ti3C2Tx/PAA+PNIPAM的抗菌效果。
从图3和图4可以看出,空白对照样的琼脂表面出现了大量且密集的菌落,使用PAA+PNIPAM水凝胶培养的琼脂表面出现菌落,但数量明显减少,而Ti3C2Tx/PAA+PNIPAM和AMBD-Ti3C2Tx/PAA+PNIPAM培养的琼脂表面几乎未见菌落出现,说明MXene的加入产生了良好的抗菌效果。MXene纳米片与水凝胶网络中的其他聚合物之间可以通过离子相互作用、氢键和/或共价键的方式连接,起到提高力学性能的作用,高亲水性可以确保MXene在水凝胶中均匀分散,高比表面积且边缘锋利的MXene纳米片可以破坏细菌的细胞膜使其失活,MXene表面的含氧基团与细胞膜的脂多糖链之间的氢键可通过阻止营养摄入的方式来抑制细菌的生长,因此具有良好的抗菌效果。
图5为实施例3所制备水凝胶的自修复性能。将圆片状的水凝胶用美工刀切割成两片,然后将水凝胶的断面相接触,放置一段时间后发现水凝胶发生自修复,用手拉伸发现断面重新连接在了一起。具有自修复效果的原因是MXene在水凝胶中起到物理交联剂的作用,MXene表面具有的-OH官能团和活性位点与聚合物具有分子间相互作用,作为物理交联剂加入到水凝胶中能够与聚合物发生动态交联使其具有了自修复性能。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种Mxene高强度复合水凝胶的制备方法,其特征在于,按照以下步骤制备:
步骤1、将原始Mxene加入到水中,空气气氛下低温超声处理得到剥离后的Mxene纳米片溶液;
向剥离后的Mxene纳米片溶液加入4-((烯丙氨基)甲基)苯-1,2-二醇、无水乙醇,通过多巴胺基团的锚固作用,得到表面功能化的Mxene纳米片;
步骤2、将表面功能化的Mxene纳米片分散到水中,然后再加入单体、交联剂,混合均匀得到水凝胶预聚液,在水凝胶预聚液中加入引发剂,室温静置发生聚合反应,得到Mxene高强度复合水凝胶。
2.根据权利要求1所述的一种Mxene高强度复合水凝胶的制备方法,其特征在于,步骤1中Mxene为Ti3C2Tx,所述Ti3C2Tx是通过HCl和氟化物盐溶液对Ti3AlC2刻蚀得到。
3.根据权利要求1所述的一种Mxene高强度复合水凝胶的制备方法,其特征在于,步骤1中,原始Mxene与水的比例为4-6mg:1mL;超声时间为30-40min;
原始Mxene纳米片、4-((烯丙氨基)甲基)苯-1,2-二醇、无水乙醇的比例为4-6mg:2-12mg:1mL,反应时间为12-24h。
4.根据权利要求1所述的一种Mxene高强度复合水凝胶的制备方法,其特征在于,步骤1中,4-((烯丙氨基)甲基)苯-1,2-二醇是由盐酸多巴胺与丙烯酰氯在硼砂水溶液中发生取代反应得到的;反应温度为室温,反应时间为12-48h。
5.根据权利要求1所述的一种Mxene高强度复合水凝胶的制备方法,其特征在于,步骤2中、所述水凝胶预聚液中,表面功能化的Mxene纳米片、单体、交联剂、水的比例为20-40mg:60-70mmol:0-9.24mg:10mL。
6.根据权利要求1所述的一种Mxene高强度复合水凝胶的制备方法,其特征在于,步骤2中,所述单体为丙烯酰胺、N-异丙基丙烯酰胺、N,N-二甲基丙烯酰胺、丙烯酸、甲基丙烯酸中的一种或几种。
7.根据权利要求1所述的一种Mxene高强度复合水凝胶的制备方法,其特征在于,步骤2中,所述交联剂为N,N-亚甲基双丙烯酰胺。
8.根据权利要求1所述的一种Mxene高强度复合水凝胶的制备方法,其特征在于,步骤2中,所述引发剂为过硫酸铵、过硫酸钾、过硫酸钠中的一种,所述引发剂的质量为单体添加量的0.2-1%。
9.一种权利要求1-8任一项所述的制备方法制备得到的Mxene高强度复合水凝胶。
10.一种权利要求9所述的Mxene高强度复合水凝胶在制备生物润滑剂及抗菌涂层中的应用。
CN202210116414.5A 2022-02-07 2022-02-07 一种MXene高强度复合水凝胶及其制备方法和应用 Active CN114426682B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210116414.5A CN114426682B (zh) 2022-02-07 2022-02-07 一种MXene高强度复合水凝胶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210116414.5A CN114426682B (zh) 2022-02-07 2022-02-07 一种MXene高强度复合水凝胶及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114426682A true CN114426682A (zh) 2022-05-03
CN114426682B CN114426682B (zh) 2024-01-19

Family

ID=81312605

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210116414.5A Active CN114426682B (zh) 2022-02-07 2022-02-07 一种MXene高强度复合水凝胶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114426682B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114854074A (zh) * 2022-06-14 2022-08-05 暨南大学 一种在塑料表面制得多功能复合涂层的制备方法
CN115064663A (zh) * 2022-08-18 2022-09-16 昆明理工大学 一种MXene基凝胶态正极的制备方法及其应用
CN115068673A (zh) * 2022-06-30 2022-09-20 吉林大学 一种MXene基自催化导电水凝胶敷料的制备方法及其应用
CN116082538A (zh) * 2022-12-15 2023-05-09 德州学院 一种超声诱导自由基引发乙烯基单体聚合的方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102504082A (zh) * 2011-10-26 2012-06-20 杭州师范大学 一种聚丙烯酰基多巴胺及其制备方法与应用
CN106008799A (zh) * 2016-05-23 2016-10-12 西南交通大学 一种具有高力学性能及自愈合性的水凝胶电极的制备方法
CN106866994A (zh) * 2017-02-27 2017-06-20 江南大学 一种聚苯胺基自修复导电水凝胶的制备方法
US20180304208A1 (en) * 2014-11-17 2018-10-25 Qatar Foundation For Education, Science And Community Development Two-dimensional metal carbide antimicrobial membrane and antimicrobial agent
CN109096754A (zh) * 2018-07-12 2018-12-28 大连理工大学 一种MXene-聚多巴胺复合材料及其制备方法
CN109232916A (zh) * 2018-08-17 2019-01-18 东华大学 一种Mxene/PNIPAM/海藻酸盐复合热响应型水凝胶及其制备和应用
CN109593218A (zh) * 2018-11-08 2019-04-09 西安交通大学 一种复合电介质材料的制备方法及复合电介质材料
CN111440519A (zh) * 2020-03-31 2020-07-24 东华大学 一种基于贻贝仿生的长期稳定两亲性防污涂层的制备方法
CN111921502A (zh) * 2020-07-16 2020-11-13 侯建新 一种MnFe2O4-聚多巴胺-丙烯酸基水凝胶磁性吸附材料及其制法
CN111961156A (zh) * 2020-07-26 2020-11-20 青岛大学 一种仿贻贝足蛋白质聚合物油井抑砂堵水剂的制备方法
CN112011067A (zh) * 2020-08-19 2020-12-01 华东师范大学 一种可降解、自修复和自粘附导电水凝胶及制备方法
CN112210090A (zh) * 2020-10-16 2021-01-12 淄博宏达助剂有限公司 一种Mxene-聚丙烯酸复合水凝胶及其制备方法
CN112608508A (zh) * 2020-12-14 2021-04-06 南京柔速科技有限公司 一种抗冻自修复导电水凝胶及其制备方法、柔性传感器
CN112808025A (zh) * 2021-01-20 2021-05-18 重庆工商大学 一种基于乙二胺交联调控层间距的MXene膜制备方法
CN113716557A (zh) * 2021-09-13 2021-11-30 长春工业大学 一种改性氧化石墨烯的制备方法及应用其制备环氧树脂复合材料的方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102504082A (zh) * 2011-10-26 2012-06-20 杭州师范大学 一种聚丙烯酰基多巴胺及其制备方法与应用
US20180304208A1 (en) * 2014-11-17 2018-10-25 Qatar Foundation For Education, Science And Community Development Two-dimensional metal carbide antimicrobial membrane and antimicrobial agent
CN106008799A (zh) * 2016-05-23 2016-10-12 西南交通大学 一种具有高力学性能及自愈合性的水凝胶电极的制备方法
CN106866994A (zh) * 2017-02-27 2017-06-20 江南大学 一种聚苯胺基自修复导电水凝胶的制备方法
CN109096754A (zh) * 2018-07-12 2018-12-28 大连理工大学 一种MXene-聚多巴胺复合材料及其制备方法
CN109232916A (zh) * 2018-08-17 2019-01-18 东华大学 一种Mxene/PNIPAM/海藻酸盐复合热响应型水凝胶及其制备和应用
CN109593218A (zh) * 2018-11-08 2019-04-09 西安交通大学 一种复合电介质材料的制备方法及复合电介质材料
CN111440519A (zh) * 2020-03-31 2020-07-24 东华大学 一种基于贻贝仿生的长期稳定两亲性防污涂层的制备方法
CN111921502A (zh) * 2020-07-16 2020-11-13 侯建新 一种MnFe2O4-聚多巴胺-丙烯酸基水凝胶磁性吸附材料及其制法
CN111961156A (zh) * 2020-07-26 2020-11-20 青岛大学 一种仿贻贝足蛋白质聚合物油井抑砂堵水剂的制备方法
CN112011067A (zh) * 2020-08-19 2020-12-01 华东师范大学 一种可降解、自修复和自粘附导电水凝胶及制备方法
CN112210090A (zh) * 2020-10-16 2021-01-12 淄博宏达助剂有限公司 一种Mxene-聚丙烯酸复合水凝胶及其制备方法
CN112608508A (zh) * 2020-12-14 2021-04-06 南京柔速科技有限公司 一种抗冻自修复导电水凝胶及其制备方法、柔性传感器
CN112808025A (zh) * 2021-01-20 2021-05-18 重庆工商大学 一种基于乙二胺交联调控层间距的MXene膜制备方法
CN113716557A (zh) * 2021-09-13 2021-11-30 长春工业大学 一种改性氧化石墨烯的制备方法及应用其制备环氧树脂复合材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOLONG WANG, ET AL.: "Low surface energy surfaces from self-assembly of perfluoropolymer with sticky functional groups", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》, vol. 351, no. 1, pages 261 - 266 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114854074A (zh) * 2022-06-14 2022-08-05 暨南大学 一种在塑料表面制得多功能复合涂层的制备方法
CN114854074B (zh) * 2022-06-14 2023-09-22 暨南大学 一种在塑料表面制得多功能复合涂层的制备方法
CN115068673A (zh) * 2022-06-30 2022-09-20 吉林大学 一种MXene基自催化导电水凝胶敷料的制备方法及其应用
CN115064663A (zh) * 2022-08-18 2022-09-16 昆明理工大学 一种MXene基凝胶态正极的制备方法及其应用
CN115064663B (zh) * 2022-08-18 2022-10-28 昆明理工大学 一种MXene基凝胶态正极的制备方法及其应用
CN116082538A (zh) * 2022-12-15 2023-05-09 德州学院 一种超声诱导自由基引发乙烯基单体聚合的方法

Also Published As

Publication number Publication date
CN114426682B (zh) 2024-01-19

Similar Documents

Publication Publication Date Title
CN114426682A (zh) 一种MXene高强度复合水凝胶及其制备方法和应用
Liu et al. Utilization of waste hemicelluloses lye for superabsorbent hydrogel synthesis
WO2019178938A1 (zh) 一种全天候自愈合可拉伸导电材料及其制备方法
CN108409997B (zh) 一种含有纤维素纳米晶须的超高强度各向异性水凝胶的制备方法
Pei et al. Self-healing and toughness cellulose nanocrystals nanocomposite hydrogels for strain-sensitive wearable flexible sensor
CN109847661B (zh) 一种氧化石墨烯与银纳米线组装三元弹性水凝胶的制备方法
CN109836596B (zh) 强氢键作用高强度与高粘附的支链淀粉复合水凝胶的制备方法
CN112175232A (zh) 一种基于纳米纤维素-石墨烯-聚乙烯醇-聚乙二胺的导电水凝胶的制备方法
JP2006524742A (ja) 丈夫な超多孔性ヒドロゲルの形成技術
CN110256694A (zh) 一种可拉伸透明导电水凝胶及其制备方法
Yang et al. Fabrication of a highly elastic nanocomposite hydrogel by surface modification of cellulose nanocrystals
CN104530293A (zh) 一种聚丙烯酸-氧化石墨烯复合物的制备方法
CN109942839B (zh) 一种具有抗菌及自粘附性的原位自由基聚合凝胶、其制备方法及用途
CN109322155B (zh) 一种三重响应性纳米纤维水凝胶的制备方法
CN102690487A (zh) 结构可控纤维素接枝共聚物/蒙脱土复合材料及制备方法
CN112048223B (zh) 一种“抗污-杀菌-释放”多功能响应的抗菌表面及其制备方法
CN113999476A (zh) 一种双重刺激响应性导电复合水凝胶及其制备方法和应用
CN110746785A (zh) 一种高强度防冻型三维多孔水凝胶吸附材料及其制法
CN113150325A (zh) 一种pva/pam复合水凝胶的制备方法
Bonina et al. pH-sensitive hydrogels composed of chitosan and polyacrylamide–preparation and properties
CN112480312A (zh) 一种高弹性高强度双交联多孔水凝胶的制备方法
CN108147393B (zh) 一种高强高韧高导电性石墨烯膜及其制备方法
CN100509886C (zh) 一种纳米水凝胶材料及其制备方法和用途
CN114736332B (zh) 一种酶促生物盐凝胶的制备方法和应用
CN114805866A (zh) 复合交联的三重网络结构离子导电水凝胶及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant