CN112608508A - 一种抗冻自修复导电水凝胶及其制备方法、柔性传感器 - Google Patents
一种抗冻自修复导电水凝胶及其制备方法、柔性传感器 Download PDFInfo
- Publication number
- CN112608508A CN112608508A CN202011474226.7A CN202011474226A CN112608508A CN 112608508 A CN112608508 A CN 112608508A CN 202011474226 A CN202011474226 A CN 202011474226A CN 112608508 A CN112608508 A CN 112608508A
- Authority
- CN
- China
- Prior art keywords
- hydrogel
- self
- antifreeze
- composite
- cellulose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000017 hydrogel Substances 0.000 title claims abstract description 113
- 238000007710 freezing Methods 0.000 title claims abstract description 23
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 239000002131 composite material Substances 0.000 claims abstract description 40
- 230000002528 anti-freeze Effects 0.000 claims abstract description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229920002678 cellulose Polymers 0.000 claims abstract description 33
- 239000001913 cellulose Substances 0.000 claims abstract description 33
- 229920002401 polyacrylamide Polymers 0.000 claims abstract description 32
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 22
- 150000003839 salts Chemical class 0.000 claims abstract description 17
- 239000000945 filler Substances 0.000 claims abstract description 13
- 239000003607 modifier Substances 0.000 claims abstract description 12
- 238000002791 soaking Methods 0.000 claims abstract description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 58
- 235000011187 glycerol Nutrition 0.000 claims description 20
- 229920001046 Nanocellulose Polymers 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 9
- 239000001110 calcium chloride Substances 0.000 claims description 8
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 8
- 230000004048 modification Effects 0.000 claims description 7
- 238000012986 modification Methods 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 claims description 5
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical group [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 4
- 238000004132 cross linking Methods 0.000 claims description 4
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 3
- 238000007872 degassing Methods 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 claims description 3
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 2
- 229910021592 Copper(II) chloride Inorganic materials 0.000 claims description 2
- 229910021577 Iron(II) chloride Inorganic materials 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 239000002042 Silver nanowire Substances 0.000 claims description 2
- 239000002041 carbon nanotube Substances 0.000 claims description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 2
- 229910021389 graphene Inorganic materials 0.000 claims description 2
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 16
- 230000008014 freezing Effects 0.000 abstract description 13
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 11
- 239000001257 hydrogen Substances 0.000 abstract description 11
- 230000002441 reversible effect Effects 0.000 abstract description 8
- 239000007798 antifreeze agent Substances 0.000 abstract description 6
- 239000007864 aqueous solution Substances 0.000 abstract description 2
- 150000001768 cations Chemical class 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 16
- 230000035945 sensitivity Effects 0.000 description 10
- 239000000499 gel Substances 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 230000008439 repair process Effects 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 210000000707 wrist Anatomy 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 239000002390 adhesive tape Substances 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002121 nanofiber Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N propylene glycol Substances CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- -1 salt ions Chemical class 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JJTDIRSCDLGMRU-UHFFFAOYSA-N azane;prop-2-enamide Chemical compound N.NC(=O)C=C JJTDIRSCDLGMRU-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 239000011370 conductive nanoparticle Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000008921 facial expression Effects 0.000 description 1
- 230000005057 finger movement Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methyl-cyclopentane Natural products CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 239000011540 sensing material Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
- C08J3/246—Intercrosslinking of at least two polymers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/16—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
- G01B7/18—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/24—Homopolymers or copolymers of amides or imides
- C08J2333/26—Homopolymers or copolymers of acrylamide or methacrylamide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2401/00—Characterised by the use of cellulose, modified cellulose or cellulose derivatives
- C08J2401/02—Cellulose; Modified cellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/10—Metal compounds
- C08K3/14—Carbides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/28—Nitrogen-containing compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明涉及柔性传感器材料技术领域,具体涉及一种抗冻自修复导电水凝胶及其制备方法、柔性传感器。本发明制备方法,将导电纳米填料/纳米纤维素/聚丙烯酰胺水凝胶浸泡在含有抗冻剂和金属盐的复合改性剂水溶液中,金属盐协同抗冻剂组分置换水凝胶网络体系中的水分子,降低复合水凝胶网络结构中水的凝固点,提高其抗冻性能;金属阳离子与复合水凝胶中的纤维素形成可逆离子键,纤维素与聚丙烯酰胺形成可逆氢键作用,构成的多重可逆网络赋予所制备水凝胶优异的自修复性能;并且金属盐协同导电纳米填料赋予所制备水凝胶优异的导电性、灵敏的传感性能和满足相应的应用场景需求的机械柔性。
Description
技术领域
本发明涉及柔性传感器材料技术领域,具体涉及一种抗冻自修复导电水凝胶及其制备方法、柔性传感器。
背景技术
随着时代的发展,电子器件已经被应用于人们工作和生活的方方面面。柔性应变传感器是一种利用柔性材料制备的具有超强环境适应性的电子器件,目前已应用于人体健康监测、人体运动监测、人机交互以及软机器人技术等领域。
水凝胶作为具有三维交联网络的亲水性聚合物材料,因其优良的性能在柔性传感器领域具有巨大的应用潜力。传统的水凝胶在低温环境下会不可避免地被冻住,其机械性能和导电性能受到严重限制,而对于可靠的水凝胶传感器其在低温下能保持稳定的性能是非常重要的。同时,基于水凝胶的柔性传感器,导电材料的选择对水凝胶的导电性能影响很大。金属碳/氮化物(MXene)是一类二维量子材料,因其优异的导电性和导热性能被认为是一种极具潜力的新型导电填料。
纤维素纳米纤维是一种基于木质的可再生、可降解纳米纤维材料,采用TEMPO氧化法制备的纳米纤维素可通过加入高价金属离子实现可逆交联从而形成自修复水凝胶。聚丙烯酰胺是一种常用的高弹性树脂且含有丰富的氢键,可在水中聚合形成高弹水凝胶。这几种材料的结合能够开发一种独特的多功能水凝胶材料。如专利CN107973920A公开了一种纤维素/二维层状材料复合水凝胶,但是该水凝胶的抗冻性不能满足传感器材料的需求。现有技术中存在采用有机液体如丙烯或乙二醇已用于合成具有改进温度范围的混合有机水凝胶,然而这些有机溶剂的引入影响了水凝胶中氢键的形成,降低了机械性能和导电性,且不具备自修复性能;也存在通过加入其他抗冻剂制备具有良好抗冻性的有机水凝胶,然而这些有机水凝胶的机械性能较差,制备过程繁琐且不导电。
因此,制备获得具有低温抗冻、高导电、自修复性能的水凝胶材料,且简化其制备工艺,提高其安全性能,仍然是亟待需要解决的技术问题。
发明内容
为了克服现有技术的缺陷,本发明的目的之一在于提供一种抗冻自修复导电水凝胶的制备方法,工艺过程简单,针对不同的目的和应用场景,设计制备具有不同机械强度、拉伸性能、以及传感灵敏度和自修复能力的水凝胶材料。
本发明的目的之二在于提供一种采用本发明制备方法制备的抗冻自修复导电水凝胶。
同时,本发明的目的之三在于提供一种柔性传感器,由本发明抗冻自修复导电水凝胶制作而成,具有抗冻、高弹性、可自修复、高导电性、高灵敏度等性能,可实现对人体运动的监测。
为了实现上述目的,本发明采用的技术方案如下:
一种抗冻自修复导电水凝胶的制备方法,包括首先制备复合水凝胶,然后将制备的复合水凝胶浸泡在复合改性剂溶液中;其中复合水凝胶为导电纳米填料/纳米纤维素/聚丙烯酰胺水凝胶;复合改性剂溶液由抗冻剂水体系中混合金属盐组成。
本发明抗冻自修复导电水凝胶的制备方法,首先合成导电纳米填料/纤维素/聚丙烯酰胺复合水凝胶,该复合水凝胶中含有聚丙烯酰胺化学交联网络,以及酰胺键和纤维素羟基、羧基间的氢键作用。将该复合水凝胶进一步浸泡在含有抗冻剂(例如甘油)和金属盐的复合改性剂中,抗冻剂(例如甘油)的引入减少了水分子间的氢键作用,使其在低温下不易结晶成冰,金属盐的协同作用同样可以降低水的凝固点,从而使凝胶具备很强的抗冻性,在低温环境下仍能保持优异的机械柔性与导电性能。
同时,高价金属盐能够与纤维素的羧基形成交联离子键,提供了可逆的交联点,从而进一步提升凝胶的自修复性能;并且金属盐协同导电纳米填料赋予所制备水凝胶优异的导电性、灵敏的传感性能和满足相应的应用场景需求的机械柔性。
可选的,所述抗冻剂为甘油或乙二醇;进一步的,所述金属盐为CaCl2、AlCl3、FeCl2、CuCl2或CoCl4。
作为优选的,所述复合改性溶液由CaCl2、甘油/水体系混合而成。
为了进一步提高所制备水凝胶的综合性能,进一步优选的,所述复合改性溶液中CaCl2的含量为30~50%wt.%;甘油/水体系中甘油和水的用量比例为1:1、1:2或2:1。
更进一步优选的,所述复合改性溶液中CaCl2的含量为40~50%wt.%;甘油/水体系中甘油和水的用量比例为1:2。
作为优选的,所述复合水凝胶为导电纳米填料/纳米纤维素/聚丙烯酰胺水凝胶;其中导电纳米填料为MXene(金属碳/氮化物)、银纳米线、还原氧化石墨烯或碳纳米管;导电纳米填料的质量含量为0.5%~2%。
具体的,上述抗冻自修复导电水凝胶的制备方法,包括:
1)制备MXene/纳米纤维素/聚丙烯酰胺水凝胶:
将MXene溶于水中得到均匀MXene分散液,然后加入纳米纤维素,搅拌至纳米纤维素完全溶解;冰浴环境下,依次加入丙烯酰胺过硫酸铵、N’N-亚甲基双丙烯酰胺,待溶液恢复至室温后进行反复脱气处理并在60℃下反应3~5小时,制得MXene/纳米纤维素/聚丙烯酰胺水凝胶;
2)对MXene/纳米纤维素/聚丙烯酰胺水凝胶进行有机化改性处理:
将步骤1)制备的MXene/纳米纤维素/聚丙烯酰胺水凝胶浸泡在复合改性剂溶液中3~5天,以使金属离子和抗冻剂能够充分渗入MXene/纳米纤维素/聚丙烯酰胺水凝胶中,从而起到物理交联和抗冻的效果。
一种抗冻自修复导电水凝胶,由上述制备方法制备而成。
一种柔性传感器,由上述抗冻自修复导电水凝胶制作而成。
本发明通过简易可行、成本低的工艺方法制备抗冻自修复导电水凝胶,采用该水凝胶制作的柔性传感器具有抗冻性、可拉伸性、高弹性、可自修复、灵敏度高、检测范围广、稳定的信号传输等优异性能,可以实现人体运动的实时监测,包括手指运动、手肘运动、面部表情、呼吸等。因此,本发明抗冻自修复导电水凝胶可应用于可穿戴设备、柔性机器人、电子皮肤、医疗保健等领域。
上述柔性传感器的抗冻、自修复及传感原理:
(1)抗冻机理:通过将复合水凝胶(例如MXene/纳米纤维素/聚丙烯酰胺)浸入金属盐和抗冻剂复合改性剂水溶液中(例如氯化钙-去离子水/甘油体系),使金属盐离子(例如氯化钙离子)进入水凝胶内部,并使抗冻剂(例如甘油)分子置换部分水分子;由于抗冻剂(例如甘油)降低了水分子之间的氢键作用,使其在低温下不易结晶;此外,金属盐中的离子与水的相互作用可降低水的凝固点,从而赋予凝胶低温抗冻性。
(2)自修复原理:含有导电粒子、纤维素和聚丙烯酰胺的复合水凝胶具有多重网络结构,通过高价金属盐的浸泡,具备了可逆的离子键和氢键作用;氢键主要由聚丙烯酰胺中的酰胺键与纤维素的羟基、羧基形成,离子键主要由金属阳离子与纤维素的羧基阴离子形成。该丰富的多重网络结构中可逆离子键和氢键,有效提高了复合水凝胶的稳定性,赋予水凝胶自修复性能和良好的机械性能;
(3)传感原理:采用本发明所制备的抗冻自修复导电水凝胶制作的柔性应变传感器,在受到机械应变等作用下,传感器中的导电网络发生形变,使水凝胶中的电阻产生一定的变化,从而将水凝胶形状的改变转换为电阻的变化值。水凝胶中含有导电纳米粒子(例如MXene),在复合改性剂中金属盐粒子的协同作用下,增强了水凝胶导电性,提高了水凝胶传感器的传感灵敏度。
本发明的其他有益效果:在本发明优选的参数范围内,通过调整导电纳米填料含量、复合改性溶液的组成,针对不同的目的和应用场景,设计制备具有不同机械强度、拉伸性能、以及传感灵敏度和自修复能力的抗冻自修复导电水凝胶材料。
附图说明
图1为本发明实施例2提供的柔性传感器制作过程结构示意图;
图2为本发明实施例1制备的抗冻自修复导电水凝胶的抗冻性试验示意图;
图3为本发明实施例2制备的柔性传感器手指不同弯曲幅度与释放的△R/R0–T曲线图;
图4为本发明实施例2制备的柔性传感器手腕不同弯曲幅度与释放的△R/R0–T曲线图。
具体实施方式
下面结合具体实施例对本发明做进一步的详细说明。除特殊说明的之外,各实施例及试验例中所用的设备和试剂均可从商业途径得到。
实施例1
本实施例提供一种MXene/纳米纤维素/聚丙烯酰胺抗冻自修复导电水凝胶,其制备方法具体为:
1)MXene/纳米纤维素/聚丙烯酰胺水凝胶制备:
将5mgMXene溶于10ml去离子水中,通过超声波细胞破碎仪超声处理30min,得到均匀MXene分散液;然后加入0.156g纳米纤维素,50℃搅拌45min以上至纳米纤维素完全溶解;在冰浴环境下,依次加入1.56g丙烯酰胺(搅拌30min),106.5mg过硫酸铵(搅拌30min),2.4mgN’N-亚甲基双丙烯酰胺(搅拌10min),移去冰浴,待溶液恢复至室温,将其倒入培养皿中进行反复脱气处理之后,60℃反应3h后,获得MXene/纳米纤维素/聚丙烯酰胺水凝胶;
2)MXene/纳米纤维素/聚丙烯酰胺水凝胶进行有机化改性处理:
将步骤1)获得的MXene/纳米纤维素/聚丙烯酰胺水凝胶分别浸泡在氯化钙-去离子水/甘油体系,其中氯化钙的含量为30%wt.%,去离子水与甘油溶液的体积比为1:1,室温浸泡三天后,获得MXene/纳米纤维素/聚丙烯酰胺抗冻自修复导电水凝胶。
实施例2
本实施例提供一种柔性传感器,采用上述实施例1制备的MXene/纳米纤维素/聚丙烯酰胺抗冻自修复导电水凝胶作为导电传感材料,其组装方法为:
如图1所示,将实施例1制备的MXene/纳米纤维素/聚丙烯酰胺抗冻自修复导电水凝胶,裁剪成长3cm×宽1cm×高0.2cm的固定尺寸,作为传感器的基底材料1。裁剪两块长4cm×宽2cm的3M双面胶作为封装层2,分别将MXene/纳米纤维素/聚丙烯酰胺有机水凝胶放置于双面胶中间位置。两根铜胶带3分别连接有机水凝胶的两端,作为传感器的正负极。最后,两个封装层部件面对面组装,组装成应变传感器,如图2所示。
试验例1
设计试验方法对本发明制作的抗冻自修复导电水凝胶材料的性能检测:
1、抗冻性能:
试验方法:将实施例1制作的抗冻自修复导电水凝胶放置在-40℃环境下12小时,取出后对其进行拉伸,观察其表面破裂现象。
试验结果:如图2所示,表明本发明提供的抗冻自修复导电水凝胶在低温环境下放置后,仍然保持很好的延展性和机械强度,拉伸后无明显的破裂现象。
2、抗折叠弯曲等机械形变的导电传感性能
试验方法:将按照实施例2所述方法组装的柔性传感器分别粘贴在手指和手腕上,测试该传感器抗折叠弯曲等机械形变,并测试其导电和传感性能。
试验结果:如图3和图4所示,采用本发明抗冻自修复导电水凝胶制作的柔性传感器在手指、手腕不同弯曲幅度下仍然保持很好的导电传感性能,能够精确实时监测手指、手腕的弯曲状态。
试验例2
检测不同导电纳米填料含量,不同复配比例的复合改性剂溶液按照实施例1提供的制备方法制备的MXene/纳米纤维素/聚丙烯酰胺抗冻自修复导电水凝胶的各项性能,如下表1所示:
拉伸强度和断裂伸长率采用万能拉伸试验机进行测试,拉伸速率为5毫米/分钟,直至样品断裂。
灵敏度值测试方法:在采用万能拉伸试验机进行拉伸过程中实时监测传感器电阻值的变化;灵敏度值为拉伸过程中电阻变化率和形变率的比值。
修复效率的检测方法:将复合水凝胶采用刀片切为两段,并予以拼接,在室温下静置3小时,再次测试水凝胶的拉伸强度。修复效率为切割-自修复后水凝胶拉伸强度相对于原始样品的变化率。
表1.不同配方制备的MXene/纳米纤维素/聚丙烯酰胺抗冻自修复导电水凝胶的力学性能、传感性能以及修复效率结果
MXene含量 | CaCl<sub>2</sub>含量 | 水:甘油 | 拉伸强度 | 伸长率 | 灵敏度 | 修复效率 | |
1 | 0.5% | 30% | 2:1 | 120.5kPa | 453% | 1.48 | 95.1% |
2 | 0.5% | 40% | 1:1 | 165.2kPa | 298% | 1.68 | 96.2% |
3 | 0.5% | 50% | 1:2 | 232.5kPa | 169% | 1.77 | 98.9% |
4 | 1% | 30% | 1:1 | 131.2kPa | 467% | 2.21 | 95.9% |
5 | 1% | 40% | 1:2 | 182.1kPa | 281.6% | 2.79 | 96.2% |
6 | 1% | 50% | 2:1 | 256.2kPa | 148% | 2.90 | 99.8% |
7 | 2% | 30% | 1:2 | 140.5kPa | 469% | 3.15 | 93.1% |
8 | 2% | 40% | 2:1 | 162.3kPa | 270% | 3.71 | 96.2% |
9 | 2% | 50% | 1:1 | 263.7kPa | 139% | 3.96 | 98.9% |
本发明将含有导电纳米填料、纤维素、聚丙烯酰胺的水凝胶浸泡在由金属盐和抗冻剂组成的复合改性剂溶液中,金属盐和抗冻剂协同作用替换水凝胶网络中的水分子,提高水凝胶网络中水的凝固点,破坏冰晶晶格的形成,金属盐与水凝胶网络中的导电纳米填料、纤维素协同作用,丰富水凝胶网络中的可逆的离子键和氢键,赋予水凝胶相应的抗冻和自修复性能。同时,导电纳米填料和金属离子的作用提供了电子导电和离子到了的双通路,使复合水凝胶具备良好的导电性能和传感性能。具体的,由上述实验结果可知,随着MXene及CaCl2含量的增加,凝胶的强度显著增强,但伸长率相应发生了降低;同时MXene及CaCl2的含量同样显著影响传感灵敏度,这主要是由于增加导电粒子MXene及Ca2+、Cl-离子浓度可有效提高凝胶的导电性能,从而提升单位应变下的电阻变化值。对自修复性能的影响较为显著的因素是CaCl2含量及溶剂比例,实验发现水含量较高的溶剂和Ca2+离子浓度较高的凝胶修复性能更强,主要是由于凝胶内的氢键和离子键更多的原因。
因此,本发明提供的抗冻自修复导电水凝胶材料可在一定工艺窗口内通过调控各个主要参数的指标来针对不同的目的和应用场景,设计制备具有不同机械强度、拉伸性能、以及传感灵敏度和自修复能力的复合水凝胶材料。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (10)
1.一种抗冻自修复导电水凝胶的制备方法,其特征在于,包括首先制备复合水凝胶,然后将制备的复合水凝胶浸泡在复合改性剂溶液中;其中复合水凝胶为导电纳米填料/纳米纤维素/聚丙烯酰胺水凝胶;复合改性剂溶液由抗冻剂水体系中混合金属盐组成。
2.如权利要求1所述的抗冻自修复导电水凝胶的制备方法,其特征在于,所述抗冻剂为甘油或乙二醇。
3.如权利要求2所述的抗冻自修复导电水凝胶的制备方法,其特征在于,所述金属盐为CaCl2、AlCl3、FeCl2、CuCl2或CoCl4。
4.如权利要求3所述的抗冻自修复导电水凝胶的制备方法,其特征在于,所述复合改性溶液由CaCl2、甘油/水体系混合而成。
5.如权利要求4所述的抗冻自修复导电水凝胶的制备方法,其特征在于,所述复合改性溶液中CaCl2的含量为30~50% wt.%;甘油/水体系中甘油和水的用量比例为1:1、1:2或2:1。
6.如权利要求5所述的抗冻自修复导电水凝胶的制备方法,其特征在于,所述复合改性溶液中CaCl2的含量为40~50% wt.%;甘油/水体系中甘油和水的用量比例为1:2。
7.如权利要求1~6任一项所述的抗冻自修复导电水凝胶的制备方法,其特征在于,所述导电纳米填料为MXene、银纳米线、还原氧化石墨烯或碳纳米管;导电纳米填料的质量含量为0.5%~2%。
8.如权利要求7所述的抗冻自修复导电水凝胶的制备方法,其特征在于,包括
1)制备MXene/纳米纤维素/聚丙烯酰胺水凝胶:
将MXene溶于水中,得到均匀MXene分散液,然后加入纳米纤维素,搅拌至纳米纤维素完全溶解;冰浴环境下,依次加入丙烯酰胺、过硫酸铵、N’N-亚甲基双丙烯酰胺,待溶液恢复至室温后进行反复脱气处理并在60℃下反应3~5小时,制得MXene/纳米纤维素/聚丙烯酰胺水凝胶;
2)对MXene/纳米纤维素/聚丙烯酰胺水凝胶进行离子交联和抗冻改性处理:
将步骤1)制备的MXene/纳米纤维素/聚丙烯酰胺水凝胶浸泡在复合改性剂溶液中浸泡3~5天。
9.一种抗冻自修复导电水凝胶,其特征在于,由如权利要求1~8任一项所述的制备方法制备而成。
10.一种柔性传感器,其特征在于,由如权利要求9所述的抗冻自修复导电水凝胶制作而成。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011474226.7A CN112608508A (zh) | 2020-12-14 | 2020-12-14 | 一种抗冻自修复导电水凝胶及其制备方法、柔性传感器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011474226.7A CN112608508A (zh) | 2020-12-14 | 2020-12-14 | 一种抗冻自修复导电水凝胶及其制备方法、柔性传感器 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112608508A true CN112608508A (zh) | 2021-04-06 |
Family
ID=75233931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011474226.7A Pending CN112608508A (zh) | 2020-12-14 | 2020-12-14 | 一种抗冻自修复导电水凝胶及其制备方法、柔性传感器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112608508A (zh) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113248730A (zh) * | 2021-04-22 | 2021-08-13 | 上海健康医学院 | 聚丙烯酰胺-纳米纤维素晶-银纳米颗粒复合导电抗冻有机水凝胶及其制备方法和应用 |
CN113372583A (zh) * | 2021-06-23 | 2021-09-10 | 福建师范大学 | 一种基于酰腙键的柔韧可自愈的长效抗冻抗干离子应变传感器的制备方法 |
CN113717405A (zh) * | 2021-09-24 | 2021-11-30 | 天津中电新能源研究院有限公司 | 一种柔性导电水凝胶及其制备方法和应用 |
CN114429867A (zh) * | 2022-03-21 | 2022-05-03 | 南京邮电大学 | 一种全凝胶柔性超级电容器的制备方法 |
CN114426682A (zh) * | 2022-02-07 | 2022-05-03 | 西北工业大学 | 一种MXene高强度复合水凝胶及其制备方法和应用 |
CN114479118A (zh) * | 2021-12-24 | 2022-05-13 | 华南理工大学 | 一种基于纳米纤维素-聚丙烯酰胺-金属离子的导电水凝胶及其制备方法与应用 |
CN114843006A (zh) * | 2022-05-27 | 2022-08-02 | 四川大学 | 一种三维柔性传感器材料及其制备方法和应用 |
CN114835943A (zh) * | 2022-06-10 | 2022-08-02 | 闽江学院 | 一种抗冻导电可拉伸硫辛酸有机凝胶的制备方法 |
CN114874463A (zh) * | 2022-06-08 | 2022-08-09 | 重庆大学 | 一种具有优异机械性能的抗冻导电水凝胶及其制备方法与应用 |
CN115160595A (zh) * | 2022-07-01 | 2022-10-11 | 齐鲁工业大学 | 抗冻、抗溶胀淀粉基纳米复合水凝胶及制备方法和应用 |
CN115251900A (zh) * | 2022-06-06 | 2022-11-01 | 湖南工业大学 | 一种水凝胶柔性传感器及其制备方法 |
CN115340635A (zh) * | 2021-05-14 | 2022-11-15 | 四川大学 | 一种多功能光电双信号传感仿生离子皮肤的制备方法 |
CN115433551A (zh) * | 2022-09-13 | 2022-12-06 | 华南理工大学 | 一种柔性相变复合材料及其制备方法 |
CN115466408A (zh) * | 2022-08-12 | 2022-12-13 | 齐鲁工业大学 | 一种基于纳米纤维素的多功能导电复合水凝胶制备方法 |
CN115537957A (zh) * | 2022-10-11 | 2022-12-30 | 武汉纺织大学 | 高强度抗冻水凝胶纤维及其制备方法 |
CN115624921A (zh) * | 2022-10-17 | 2023-01-20 | 陕西科技大学 | 一种高强度胶原基质多功能有机水凝胶及其制备方法 |
CN116217972A (zh) * | 2022-12-09 | 2023-06-06 | 广东省科学院生物与医学工程研究所 | 柔性导电水凝胶及其制备方法和应用 |
CN115624921B (zh) * | 2022-10-17 | 2025-07-22 | 陕西科技大学 | 一种高强度胶原基质多功能有机水凝胶及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107513131A (zh) * | 2017-07-05 | 2017-12-26 | 南京林业大学 | 聚丙烯酰胺/纳米纤维素/碳纳米管导电复合凝胶制备法 |
CN109942755A (zh) * | 2019-04-10 | 2019-06-28 | 厦门大学 | 一种纤维素基离子液体自修复凝胶的合成方法 |
CN110041538A (zh) * | 2019-05-10 | 2019-07-23 | 华南理工大学 | 纤维素离子水凝胶增强抗冻和拉伸性能的方法及抗冻可拉伸纤维素离子水凝胶和应用 |
CN110183688A (zh) * | 2019-04-30 | 2019-08-30 | 南京林业大学 | 基于纳米纤维素-碳纳米管/聚丙烯酰胺导电水凝胶的柔性应变传感器的制备方法 |
CN110922611A (zh) * | 2019-11-27 | 2020-03-27 | 杭州师范大学 | 高强度导电且耐高低温的MXene水凝胶及其制备方法和应用 |
CN111234122A (zh) * | 2020-03-12 | 2020-06-05 | 山东大学 | 一种抗冰水凝胶粘结材料及其制备方法和应用 |
CN111748107A (zh) * | 2020-06-23 | 2020-10-09 | 广东省医疗器械研究所 | 一种MXene材料增强的导电水凝胶 |
-
2020
- 2020-12-14 CN CN202011474226.7A patent/CN112608508A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107513131A (zh) * | 2017-07-05 | 2017-12-26 | 南京林业大学 | 聚丙烯酰胺/纳米纤维素/碳纳米管导电复合凝胶制备法 |
CN109942755A (zh) * | 2019-04-10 | 2019-06-28 | 厦门大学 | 一种纤维素基离子液体自修复凝胶的合成方法 |
CN110183688A (zh) * | 2019-04-30 | 2019-08-30 | 南京林业大学 | 基于纳米纤维素-碳纳米管/聚丙烯酰胺导电水凝胶的柔性应变传感器的制备方法 |
CN110041538A (zh) * | 2019-05-10 | 2019-07-23 | 华南理工大学 | 纤维素离子水凝胶增强抗冻和拉伸性能的方法及抗冻可拉伸纤维素离子水凝胶和应用 |
CN110922611A (zh) * | 2019-11-27 | 2020-03-27 | 杭州师范大学 | 高强度导电且耐高低温的MXene水凝胶及其制备方法和应用 |
CN111234122A (zh) * | 2020-03-12 | 2020-06-05 | 山东大学 | 一种抗冰水凝胶粘结材料及其制备方法和应用 |
CN111748107A (zh) * | 2020-06-23 | 2020-10-09 | 广东省医疗器械研究所 | 一种MXene材料增强的导电水凝胶 |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113248730A (zh) * | 2021-04-22 | 2021-08-13 | 上海健康医学院 | 聚丙烯酰胺-纳米纤维素晶-银纳米颗粒复合导电抗冻有机水凝胶及其制备方法和应用 |
CN115340635A (zh) * | 2021-05-14 | 2022-11-15 | 四川大学 | 一种多功能光电双信号传感仿生离子皮肤的制备方法 |
CN113372583A (zh) * | 2021-06-23 | 2021-09-10 | 福建师范大学 | 一种基于酰腙键的柔韧可自愈的长效抗冻抗干离子应变传感器的制备方法 |
CN113717405A (zh) * | 2021-09-24 | 2021-11-30 | 天津中电新能源研究院有限公司 | 一种柔性导电水凝胶及其制备方法和应用 |
CN113717405B (zh) * | 2021-09-24 | 2024-05-03 | 天津中电新能源研究院有限公司 | 一种柔性导电水凝胶及其制备方法和应用 |
CN114479118A (zh) * | 2021-12-24 | 2022-05-13 | 华南理工大学 | 一种基于纳米纤维素-聚丙烯酰胺-金属离子的导电水凝胶及其制备方法与应用 |
CN114426682A (zh) * | 2022-02-07 | 2022-05-03 | 西北工业大学 | 一种MXene高强度复合水凝胶及其制备方法和应用 |
CN114429867A (zh) * | 2022-03-21 | 2022-05-03 | 南京邮电大学 | 一种全凝胶柔性超级电容器的制备方法 |
CN114429867B (zh) * | 2022-03-21 | 2023-06-23 | 南京邮电大学 | 一种全凝胶柔性超级电容器的制备方法 |
CN114843006A (zh) * | 2022-05-27 | 2022-08-02 | 四川大学 | 一种三维柔性传感器材料及其制备方法和应用 |
CN114843006B (zh) * | 2022-05-27 | 2024-02-06 | 四川大学 | 一种三维柔性传感器材料及其制备方法和应用 |
CN115251900A (zh) * | 2022-06-06 | 2022-11-01 | 湖南工业大学 | 一种水凝胶柔性传感器及其制备方法 |
CN114874463A (zh) * | 2022-06-08 | 2022-08-09 | 重庆大学 | 一种具有优异机械性能的抗冻导电水凝胶及其制备方法与应用 |
CN114835943B (zh) * | 2022-06-10 | 2023-06-23 | 闽江学院 | 一种抗冻导电可拉伸硫辛酸有机凝胶的制备方法 |
CN114835943A (zh) * | 2022-06-10 | 2022-08-02 | 闽江学院 | 一种抗冻导电可拉伸硫辛酸有机凝胶的制备方法 |
CN115160595A (zh) * | 2022-07-01 | 2022-10-11 | 齐鲁工业大学 | 抗冻、抗溶胀淀粉基纳米复合水凝胶及制备方法和应用 |
CN115466408A (zh) * | 2022-08-12 | 2022-12-13 | 齐鲁工业大学 | 一种基于纳米纤维素的多功能导电复合水凝胶制备方法 |
CN115433551A (zh) * | 2022-09-13 | 2022-12-06 | 华南理工大学 | 一种柔性相变复合材料及其制备方法 |
CN115537957A (zh) * | 2022-10-11 | 2022-12-30 | 武汉纺织大学 | 高强度抗冻水凝胶纤维及其制备方法 |
CN115537957B (zh) * | 2022-10-11 | 2024-04-09 | 武汉纺织大学 | 高强度抗冻水凝胶纤维及其制备方法 |
CN115624921A (zh) * | 2022-10-17 | 2023-01-20 | 陕西科技大学 | 一种高强度胶原基质多功能有机水凝胶及其制备方法 |
CN115624921B (zh) * | 2022-10-17 | 2025-07-22 | 陕西科技大学 | 一种高强度胶原基质多功能有机水凝胶及其制备方法 |
CN116217972A (zh) * | 2022-12-09 | 2023-06-06 | 广东省科学院生物与医学工程研究所 | 柔性导电水凝胶及其制备方法和应用 |
CN116217972B (zh) * | 2022-12-09 | 2024-11-05 | 广东省科学院生物与医学工程研究所 | 柔性导电水凝胶及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112608508A (zh) | 一种抗冻自修复导电水凝胶及其制备方法、柔性传感器 | |
Wang et al. | Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding | |
CN110776652B (zh) | 石墨烯基导电水凝胶和其制备方法及在柔性可穿戴式传感器上的应用 | |
Zhang et al. | Lignin sulfonate induced ultrafast polymerization of double network hydrogels with anti-freezing, high strength and conductivity and their sensing applications at extremely cold conditions | |
Guo et al. | Conductive nanocomposite hydrogels for flexible wearable sensors | |
You et al. | Flexible porous Gelatin/Polypyrrole/Reduction graphene oxide organohydrogel for wearable electronics | |
CN110256697A (zh) | 一种高强韧和应变敏感的聚乙烯醇离子水凝胶传感材料及其制备方法和应用 | |
Fu et al. | Design of asymmetric-adhesion lignin reinforced hydrogels with anti-interference for strain sensing and moist air induced electricity generator | |
CN112795029A (zh) | 双网络柔性导电粘附抗冻水凝胶的制备方法和应用 | |
Wu et al. | Poly (vinyl alcohol)/polyacrylamide double‐network ionic conductive hydrogel strain sensor with high sensitivity and high elongation at break | |
Xu et al. | Super strong gelatin/cellulose nanofiber hybrid hydrogels without covalent cross-linking for strain sensor and supercapacitor | |
Wang et al. | Fabrication of an ion-enhanced low-temperature tolerant graphene/PAA/KCl hydrogel and its application for skin sensors | |
Yue et al. | Fabrication of anti-freezing and self-healing nanocomposite hydrogels based on phytic acid and cellulose nanocrystals for high strain sensing applications | |
Chen et al. | Highly stretchable, self-healable and adhesive, thermal responsive conductive hydrogel loading nanocellulose complex for a flexible sensor | |
Liu et al. | A highly sensitive and anti-freezing conductive strain sensor based on polypyrrole/cellulose nanofiber crosslinked polyvinyl alcohol hydrogel for human motion detection | |
Fu et al. | Design of asymmetric-adhesion lignin-reinforced hydrogels based on disulfide bond crosslinking for strain sensing application | |
CN113150316B (zh) | 一种具有高强度、可拉伸的PAA-Fe3+/AG离子导电水凝胶的制备方法 | |
Deng et al. | From carbon nanotubes to ultra-sensitive, extremely-stretchable and self-healable hydrogels | |
Zheng et al. | Cellulose nanocrystal reinforced conductive hydrogels with anti-freezing properties for strain sensors | |
Shu et al. | A synergistic enhancement strategy for mechanical and conductive properties of hydrogels with dual ionically cross-linked κ-carrageenan/poly (sodium acrylate-co-acrylamide) network | |
An et al. | A self-healing, long-lasting adhesive, lignin-based polyvinyl alcohol organo-hydrogel for strain-sensing applications | |
Ma et al. | Lignosulfonate-enhanced dispersion and compatibility of liquid metal nanodroplets in PVA hydrogel for improved self-recovery and fatigue resistance in wearable sensors | |
Ding et al. | An oxidized alginate linked tough conjoined-network hydrogel with self-healing and conductive properties for strain sensing | |
CN116355257A (zh) | 一种强韧且抗冻的离子导电水凝胶及其制备方法 | |
CN115466355B (zh) | 一种多功能导电离子凝胶、制备方法及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210406 |
|
RJ01 | Rejection of invention patent application after publication |