CN114367313A - 一种基于Ni-MOF的催化材料的制备方法及其应用 - Google Patents
一种基于Ni-MOF的催化材料的制备方法及其应用 Download PDFInfo
- Publication number
- CN114367313A CN114367313A CN202210056148.1A CN202210056148A CN114367313A CN 114367313 A CN114367313 A CN 114367313A CN 202210056148 A CN202210056148 A CN 202210056148A CN 114367313 A CN114367313 A CN 114367313A
- Authority
- CN
- China
- Prior art keywords
- mof
- catalytic material
- preparation
- solvent
- based catalytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 71
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 55
- 239000013099 nickel-based metal-organic framework Substances 0.000 title claims abstract description 55
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims abstract description 40
- OYFRNYNHAZOYNF-UHFFFAOYSA-N 2,5-dihydroxyterephthalic acid Chemical compound OC(=O)C1=CC(O)=C(C(O)=O)C=C1O OYFRNYNHAZOYNF-UHFFFAOYSA-N 0.000 claims abstract description 38
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 38
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- 238000009210 therapy by ultrasound Methods 0.000 claims abstract description 22
- 239000002904 solvent Substances 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000008367 deionised water Substances 0.000 claims abstract description 19
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 19
- 238000002156 mixing Methods 0.000 claims abstract description 15
- 239000002994 raw material Substances 0.000 claims abstract description 13
- 238000005303 weighing Methods 0.000 claims abstract description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 26
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 229910021397 glassy carbon Inorganic materials 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 3
- 238000000527 sonication Methods 0.000 claims 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 5
- 239000003054 catalyst Substances 0.000 abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 5
- 239000001257 hydrogen Substances 0.000 abstract description 5
- 239000010865 sewage Substances 0.000 abstract description 5
- 238000006555 catalytic reaction Methods 0.000 abstract description 2
- 238000004134 energy conservation Methods 0.000 abstract description 2
- 238000010189 synthetic method Methods 0.000 abstract description 2
- 230000007613 environmental effect Effects 0.000 abstract 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 16
- 239000004202 carbamide Substances 0.000 description 16
- 238000007254 oxidation reaction Methods 0.000 description 11
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 6
- 239000012621 metal-organic framework Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010411 electrocatalyst Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical class [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910001868 water Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2204—Organic complexes the ligands containing oxygen or sulfur as complexing atoms
- B01J31/2208—Oxygen, e.g. acetylacetonates
- B01J31/2226—Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
- B01J31/223—At least two oxygen atoms present in one at least bidentate or bridging ligand
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/1691—Coordination polymers, e.g. metal-organic frameworks [MOF]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
- C25B11/095—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/84—Metals of the iron group
- B01J2531/847—Nickel
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46133—Electrodes characterised by the material
- C02F2001/46138—Electrodes comprising a substrate and a coating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明涉及一种基于Ni‑MOF的催化材料的制备方法及其应用,属于能源材料技术领域,基于Ni‑MOF的催化材料的制备方法包括以下步骤:称取原料A,加入溶剂B,超声处理后,加热处理,得到产物;所述原料A以下重量份的原料:10‑100份的Ni(CH3COO)2·4H2O,1‑20份的2,5‑二羟基对苯二甲酸;所述溶剂B由去离子水、乙醇、DMF按质量比1‑3:1‑3:1‑3混合得到;所述原料A与溶剂B质量比为1:10‑20。本发明制备的基于Ni‑MOF的催化材料在尿素氧化反应过程中,具有高效催化、合成方法简单、操作简易、绿色节能的优点;解决了催化剂材料成本过高的问题,在进行污水处理同时产生氢气,具有优异的市场应用前景。
Description
技术领域
本发明涉及能源材料技术领域,具体是一种基于Ni-MOF的催化材料的制备方法及其应用。
背景技术
金属有机框架(Metal Organic Framework,MOF)是由一种或多种金属中心与有机配体自组装配位,形成的一类新型的具有周期性结构单元的多孔材料。被广泛应用于光电催化及传感、能源利用与转换领域中。人类生产活动中产生大量含尿素的污水,直接排放会污染环境,也是一种能源浪费。Ni-MOF催化材料在尿素氧化中的应用,可用于污水处理和氢能源开发。电催化尿素氧化反应在碱性介质中理论分解电压为0.37V,阳极发生尿素氧化反应产生二氧化碳、氮气和水,阴极会发生析氢反应产生氢气。由于尿素氧化反应是一个6e-转移过程的反应,所以在电催化尿素氧化的应用中主要面临的问题是电氧化动力学速率缓慢,所以寻找高效的电催化剂是解决该问题的关键。
目前,Ni-MOF电催化剂材料用于尿素氧化的报道较少。已报道的泡沫镍上分层的氢氧化镍纳米片和纳米线结构(Electrochimica Acta,2018,268.),是一种优良的尿素氧化催化剂,只用提供1.58V的电压,就可以得到5mA/cm2的电流密度。MOF材料由于其巨大的比表面积和丰富的活性位点,在电催化方面有很好的的应用前景,所以对于催化阳极尿素氧化反应的MOF催化材料的设计和合成有极大的研究价值。
发明内容
本发明的目的在于提供一种基于Ni-MOF的催化材料的制备方法及其应用,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种基于Ni-MOF的催化材料的制备方法,包括以下步骤:
称取原料A,加入溶剂B,超声处理后,加热处理,得到产物;
所述原料A以下重量份的原料:10-100份的Ni(CH3COO)2·4H2O,1-20份的2,5-二羟基对苯二甲酸;
所述溶剂B由去离子水、乙醇、DMF按质量比1-3:1-3:1-3混合得到;
所述原料A与溶剂B质量比为1:10-20。
作为本发明的进一步技术方案,所述超声处理时间为5min。
作为本发明的更进一步技术方案,所述加热处理为在80-150℃烘箱中处理。
作为本发明的再进一步技术方案,所述加热处理时间为24h。
一种如上述所述的基于Ni-MOF的催化材料的制备方法制备的基于Ni-MOF的催化材料,在制备玻碳电极负载材料中的应用。
一种如上述所述的基于Ni-MOF的催化材料的制备方法制备的基于Ni-MOF的催化材料,在制备泡沫镍载体材料中的应用。
一种如上述所述的基于Ni-MOF的催化材料的制备方法制备的基于Ni-MOF的催化材料,在制备导电玻璃负载材料中的应用。
与现有技术相比,本发明的有益效果是:制备的基于Ni-MOF的催化材料在尿素氧化反应过程中,具有高效催化、合成方法简单、操作简易、绿色节能的优点;整个流程原料是人类生活生产中产生的富含尿素的污水,应用商业价值极高,应用前景广阔;解决了催化剂材料成本过高的问题,在进行污水处理同时产生氢气,具有优异的市场应用前景。
附图说明
图1为基于Ni-MOF的催化材料的扫描电镜图;
图2为基于Ni-MOF的催化材料的X射线光电子能谱图;
图3为基于Ni-MOF的催化材料在尿素、氢氧化钾的混合溶液条件下的LSV曲线图。
具体实施方式
实施例1
一种基于Ni-MOF的催化材料的制备方法,包括以下步骤:
称取100g的Ni(CH3COO)2·4H2O,10g的2,5-二羟基对苯二甲酸,再加入1100g由去离子水、乙醇、DMF按质量比为1:1:1混合得到的溶剂,超声处理5min,通过烘箱80℃加热24h,得到产物。
实施例2
一种基于Ni-MOF的催化材料的制备方法,包括以下步骤:
称取200g的Ni(CH3COO)2·4H2O,30g的2,5-二羟基对苯二甲酸,再加入2300g由去离子水、乙醇、DMF按质量比为1:1:1混合得到的溶剂,超声处理5min,通过烘箱100℃加热24h,得到产物。
实施例3
一种基于Ni-MOF的催化材料的制备方法,包括以下步骤:
称取300g的Ni(CH3COO)2·4H2O,50g的2,5-二羟基对苯二甲酸,再加入3500g由去离子水、乙醇、DMF按质量比为1:1:1混合得到的溶剂,超声处理5min,通过烘箱120℃加热24h,得到产物。
实施例4
一种基于Ni-MOF的催化材料的制备方法,包括以下步骤:
称取400g的Ni(CH3COO)2·4H2O,70g的2,5-二羟基对苯二甲酸,再加入4700g由去离子水、乙醇、DMF按质量比为1:1:1混合得到的溶剂,超声处理5min,通过烘箱150℃加热24h,得到产物。
实施例5
一种基于Ni-MOF的催化材料的制备方法,包括以下步骤:
称取500g的Ni(CH3COO)2·4H2O,90g的2,5-二羟基对苯二甲酸,再加入5900g由去离子水、乙醇、DMF按质量比为1:1:3混合得到的溶剂,超声处理5min,通过烘箱80℃加热24h,得到产物。
实施例6
一种基于Ni-MOF的催化材料的制备方法,包括以下步骤:
称取600g的Ni(CH3COO)2·4H2O,110g的2,5-二羟基对苯二甲酸,再加入10000g由去离子水、乙醇、DMF按质量比为1:3:1混合得到的溶剂,超声处理5min,通过烘箱80℃加热24h,得到产物。
实施例7
一种基于Ni-MOF的催化材料的制备方法,包括以下步骤:
称取700g的Ni(CH3COO)2·4H2O,130g的2,5-二羟基对苯二甲酸,再加入12500g由去离子水、乙醇、DMF按质量比为3:1:1混合得到的溶剂,超声处理5min,通过烘箱80℃加热24h,得到产物。
实施例8
一种基于Ni-MOF的催化材料的制备方法,包括以下步骤:
称取800g的Ni(CH3COO)2·4H2O,150g的2,5-二羟基对苯二甲酸,再加入由去离子水、乙醇、DMF按质量比为1:1:3混合得到的溶剂,超声处理5min,通过烘箱100℃加热24h,得到产物。
实施例9
一种基于Ni-MOF的催化材料的制备方法,包括以下步骤:
称取900g的Ni(CH3COO)2·4H2O,170g的2,5-二羟基对苯二甲酸,再加入14250g由去离子水、乙醇、DMF按质量比为1:3:1混合得到的溶剂,超声处理5min,通过烘箱100℃加热24h,得到产物。
实施例10
一种基于Ni-MOF的催化材料的制备方法,包括以下步骤:
称取1000g的Ni(CH3COO)2·4H2O,200g的2,5-二羟基对苯二甲酸,再加入18000g由去离子水、乙醇、DMF按质量比为3:1:1混合得到的溶剂,超声处理5min,通过烘箱100℃加热24h,得到产物。
实施例11
一种基于Ni-MOF的催化材料的制备方法,包括以下步骤:
称取400g的Ni(CH3COO)2·4H2O,90g的2,5-二羟基对苯二甲酸,再加入7350g由去离子水、乙醇、DMF按质量比为1:1:3混合得到的溶剂,超声处理5min,通过烘箱100℃加热24h,得到产物。
实施例12
一种基于Ni-MOF的催化材料的制备方法,包括以下步骤:
称取400g的Ni(CH3COO)2·4H2O,90g的2,5-二羟基对苯二甲酸,再加入9800g由去离子水、乙醇、DMF按质量比为1:3:1混合得到的溶剂,超声处理5min,通过烘箱100℃加热24h,得到产物。
实施例13
一种基于Ni-MOF的催化材料的制备方法,包括以下步骤:
称取400g的Ni(CH3COO)2·4H2O,90g的2,5-二羟基对苯二甲酸,再加入9800g由去离子水、乙醇、DMF按质量比为3:1:1混合得到的溶剂,超声处理5min,通过烘箱100℃加热24h,得到产物。
实施例14
一种基于Ni-MOF的催化材料的制备方法,包括以下步骤:
称取400g的Ni(CH3COO)2·4H2O,90g的2,5-二羟基对苯二甲酸,再加入9800g由去离子水、乙醇、DMF按质量比为1:1:3混合得到的溶剂,超声处理5min,通过烘箱150℃加热24h,得到产物。
实施例15
一种基于Ni-MOF的催化材料的制备方法,包括以下步骤:
称取400g的Ni(CH3COO)2·4H2O,90g的2,5-二羟基对苯二甲酸,再加入9800g由去离子水、乙醇、DMF按质量比为1:3:1混合得到的溶剂,超声处理5min,通过烘箱150℃加热24h,得到产物。
实施例16
一种基于Ni-MOF的催化材料的制备方法,包括以下步骤:
称取400g的Ni(CH3COO)2·4H2O,90g的2,5-二羟基对苯二甲酸,再加入9800g由去离子水、乙醇、DMF按质量比为3:1:1混合得到的溶剂,超声处理5min,通过烘箱150℃加热24h,得到产物。
对实施例11中制备的样品进行扫描电镜图表征,附图1为基于Ni-MOF的催化材料的扫描电镜图,SEM图像可以看出,获得的样品具有典型的菱形堆积形貌;样品的较大的比表面积,对于提高催化剂利用率以及提供独特的金属-载体相互作用以增强内在活性方面发挥着关键作用。
对实施例11中制备的样品进行X射线光电子能谱表征,附图2为80℃和100℃制备的基于Ni-MOF的催化材料X射线光电子能谱,其中表面都观测到了C、N、O、Ni元素,Ni元素的XPS能谱图其主要分为四个峰,其中峰位为856.5eV与874eV分别代表的Ni2+是Ni2p3/2和Ni2p1/2,对应于氧化物态的镍,峰位为862.1eV和881eV对应的是Ni2p3/2和Ni2p1/2的卫星峰,不同温度材料中的C、N、O、及掺杂的Ni基本一致,可以看出成功的合成了基于Ni-MOF的催化材料。
应用例1
基于Ni-MOF的催化材料在玻碳电极负载材料中的应用,取实施例11制得的产物5mg,倒入1mL奈酚溶液和1mLDMF的混合溶液中,超声10min,滴涂到玻碳电极表面,烘干20min,得到基于Ni-MOF的催化材料负载的玻碳电极。
应用例2
基于Ni-MOF的催化材料在泡沫镍负载材料中的应用,将实施例11中固定比例的反应物完全溶解,随后和干净的泡沫镍一同放入反应釜中,进行应用例1的操作,得到泡沫镍/基于Ni-MOF的催化材料。
附图1为制备的泡沫镍/基于Ni-MOF的催化材料在尿素和KOH混合溶液中的LSV曲线图,制备的泡沫镍/基于Ni-MOF的催化材料进行尿素氧化性能分析,电化学测试使用三电极反应装置和CHI 660D电化学分析仪,在1.0M KOH+0.33M尿素电解质中测试所有催化剂的UOR(尿素氧化)性能;当基于Ni-MOF的催化材料沉积在不同载体上时,发现泡沫镍载体的UOR性能最高;电流密度为250mA/cm2时,泡沫镍/基于Ni-MOF的催化材料的分解电位为1.4V。
应用例3
基于Ni-MOF的催化材料在导电玻璃负载材料中的应用,取实施例11制得的产物5mg,倒入1mL奈酚溶液中,超声10min,滴涂到玻碳电极表面,红外灯烘干20min,得到基于Ni-MOF的催化材料负载的玻碳电极。
Claims (7)
1.一种基于Ni-MOF的催化材料的制备方法,其特征在于,包括以下步骤:
称取原料A,加入溶剂B,超声处理后,加热处理,得到产物;
所述原料A以下重量份的原料:10-100份的Ni(CH3COO)2·4H2O,1-20份的2,5-二羟基对苯二甲酸;
所述溶剂B由去离子水、乙醇、DMF按质量比1-3:1-3:1-3混合得到;
所述原料A与溶剂B质量比为1:10-20。
2.根据权利要求1所述的基于Ni-MOF的催化材料的制备方法,其特征在于,所述超声处理时间为5min。
3.根据权利要求1所述的基于Ni-MOF的催化材料的制备方法,其特征在于,所述加热处理为在80-150℃烘箱中处理。
4.根据权利要求2所述的基于Ni-MOF的催化材料的制备方法,其特征在于,所述加热处理时间为24h。
5.一种如权利要求1-4任一所述的基于Ni-MOF的催化材料的制备方法制备的基于Ni-MOF的催化材料,在制备玻碳电极负载材料中的应用。
6.一种如权利要求1-4任一所述的基于Ni-MOF的催化材料的制备方法制备的基于Ni-MOF的催化材料,在制备泡沫镍载体材料中的应用。
7.一种如权利要求1-4任一所述的基于Ni-MOF的催化材料的制备方法制备的基于Ni-MOF的催化材料,在制备导电玻璃负载材料中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210056148.1A CN114367313A (zh) | 2022-01-18 | 2022-01-18 | 一种基于Ni-MOF的催化材料的制备方法及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210056148.1A CN114367313A (zh) | 2022-01-18 | 2022-01-18 | 一种基于Ni-MOF的催化材料的制备方法及其应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114367313A true CN114367313A (zh) | 2022-04-19 |
Family
ID=81144250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210056148.1A Pending CN114367313A (zh) | 2022-01-18 | 2022-01-18 | 一种基于Ni-MOF的催化材料的制备方法及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114367313A (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012104205A1 (en) * | 2011-02-04 | 2012-08-09 | Paul Scherrer Institut | Ammonia generator converting liquid ammonia precursor solutions to gaseous ammonia for denox-applications using selective catalytic reduction of nitrogen oxides |
US20150173368A1 (en) * | 2012-06-11 | 2015-06-25 | University Court Of The University Of St Andrews | Synthesis of MOFs |
CN109569609A (zh) * | 2018-11-21 | 2019-04-05 | 江苏理工学院 | 一种新型镍基复合材料的制备方法 |
CN112058309A (zh) * | 2020-08-14 | 2020-12-11 | 华南理工大学 | 一种原位生长于泡沫镍的梭形MnFeNi-MOF-74材料及其制备方法与应用 |
CN112745036A (zh) * | 2020-12-18 | 2021-05-04 | 北京工业大学 | 一种Ni-MOF-74原位生长在ITO玻璃上的电致变色薄膜材料的制备方法 |
CN113529122A (zh) * | 2021-08-03 | 2021-10-22 | 江浩 | 一种镍-有机框架纳米片阵列材料及其制备方法和应用 |
CN113754894A (zh) * | 2021-09-01 | 2021-12-07 | 华中科技大学 | 一种不对称配位的双位点金属有机框架纳米材料及其制备方法与应用 |
-
2022
- 2022-01-18 CN CN202210056148.1A patent/CN114367313A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012104205A1 (en) * | 2011-02-04 | 2012-08-09 | Paul Scherrer Institut | Ammonia generator converting liquid ammonia precursor solutions to gaseous ammonia for denox-applications using selective catalytic reduction of nitrogen oxides |
US20150173368A1 (en) * | 2012-06-11 | 2015-06-25 | University Court Of The University Of St Andrews | Synthesis of MOFs |
CN109569609A (zh) * | 2018-11-21 | 2019-04-05 | 江苏理工学院 | 一种新型镍基复合材料的制备方法 |
CN112058309A (zh) * | 2020-08-14 | 2020-12-11 | 华南理工大学 | 一种原位生长于泡沫镍的梭形MnFeNi-MOF-74材料及其制备方法与应用 |
CN112745036A (zh) * | 2020-12-18 | 2021-05-04 | 北京工业大学 | 一种Ni-MOF-74原位生长在ITO玻璃上的电致变色薄膜材料的制备方法 |
CN113529122A (zh) * | 2021-08-03 | 2021-10-22 | 江浩 | 一种镍-有机框架纳米片阵列材料及其制备方法和应用 |
CN113754894A (zh) * | 2021-09-01 | 2021-12-07 | 华中科技大学 | 一种不对称配位的双位点金属有机框架纳米材料及其制备方法与应用 |
Non-Patent Citations (3)
Title |
---|
DONGDONG ZHU ET.AL: "Two-dimensional metal–organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation", 《CHEMICAL COMMUNICATION》, vol. 53, pages 10908 * |
NINA HEIDARY ET.AL: "Rational incorporation of defects within metal–organic frameworks generates highly active electrocatalytic sites", 《CHEMICAL SCIENCE》, vol. 12 * |
胡文明;马倩;何勇强;刘洪波;刘军强;夏笑虹;: "自生长镍基MOF材料的结构调控及其电化学性能", 无机化学学报, no. 03, pages 485 - 493 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110380062B (zh) | 基于zif-67和导电石墨烯的硫掺杂的双功能氧催化剂的制备方法 | |
CN104681823B (zh) | 一种氮掺杂石墨烯与Co3O4空心纳米球复合材料及其制备方法和应用 | |
CN113270595B (zh) | 一种基于mof制备的氮掺杂碳载非贵金属纳米催化剂 | |
CN110735147B (zh) | 一种普鲁士蓝类似物纳米片阵列材料及其电解水应用 | |
CN108212157B (zh) | 金属硼化物水裂解催化剂、制备方法及其在电催化水裂解方面的应用 | |
CN112439459B (zh) | 晶体与非晶界面共存的超薄纳米片材料及其电解水应用 | |
CN110611105B (zh) | Orr催化剂的制备方法 | |
CN105858815A (zh) | 核壳结构NiCo2S4 @NiCo2O4纳米针复合催化电极的制备方法 | |
CN114068963A (zh) | 过渡金属及其化合物锚定氮掺杂碳催化剂制备方法及应用 | |
Zhu et al. | Neuron-inspired design of hierarchically porous carbon networks embedded with single-iron sites for efficient oxygen reduction | |
CN112652780A (zh) | 一种Fe/Fe3C纳米颗粒负载多孔氮掺杂碳基氧还原催化剂的制备方法 | |
CN110538657A (zh) | 一种铁镍层状双氢氧化物及其制备方法和应用 | |
CN116180127A (zh) | 一种少层过渡金属层状双氢氧化物的宏量制备和应用 | |
CN114921796A (zh) | 一种双功能自支撑电解水催化材料及制备方法和应用 | |
CN110629248A (zh) | 一种Fe掺杂Ni(OH)2/Ni-BDC电催化剂的制备方法 | |
CN114438516A (zh) | 一种多孔镍铁基双金属有机骨架电催化剂的制备方式及在水氧化反应中的应用 | |
CN114164452A (zh) | 一种制备超薄钒酸钴纳米片负载金属单原子催化剂的方法 | |
CN112853377A (zh) | 一种双功能无金属氮掺杂碳催化剂的制备方法及其应用 | |
Zhu et al. | Recent strategies for the electrochemical reduction of CO2 into methanol | |
CN114369847B (zh) | 一种铁镍合金@碳化钨/碳复合催化剂及其制备方法和电催化应用 | |
WO2024031917A1 (zh) | 一种双金属单原子氮掺杂多孔碳电催化剂及其制备方法 | |
CN114367313A (zh) | 一种基于Ni-MOF的催化材料的制备方法及其应用 | |
CN115747874B (zh) | 一种稀土元素掺杂2D RE@Fe-MOF高效一体式膜电极的制备方法及应用 | |
Wang et al. | Tuning the Pt-N coordination in Pt/MOFs nanosheets under N2 plasma for enhanced oxygen reduction reaction | |
CN114291798B (zh) | 微波法合成碲化钴纳米棒电催化剂及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220419 |