CN114395575A - 一种生产丁酸丁酯的酪丁酸梭菌重组菌株及其构建方法和应用 - Google Patents

一种生产丁酸丁酯的酪丁酸梭菌重组菌株及其构建方法和应用 Download PDF

Info

Publication number
CN114395575A
CN114395575A CN202111598362.1A CN202111598362A CN114395575A CN 114395575 A CN114395575 A CN 114395575A CN 202111598362 A CN202111598362 A CN 202111598362A CN 114395575 A CN114395575 A CN 114395575A
Authority
CN
China
Prior art keywords
butyl butyrate
tyrobutyricum
vaat
adhe2
clostridium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111598362.1A
Other languages
English (en)
Other versions
CN114395575B (zh
Inventor
王菊芳
郭晓龙
傅宏鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202111598362.1A priority Critical patent/CN114395575B/zh
Publication of CN114395575A publication Critical patent/CN114395575A/zh
Application granted granted Critical
Publication of CN114395575B publication Critical patent/CN114395575B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/0101Acetaldehyde dehydrogenase (acetylating) (1.2.1.10)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于生物技术领域,公开了一种生产丁酸丁酯的酪丁酸梭菌重组菌株及其构建方法和应用,通过构建重组表达质粒,在酪丁酸梭菌(Clostridium tyrobutyricum)中过表达醛醇脱氢酶AdhE2和醇酰基转移酶VAAT,获得酪丁酸梭菌重组菌株。该菌株能以葡萄糖和甘露醇等可发酵糖为底物从头合成丁酸丁酯,以甘露醇为底物时,可生产3.78g/L丁酸丁酯。本发明为酪丁酸梭菌生产丁酸丁酯提供了有效的方法,为代谢工程改造酪丁酸梭菌生产丁酸丁酯的工业化奠定了基础。同时本发明无需添加昂贵的前体物质丁醇、丁酸或丁酰辅酶A和催化剂脂肪酶,可直接转化有机碳源为丁酸丁酯,节省了底物成本。

Description

一种生产丁酸丁酯的酪丁酸梭菌重组菌株及其构建方法和 应用
技术领域
本发明属于生物技术领域,具体涉及一种生产丁酸丁酯的酪丁酸梭菌重组菌株及其构建方法和应用。
背景技术
丁酸丁酯,作为市场容量巨大的基础化学品和精细化工品,被广泛应用于食品、化妆品、制药、化工以及生物燃料等领域。据推测,到2025年,美国脂肪酸酯的市场需求达50亿美元。然而,传统法生产脂肪酸酯是在高温条件下通过浓硫酸催化无机酸和醇,酯化反应生成相应的酯,这种方式会产生大量的废弃物,对环境造成严重污染,并且严重腐蚀设备。随着脂肪酸酯在食品、化妆品、制药等领域的广泛应用,以及人们对生物基化学品的偏爱,利用益生菌作为“细胞工厂”,以可发酵糖为底物生产生物基脂肪酸酯具有巨大的应用前景。
目前生物法合成丁酸丁酯主要有两种途径,一种是酶法合成,利用脂肪酶(Lipase)催化丁酸和丁醇,即在产酸或产醇微生物体系中添加酶和另一种底物,原位酯化合成丁酸丁酯。如在丁酸生产菌株酪丁酸梭菌发酵过程中添加脂肪酶和丁醇,发酵产物丁酸和丁醇酯化反应生成34.7g/L丁酸丁酯(Zhang,Z.T.,et al.(2017).In situesterification and extractive fermentation for butyl butyrate production withClostridium tyrobutyricum.Biotechnology and Bioengineering,114(7):1428-1437);在ABE(丙酮-丁醇-乙醇)发酵菌株Clostridium sp.strain BOH3发酵过程添加脂肪酶和丁酸,丁酸丁酯产量可达22.4g/L(Xin,F.,et al.(2016).Strategies for production ofbutanol and butyl-butyrate through lipase-catalyzedesterification.Bioresource Technology,202:214-219);或者通过代谢工程改造大肠杆菌可以分别生产丁酸和丁醇,然后共培养上述大肠杆菌,发酵体系中添加脂肪酶,则丁酸丁酯产量可达7.2g/L(Sinumvayo,J.P.,et al.(2021).One-pot production of butylbutyrate from glucose using acognate"diamond-shaped"E.coliconsortium.Bioresources and Bioprocessing,8(1))。但是,外源添加丁醇/丁酸和脂肪酶合成丁酸丁酯,增加了丁酸丁酯的生产成本,加大了与化学合成法生产丁酸丁酯之间的成本差距,不利于提高生物基丁酸丁酯的市场竞争力。
目前比较绿色环保、经济的方式是不添加任何底物或酶,直接通过微生物代谢可发酵糖,通过醇酰基转移酶(Alcohol acyl transferase,AAT)催化中间代谢产物丁酰辅酶A(Butyryl-CoA)和丁醇合成丁酸丁酯。丙酮丁醇梭菌是典型的ABE发酵菌株,发酵产物中存在丁酰辅酶A和丁醇,因此,表达醇酰基转移酶SAAT后,可在不添加任何前体物质的情况下,生产丁酸丁酯50.07mg/L(Noh,H.J.,et al.(2018).Metabolic engineering ofClostridium acetobutylicum for the production of butyl butyrate.AppliedMicrobiology and Biotechnology,102(19):8319-8327);同样地,代谢工程改造突变株C.saccharoperbutylacetonicum FJ1202(过表达saat)可生产丁酸丁酯1.6g/L(Feng,J.,et al.(2021).Renewable fatty acid ester production in Clostridium.NatureCommunications,12(1):4368.)。
酪丁酸梭菌(Clostridium tyrobutyricum)是公认丁酸生产理想的微生物细胞工厂,副产物少,遗传背景清晰,属于非致病菌。天然的酪丁酸梭菌基因组中缺乏丁醇合成代谢途径和脂肪酶或醇酰基转移酶,不能合成丁酸丁酯。因此,通过代谢工程改造酪丁酸梭菌,使其直接代谢葡萄糖、甘露醇等可发酵糖生产具有高附加值的丁酸丁酯,在利用大型海藻发酵生产丁酸丁酯中具有广泛的应用价值,对提高生物基丁酸丁酯的市场竞争力具有重要意义。
发明内容
为了克服现有技术的不足之处,本发明的首要目的在于提供一种酪丁酸梭菌基因工程菌,含有醛醇脱氢酶和醇酰基转移酶。
本发明的另一目的是提供一种合成丁酸丁酯的酪丁酸梭菌的制备方法。
本发明的再一目的在于提供发酵生产高浓度丁酸丁酯的方法。
本发明的提供的菌株具有较高丁酸丁酯的合成能力,可进一步通过代谢工程、蛋白质工程以及合成生物学方法提高丁酸丁酯的发酵水平。
本发明提供的目的通过下述技术方案实现:
一种生产丁酸丁酯的酪丁酸梭菌重组菌株的构建方法,其特征在于,通过构建重组表达质粒,在酪丁酸梭菌(Clostridium tyrobutyricum)中过表达醛醇脱氢酶AdhE2和醇酰基转移酶VAAT。
优选地,所述醛醇脱氢酶AdhE2来自丙酮丁醇梭菌(Clostridiumacetobutylicum)ATCC824。
优选地,所述的醛醇脱氢酶AdhE2,其核酸序列如SEQ ID NO:1所示。
所述的醇酰基转移酶,其核酸序列具有以下(1)或(2)的序列;
(1)野生草莓(Fragaria vesca)中的醇酰基转移酶,其核酸序列如SEQ ID NO:2所示;
(2)与醇酰基转移酶功能相似的其它物种的醇酰基转移酶的核苷酸序列。
在本发明的一些实施例中,醇酰基转移酶基因优选为野生草莓的醇酰基转移酶基因VAAT。
优选地,所述重组表达质粒是基于pMTL82151为质粒骨架,构建重组质粒pMTL82151-adhE2-VAAT。
所述的构建方法包括如下步骤:
(1)PCR扩增目的基因,包括启动子、醛醇脱氢酶基因adhE2和醇酰基转移酶基因VAAT;
(2)目的基因与双酶切载体连接;
(3)连接产物转化至大肠杆菌DH5α,氯霉素抗性LB平板筛选阳性克隆,获得重组质粒pMTL82151-adhE2-VAAT;
(4)将上述重组质粒pMTL82151-adhE2-VAAT通过细菌接合的方式转入酪丁酸梭菌中,获得酪丁酸梭菌重组菌株。
优选地,所述启动子为酪丁酸梭菌cat1基因启动子Pcat1,其核酸序列如SEQ IDNO:3所示。
优选地,所述的酪丁酸梭菌(C.tyrobutyricum)包括C.tyrobutyricum ATCC25755,C.tyrobutyricum L319,C.tyrobutyricum CCTCC W428,C.tyrobutyricum CirmBIA 2237其中任意一种。
所述酪丁酸梭菌重组菌株的应用:利用酪丁酸梭菌工程菌发酵生产丁酸丁酯。
优选地,所述碳源为葡萄糖或甘露醇。
优选地,所述的发酵条件为37±5℃,150±100rpm,接种量为1~10%;发酵培养基的成分为:4g/L蛋白胨,2g/L酵母提取物,1g/L K2HPO4﹒0.5g/L 3H2O,KH2PO4,2g/L(NH4)2SO4,0.1g/L MgSO4﹒7H2O,0~40g/L CaCO3和30~120g/L碳源;微量元素1:1000(v/v);微量元素母液:15g/L FeSO4﹒7H2O,15g/L CaCl2﹒2H2O,10g/L MnSO4﹒H2O,20g/L CoCl2﹒6H2O,20g/LZnSO4﹒7H2O。
优选地,当培养至24h后,添加正十六烷进行萃取,得到丁酸丁酯;当以葡萄糖为底物时,发酵12±4h后添加5±3g/L丁醇。
醇酰基转移酶能直接以酰基辅酶A和脂肪醇为底物,缩合生成脂肪酸酯,同时使辅酶A再生,实现辅酶A的再循环。因此,本发明选择酪丁酸梭菌为出发菌株,其产物包含丁酰辅酶A、乙酰辅酶A、乙酸和丁酸,通过过表达醛醇脱氢酶基因(adhE2),产物中增加了丁醇和乙醇,在此重组菌株的基础上,再过表达醇酰基转移酶基因(VAAT),便可实现以葡萄糖等可发酵糖为底物直接代谢生成丁酸丁酯。
本发明提供的工程菌发酵生产丁酸丁酯的方法,具体如下:
将-80℃冰箱保存的甘油菌接种于CGM种子培养基中,37℃过夜活化,将活化的种子液再次接种于CGM种子培养基中,37℃培养12h,然后将种子液按5%接种于发酵培养基中,37℃,150rpm。培养24h后添加萃取剂(培养基:萃取剂为2:1)。
所用培养基:
Clostridium Growth Medium(CGM):4g/L蛋白胨,2g/L酵母提取物,1g/L K2HPO4﹒0.5g/L 3H2O,KH2PO4,2g/L(NH4)2SO4,0.1g/L MgSO4﹒7H2O,微量元素1:1000(v/v);微量元素母液:15g/L FeSO4﹒7H2O,15g/L CaCl2﹒2H2O,10g/L MnSO4﹒H2O,20g/L CoCl2﹒6H2O,20g/LZnSO4﹒7H2O。
种子培养基:CGM培养基,20g/L葡萄糖,充高纯氮气。
发酵培养基:CGM培养基,60g/L葡萄糖或甘露醇,40g/L CaCO2,充高纯氮气。
所用萃取剂:正十六烷。
本发明还提供了提高所述酪丁酸梭菌丁酸丁酯产量的发酵方法,其所述方法如下:
(1)外源添加5g/L丁醇,提高前体供给,从而提高丁酸丁酯的产量;
(2)以较高还原态的甘露醇为底物发酵,提高胞内NADH供给水平,提高了丁醇的产量,从而提高了丁酸丁酯的产量。
与现有技术相比,本发明具有如下有益效果:
(1)本发明无需添加昂贵的前体物质丁醇、丁酸或丁酰辅酶A,可直接转化有机碳源为丁酸丁酯,节省了底物成本,尤其是廉价的可再生生物质资源。
(2)本发明无需添加昂贵的催化剂脂肪酶。
(3)由于有机酸、有机醇在正十六烷/水相系统中的分配系数极低,丁酸丁酯的分配系数极高,因此正十六烷相中几乎只有丁酸丁酯,简化了下游分离纯化步骤,节省了分离成本。
附图说明
图1是酪丁酸梭菌合成丁酸丁酯的代谢途径。
图2是过表达醛醇脱氢酶基因adhE2和醇酰基转移酶基因VAAT的重组质粒图谱。
图3是对照菌株(含有pMTL82151质粒)与过表达adhE2菌株以60g/L葡萄糖为底物的发酵情况。
图4是共表达醛醇脱氢酶基因adhE2和醇酰基转移酶基因VAAT菌株以60g/L葡萄糖为底物的发酵情况;其中,A:水相中的发酵产物;B:正十六烷相中的发酵产物。
图5是共表达醛醇脱氢酶基因adhE2和醇酰基转移酶基因VAAT菌株以不同底物的发酵情况;其中,A:以60g/L葡萄糖为底物,外源添加5g/L丁醇;B:以60g/L甘露醇为底物。
具体实施方式
下面结合实施例及附图对本发明进行详细的描述,但本发明的实施方式不限于此。实施例1、工程菌株Ct-adhE2和Ct-adhE2-VAAT的构建
(1)重组质粒pMTL82151-adhE2的构建
重组质粒pMTL82151-adhE2的构建的具体构建过程如下:
以酪丁酸梭菌ATCC 25755基因组为模板,用引物Pcat1-F和Pcat1-R扩增cat1基因启动子Pcat1,用引物adhE2-F和adhE2-R扩增adhE2基因。
Pcat1-F:5’-CCCAAGCTTGTAGACTTTAAGGATGGAACCT-3’;(下划线表示HindⅢ限制性酶切位点)
Pcat1-R:5’-GCTCTAGAAAAAACCACCCTTTCATAAA-3’;(下划线表示XbaⅠ限制性酶切位点)
adhE2-F:5’-gaaagggtggtttttTCTAGAATGAAAGTTACAAATCAAAAAGAACTAA-3’;(下划线表示XbaⅠ限制性酶切位点)
adhE2-R:5’-catgattacgaattcGAGCTCTTGAAAGATAAAAAACAAGAGTAAAATG-3’;(下划线表示SacⅠ限制性酶切位点)
PCR扩增所用的DNA聚合酶购自诺唯赞生物科技股份有限公司。PCR扩增体系为:
Figure BDA0003431013950000051
Figure BDA0003431013950000061
PCR反应程序:98℃,30sec;98℃,10sec,55℃,5sec,72℃,15sec,30个循环;72℃,5min。
首先用XbaⅠ和HindⅢ对穿梭质粒pMTL82151(可购自BioVector质粒载体菌种细胞基因保藏中心NTCC典型培养物保藏中心)和启动子Pcat1进行双酶切(限制性内切酶购自Thermo Fisher Scientific公司),反应体系为:
反应组分 用量
pMTL82151或Pcat1 2μg
XbaⅠ 2μL
HindⅢ 2μL
10×FastDigest Buffer 5μL
ddH<sub>2</sub>O Up to 50μL
反应条件为:37℃,水浴30min。
纯化回收上述酶切产物并将线性化载体pMTL82151与启动子Pcat1连接(T4 DNA连接酶购自Thermo Fisher Scientific公司),连接体系为:
反应组分 用量
pMTL82151双酶切产物 40ng
Pcat1双酶切产物 200ng
T4 DNA Ligase 0.5μL
10×T4 DNA Ligae Buffer 1μL
ddH<sub>2</sub>O Up to 10μL
反应条件为:22℃,30min,反应结束后立即将离心管置于冰上冷却2min。
连接产物转化大肠杆菌DH5α,37℃培养箱孵育24h,挑取阳性克隆用引物Pro-F和Pro-R进行PCR验证,送天一辉远公司测序验证,提取质粒(DAN纯化回收,质粒提取试剂盒购自诺唯赞生物科技股份有限公司),并命名为pMTL82151-Pcat1。
Pro-F:5’-TGAAGTACATCACCGACGAGCAAG-3’;
Pro-R:5’-TGCTGCAAGGCGATTAAGTTGGGT-3’。
将获得的质粒pMTL82151-Pcat1经XbaⅠ和SacⅠ双酶切,反应体系为:
反应组分 用量
pMTL82151-Pcat1 2μg
XbaⅠ 2μL
SacⅠ 2μL
10×FastDigest Buffer 5μL
ddH<sub>2</sub>O Up to 50μL
反应条件为:37℃,水浴30min。
酶切产物纯化回收,通过无缝克隆的方法将线性化载体pMTL82151-Pcat1与基因片段adhE2连接(无缝克隆试剂盒购自生工生物工程股份有限公司),连接体系为:
反应组分 用量
2×Seamless cloning Master Mix 5μL
pMTL82151-Pcat1双酶切产物 50ng
adhE2 PCR产物 20ng
ddH<sub>2</sub>O Up to 10μL
反应条件为:50℃,水浴20min,反应结束后立即将离心管置于冰上冷却2min
连接产物转化大肠杆菌DH5α,37℃培养箱孵育24h,挑取阳性克隆用引物Pro-F和Pro-R进行PCR验证,并送天一辉远公司测序验证,提取质粒,并命名为pMTL82151-adhE2(如图2A所示)。
(2)重组质粒pMTL82151-adhE2-VAAT的构建
重组质粒pMTL82151-adhE2-VAAT(如图2B)构建方法同上述(1)部分构建方法,所涉及的引物如下:
Pcat1-F(SacΙ):5’-ttttttatctttcaaGAGCTCGTAGACTTTAAGGATGGAACCTTTGA-3’;(下划线表示SacΙ限制性酶切位点)
Pcat1-RSV:5’-ttcaattttttccatAAAAACCACCCTTTCATAAATTATATAAA-3’;
VAAT-F:5’-gaaagggtggtttttATGGAAAAAATTGAAGTTTCAATAATAAG-3’;
VAAT-R:
5’-gaaacagctatgaccGCGGCCGCTTAATATCTACTAATTAAAGTTTTAGGAGATGC-3’。(下划线表示NotΙ限制性酶切位点)
(3)工程菌株的构建
上述重组质粒pMTL82151-adhE2和pMTL82151-adhE2-VAAT通过细菌接合的方式转入酪丁酸梭菌C.tyrobutyricum ATCC 25755(美国菌种保藏中心,American Type CultureCollection)中,具体步骤如下:
将重组质粒转化大肠杆菌CA434,用双抗LB平板(25μg/mL氯霉素+50μg/mL卡那霉素)筛选阳性克隆,阳性克隆用引物Pro-F和Pro-R进行PCR验证。含有重组质粒的大肠杆菌CA434在双抗LB培养基(25μg/mL氯霉素+50μg/mL卡那霉素)中培养,37℃,150rpm摇床振荡培养至OD600 1.5-2.0,收集3mL大肠杆菌于1.5mL无菌离心管中,用1×无菌PBS洗涤1次,4000rpm,离心2min,然后与300-500μL培养至OD600 2.0-3.0的酪丁酸梭菌ATCC 25755混合均匀,涂布于RCM无抗平板上,37℃,厌氧培养24h。用0.5mL RCM培养基洗涤菌落,涂布于RCM筛选平板上(25μg/mL甲砜霉素和250μg/mL D-环丝氨酸),37℃,厌氧培养30h以上,直至出现单菌落为止。挑取单菌落于RCM培养基(25μg/mL甲砜霉素和250μg/mL D-环丝氨酸)中培养,用引物Pro-F和Pro-R进行PCR验证,获得工程菌株,并分别命名为Ct-adhE2和Ct-adhE2-VAAT。
实施例2、对照菌株Ct-82151和工程菌株Ct-adhE2、Ct-adhE2-VAAT以葡萄糖为唯一碳源发酵
(1)培养基:
CGM(Clostridium Growth Medium)的配制:4g/L蛋白胨,2g/L酵母提取物,1g/LK2HPO4﹒3H2O,0.5g/L KH2PO4,2g/L(NH4)2SO4,0.1g/L MgSO4﹒7H2O,微量元素1:1000(v/v);微量元素母液:0.015g/L FeSO4﹒7H2O,0.015g/L CaCl2﹒2H2O,0.01g/L MnSO4﹒H2O,0.002g/LCoCl2﹒6H2O,0.002g/L ZnSO4﹒7H2O。防爆血清瓶分装50mL培养基,充0.05MP高纯氮气,115℃,20min高压蒸汽灭菌(碳源和培养基分开灭菌)。
种子培养基:CGM培养基,20g/L葡萄糖;
发酵培养基:CGM培养基,60g/L葡萄糖或甘露醇,40g/L CaCO3
(2)摇瓶发酵实验
将酪丁酸梭菌对照菌株Ct-82151、工程菌Ct-adhE2和Ct-adhE2-VAAT从-80℃冰箱取出,接种于CGM种子培养基中,37℃培养过夜进行活化,将活化后的种子液再次接种于CGM种子培养基中活化,然后按照5%(v/v)接种量将种子液接种于发酵培养基中,置于37℃,150rpm条件下培养,24h后按照培养基:萃取剂为2:1的比例加入正十六烷,96h后取样进行HPLC和GC检测产物生成情况。
结果如图3所示,对照菌株Ct-82151不产丁醇和乙醇,只有17.86g/L丁酸和2.71g/L乙酸,而工程菌Ct-adhE2除了产丁酸和乙酸外,还产2.25g/L丁醇和0.26g/L乙醇,说明AdhE2在酪丁酸梭菌中成功表达。工程菌的总酸浓度(丁酸和乙酸)为17.35g/L,较对照菌株酸总浓度20.56g/L少,是由于有一部分碳代谢流流向了丁醇和乙醇,分担了流向丁酸和乙酸的碳源。
串联过表达VAAT后,在工程菌发酵后的正十六烷相中检测到1.10g/L丁酸丁酯,0.12g/L丁酸乙酯和0.01g/L乙酸丁酯(如图4B),说明醇酰基转移酶VAAT在酪丁酸梭菌中成功表达,并具有酰基转移功能,能将酰基辅酶A和醇缩合生成脂肪酸酯。丁酸丁酯在酯类混合物中的比例为89%,说明醇酰基转移酶VAAT对C4底物丁醇和丁酰辅酶A具有较高的底物偏好性;产物中没有乙酸乙酯,有少量(1%)乙酸丁酯和丁酸乙酯(10%),说明醇酰基转移酶VAAT对乙酰辅酶A的底物偏好性不高。可通过蛋白质工程改造VAAT,改变底物结合口袋对底物的亲和性,从而使其底物偏好性发生变化,合成感兴趣的目标产物(如丁酸丁酯和丁酸乙酯)。水相中有15.42g/L丁酸、4.74g/L乙酸、1.14g/L丁醇和0.45g/L乙醇(如图4A)。
实施例3、提高底物丁醇的浓度促进丁酸丁酯的合成
丁酸丁酯是工程菌Ct-adhE2-VAAT正十六烷相中的主要产物,比例达到89%,因此,提高丁酸丁酯合成的前体物质丁醇的浓度,进一步提高丁酸丁酯的产量,具体案例如下:(1)外源添加5g/L丁醇促进丁酸丁酯的合成
将工程菌Ct-adhE2-VAAT从-80℃取出,接种于CGM种子培养基中,37℃培养过夜进行活化,将活化后的种子液再次接种于CGM种子培养基中活化,然后按5%接种量接种于发酵培养基中,37℃,150rpm振荡培养12h后添加经过滤除菌的5g/L丁醇,24h后,按照培养基:萃取剂为2:1的比例加入正十六烷。96h后取样进行HPLC和GC测定产物生成情况。
结果如图5A所示,丁酸丁酯产量为1.85g/L,较没有添加丁醇的丁酸丁酯的产量(1.10g/L)提高68%,说明菌株合成的丁醇的浓度不够,导致丁酸丁酯合成的前体物质供给不足,从而使丁酸丁酯浓度较低。虽然水相中仍有少量丁醇,但是不足以推动丁酸丁酯合成反应的进行。丁酸丁酯的纯度为97%,说明前提物质丁醇浓度的提高进一步提高了丁酸丁酯的合成,从而提高了丁酸丁酯的选择性。
(2)以甘露醇为发酵底物,促进丁酸丁酯的合成
将工程菌Ct-adhE2-VAAT从-80℃取出,接种于CGM种子培养基中,37℃培养过夜进行活化,将活化后的种子液再次接种于CGM种子培养基中活化,然后按5%接种量接种于发酵培养基中,37℃,150rpm振荡培养24h后,按照培养基:萃取剂为2:1的比例加入正十六烷。96h后取样进行HPLC和GC测定产物生成情况。
结果如图5B所示,丁酸丁酯的产量进一步提高,浓度为3.78g/L,较以葡萄糖为底物不添加丁醇的情况下提高了244%,较以葡萄糖为底物添加5g/L丁醇的情况下提高了104%,原因是由于甘露醇本身是具有较高还原态的六元醇,代谢1mol葡萄糖经过糖酵解(EMP)途径产生2mol NADH,而代谢1mol甘露醇经过EMP途径产生3mol NADH。因此,甘露醇代谢提高了胞内NADH的供给水平,而合成丁醇是大量消耗NADH的过程,合成1mol丁醇需要消耗4mol NADH。因此,较高的NADH供给有利于丁醇的合成。丁醇浓度的大幅度提高,更有利于推动反应向丁酸丁酯的合成方向进行,进而使丁酸丁酯合成显著提高。丁酸丁酯的纯度仍然能达到97%,高选择性更有利于下游丁酸丁酯的分离纯化,降低分离纯化成本。
本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所做的改变、修饰、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
序列表
<110> 华南理工大学
<120> 一种生产丁酸丁酯的酪丁酸梭菌重组菌株及其构建方法和应用
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2672
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atgaaagtta caaatcaaaa agaactaaaa caaaagctaa atgaattgag agaagcgcaa 60
aagaagtttg caacctatac tcaagagcaa gttgataaaa tttttaaaca atgtgccata 120
gccgcagcta aagaaagaat aaacttagct aaattagcag tagaagaaac aggaataggt 180
cttgtagaag ataaaattat aaaaaatcat tttgcagcag aatatatata caataaatat 240
aaaaatgaaa aaacttgtgg cataatagac catgacgatt ctttaggcat aacaaaggtt 300
gctgaaccaa ttggaattgt tgcagccata gttcctacta ctaatccaac ttccacagca 360
attttcaaat cattaatttc tttaaaaaca agaaacgcaa tattcttttc accacatcca 420
cgtgcaaaaa aatctacaat tgctgcagca aaattaattt tagatgcagc tgttaaagca 480
ggagcaccta aaaatataat aggctggata gatgagccat caatagaact ttctcaagat 540
ttgatgagtg aagctgatat aatattagca acaggaggtc cttcaatggt taaagcggcc 600
tattcatctg gaaaacctgc aattggtgtt ggagcaggaa atacaccagc aataatagat 660
gagagtgcag atatagatat ggcagtaagc tccataattt tatcaaagac ttatgacaat 720
ggagtaatat gcgcttctga acaatcaata ttagttatga attcaatata cgaaaaagtt 780
aaagaggaat ttgtaaaacg aggatcatat atactcaatc aaaatgaaat agctaaaata 840
aaagaaacta tgtttaaaaa tggagctatt aatgctgaca tagttggaaa atctgcttat 900
ataattgcta aaatggcagg aattgaagtt cctcaaacta caaagatact tataggcgaa 960
gtacaatctg ttgaaaaaag cgagctgttc tcacatgaaa aactatcacc agtacttgca 1020
atgtataaag ttaaggattt tgatgaagct ctaaaaaagg cacaaaggct aatagaatta 1080
ggtggaagtg gacacacgtc atctttatat atagattcac aaaacaataa ggataaagtt 1140
aaagaatttg gattagcaat gaaaacttca aggacattta ttaacatgcc ttcttcacag 1200
ggagcaagcg gagatttata caattttgcg atagcaccat catttactct tggatgcggc 1260
acttggggag gaaactctgt atcgcaaaat gtagagccta aacatttatt aaatattaaa 1320
agtgttgctg aaagaaggga aaatatgctt tggtttaaag tgccacaaaa aatatatttt 1380
aaatatggat gtcttagatt tgcattaaaa gaattaaaag atatgaataa gaaaagagcc 1440
tttatagtaa cagataaaga tctttttaaa cttggatatg ttaataaaat aacaaaggta 1500
ctagatgaga tagatattaa atacagtata tttacagata ttaaatctga tccaactatt 1560
gattcagtaa aaaaaggtgc taaagaaatg cttaactttg aacctgatac tataatctct 1620
attggtggtg gatcgccaat ggatgcagca aaggttatgc acttgttata tgaatatcca 1680
gaagcagaaa ttgaaaatct agctataaac tttatggata taagaaagag aatatgcaat 1740
ttccctaaat taggtacaaa ggcgatttca gtagctattc ctacaactgc tggtaccggt 1800
tcagaggcaa caccttttgc agttataact aatgatgaaa caggaatgaa atacccttta 1860
acttcttatg aattgacccc aaacatggca ataatagata ctgaattaat gttaaatatg 1920
cctagaaaat taacagcagc aactggaata gatgcattag ttcatgctat agaagcatat 1980
gtttcggtta tggctacgga ttatactgat gaattagcct taagagcaat aaaaatgata 2040
tttaaatatt tgcctagagc ctataaaaat gggactaacg acattgaagc aagagaaaaa 2100
atggcacatg cctctaatat tgcggggatg gcatttgcaa atgctttctt aggtgtatgc 2160
cattcaatgg ctcataaact tggggcaatg catcacgttc cacatggaat tgcttgtgct 2220
gtattaatag aagaagttat taaatataac gctacagact gtccaacaaa gcaaacagca 2280
ttccctcaat ataaatctcc taatgctaag agaaaatatg ctgaaattgc agagtatttg 2340
aatttaaagg gtactagcga taccgaaaag gtaacagcct taatagaagc tatttcaaag 2400
ttaaagatag atttgagtat tccacaaaat ataagtgccg ctggaataaa taaaaaagat 2460
ttttataata cgctagataa aatgtcagag cttgcttttg atgaccaatg tacaacagct 2520
aatcctaggt atccacttat aagtgaactt aaggatatct atataaaatc attttaaaaa 2580
ataaagaatg taaaatagtc tttgcttcat tatattagct tcatgaagca catagactat 2640
tttacatttt actcttgttt tttatctttc aa 2672
<210> 2
<211> 1368
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
atggagaaaa ttgaggtcag tataatttcc aaacacacca tcaaaccatc aacttcctct 60
tcaccacttc agccttacaa gcttaccctg ctcgaccagc tcactcctcc atcgtatgtc 120
cccatggtat tcttctaccc cattactggc cctgcagtct tcaatcttca aaccctagct 180
gacttaagac atgccctttc cgagactctc actttgtact atccactctc tggaagggtc 240
aaaaacaacc tatacatcga tgattttgaa gagggtgtcc cataccttga ggctcgagtg 300
aactgtgaca tgaatgattt tctaaggctt ccgaaaatcg agtgcctaaa tgagtttgtt 360
ccaataaaac catttagtat ggaagcaata tctgatgagc gttacccttt gctcggagtt 420
caagttaaca ttttcaactc cggaatagca atcggggtct ccgtctctca caagctcatc 480
gatggaagaa cttcagactg ttttctcaag tcgtggtgtg ctgtttttcg tggttctcgt 540
gacaaaatca tacatcctaa tctctctcaa gcagcattgc ttttcccacc aagagatgac 600
ttgcctgaaa agtatgcccg tcagatggaa gggttatggt ttgtcggaaa aaaagttgct 660
acaaggagat ttgtatttgg tgcgaaagcc atatctgtaa ttcaagatga agcaaagagc 720
gagtccgtgc ccaagccatc acgagttcag gctgtcacta gttttctctg gaaacatcta 780
atcgctactt ctcgggcact aacatcaggt actacttcaa caagactttc tatagcaacc 840
caggtagtga acataagatc acggaggaac atggagacag tgtgggataa tgccattgga 900
aacttgatat ggttcgctcc ggccatacta gagctaagtc atacaacact agagatcagt 960
gatcttaagc tgtgtgactt ggttaacttg ctcaatggat ctgtcaaaca atgtaacggt 1020
gattactttg agactttcat gggtaaagag ggatatggaa gcatgtgcga gtatctagat 1080
tttcagagga ctatgagttc tatggaacca gcaccagaga tttatttatt cacgagctgg 1140
actaattttt tcaaccaact tgattttgga tgggggagga catcatggat tggagttgca 1200
ggaaaaattg aatctgcatt ttgcaatctc acaacattag ttccaacacc atgcgatact 1260
ggaattgaag cgtgggtgaa tctagaagaa gaaaaaatgg ctatgctaga acaagatccc 1320
cagtttctag cactagcatc tccaaagacg ctaatttcaa gatattga 1368
<210> 3
<211> 362
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
gtagacttta aggatggaac ctttgaaatt aagtagagag cccaaatctt tgaaaataat 60
gttctttctt tgtatagaaa ggacattatt tttttatagt tgttttgtaa accatagcat 120
tgttaagtta ttttcagcta cagctattat tttaataata acattgatgt aattatgtta 180
ttttaaccaa aagaaaatca tattaatttt gaataaatgg atatattata atataatatt 240
aaaaggaagt tcaggttgta tattatacaa catctatttt ttactcataa ttgtagtttt 300
tttaacaatc ataatggaag ttaattatta aattttatat aatttatgaa agggtggttt 360
tt 362

Claims (10)

1.一种生产丁酸丁酯的酪丁酸梭菌重组菌株的构建方法,其特征在于,通过构建重组表达质粒,在酪丁酸梭菌(Clostridium tyrobutyricum)中过表达醛醇脱氢酶AdhE2和醇酰基转移酶VAAT。
2.根据权利要求1所述的构建方法,其特征在于,所述醛醇脱氢酶AdhE2来自丙酮丁醇梭菌(Clostridium acetobutylicum)ATCC 824,醇酰基转移酶VAAT来自野生草莓(Fragaria vesca)。
3.根据权利要求1所述的构建方法,其特征在于,所述的醛醇脱氢酶AdhE2,其核酸序列如SEQ ID NO:1所示;所述醇酰基转移酶VAAT,其核酸序列如SEQ ID NO:2所示。
4.根据权利要求1或2或3所述的构建方法,其特征在于,所述重组表达质粒是基于pMTL82151为质粒骨架,构建重组质粒pMTL82151-adhE2-VAAT。
5.根据权利要求4所述的构建方法,其特征在于,包括如下步骤:
(1)PCR扩增目的基因,包括启动子、醛醇脱氢酶基因adhE2和醇酰基转移酶基因VAAT;
(2)目的基因与双酶切载体连接;
(3)连接产物转化至大肠杆菌DH5α,氯霉素抗性LB平板筛选阳性克隆,获得重组质粒pMTL82151-adhE2-VAAT;
(4)将上述重组质粒pMTL82151-adhE2-VAAT通过细菌接合的方式转入酪丁酸梭菌中,获得酪丁酸梭菌重组菌株。
6.根据权利要求5所述的构建方法,其特征在于,所述启动子为酪丁酸梭菌cat1基因启动子Pcat1,其核酸序列如SEQ ID NO:3所示;所述的酪丁酸梭菌(C.tyrobutyricum)包括C.tyrobutyricum ATCC 25755,C.tyrobutyricum L319,C.tyrobutyricum CCTCC W428,C.tyrobutyricum Cirm BIA 2237其中任意一种。
7.权利要求1~6任意一项所述方法制得的酪丁酸梭菌重组菌株。
8.权利要求7所述酪丁酸梭菌重组菌株的应用,其特征在于,利用酪丁酸梭菌工程菌发酵生产丁酸丁酯;所述碳源为葡萄糖或甘露醇。
9.根据权利要求8所述的应用,其特征在于,所述的发酵条件为37±5℃,150±100rpm,接种量为1~10%;发酵培养基的成分为:4g/L蛋白胨,2g/L酵母提取物,1g/L K2HPO4﹒0.5g/L 3H2O,KH2PO4,2g/L(NH4)2SO4,0.1g/L MgSO4﹒7H2O,0~40g/L CaCO3和30~120g/L碳源;微量元素1:1000(v/v);微量元素母液:15g/L FeSO4﹒7H2O,15g/L CaCl2﹒2H2O,10g/L MnSO4﹒H2O,20g/L CoCl2﹒6H2O,20g/L ZnSO4﹒7H2O。
10.根据权利要求9所述的应用,其特征在于,当培养至24h后,添加正十六烷进行萃取,得到丁酸丁酯;当以葡萄糖为底物时,发酵12±4h后添加5±3g/L丁醇。
CN202111598362.1A 2021-12-24 2021-12-24 一种生产丁酸丁酯的酪丁酸梭菌重组菌株及其构建方法和应用 Active CN114395575B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111598362.1A CN114395575B (zh) 2021-12-24 2021-12-24 一种生产丁酸丁酯的酪丁酸梭菌重组菌株及其构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111598362.1A CN114395575B (zh) 2021-12-24 2021-12-24 一种生产丁酸丁酯的酪丁酸梭菌重组菌株及其构建方法和应用

Publications (2)

Publication Number Publication Date
CN114395575A true CN114395575A (zh) 2022-04-26
CN114395575B CN114395575B (zh) 2023-07-18

Family

ID=81226938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111598362.1A Active CN114395575B (zh) 2021-12-24 2021-12-24 一种生产丁酸丁酯的酪丁酸梭菌重组菌株及其构建方法和应用

Country Status (1)

Country Link
CN (1) CN114395575B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117051080A (zh) * 2023-10-12 2023-11-14 山东省食品药品检验研究院 一种微生态活菌制品丁酸代谢通路激活剂的筛选方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160208294A1 (en) * 2013-08-29 2016-07-21 The Regents Of The University Of California Bacteria engineered for ester production
US20190112622A1 (en) * 2016-03-30 2019-04-18 Basf Se Fermentative production of n-butylacrylate using alcohol acyl transferase enzymes
WO2021127648A1 (en) * 2019-12-19 2021-06-24 Auburn University Microbial ester production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160208294A1 (en) * 2013-08-29 2016-07-21 The Regents Of The University Of California Bacteria engineered for ester production
US20190112622A1 (en) * 2016-03-30 2019-04-18 Basf Se Fermentative production of n-butylacrylate using alcohol acyl transferase enzymes
WO2021127648A1 (en) * 2019-12-19 2021-06-24 Auburn University Microbial ester production

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FENG J等: "Renewable Fatty Acid Ester Production in Clostridium", 《NAT COMMUN.》, vol. 12, no. 1, pages 1 - 36 *
ZHANG J等: "Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production", 《METAB ENG.》, pages 49 - 59 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117051080A (zh) * 2023-10-12 2023-11-14 山东省食品药品检验研究院 一种微生态活菌制品丁酸代谢通路激活剂的筛选方法和应用
CN117051080B (zh) * 2023-10-12 2024-01-23 山东省食品药品检验研究院 一种微生态活菌制品丁酸代谢通路激活剂的筛选方法和应用

Also Published As

Publication number Publication date
CN114395575B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
CN1097632C (zh) 具有增加的琥珀酸产量的突变大肠杆菌菌株
JP2021166530A (ja) エネルギー発生発酵経路を含む遺伝子操作細菌
BR112013003644B1 (pt) isolado biologicamente puro de uma bactéria clostridium autoethanogenum
AU2015293864B2 (en) Method for producing acetoin
JP2011522563A (ja) 嫌気的微生物発酵によるブタンジオールの製造
Silva et al. Batch fermentation of xylose for xylitol production in stirred tank bioreactor
CN105492613B (zh) 用于使用代谢工程化丙酸杆菌产生正丙醇和丙酸的方法
WO2009140929A1 (zh) 构建基因工程菌发酵联产pdo、bdo和php的方法
Guo et al. Efficient production of 2, 3-butanediol from cheese whey powder (CWP) solution by Klebsiella pneumoniae through integrating pulsed fed-batch fermentation with a two-stage pH control strategy
Guo et al. De novo biosynthesis of butyl butyrate in engineered Clostridium tyrobutyricum
CN114395575B (zh) 一种生产丁酸丁酯的酪丁酸梭菌重组菌株及其构建方法和应用
Sinumvayo et al. One-pot production of butyl butyrate from glucose using a cognate “diamond-shaped” E. coli consortium
CN115058374B (zh) 一种利用丙酮酸合成乙偶姻的重组运动发酵单胞菌及其构建方法与应用
KR101473532B1 (ko) 부탄올 생성능이 증강된 재조합 미생물 및 이를 이용한 부탄올 생산 방법
US9434963B2 (en) Process for butanol production
CN111394396B (zh) 一种微生物利用甘油发酵生产1,3-丙二醇的方法
KR101406066B1 (ko) 부탄올 생성능이 증강된 재조합 미생물 및 이를 이용한 부탄올 생산 방법
CN112280725A (zh) 一种高效生产琥珀酸的重组大肠杆菌及其构建方法
CN115125180B (zh) 一种利用双途径产乙偶姻的重组运动发酵单胞菌及其构建方法与应用
WO2014135633A1 (en) Improvement of clostridial butanol production by gene overexpression
CN114874961B (zh) 一种利用乙醛合成乙偶姻的重组运动发酵单胞菌及其构建方法与应用
CN114015634B (zh) 高产琥珀酸的重组大肠杆菌及其构建方法和应用
Buyondo et al. Processes and bioreactor designs for butanol production from lignocellulosic biomass
US20240158818A1 (en) Recombinant Escherichia coli producing xylitol from xylose, method for preparing the same, and uses thereof
US10982236B2 (en) Recombinant yeast for producing 2,3-butanediol including pyruvate decarboxylase derived from candida tropicolis and method for producing 2,3-butanediol using the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant