CN114429867A - 一种全凝胶柔性超级电容器的制备方法 - Google Patents

一种全凝胶柔性超级电容器的制备方法 Download PDF

Info

Publication number
CN114429867A
CN114429867A CN202210275952.9A CN202210275952A CN114429867A CN 114429867 A CN114429867 A CN 114429867A CN 202210275952 A CN202210275952 A CN 202210275952A CN 114429867 A CN114429867 A CN 114429867A
Authority
CN
China
Prior art keywords
hydrogel
xls
paam
flexible supercapacitor
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210275952.9A
Other languages
English (en)
Other versions
CN114429867B (zh
Inventor
赵为为
白岩
赵强
刘淑娟
黄维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202210275952.9A priority Critical patent/CN114429867B/zh
Publication of CN114429867A publication Critical patent/CN114429867A/zh
Application granted granted Critical
Publication of CN114429867B publication Critical patent/CN114429867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/309Sulfur containing acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种全凝胶柔性超级电容器的制备方法。本发明将丙烯酰胺(AAM)单体依次与粘土(XLS)、碳化钛(Ti3C2)纳米片溶液混合,XLS和N,N’‑亚甲基双丙烯酰胺作为协同交联剂,通过过硫酸钾引发剂引发聚合反应生成PAAM/XLS/Ti3C2水凝胶;XLS作为物理交联剂,与AAM之间丰富的氢键在水凝胶网络中形成可逆的非共价相互作用,制备出具有自修复性能的水凝胶;N,N’‑亚甲基双丙烯酰胺作为化学交联剂,与AAM之间的共价键为水凝胶提供良好的固型性和恢复性;以PAAM/XLS/Ti3C2水凝胶作为电极材料,PAAM/H2SO4水凝胶作为电解质组装全凝胶柔性超级电容器;利用氢键,使电极与电解质紧密粘合,有利于离子传输;组装的全凝胶柔性超级电容器具有高强度、可拉伸、可弯曲的优势。

Description

一种全凝胶柔性超级电容器的制备方法
技术领域
本发明涉及高分子凝胶材料技术领域,具体涉及一种全凝胶柔性超级电容器的制备方法。
背景技术
随着科学技术的不断发展,便携式柔性电子产品以柔性显示器、植入式医疗设备、微型机器人、电子皮肤和医疗健康检测设备等形式出现在各个领域。要实现对它们的供电,需要对储能器件提出更高的要求来满足特定的需要,例如体积小、重量轻、高电容性能,机械耐久性好和长距离循环稳定性等。超级电容器被认为是柔性电子产品中最有前途的候选者之一,它具有高功率密度,快速充电/放电速度和长循环寿命等优势。超级电容器通常由具有优异电化学性能的电极材料、电解质、隔膜与集流体四个部分组成。为了获得良好的机械柔韧性和电容性能,设计和研究具有柔性的电极和电解质具有重要意义。其中,电极作为存储及释放电荷的部分,对超级电容器的性能起着决定性的作用。
导电聚合物基水凝胶结合了导电材料与水凝胶的优异性能,具有优异的电子传输、离子传输能力以及可调的机械柔韧性,成为柔性超级电容器的理性材料之一。将本征导电材料(碳基、金属基、导电聚合物等)引入绝缘的聚合物基底中以形成交联网络是制备导电水凝胶的常用方法之一。
Ti3C2具有二维层状结构、高电化学活性表面、优异的导电性、可调的表面官能团以及出色的机械柔韧性,是制备超级电容器最有前途的电极材料之一。它的电荷存储机制通常被认为是一种电化学赝电容过程。这类赝电容机制和类似金属的导电性,使它具有更高的电容性能、循环寿命和速率性能。此外,Ti3C2良好的分散性和机械柔韧性也有益于应用在柔性超级电容器等领域。
发明内容
本发明的目的在于提出一种新的思路,采用将AAM单体、XLS和Ti3C2纳米片混合,在XLS、N,N’-亚甲基双丙烯酰胺双交联剂协同作用下通过过硫酸铵引发剂引发聚合反应形成以聚丙烯酰胺(PAAM)为弹性基底的水凝胶。AAM与XLS通过可逆的非共价相互作用赋予水凝胶超快的自愈合性能。N,N’-亚甲基双丙烯酰胺与AAM共聚为水凝胶提供良好的固型性和恢复性。Ti3C2纳米片作为导电填料,它表面丰富的亲水基团通过氢键相互作用与水凝胶网络牢固地结合,增强水凝胶力学性能。本发明制备的水凝胶电极具有可拉伸和自修复的性能。将PAAM/XLS/Ti3C2水凝胶电极与PAAM/H2SO4水凝胶电解质进行组装,得到具有三明治结构的全凝胶柔性超级电容器。PAAM/XLS/Ti3C2水凝胶电极与PAAM/H2SO4水凝胶电解质之间存在氢键,可以紧密贴合,有利于离子传输。
本发明所述的PAAM/XLS/Ti3C2水凝胶,以PAAM作为弹性基底、Ti3C2纳米片作为导电填料、XLS与N,N’-亚甲基双丙烯酰胺作为协同交联剂,分别与AAM发生物理和化学反应形成水凝胶。PAAM与XLS之间可逆的非共价相互作用使水凝胶具有自修复性能。N,N’-亚甲基双丙烯酰胺与AAM共聚为水凝胶提供良好的固型性和恢复性。Ti3C2纳米片与AAM和XLS存在氢键相互作用,嵌入到水凝胶中有利于增强力学性能和电化学活性。将PAAM/XLS/Ti3C2水凝胶与PAAM/H2SO4水凝胶电解质组装,形成具有三明治结构的全凝胶柔性超级电容器。
一种全凝胶柔性超级电容器,按照以下步骤进行制备:
步骤1、Ti3C2纳米片的制备
(1)LiF与HCl混合搅拌至LiF完全溶解,缓慢加入与LiF等质量的Ti3AlC2混合,将混合溶液置于反应釜中于40 ~ 70 ℃ 条件下反应24 ~ 72 h;
(2)将产物用去离子水在3500 rpm,5 min的条件下离心洗涤至pH>6,并真空干燥;
(3)将干燥后的产物(2)按1~30 mg/mL的浓度分散在去离子水中,在600 W的频率下超声1 ~ 4 h;
(4)将超声后的溶液在3500 rpm,1 ~ 2 h条件下离心,上层液体即为Ti3C2纳米片溶液。
步骤2、PAAM/XLS/Ti3C2水凝胶的制备
(1)将一定量的XLS分散在去离子水中,超声1 ~ 4 h,然后磁力搅拌2 ~ 6 h;
(2)随后,加入等量的AAM,磁力搅拌0.5 ~ 1 h;
(3)随后,加入Ti3C2纳米片溶液,磁力搅拌0.5 ~ 1 h;
(4)将N,N’-亚甲基双丙烯酰胺交联剂和过硫酸钾引发剂依次加入到上述溶液中,然后再充分搅拌;
(5)将上述混合溶液倒入玻璃模具中,在60 ℃条件下进行交联聚合,反应后形成可拉伸自愈合PAAM/XLS/Ti3C2水凝胶,冷却至室温以备步骤(4)使用。
步骤3、PAAM/H2SO4水凝胶的制备
(1)将AAM加入至H2SO4中,搅拌;
(2)随后加入交联剂N,N’-亚甲基双丙烯酰胺以及引发剂过硫酸钾,并充分搅拌;
(3)将上述混合溶液倒入玻璃模具中,在60 ℃条件下进行交联聚合反应,形成PAAM/H2SO4水凝胶,冷却至室温以备步骤(4)使用。
步骤4、PAAM/XLS/Ti3C2水凝胶电极柔性超级电容器的制备
(1)将PAAM/XLS/Ti3C2水凝胶和PAAM/H2SO4水凝胶分别切割成2 mm*1 mm的矩形;
(2)将两片PAAM/XLS/Ti3C2水凝胶电极分别贴附于PAAM/H2SO4水凝胶电解质两侧,组装成三明治结构的柔性超级电容器。
有益效果:(1)本发明的PAAM/XLS/Ti3C2水凝胶电极柔性超级电容器是PAAM/XLS/Ti3C2水凝胶材料,具有较好的柔性,可以实现弯曲,拉伸等操作;(2)本发明的PAAM/XLS/Ti3C2水凝胶具有动态非共价键(氢键),这种物理交联是可重构的,具有自愈合性能。(3)本发明的PAAM/XLS/Ti3C2水凝胶因为含有Ti3C2具有良好的电化学性能,组装成三明治结构的柔性超级电容器,具有良好的可逆性以及优异的倍率性能。
附图说明
图1为步骤2得到的PAAM/XLS/Ti3C2水凝胶的应力-应变图。
图2为步骤4得到的PAAM/XLS/Ti3C2水凝胶电极柔性超级电容器循环伏安测试图。
图3为步骤4得到的PAAM/XLS/Ti3C2水凝胶电极柔性超级电容器充放电曲线图。
图4为PAAM/XLS/Ti3C2水凝胶的光学照片;
图5为PAAM/XLS/Ti3C2水凝胶拉伸状态下照片。
具体实施方式
若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。
实施例1:Ti3C2纳米片的制备
(1)2 g LiF,40 mL 9 M HCl,搅拌至LiF完全溶解;
(2)为防止局部过热,缓慢加入2 g Ti3AlC2
(3)将混合物在反应釜60 ℃ 条件下反应72 h;
(4)将产物于3500 rpm,5 min条件下进行离心,并用去离子水洗涤4 ~ 6次,乙醇洗涤2次,真空干燥;
(5)将干燥后的产物用去离子水配置成10 mg/mL,600 W超声2 h;
(6)将超声后的产物于3500 rpm条件下,离心1 ~ 2 h,上清液即为Ti3C2纳米片。
实施例2:PAAM/XLS/Ti3C2水凝胶的制备
(6)将1 g XLS分散在5.4 mL去离子水中,超声2 h,然后磁力搅拌4 h得到透明XLS溶液;
(7)向步骤(1)中分别加入1 g AAM和2 mL Ti3C2溶液,搅拌1 h;
(8)向步骤(2)中依次加入0.001 g N,N’-亚甲基双丙烯酰胺交联剂以及0.015 g过硫酸钾引发剂,充分搅拌使其混合均匀;
(9)将步骤(3)中混合溶液置于厚度为1 mm的玻璃模具中,置于60 ℃条件下反应2h得到可拉伸、自愈合PAAM/XLS/Ti3C2水凝胶;
XLS作为物理交联剂,与AAM之间存在可逆的非共价相互作用(氢键相),为水凝胶提供良好的自愈性;
N,N’-亚甲基双丙烯酰胺作为化学交联剂,与AAM共聚形成水凝胶,为水凝胶提供良好的固型性和恢复性;
通过调节XLS与N,N’-亚甲基双丙烯酰胺的添加量,可以控制水凝胶的自愈性以及固型效果;当不含XLS时,水凝胶不具备自愈性;当不含有N,N’-亚甲基双丙烯酰胺时,水凝胶不具有拉伸恢复性。
实施例3:PAAM/XLS/Ti3C2水凝胶的应力-应变测试
(1)拉伸试样:PAAM/XLS/Ti3C2水凝胶(30 mm*15 mm *2 mm(长度*宽度*厚度));拉伸速率:20 mm/min;
(2)如图3所示,PAAM/XLS/Ti3C2水凝胶光学照片,如图4所示,水凝胶拉伸状态下的光学照片;
(3)如图1所示,PAAM/XLS/Ti3C2水凝胶应变为1290%,应力为198.5 kPa。
实施例4:PAAM/XLS/Ti3C2水凝胶的自修复测试
对该自愈合水凝胶性能表征如下:
(1)自修复试样:PAAM/XLS/Ti3C2水凝胶(30 mm*15 mm*2 mm(长度*宽度*厚度));
(2)将水凝胶切割成两段,并予以拼接,在室温条件下自愈合,水凝胶可以被镊子拿起并具有拉伸性;
实施例5:PAAM/XLS/Ti3C2水凝胶电极柔性超级电容器的组装
(1)制备PAAM/H2SO4水凝胶电解质:将1 g AMM溶于6 mL H2SO4(1 M)搅拌15 min,加入0.1 mL 0.005 g/mL N,N’-亚甲基双丙烯酰胺交联剂以及0.0075 g过硫酸钾引发剂,搅拌混合均匀后倒入厚度为1 mm的玻璃模具中置于60 ℃,2 h后得到PAAM/H2SO4水凝胶电解质;
(2)将PAAM/XLS/Ti3C2水凝胶和PAAM/H2SO4水凝胶分别切割成2 mm*1 mm(长度*宽度)的固定尺寸;
(3)将两片PAAM/XLS/Ti3C2水凝胶分别覆盖于PAAM/H2SO4水凝胶电解质的两侧,组装成三明治结构的柔性超级电容器。
实施例6:柔性超级电容器的性能测试
在本实施例中,PAAM/XLS/Ti3C2水凝胶与PAAM/H2SO4水凝胶之间的氢键,使电极与电解质紧密粘合,有利于离子传输。采用循环伏安法和恒定电流法对本发明所制备柔性超级电容器进行表征:
(1)循环伏安法:将组装好的超级电容器在电化学工作站上进行循环伏安测试,电压窗口设为0.1 V至0.5 V,扫描速率分别1 mV/s、5 mV/s、10 mV/s、30 mV/s、50 mV/s、100mV/s、200 mV/s、500 mV/s、800 mV/s、1000 mV/s,每个扫描速率下进行6至10个循环;
(2)恒定电流法:在电化学工作站上对超级电容器进行恒电流充放电测试。测试电流为0 .015 mA/cm2、0 .025 mA/cm2,每个电流下均循环充放电6次;
(3)如图2所示,随着扫描速率的增加循环伏安曲线形状没有明显的变化,这说明PAAM/XLS/Ti3C2水凝胶电极柔性超级电容器具有良好的可逆性以及优异的倍率性能。
以上实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。

Claims (8)

1.一种全凝胶柔性超级电容器的制备方法,其特征在于,包括以下步骤:
(1)AAM/XLS/Ti3C2水凝胶的制备:将AAM、XLS、Ti3C2纳米片溶于去离子水中混合均匀,随后加入N,N’-亚甲基双丙烯酰胺交联剂以及过硫酸钾引发剂形成预凝胶溶液;随后将预凝胶溶液注入模具中,置于烘箱中加热引发聚合反应形成PAAM/XLS/Ti3C2水凝胶;
(2)PAAM/H2SO4水凝胶电解质的制备:将AAM溶解于H2SO4溶液中,随后加入N,N’-亚甲基双丙烯酰胺交联剂和过硫酸钾引发剂,将混合溶液置于60 ℃条件下加热2 h后形成PAAM/H2SO4水凝胶电解质;
(3)将PAAM/XLS/Ti3C2水凝胶和PAAM/H2SO4水凝胶切割成片,将两个固定形状的PAAM/XLS/Ti3C2水凝胶电极贴附于PAAM/H2SO4水凝胶电解质两侧,组成三明治结构的全凝胶柔性超级电容器。
2.根据权利要求1所述全凝胶柔性超级电容器的制备方法,其特征在于,所述Ti3C2纳米片的制备方法为,LiF与HCl混合搅拌至LiF完全溶解,缓慢加入与LiF等质量的Ti3AlC2混合,将混合溶液置于反应釜中于40 ~ 70 ℃ 条件下反应24 ~ 72 h;将产物用去离子水在3500 rpm,5 min的条件下离心洗涤至pH>6,并真空干燥;将干燥后的产物(2)按1~30 mg/mL的浓度分散在去离子水中,在600 W的频率下超声1 ~ 4 h;将超声后的溶液在3500 rpm,1~ 2 h条件下离心,上层液体即为Ti3C2纳米片溶液。
3.根据权利要求1所述全凝胶柔性超级电容器的制备方法,其特征在于,所述的预凝胶溶液中,丙烯酰胺单体和XLS在溶液中的比例为3:1 ~ 1:3。
4.根据权利要求1所述全凝胶柔性超级电容器,其特征在于,所述均一溶液中Ti3C2纳米片的浓度为0 ~ 30 mg/mL。
5.根据权利要求1所述全凝胶柔性超级电容器的制备方法,其特征在于,所述N,N’-亚甲基双丙烯酰胺交联剂含量为AAM单体的0.05 -1 wt%。
6.根据权利要求1所述全凝胶柔性超级电容器的制备方法,其特征在于,所述过硫酸钾含量为单体总物质的量的0.5 - 2 wt%。
7.根据权利要求1所述全凝胶柔性超级电容器的制备方法,其特征在于,所述模具中注入溶液厚度为0.5 ~ 3 mm,再置于25-80 ℃的烘箱中聚合24 - 2 h。
8.根据权利要求1所述全凝胶柔性超级电容器的制备方法,其特征在于,所述PAAM/XLS/Ti3C2水凝胶应变为1290%,应力为198.5 kPa。
CN202210275952.9A 2022-03-21 2022-03-21 一种全凝胶柔性超级电容器的制备方法 Active CN114429867B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210275952.9A CN114429867B (zh) 2022-03-21 2022-03-21 一种全凝胶柔性超级电容器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210275952.9A CN114429867B (zh) 2022-03-21 2022-03-21 一种全凝胶柔性超级电容器的制备方法

Publications (2)

Publication Number Publication Date
CN114429867A true CN114429867A (zh) 2022-05-03
CN114429867B CN114429867B (zh) 2023-06-23

Family

ID=81312425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210275952.9A Active CN114429867B (zh) 2022-03-21 2022-03-21 一种全凝胶柔性超级电容器的制备方法

Country Status (1)

Country Link
CN (1) CN114429867B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104341556A (zh) * 2014-10-10 2015-02-11 齐鲁工业大学 一种高强度双网络纳米锂皂石复合水凝胶的制备方法
CN108440696A (zh) * 2018-02-09 2018-08-24 中南大学 一种基于二维碳化钛层状化合物交联的聚合物水凝胶及其制备和应用
CN108586664A (zh) * 2018-04-24 2018-09-28 华中科技大学 一种制备全水凝胶可拉伸超级电容器的方法及该电容器
US20190371535A1 (en) * 2018-05-29 2019-12-05 City University Of Hong Kong Robust electrical component and an electrolyte for use in an electrical component
CN111564316A (zh) * 2020-04-13 2020-08-21 东华大学 一种凝胶电极和全凝胶态离子热电超级电容器及其制备
CN112608508A (zh) * 2020-12-14 2021-04-06 南京柔速科技有限公司 一种抗冻自修复导电水凝胶及其制备方法、柔性传感器
CN113871214A (zh) * 2021-09-07 2021-12-31 常熟理工学院 一种高柔性一体化超级电容器及其制备方法
CN114141547A (zh) * 2021-11-30 2022-03-04 安徽大学 一种超高面积能量密度的微型氧化还原电容器的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104341556A (zh) * 2014-10-10 2015-02-11 齐鲁工业大学 一种高强度双网络纳米锂皂石复合水凝胶的制备方法
CN108440696A (zh) * 2018-02-09 2018-08-24 中南大学 一种基于二维碳化钛层状化合物交联的聚合物水凝胶及其制备和应用
CN108586664A (zh) * 2018-04-24 2018-09-28 华中科技大学 一种制备全水凝胶可拉伸超级电容器的方法及该电容器
US20190371535A1 (en) * 2018-05-29 2019-12-05 City University Of Hong Kong Robust electrical component and an electrolyte for use in an electrical component
CN111564316A (zh) * 2020-04-13 2020-08-21 东华大学 一种凝胶电极和全凝胶态离子热电超级电容器及其制备
CN112608508A (zh) * 2020-12-14 2021-04-06 南京柔速科技有限公司 一种抗冻自修复导电水凝胶及其制备方法、柔性传感器
CN113871214A (zh) * 2021-09-07 2021-12-31 常熟理工学院 一种高柔性一体化超级电容器及其制备方法
CN114141547A (zh) * 2021-11-30 2022-03-04 安徽大学 一种超高面积能量密度的微型氧化还原电容器的制备方法

Also Published As

Publication number Publication date
CN114429867B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
Na et al. Mechanically robust hydrophobic association hydrogel electrolyte with efficient ionic transport for flexible supercapacitors
Ni et al. Free-standing and highly conductive PEDOT nanowire films for high-performance all-solid-state supercapacitors
Deng et al. A high-voltage quasi-solid-state flexible supercapacitor with a wide operational temperature range based on a low-cost “water-in-salt” hydrogel electrolyte
CN112898596B (zh) 水凝胶电解质及其超级电容器
CN111943208B (zh) 一种基于聚合物高温碳化制备碳化钛(MXene)柔性电极的方法及其应用
CN110358137B (zh) 一种多孔网络结构石墨烯/聚苯胺复合干凝胶制备方法
CN110265232B (zh) 一种可自愈水凝胶电解质薄膜及其制备方法和应用
CN107919233A (zh) 一种高电压柔性固态超级电容器及其制备方法
Kuang et al. A double cross-linked hydrogel electrolyte with high mechanical strength and excellent electrochemical performance for flexible supercapacitor and zinc ion capacitor
CN108258322B (zh) 一种可自愈合柔性电池及其制备方法
CN106450327A (zh) 一种辐照提高锂电池聚偏氟乙烯胶黏性能的方法
CN113337059A (zh) 一种可拉伸自愈合导电聚合物水凝胶、制备方法及其应用
Wang et al. All-bio-based, adhesive and low-temperature resistant hydrogel electrolytes for flexible supercapacitors
Tao et al. Copolymer hydrogel as self-standing electrode for high performance all-hydrogel-state supercapacitor
CN113402651B (zh) 高强度自愈合水凝胶电解质的制备方法及其组装的柔性超级电容器、制备方法
Yao et al. Flexible, programable sensing system with poly (AAm-HEMA-SA) for human motion detection
CN109473294B (zh) 一种柔性、固态超级电容器及其制备方法和应用
CN108538633B (zh) 一种新型超级电容器用高电导率聚合离子液体电解质
Chen et al. Stretchable all-in-one supercapacitor enabled by poly (ethylene glycol)-based hydrogel electrolyte with low-temperature tolerance
Li et al. A cellulose-based interpenetrating network hydrogel electrolyte for flexible solid-state supercapacitors
Wang et al. Converting soy protein isolate into biomass-based polymer electrolyte by grafting modification for high-performance supercapacitors
CN113611545B (zh) 可拉伸、可压缩、抗冻有机水凝胶电解质基超级电容器及其制备方法
CN113185735B (zh) 一种抗冻超分子水凝胶电解质薄膜及其制备和应用
CN114874463A (zh) 一种具有优异机械性能的抗冻导电水凝胶及其制备方法与应用
Zhang et al. Cellulose nanofiber hydrogel with high conductivity electrolytes for high voltage flexible supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant