CN114371199A - 采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法 - Google Patents

采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法 Download PDF

Info

Publication number
CN114371199A
CN114371199A CN202111631167.4A CN202111631167A CN114371199A CN 114371199 A CN114371199 A CN 114371199A CN 202111631167 A CN202111631167 A CN 202111631167A CN 114371199 A CN114371199 A CN 114371199A
Authority
CN
China
Prior art keywords
aao
mti
patp
heterojunction
evaluating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111631167.4A
Other languages
English (en)
Other versions
CN114371199B (zh
Inventor
孔彪
张鑫
周姗
谢磊
曾洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202111631167.4A priority Critical patent/CN114371199B/zh
Priority claimed from CN202111631167.4A external-priority patent/CN114371199B/zh
Publication of CN114371199A publication Critical patent/CN114371199A/zh
Application granted granted Critical
Publication of CN114371199B publication Critical patent/CN114371199B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种采用电化学方法评估PATP‑Au‑MTI/AAO异质结膜的方法,包括以下步骤:(1)制备PATP‑Au‑MTI/AAO异质结膜;(2)将PATP‑Au‑MTI/AAO异质结膜安装在双电导池之间,进行测试;(3)在紫外光下光照,得到光照后的对硝基苯硫酚修饰的纳米通道,进行测试;(4)将光照后的对硝基苯硫酚修饰的纳米通道浸泡在NaBH4水溶液中,得到PATP‑Au‑MTI/AAO纳米通道,进行测试;(5)采用皮安计和一对Ag/AgCl电极进行电化学性能测试,根据电流大小评估PATP‑Au‑MTI/AAO复合膜的光门控性能。本发明通过电化学方法对光门控调节离子运输能力进行测定,根据电流大小评估PATP‑Au‑MTI/AAO复合膜的光门控性能,采取自制双电导池来安装异质结膜,能够保持PATP‑Au‑MTI/AAO异质结膜稳定性,从而完成整个测试过程。

Description

采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法
技术领域
本发明属于离子传输技术领域,具体涉及一种采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法。
背景技术
在自然界中,生物体内的离子通道可以精确地调节离子在细胞膜上的运输,因此离子通道对于生物体来说是必不可少且至关重要的。光作为自然界中被广泛使用的能源之一,可以被收集用来调节生命活动。最为典型的例子就是植物体的光合作用。但由于生命体中的离子通道脆弱且不稳定,近年来研究工作者们将目光投向了人工纳米通道。与脆弱的离子通道相比,人工纳米通道稳定性高、功能性强。通过修饰不同的光响应分子,可以灵活地调控人工纳米通道的物理化学性质,拓宽了纳米通道在能源转换、离子调控等领域的应用。考虑到PATP-Au-MTI/AAO异质结膜,由具有优越的光响应性能的介孔二氧化钛和可以在光照下发生氧化还原反应的PATP组成,可以制备得到一种光调节离子运输性能的光门控纳米通道,并需要评价膜在光照前后对离子运输的调节能力。
发明内容
本发明提供一种采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法,采用电化学方法来测试异质结膜的光门控性能。
本发明的目的通过以下技术方案实现:
一种采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法,包括以下步骤:
(1)制备得到具有良好光响应性能的PATP-Au-MTI/AAO异质结膜;
(2)将PATP-Au-MTI/AAO异质结膜安装在双电导池之间,进行测试;
(3)在紫外光下光照,得到光照后的对硝基苯硫酚修饰的纳米通道,进行测试;
(4)将光照后的对硝基苯硫酚修饰的纳米通道浸泡在NaBH4水溶液中,得到PATP-Au-MTI/AAO纳米通道,进行测试;
(5)采用皮安计和一对Ag/AgCl电极进行电化学性能测试,并根据电流大小评估PATP-Au-MTI/AAO复合膜的光门控性能。
进一步地,步骤(1)具体方法为:
步骤1,以钛酸四异丙酯(TTIP)为钛源,三嵌段聚合物P123为模板剂,基于蒸发诱导自组装和界面超组装策略制备得到MTI/AAO异质结膜;
步骤2,通过离子溅射的方法制备得到Au-MTI/AAO异质结膜;
步骤3,将制备的Au-MTI/AAO浸入PATP溶液中完成Au-S反应,制备得到PATP-Au-MTI/AAO。
进一步地,步骤(2)所述双电导池包括带有石英窗的壳体,壳体内腔内装有电解液,待测的PATP-Au-MTI/AAO复合膜至于电解液中。
进一步地,所述电解液为氯化钾,浓度为10-3M。
进一步地,待测的PATP-Au-MTI/AAO复合膜的阳极放置在AAO层侧。
进一步地,步骤(3)在365nm的紫外光下光照2h。
进一步地,步骤(4)将光照后的对硝基苯硫酚修饰的纳米通道浸泡在0.5M NaBH4水溶液中10min。
进一步地,步骤(5)中采用皮安计的I-V测试模式来监测PATP-Au-MTI/AAO复合膜的光响应性质,步进电压为0.1V。
与现有技术相比,本发明通过超组装方法制备得到的4-氨基苯硫酚修饰的介孔二氧化钛-阳极氧化铝异质结膜(PATP-Au-MTI/AAO),介孔二氧化钛层具有良好的紫外光响应,4-氨基苯硫酚也是一种性能优异的光响应分子。PATP在二氧化钛和金纳米颗粒的存在下光照会发生氧化反应生成4-硝基苯硫酚,4-硝基苯硫酚在硼氢化钠的作用下会还原回PATP,得到一种良好稳定性的光和氧化还原驱动的离子通道,通过电化学方法对光门控调节离子运输能力进行测定,根据电流的大小来评估PATP-Au-MTI/AAO复合膜的光门控性能,采取自制的双电导池来安装异质结膜,能够保持PATP-Au-MTI/AAO异质结膜的稳定性,从而可以完成整个测试过程。
附图说明
图1是本发明基于电化学测试方法评估PATP-Au-MTI/AAO异质结膜的装置图;
图2是本发明测试得到的光照前后的PATP-Au-MTI/AAO异质结膜的离子传输性能图;
图3是本发明通过电化学方法检测的PATP-Au-MTI/AAO异质结膜的+2V和-2V下的门控比;
图4是PATP-Au-MTI/AAO异质结膜的接触角测量图;
图5是本发明制备得到的PATP-Au-MTI/AAO光门控循环图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例
采用电化学方法评估PATP-Au-MTI/AAO异质结膜,具体包括以下步骤:
1)首先是制备得到具有良好光响应性能的PATP-Au-MTI/AAO异质结膜;
具体方法为:步骤1,以钛酸四异丙酯(TTIP)为钛源,三嵌段聚合物P123为模板剂,基于蒸发诱导自组装和界面超组装策略制备得到MTI/AAO异质结膜:配制10wt%的聚甲基丙烯酸甲酯的丙酮溶液作为堵孔剂,取0.2ml堵孔剂,通过旋涂的方法堵住阳极氧化铝(AAO)的孔。用分析天平称取1.05g的钛酸四异丙酯(TTIP),将0.74g稀盐酸缓慢滴加到上述混合溶液,室温下搅拌10min,得到第一混合溶液(TTIP的稀盐酸溶液),待用。称取0.2g(5838g/mol)的P123无色透明凝胶,之后将其溶解于3g的无水乙醇中,得到第二混合溶液(P123乙醇溶液)。将配制好的P123乙醇溶液,缓慢滴加至TTIP的稀盐酸溶液中,室温下搅拌15min,得到钛前驱体溶液。将钛前驱体溶液旋涂到堵好孔的AAO基底上,得到复合膜,并将旋涂的复合膜在-20℃冰箱内冷冻老化24h后取出,在400℃下空气氛围中煅烧4h,即可得到MTI/AAO异质结膜。步骤2,通过离子溅射的方法制备得到Au-MTI/AAO异质结膜:在4.5mA的电流条件下,喷金45s。步骤3,将制备的Au-MTI/AAO浸入10mM的PATP乙醇溶液中6h完成Au-S反应,制备得到PATP-Au-MTI/AAO。
2)之后将PATP-Au-MTI/AAO异质结膜安装在自制的双电导池之间,进行测试:双电导池一侧具有石英窗口,可以进行紫外光照射,双电导池上方有两个液体槽,可以添加电解质溶液,并通过氯化银电极与皮安计相连进行测试。
2)在365nm的紫外光下光照2h,得到光照后的对硝基苯硫酚修饰的纳米通道,进行测试;
3)将光照后的对硝基苯硫酚修饰的纳米通道浸泡在0.5M NaBH4水溶液中10min,得到PATP-Au-MTI/AAO纳米通道,进行测试;
4)选用氯化钾作为电解质溶液,浓度为10-3M,采用皮安计(Keithley 6487)和一对Ag/AgCl电极进行电化学性能测试。PATP-Au-MTI/AAO异质纳米通道安装在自制的电化学电池的两部分之间。阳极放置在AAO层侧。根据电流的大小来评估PATP-Au-MTI/AAO复合膜的光门控性能。
图1为实施例基于PATP-Au-MTI/AAO异质结纳米通道用于检测光门控性能的实验装置图,采用皮安计的I-V测试模式来监测PATP-Au-MTI/AAO复合膜的光响应性质,步进电压为0.1伏特。
图2为光照前后PATP-Au-MTI/AAO异质结膜的离子传输I-V性能图。从图2可以看到光照条件下,PATP-Au-MTI/AAO具有更高的离子电流。
图3为+2伏特和-2伏特电压下,PATP-Au-MTI/AAO异质结膜的门控率图。从图3中可以看出+2伏特和-2伏特电压下,PATP-Au-MTI/AAO异质结膜的门控率分别为1.49和1.43。
图4为加光前后的PATP-Au-MTI/AAO异质结膜的接触角测试图。图4是加光前后的PATP-Au-MTI/AAO异质结膜的接触角测试图,黑暗条件下PATP-Au-MTI/AAO异质结膜的接触角为38.3±5.5,光照后PATP-Au-MTI/AAO异质结膜的接触角降低至为25.5±1.2。
图5为PATP-Au-MTI/AAO异质结膜的光门控稳定性图。图5是来评估PATP-Au-MTI/AAO异质结膜光门控调节离子运输稳定性能图。图5中以+2伏特和-2伏特下的离子电流大小作为比较依据,可以看到PATP-Au-MTI/AAO异质结膜,在+2伏特和-2伏特下均达到多次循环,具有良好的稳定性,这说明PATP-Au-MTI/AAO异质结膜是一种稳定性较高的光门控调节离子运输器件。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (8)

1.一种采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法,其特征在于,包括以下步骤:
(1)制备得到具有良好光响应性能的PATP-Au-MTI/AAO异质结膜;
(2)将PATP-Au-MTI/AAO异质结膜安装在双电导池之间,进行测试;
(3)在紫外光下光照,得到光照后的对硝基苯硫酚修饰的纳米通道,进行测试;
(4)将光照后的对硝基苯硫酚修饰的纳米通道浸泡在NaBH4水溶液中,得到PATP-Au-MTI/AAO纳米通道,进行测试;
(5)采用皮安计和一对Ag/AgCl电极进行电化学性能测试,并根据电流大小评估PATP-Au-MTI/AAO复合膜的光门控性能。
2.根据权利要求1所述的一种采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法,其特征在于,步骤(1)具体方法为:
步骤1,以钛酸四异丙酯(TTIP)为钛源,三嵌段聚合物P123为模板剂,基于蒸发诱导自组装和界面超组装策略制备得到MTI/AAO异质结膜;
步骤2,通过离子溅射的方法制备得到Au-MTI/AAO异质结膜;
步骤3,将制备的Au-MTI/AAO浸入PATP溶液中完成Au-S反应,制备得到PATP-Au-MTI/AAO。
3.根据权利要求1所述的一种采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法,其特征在于,步骤(2)所述双电导池包括带有石英窗的壳体,壳体内腔内装有电解液,待测的PATP-Au-MTI/AAO复合膜至于电解液中。
4.根据权利要求3所述的一种采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法,其特征在于,所述电解液为氯化钾,浓度为10-3M。
5.根据权利要求3所述的一种采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法,其特征在于,待测的PATP-Au-MTI/AAO复合膜的阳极放置在AAO层侧。
6.根据权利要求1所述的一种采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法,其特征在于,步骤(3)在365nm的紫外光下光照2h。
7.根据权利要求3所述的一种采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法,其特征在于,步骤(4)将光照后的对硝基苯硫酚修饰的纳米通道浸泡在0.5M NaBH4水溶液中10min。
8.根据权利要求3所述的一种采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法,其特征在于,步骤(5)中采用皮安计的I-V测试模式来监测PATP-Au-MTI/AAO复合膜的光响应性质,步进电压为0.1V。
CN202111631167.4A 2021-12-29 采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法 Active CN114371199B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111631167.4A CN114371199B (zh) 2021-12-29 采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111631167.4A CN114371199B (zh) 2021-12-29 采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法

Publications (2)

Publication Number Publication Date
CN114371199A true CN114371199A (zh) 2022-04-19
CN114371199B CN114371199B (zh) 2024-05-31

Family

ID=

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114950589A (zh) * 2022-05-27 2022-08-30 复旦大学 一种mct/aao异质超薄膜在光控双向可调控离子传输的应用
CN115138223A (zh) * 2022-05-20 2022-10-04 复旦大学 一种超组装纳米线-多孔氧化铝异质结构膜器件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100216256A1 (en) * 2009-02-17 2010-08-26 Florida State University Research Foundation Nanobelt-based sensors and detection methods
CN102016553A (zh) * 2008-03-03 2011-04-13 马里兰大学,巴尔的摩县 电压门控的金属增强荧光、化学发光或生物发光方法及系统
JP2020041982A (ja) * 2018-09-13 2020-03-19 株式会社東芝 膜状構造体の陰イオン透過性評価方法および電気化学素子
CN111748803A (zh) * 2020-07-06 2020-10-09 复旦大学 一种介孔氧化硅/阳极氧化铝异质结膜、超组装制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102016553A (zh) * 2008-03-03 2011-04-13 马里兰大学,巴尔的摩县 电压门控的金属增强荧光、化学发光或生物发光方法及系统
US20100216256A1 (en) * 2009-02-17 2010-08-26 Florida State University Research Foundation Nanobelt-based sensors and detection methods
JP2020041982A (ja) * 2018-09-13 2020-03-19 株式会社東芝 膜状構造体の陰イオン透過性評価方法および電気化学素子
CN111748803A (zh) * 2020-07-06 2020-10-09 复旦大学 一种介孔氧化硅/阳极氧化铝异质结膜、超组装制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YAN REN: "Interfacial-Potential-Gradient Induced a Significant Enhancement of Photoelectric Conversion: Thiophene Polyelectrolyte (PTE-BS) and Bipyridine Ruthenium (N3) Cooperative Regulated Biomimetic Nanochannels", ADVANCED ENERGY MATERIALS, vol. 11, no. 7, pages 2 *
黄怀国, 罗瑾, 张红平, 吴玲玲, 林仲华: "Au/PATP/PANI膜电极和Au/PATP/PANI/TiO_2膜电极的光电化学", 高等学校化学学报, no. 02 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115138223A (zh) * 2022-05-20 2022-10-04 复旦大学 一种超组装纳米线-多孔氧化铝异质结构膜器件及其制备方法
CN115138223B (zh) * 2022-05-20 2024-05-03 复旦大学 一种超组装纳米线-多孔氧化铝异质结构膜器件及其制备方法
CN114950589A (zh) * 2022-05-27 2022-08-30 复旦大学 一种mct/aao异质超薄膜在光控双向可调控离子传输的应用
CN114950589B (zh) * 2022-05-27 2024-02-09 复旦大学 一种mct/aao异质超薄膜在光控双向可调控离子传输的应用

Similar Documents

Publication Publication Date Title
Lv et al. A highly flexible self-powered biosensor for glucose detection by epitaxial deposition of gold nanoparticles on conductive bacterial cellulose
Liu et al. Hematite photoanodes for solar water splitting: a detailed spectroelectrochemical analysis on the pH-dependent performance
Li et al. Nickel/Copper nanoparticles modified TiO2 nanotubes for non-enzymatic glucose biosensors
De Tacconi et al. Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response
Hidalgo et al. Electrochemical and impedance characterization of Microbial Fuel Cells based on 2D and 3D anodic electrodes working with seawater microorganisms under continuous operation
Yoriya et al. Fabrication of vertically oriented TiO2 nanotube arrays using dimethyl sulfoxide electrolytes
Liu et al. Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater
Hang et al. Fabrication of Ni-Ti-O nanotube arrays by anodization of NiTi alloy and their potential applications
Reculusa et al. Design of catalytically active cylindrical and macroporous gold microelectrodes
Yang et al. Dual non-enzymatic glucose sensing on Ni (OH) 2/TiO2 photoanode under visible light illumination
Chen et al. Enzymeless multi-sugar fuel cells with high power output based on 3D graphene–Co 3 O 4 hybrid electrodes
Escalona-Villalpando et al. Glucose microfluidic fuel cell using air as oxidant
Karim-Nezhad et al. Electrocatalytic oxidation of methanol and ethanol by carbon ceramic electrode modified with Ni/Al LDH nanoparticles
Mehdinia et al. Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
Bennett et al. Improved operational stability of mediated glucose enzyme electrodes for operation in human physiological solutions
Zhang et al. Understanding the performance of optofluidic fuel cells: Experimental and theoretical analyses
CN105420792B (zh) 一种使聚苯胺在中性介质中电化学活性增强的方法
CN111509336A (zh) 选择性催化氧化同步产电的光电燃料电池系统及其应用
CN107230551B (zh) 一种TiO2/GQDs/NiS异质结光阳极及其制备方法
CN114371199A (zh) 采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法
CN107164780B (zh) 一种wo3/石墨烯量子点复合膜光阳极的制备方法
CN114371199B (zh) 采用电化学方法评估PATP-Au-MTI/AAO异质结膜的方法
CN110890554B (zh) 大功率柔性单酶葡萄糖燃料电池及其制备方法
Zhang et al. Glucose biosensor based on highly dispersed au nanoparticles supported on palladium nanowire arrays
CN107675225A (zh) 基于n3和螺吡喃分子修饰的双光响应性氧化铝纳米通道及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant