CN107230551B - 一种TiO2/GQDs/NiS异质结光阳极及其制备方法 - Google Patents
一种TiO2/GQDs/NiS异质结光阳极及其制备方法 Download PDFInfo
- Publication number
- CN107230551B CN107230551B CN201710385073.0A CN201710385073A CN107230551B CN 107230551 B CN107230551 B CN 107230551B CN 201710385073 A CN201710385073 A CN 201710385073A CN 107230551 B CN107230551 B CN 107230551B
- Authority
- CN
- China
- Prior art keywords
- tio
- gqds
- nis
- photoanode
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title abstract description 10
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 36
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 20
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000002131 composite material Substances 0.000 claims abstract description 16
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000003792 electrolyte Substances 0.000 claims abstract description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 10
- 230000003647 oxidation Effects 0.000 claims abstract description 7
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 7
- 239000007864 aqueous solution Substances 0.000 claims abstract description 6
- 150000002500 ions Chemical class 0.000 claims abstract description 6
- 239000010936 titanium Substances 0.000 claims abstract description 6
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 20
- 239000012153 distilled water Substances 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 238000012360 testing method Methods 0.000 claims description 15
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 239000002071 nanotube Substances 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 239000011593 sulfur Substances 0.000 claims description 5
- 150000002815 nickel Chemical class 0.000 claims description 4
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims description 3
- UYJXRRSPUVSSMN-UHFFFAOYSA-P ammonium sulfide Chemical compound [NH4+].[NH4+].[S-2] UYJXRRSPUVSSMN-UHFFFAOYSA-P 0.000 claims description 3
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 3
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 3
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 3
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 3
- DPLVEEXVKBWGHE-UHFFFAOYSA-N potassium sulfide Chemical compound [S-2].[K+].[K+] DPLVEEXVKBWGHE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052979 sodium sulfide Inorganic materials 0.000 claims description 3
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 claims description 3
- GAIQJSWQJOZOMI-UHFFFAOYSA-L nickel(2+);dibenzoate Chemical compound [Ni+2].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 GAIQJSWQJOZOMI-UHFFFAOYSA-L 0.000 claims description 2
- DBJLJFTWODWSOF-UHFFFAOYSA-L nickel(ii) fluoride Chemical compound F[Ni]F DBJLJFTWODWSOF-UHFFFAOYSA-L 0.000 claims description 2
- 239000012266 salt solution Substances 0.000 claims description 2
- XAQHXGSHRMHVMU-UHFFFAOYSA-N [S].[S] Chemical compound [S].[S] XAQHXGSHRMHVMU-UHFFFAOYSA-N 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000003786 synthesis reaction Methods 0.000 claims 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 abstract description 15
- 238000000034 method Methods 0.000 abstract description 7
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 abstract description 5
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 abstract description 5
- 230000001699 photocatalysis Effects 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 239000002105 nanoparticle Substances 0.000 abstract 1
- 238000001556 precipitation Methods 0.000 abstract 1
- 239000000758 substrate Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000011941 photocatalyst Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000011942 biocatalyst Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910021404 metallic carbon Inorganic materials 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/042—Electrodes or formation of dielectric layers thereon characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Hybrid Cells (AREA)
- Catalysts (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
本发明公开了一种TiO2/GQDs/NiS复合光阳极及其制备方法,解决了TiO2光电转换效率较低的问题。本发明以钛片为基体,含有石墨烯量子点的乙二醇、氟化铵水溶液为电解液,通过阳极氧化法,制备出含有石墨烯量子点(GQDs)的TiO2复合膜。再通过连续离子层吸附‑沉淀反应将NiS纳米颗粒沉积到TiO2表面,然后在氮气管式炉中,退火20min得到TiO2/GQDs/NiS复合光阳极。TiO2/GQDs/NiS(浸渍8次)复合膜光电流密度是TiO2纳米管的2倍。本发明方法简便、易于操作,所制备的TiO2/GQDs/NiS复合光电极具有很高的光催化活性及稳定性。
Description
技术领域
本发明所属技术领域为光催化、光电化学材料技术领域,特别涉及二氧化钛异质结光催化剂开发及制备方法。
背景技术
TiO2纳米管阵列(TNA)由于其高的比表面积,优良的电荷传输性能、无毒、催化活性高、化学稳定性和低成本等优点而受到研究者们的青睐。TNA在气体传感器、太阳能电池、生物催化剂、生物医学植入材料和锂离子电池等方面的应用是很吸引人的。然而TiO2仅能吸收500nm以下波长的太阳光,无法充分利用太阳光的能源;并且光生电子空穴对易于复合,导致光电转换效率较低,在实际应用中仍有许多地方有待改进和完善。因此对TiO2光敏半导体通过改性形成异质结,以提高其光电化学性能。对光催化活性具有重要意义。
GQDs具有很强的sp2杂化碳结构,因此其稳定性非常好,在高强度紫外光条件下也不发生化学变化。而且石墨烯量子点是非金属的碳材料结构,稳定性好、成本低、污染小、在各方面都有很大的应用前景。然而,GQDs的研究还处于早期阶段,这种材料的潜能还没有完全探索出来,因此针对GQDs独特的物理化学性质,将GQDs与TiO2光敏半导体材料进行复合改性。
硫化镍是一种窄带隙的直接半导体,吸光系数较高,被应用于太阳能电池、光电导元件、光电设备的光敏薄膜、光敏涂料和红外探测器等。特别地,NiS因其带隙比较窄而具有非常宽的吸收光谱,使其成为一种高效的半导体光催化剂材料。所以本专利中将NiS作为助催化剂与TiO2构建异质结催化剂,以提高TiO2的光电化学性能及稳定性。
发明内容
本发明的目的是提供一种可见光催化剂纳米TiO2/GQDs/NiS光阳极及其制备方法,该方法操作简便、易于操作,所制备的TiO2纳米管复合膜具有很高的光催化活性。
具体步骤为:
(1)阳极氧化合成TiO2纳米管,将钛片分别在丙酮、乙醇、蒸馏水中各超声15分钟。电解液为0.3wt%的氟化铵和2wt%的蒸馏水以及100mL的乙二醇,向电解液中加入5~50mL的石墨烯量子点,设置直流稳压电源输出电压为 20~100V,阳极氧化时间进行0.5~5h后结束。最后将阳极氧化试片用蒸馏水冲洗,冷风吹干,得到包含GQDs的TiO2纳米管阵列膜。
(2)将步骤(1)中制备的光阳极浸入0.03M的乙醇化的镍盐溶液中 0.5~5min,然后用乙醇冲洗掉样品表面过量松散的吸附离子,再将光电极浸入 0.03M的硫源和甲醇水溶液中2~6min,硫源:甲醇体积比为1:1。最后将样品试片用蒸馏水冲洗,冷风吹干,保存待处理。
(3)将步骤(2)中的样品试片置于管式炉中,将管式炉中抽成真空,再充入氮气,待管式炉中充满氮气后,以5℃/min的升温速率升温至300~600℃,退火2h,待其降温后取出,得到钛箔表面沉积TiO2/GQDs/NiS复合膜光阳极。
所述的镍盐为硝酸镍、硫酸镍、氯化镍、氟化镍、苯甲酸镍中的一种。
所述硫源为硫化钠、硫化钾、硫化铵中的一种。
所述化学试剂纯度均为化学纯以上纯度。
本发明TiO2/GQDs/NiS复合物展示出了优异的吸光性能和很强的光电化学响应,光生电流密度为是纯TiO2的2倍;同时有较好的稳定性,因此, TiO2/GQDs/NiS作为一种可见光响应材料,在环境污染如降解染料、光催化处理污水,太阳能电池等方面具有很大的应用潜能。
附图说明
图1为本发明实施例1制备的浸渍不同次数的TiO2和TiO2/GQDs/NiS的 XRD图谱。
图2为本发明实施例1制备TiO2/GQDs/NiS的拉曼光谱图
图3为本发明实施例1制备TiO2/GQDs/NiS的透射电镜图。
图4为本发明实施例1制备的TiO2和TiO2/GQDs/NiS复合物的光生电流曲线。
具体实施方式
实施例1:
(1)阳极氧化合成TiO2纳米管,将钛片分别在丙酮、乙醇、蒸馏水中各超声15分钟。电解液为0.3wt%的氟化铵和2wt%的蒸馏水以及100mL的乙二醇,向电解液中加入10mL的石墨烯量子点,设置直流稳压电源输出电压为60V,阳极氧化时间进行2h后结束。最后将阳极氧化试片用蒸馏水冲洗,冷风吹干,保存待处理。
(2)将步骤(1)中制备的光阳极浸入0.03M的乙醇化的硝酸镍溶液中2min,然后用乙醇冲洗掉样品表面过量松散的吸附离子,再将光电极浸入0.03M的硫化钠水溶液中5min。将样品试片用蒸馏水冲洗,冷风吹干,重复此步骤5次,保存待处理。
(3)将步骤(2)中的样品试片置于管式炉中,将管式炉中抽成真空,再充入氮气,待管式炉中充满氮气后,以5℃/min的升温速率升温至380℃,退火 2h,待其降温后取出,得到钛箔表面沉积TiO2/GQDs/NiS复合膜光阳极。
此法获得的TiO2/GQDs/NiS复合膜光电流密度为是纯TiO2的2倍。
实施例2:
(1)阳极氧化合成TiO2纳米管,将钛片分别在丙酮、乙醇、蒸馏水中各超声15分钟。电解液为0.3wt%的氟化铵和2wt%的蒸馏水以及100mL的乙二醇,向电解液中加入15mL的石墨烯量子点,设置直流稳压电源输出电压为60V,阳极氧化时间进行2h后结束。最后将阳极氧化试片用蒸馏水冲洗,冷风吹干,保存待处理。
(2)将步骤(1)中制备的光阳极浸入0.03M的乙醇化的硫酸镍溶液中2min,然后用乙醇冲洗掉样品表面过量松散的吸附离子,再将光电极浸入0.03M的硫化钾水溶液中5min,再样品试片用蒸馏水冲洗,冷风吹干,重复此步骤3次,烘干,保存待处理。
(3)将步骤(2)中的样品试片置于管式炉中心,将管式炉中抽成真空,再充入氮气,待管式炉中充满氮气后,以5℃/min的升温速率升温至500℃,退火2h,待其降温后取出,得到钛箔表面沉积TiO2/GQDs/NiS复合膜光阳极。
此法获得的TiO2/GQDs/NiS复合膜光电流密度为是纯TiO2的1.8倍。
实施例3:
(1)阳极氧化合成TiO2纳米管,将钛片分别在丙酮、乙醇、蒸馏水中各超声15分钟。电解液为0.3wt%的氟化铵和2wt%的蒸馏水以及100mL的乙二醇,向电解液中加入20mL的石墨烯量子点,设置直流稳压电源输出电压为60V,阳极氧化时间进行2h后结束。最后将阳极氧化试片用蒸馏水冲洗,冷风吹干,保存待处理。
(2)将步骤(2)中制备的光阳极浸入0.03M的乙醇化的氯化镍溶液中4min,然后用乙醇冲洗掉样品表面过量松散的吸附离子,再将光电极浸入0.03M的硫化铵水溶液中6min,再将样品试片用蒸馏水冲洗,冷风吹干,重复此步骤8次,保存待处理。
(3)将步骤(2)中的样品试片置于管式炉中心,将管式炉中抽成真空,再充入氮气,待管式炉中充满氮气后,以5℃/min的升温速率升温至450℃,退火2h,待其降温后取出,得到钛箔表面沉积TiO2/GQDs/NiS复合膜光阳极。
此法获得的TiO2/GQDs/NiS复合膜光电流密度为是纯TiO2的1.6倍
以上实施例所述化学试剂纯度均为化学纯。
Claims (1)
1.一种TiO2/GQDs/NiS异质结光阳极,摩尔比组成为TiO2 85~99%,石墨烯量子点(GQDs)0.1~5%,NiS0.5~10%;所述TiO2/GQDs/NiS异质结光阳极的制备方法,具体步骤为:
(1)阳极氧化合成TiO2纳米管,将钛片分别在丙酮、乙醇、蒸馏水中各超声15分钟;电解液为0.3wt%的氟化铵和2wt%的蒸馏水以及100mL的乙二醇,向电解液中加入5~50mL的石墨烯量子点,设置直流稳压电源输出电压为20~100V,阳极氧化时间进行0.5~5h后结束;最后将阳极氧化试片用蒸馏水冲洗,冷风吹干,得到包含GQDs的TiO2纳米管阵列膜;
(2)将步骤(1)中制备的光阳极浸入0.03M的乙醇化的镍盐溶液中0.5~5min,然后用乙醇冲洗掉样品表面过量松散的吸附离子,再将光电极浸入0.03M的硫源和甲醇水溶液中2~6min,硫源:甲醇体积比为1:1;最后将样品试片用蒸馏水冲洗,冷风吹干,保存待处理;
(3)将步骤(2)中的样品试片置于管式炉中,将管式炉中抽成真空,再充入氮气,待管式炉中充满氮气后,以5℃/min的升温速率升温至300~600℃,退火2h,待其降温后取出,得到钛箔表面沉积TiO2/GQDs/NiS复合膜光阳极;
其特征在于:步骤(3)中镍盐为硝酸镍、硫酸镍、氯化镍、氟化镍、苯甲酸镍中的一种,硫源为硫化钠、硫化钾、硫化铵中的一种。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710385073.0A CN107230551B (zh) | 2017-05-26 | 2017-05-26 | 一种TiO2/GQDs/NiS异质结光阳极及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710385073.0A CN107230551B (zh) | 2017-05-26 | 2017-05-26 | 一种TiO2/GQDs/NiS异质结光阳极及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107230551A CN107230551A (zh) | 2017-10-03 |
CN107230551B true CN107230551B (zh) | 2019-10-11 |
Family
ID=59933841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710385073.0A Active CN107230551B (zh) | 2017-05-26 | 2017-05-26 | 一种TiO2/GQDs/NiS异质结光阳极及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107230551B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108906032B (zh) * | 2018-07-05 | 2021-04-30 | 山东理工大学 | 一种GOQDs/TiO2/WO3光催化剂的制备及其应用 |
CN108993546B (zh) * | 2018-07-12 | 2021-03-02 | 福州大学 | 高效光催化水裂解产氢和醇氧化的异质结光催化剂 |
CN111230140B (zh) * | 2020-02-13 | 2022-05-10 | 合肥工业大学 | 一种介电可调三维分级纳米胶囊吸波材料的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103474243A (zh) * | 2013-09-27 | 2013-12-25 | 夏国栋 | 基于硫化镍纳米片的染料敏化太阳能电池对电极制备方法 |
CN105826077A (zh) * | 2016-05-13 | 2016-08-03 | 北京航空航天大学 | 一种用于量子点敏化太阳能电池的复合对电极及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104737254B (zh) * | 2012-09-12 | 2018-02-27 | 韩国化学研究院 | 具备光吸收结构体的太阳能电池 |
-
2017
- 2017-05-26 CN CN201710385073.0A patent/CN107230551B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103474243A (zh) * | 2013-09-27 | 2013-12-25 | 夏国栋 | 基于硫化镍纳米片的染料敏化太阳能电池对电极制备方法 |
CN105826077A (zh) * | 2016-05-13 | 2016-08-03 | 北京航空航天大学 | 一种用于量子点敏化太阳能电池的复合对电极及其制备方法 |
Non-Patent Citations (2)
Title |
---|
NEW HYBRID NiS2/TiO2-GRAPHENE PHOTOCATALYST: SYNTHESIS, CHARACTERIZATION, OPTICAL PROPERTIES AND CATALYTIC APPLICATIONS;Meng, Ze-Da等;《FRESENIUS ENVIRONMENTAL BULLETIN》;20131231;第1246-1252页 * |
Preparation of CuS-graphene oxide/TiO2 composites designed for high photonic effect and photocatalytic activity under visible light;PARK ChongYeon等;《催化学报》;20131231;第34卷(第4期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN107230551A (zh) | 2017-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pihosh et al. | Development of a core–shell heterojunction Ta3N5-nanorods/BaTaO2N photoanode for solar water splitting | |
Zeng et al. | A low-cost photoelectrochemical tandem cell for highly-stable and efficient solar water splitting | |
CN107400899B (zh) | 三氧化钨复合光电极及其制备方法、和在光电催化分解水中的应用 | |
Yang et al. | Stable quantum dot photoelectrolysis cell for unassisted visible light solar water splitting | |
Luo et al. | TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties | |
Chen et al. | Nano-architecture and material designs for water splitting photoelectrodes | |
Huang et al. | Fabrication, modification, and emerging applications of TiO2 nanotube arrays by electrochemical synthesis: a review | |
Dubey et al. | Surface modification of aligned TiO2 nanotubes by Cu2O nanoparticles and their enhanced photo electrochemical properties and hydrogen generation application | |
Ananthakumar et al. | Semiconductor nanoparticles sensitized TiO2 nanotubes for high efficiency solar cell devices | |
Liu et al. | Efficient photoelectrochemical water splitting of CaBi6O10 decorated with Cu2O and NiOOH for improved photogenerated carriers | |
Ahmad et al. | Three dimensional rosette-rod TiO2/Bi2S3 heterojunction for enhanced photoelectrochemical water splitting | |
CN108103525B (zh) | 氮掺杂碳点修饰三氧化钨复合光电极及其制备方法、和在光电催化分解水中的应用 | |
Han et al. | Worm-like FeS2/TiO2 nanotubes for photoelectrocatalytic reduction of CO2 to methanol under visible light | |
Ji et al. | Highly-ordered TiO2 nanotube arrays with double-walled and bamboo-type structures in dye-sensitized solar cells | |
CN102962051B (zh) | 一种高稳定可见光催化活性的β-Bi2O3/TiO2-NTs复合光催化剂的制备方法 | |
Saboo et al. | Water splitting on 3D-type meso/macro porous structured photoanodes based on Ti mesh | |
CN105056980B (zh) | 一种Ag3PO4/TiO2纳米管阵列复合光催化剂及其制备方法 | |
Liu et al. | Cobalt phosphate modified 3D TiO2/BiVO4 composite inverse opals photoanode for enhanced photoelectrochemical water splitting | |
CN106745474B (zh) | 可见光响应的三氧化钨-钒酸铋异质结薄膜电极制备方法 | |
CN103225097A (zh) | Cu2O/TNTs异质结构纳米复合材料制备及光还原CO2方法 | |
Yan et al. | Self-driven hematite-based photoelectrochemical water splitting cells with three-dimensional nanobowl heterojunction and high-photovoltage perovskite solar cells | |
Peng et al. | Incorporation of the TiO2 nanowire arrays photoanode and Cu2S nanorod arrays counter electrode on the photovoltaic performance of quantum dot sensitized solar cells | |
CN103354283A (zh) | 金纳米粒子修饰树枝状二氧化钛纳米棒阵列电极及其制备方法和光电解水制氢应用 | |
CN107317005A (zh) | 一种混合金属硫化物电极及其制备方法 | |
CN107230551B (zh) | 一种TiO2/GQDs/NiS异质结光阳极及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20171003 Assignee: Guangxi Guiren Energy Saving Technology Co.,Ltd. Assignor: GUILIN University OF TECHNOLOGY Contract record no.: X2022450000610 Denomination of invention: A TiO22/GQDs/NiS heterojunction photoanode and its preparation method Granted publication date: 20191011 License type: Common License Record date: 20221230 |