CN114349082B - 一种Eu掺杂的多晶氧化物材料及其制备方法和应用 - Google Patents

一种Eu掺杂的多晶氧化物材料及其制备方法和应用 Download PDF

Info

Publication number
CN114349082B
CN114349082B CN202210116439.5A CN202210116439A CN114349082B CN 114349082 B CN114349082 B CN 114349082B CN 202210116439 A CN202210116439 A CN 202210116439A CN 114349082 B CN114349082 B CN 114349082B
Authority
CN
China
Prior art keywords
polycrystalline oxide
source
calcination
oxide material
iro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210116439.5A
Other languages
English (en)
Other versions
CN114349082A (zh
Inventor
刘慧�
熊燕飞
边健
丰远
谢瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University
Original Assignee
Hefei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University filed Critical Hefei University
Priority to CN202210116439.5A priority Critical patent/CN114349082B/zh
Publication of CN114349082A publication Critical patent/CN114349082A/zh
Application granted granted Critical
Publication of CN114349082B publication Critical patent/CN114349082B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于磁性电介质技术领域,公开了一种Eu掺杂的多晶氧化物材料及其制备方法和应用,多晶氧化物材料的化学式为Sr2‑xEuxIrO4,x表示元素摩尔百分比且0≤x≤0.06;且多晶氧化物材料的制备方法包括:按照化学式Sr2‑ xEuxIrO4中的化学计量比,称取含氧的Sr源、Eu源和Ir源,备用;将含氧的Sr源、Eu源和Ir源混匀,于700~900℃的温度下进行第一次煅烧,然后于950~1050℃的温度下进行第二次煅烧,然后于1200~1300℃下进行第三次煅烧,即获得多晶氧化物材料。本发明制备的材料在107Hz高频下,损耗仅为0.739,在电容器储能方面具有潜在的应用价值。

Description

一种Eu掺杂的多晶氧化物材料及其制备方法和应用
技术领域
本发明涉及磁性电介质技术领域,尤其涉及一种Eu掺杂的多晶氧化物材料及其制备方法和应用。
背景技术
Sr2IrO4的晶体结构、电子结构与铜氧化物超导体母体La2CuO4有很多相似之处,都是层状钙钛矿结构的K2NiF4型和1/2的Hubbard赝自旋。理论预言Sr2IrO4可以通过电子或者空穴掺杂来实现超导的可能,成为新型的非常规超导体。虽然关于电子的掺杂还没有实现零电阻和完全抗磁性的超导特征,但观察到了一系列如金属-绝缘体转变、费米弧、赝能隙和非均匀电子序等现象。
现有技术中,基本上都是在Sr2IrO4母体中,寻找电阻率减小的材料,使其变为导体甚至超导体。在电子掺杂的材料中,科研工作者制备了La掺杂的Sr2-xLaxIrO4,观察到随着La掺杂的引入,材料中的电阻减小,呈现出金属相。并且本领域技术人员制备了Sm掺杂的Sr2- xSmxIrO4,发现所有掺杂材料都呈现出绝缘态行为,但是电性和磁性都随着Sm掺杂量的增加,呈现出非单调变化,材料掺杂到x≤0.1时电阻都是减小的,但是在x≥0.125,材料的电阻率增大。本领域技术人员在Rh掺杂时,发现Rh掺杂到临界值的时候,材料中呈现出金属行为。Ru掺杂的Sr2Ir1-xRuxO4材料中,磁有序及绝缘行为都被压制。Tb掺杂的Sr2Ir1-xTbxO4材料中,3%的Tb掺杂就使得长程反铁磁序被完全压制,但是材料依然保持了绝缘行为。在Cu掺杂的Sr2Ir1-xCuxO4体系中,人们发现长程磁有序减弱,x=0.2的样品几乎呈现出顺磁行为,电阻随着掺杂量的增加而减小,但是电输运在所有掺杂材料中都呈现出绝缘态行为。
在上述现有技术中,基本上都是在Sr2IrO4母体中,寻找电阻率减小的材料,使其变为导体甚至超导体,本发明人试图在Sr2IrO4母体中寻找电阻率增大的材料以作为良好绝缘体材料,为此,本发明提供一种Eu掺杂的多晶氧化物材料及其制备方法和应用。
发明内容
为了解决上述现有技术中的不足,本发明提供一种Eu掺杂的多晶氧化物材料及其制备方法和应用。
本发明的一种Eu掺杂的多晶氧化物材料及其制备方法和应用是通过以下技术方案实现的:
本发明的第一个目的是提供一种Eu掺杂的多晶氧化物材料,化学式为Sr2- xEuxIrO4,其中,x表示元素摩尔百分比,且0≤x≤0.06。
进一步地,所述Eu掺杂的多晶氧化物材料的化学式为Sr2IrO4、Sr1.98Eu0.02IrO4、Sr1.96Eu0.04IrO4和Sr1.94Eu0.06IrO4中的任意一种。
本发明的第二个目的是提供一种上述多晶氧化物材料的制备方法,包括以下步骤:
步骤1,按照化学式Sr2-xEuxIrO4中的化学计量比,称取含氧的Sr源、Eu源和Ir源,备用;
步骤2,将含氧的Sr源、Eu源和Ir源混匀,于700~900℃的温度下进行第一次煅烧,然后于950~1050℃的温度下进行第二次煅烧,然后于1200~1300℃下进行第三次煅烧,即获得所述多晶氧化物材料。
进一步地,所述Sr源为SrCO3
所述Eu源为IrO2
所述Ir源为Eu2O3
进一步地,所述第一次煅烧后,将第一次煅烧后的产物研磨至粒径≤100μm,混匀,于5~15MPa的压力下压制成厚度为0.5~1.5mm的第一陶瓷片,然后再进行第二次煅烧处理。
进一步地,所述第二次煅烧后,将第二次煅烧后的产物研磨至粒径≤100μm,混匀,于5~15MPa的压力下压制成厚度为0.5~1.5mm的第二陶瓷片,然后再进行第三次煅烧处理。
进一步地,所述第一次煅烧的时间为10~18h。
进一步地,所述第二次煅烧的时间为20~30h。
进一步地,所述第三次煅烧的时间为36~60h。
本发明的第三个目标是提供一种所述的多晶氧化物材料在制备电容器储能材料中的应用。
本发明与现有技术相比,具有以下有益效果:
本发明将Sr源、Eu源和Ir源混匀后通过逐级煅烧,获得Eu掺杂的多晶氧化物材料,且获得的Eu掺杂的多晶氧化物材料在240K左右出现弱铁磁转变,但是铁磁转变的温度随着掺杂的增加不断降低。随着Eu掺杂量的增加,材料的电阻率变大,绝缘性能愈加显著。对于x=0.02的材料,介电常数最大而介电损耗最小。在107Hz高频情况下,损耗仅为0.739,如果再增加测试频率,损耗有可能降低到0.01的数量级,在电容器储能方面具有潜在的应用价值。
附图说明
图1为本发明实施例1-4多晶氧化物材料的晶相测试结果图;其中,图1(a)为XRD图;图1(b)为晶格常数a和c;图1(c)为c/a和晶胞体积;图1(d)为Ir-O1-Ir键角;其中,x=0为实施例1,x=0.02为实施例2,x=0.04为实施例3,x=0.06为实施例4;
图2为本发明实施例1-4多晶氧化物材料的扫描电子显微镜SEM图片;其中,x=0为实施例1,x=0.02为实施例2,x=0.04为实施例3,x=0.06为实施例4;
图3为本发明实施例1-4多晶氧化物材料的拉曼测试结果;其中,图2(a)为拉曼谱图;图3(b)为拉曼谱振动模式随着掺杂的变化;其中,x=0为实施例1,x=0.02为实施例2,x=0.04为实施例3,x=0.06为实施例4;
图4为本发明实施例1-4多晶氧化物材料在零场冷和场冷情况下的磁化率曲线;其中,图4(a)为实施例1;图4(b)为实施例2;图4(c)为实施例3;图4(d)为实施例4;
图5为本发明实施例1-4多晶氧化物材料FC磁化率的导数dχ/dT与T的关系曲线;其中,图5(a)为实施例1;图5(b)为实施例2;图5(c)为实施例3;图5(d)为实施例4;
图6为T=10K的温度条件下,本发明实施例1-4多晶氧化物材料的M-H曲线;其中,图6(a)为实施例1;图6(b)为实施例2;图6(c)为实施例3;图6(d)为实施例4;
图7为根据图4和图5测试结果拟合得到本发明实施例1-4多晶氧化物材料的磁性参数;(a)为居里-外斯温度θCW;(b)为有效磁矩μeff;(c)为阻挫指数f;(d)为矫顽力和饱和磁矩;其中,x=0为实施例1,x=0.02为实施例2,x=0.04为实施例3,x=0.06为实施例4;
图8为本发明实施例1-4多晶氧化物材料的电阻率;图8(a)为在30~300K温度范围内测试得到的电阻率;图8(b)为200~300K温度范围内用理论模型ρ(T)=ρ0exp(-αT)拟合得到的电阻率;图8(c)为100~200K温度范围内用理论模型ρ(T)=ρ0exp(Δ/2kBT)拟合得到的电阻率;图8(d)为30~100K温度范围内用理论模型ρ(T)=ρ0exp(T0/T)1/4拟合得到的电阻率;其中,x=0为实施例1,x=0.02为实施例2,x=0.04为实施例3,x=0.06为实施例4;
图9为本发明实施例1-4多晶氧化物材料的介电参数测试结果;图9(a)为相对介电常数测试结果;图9(b)为介电损耗测试结果;其中,x=0为实施例1,x=0.02为实施例2,x=0.04为实施例3,x=0.06为实施例4。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例1
本实施例提供一种Eu掺杂的多晶氧化物材料,化学式为Sr2-xEuxIrO4,其中,x=0。
且本实施例的多晶氧化物材料是通过以下方法制备的:
步骤1,按照化学式Sr2IrO4中的化学计量比,即按照2:1的摩尔比,分别称取SrCO3和IrO2
步骤2,将SrCO3和IrO2混匀,于800℃的温度下煅烧14h,将第一次煅烧后的产物研磨20min,使其成为混合均匀且粒径为80μm的细小粉末,将获得的细小粉末于10MPa的压力下压制成厚度为1mm的第一陶瓷片,然后于1000℃的温度下煅烧24h,将第二次煅烧后的产物20min,使其成为混合均匀且粒径为80μm的细小粉末,将获得的细小粉末于10MPa的压力下压制成厚度为1mm的第二陶瓷片,然后于1250℃下煅烧48h,即获得多晶氧化物材料。
实施例2
本实施例提供一种Eu掺杂的多晶氧化物材料,化学式为Sr2-xEuxIrO4,其中,x=0.02。
且本实施例的多晶氧化物材料是通过以下方法制备的:
步骤1,按照化学式Sr1.98Eu0.02IrO4中的化学计量比,即按照1.98:1:0.01的摩尔比,分别称取SrCO3,IrO2和Eu2O3,其中,x=0.02;
步骤2,将SrCO3,IrO2和Eu2O3混匀,于800℃的温度下煅烧14h,将第一次煅烧后的产物研磨20min,使其成为混合均匀且粒径为80μm的细小粉末,将获得的细小粉末于10MPa的压力下压制成厚度为1mm的第一陶瓷片,然后于1000℃的温度下煅烧24h,将第二次煅烧后的产物研磨20min,使其成为混合均匀且粒径为80μm的细小粉末,将获得的细小粉末,于10MPa的压力下压制成厚度为1mm的第二陶瓷片,然后于1250℃下煅烧48h,即获得多晶氧化物材料。
实施例3
本实施例提供一种Eu掺杂的多晶氧化物材料,化学式为Sr2-xEuxIrO4,其中,x=0.04。
且本实施例的多晶氧化物材料是通过以下方法制备的:
步骤1,按照化学式Sr1.96Eu0.04IrO4中的化学计量比,即按照1.96:1:0.02的摩尔比,分别称取SrCO3,IrO2和Eu2O3,其中,x=0.04;
步骤2,将SrCO3,IrO2和Eu2O3混匀,于800℃的温度下煅烧14h,将第一次煅烧后的产物研磨20min,使其成为混合均匀且粒径为80μm的细小粉末,将获得的细小粉末于10MPa的压力下压制成厚度为1mm的第一陶瓷片,然后于1000℃的温度下煅烧24h,将第二次煅烧后的产物研磨20min,使其成为混合均匀且粒径为80μm的细小粉末,将获得的细小粉末于10MPa的压力下压制成厚度为1mm的第二陶瓷片,然后于1250℃下煅烧48h,即获得多晶氧化物材料。
实施例4
本实施例提供一种Eu掺杂的多晶氧化物材料,化学式为Sr2-xEuxIrO4,其中,x=0.06。
且本实施例的多晶氧化物材料是通过以下方法制备的:
步骤1,按照化学式Sr1.94Eu0.06IrO4中的化学计量比,即按照1.94:1:0.03的摩尔比,分别称取SrCO3,IrO2和Eu2O3,其中,x=0.06;
步骤2,将SrCO3,IrO2和Eu2O3混匀,于800℃的温度下煅烧14h,将第一次煅烧后的产物研磨20min,使其成为混合均匀且粒径为80μm的细小粉末,将获得的细小粉末于10MPa的压力下压制成厚度为1mm的第一陶瓷片,然后于1000℃的温度下煅烧24h,将第二次煅烧后的产物研磨20min,使其成为混合均匀且粒径为80μm的细小粉末,将获得的细小粉末于10MPa的压力下压制成厚度为1mm的第二陶瓷片,然后于1250℃下煅烧48h,即获得多晶氧化物材料。
实施例5
本实施例提供一种Eu掺杂的多晶氧化物材料,化学式为Sr2-xEuxIrO4,其中,x=0.02。
且本实施例的多晶氧化物材料是通过以下方法制备的:
步骤1,按照化学式Sr21.96Eu0.02IrO4中的化学计量比,即按照1.98:1:0.01的摩尔比,分别称取SrCO3,IrO2和Eu2O3,其中,x=0.02;
步骤2,将SrCO3,IrO2和Eu2O3混匀,于700℃的温度下煅烧18h,将第一次煅烧后的产物研磨30min,使其成为混合均匀且粒径70μm的细小粉末,将获得的细小粉末于5MPa的压力下压制成厚度为1.5mm的第一陶瓷片,然后于950℃的温度下煅烧30h,将第二次煅烧后的产物研磨30min,使其成为混合均匀且粒径为70μm的细小粉末,将获得的细小粉末于5MPa的压力下压制成厚度为1.5mm的第二陶瓷片,然后于1200℃下煅烧60h,即获得多晶氧化物材料。
实施例6
本实施例提供一种Eu掺杂的多晶氧化物材料,化学式为Sr2-xEuxIrO4,其中,x=0.02。
且本实施例的多晶氧化物材料是通过以下方法制备的:
步骤1,按照化学式Sr21.96Eu0.02IrO4中的化学计量比,即按照1.98:1:0.01的摩尔比,分别称取SrCO3,IrO2和Eu2O3,其中,x=0.02;
步骤2,将SrCO3,IrO2和Eu2O3混匀,于900℃的温度下煅烧10h,将第一次煅烧后的产物研磨10min,使其成为混合均匀且粒径100μm的细小粉末,将获得的细小粉末于15MPa的压力下压制成厚度为0.5mm的第一陶瓷片,然后于1050℃的温度下煅烧20h,将第二次煅烧后的产物研磨10min,使其成为混合均匀且粒径100μm的细小粉末,将获得的细小粉末于15MPa的压力下压制成厚度为0.5mm的第二陶瓷片,然后于1300℃下煅烧36h,即获得多晶氧化物材料。
实验部分
为了验证本发明多晶氧化物材料的性能,对本发明实施例1-4的多晶氧化物材料进行了以下测试。
(一)晶相以及晶格参数测试
由图1(a)可以看出,本发明实施例1-4的多晶氧化物材料的晶格结构呈现出I41/acd空间群,通过Fullprof软件的精修,可以精修得到晶格常数a和c,如图1(b)所示,可以看出来,晶格常数先增大后减小,呈现出一种非单调变化。图1(c)绘出了c/a和晶胞体积,c/a呈现出和a、c类似的变化趋势,说明晶格在c方向上被拉伸的程度加剧,晶格畸变在c方向上比ab面内更大。单个晶胞体积V随着掺杂量的增加,呈现出递增的趋势。理论上而言,Eu3+的原子半径比Sr2+的原子半径小,用Eu3+替代Sr2+会使得晶格常数和晶胞体积减小,但是这里却呈现了相反的结果,这是由于晶粒之间的孔隙变大造成的。由图1(d)可以看出,面内Ir-O1-Ir键角也呈现出先增大后减小的非单调性质。说明晶格畸变程度先增大后减小,在x=0.02时达到最大,这与前面晶格常数的结论一致。
(二)扫描电子显微镜SEM测试
从图2中可以看出,本发明实施例1-4的多晶氧化物材料的平均晶粒尺寸减小,晶粒孔隙变大,粒度分布范围变大。这是由于掺杂Eu的离子半径减小,晶粒生长速度减小造成的。
(三)拉曼测试
从图3中可知,本发明实施例1-4的多晶氧化物材料的拉曼谱线的振动模式随着Eu掺杂量的增加朝高频处移动,说明材料中出现了声子硬化行为。
(四)磁化率
由图4可以看出,本发明实施例1-4的多晶氧化物材料在240K左右都出现弱铁磁转变,但是铁磁转变的温度对着掺杂的增加不断降低,如图5所示。
(五)M-H曲线
由图6可以看出随着Eu掺杂量的增加,矫顽力不断降低。
(六)磁性参数
图7为根据图4和图5拟合出来的磁性参数:居里外斯温度、有效磁矩、阻挫指数、矫顽力与饱和磁矩。由图7可以看出,居里外斯温度不断减小,有效磁矩不断增大,阻挫指数不断减小,但是在掺杂量在x=0.04左右出现一个突变,呈现出非单调变化。矫顽力不断减小,对应材料中的铁磁耦合不断减弱,这与居里外斯温度的结论一致。饱和磁矩也呈现出非单调变化,这是由于材料中的铁磁与反铁磁相互竞争所导致的。
(七)电阻率
图8(a)为在30~300K温度范围内测试得到的电阻率,可以看出所有材料都呈现出绝缘体性质,而且随着掺杂程度的增加,电阻率增加,呈现出非单调变化趋势。图8(b)为200~300K温度范围内用理论模型ρ(T)=ρ0exp(-αT)拟合得到的电阻率;图8(c)为100~200K温度范围内用理论模型ρ(T)=ρ0exp(Δ/2kBT)拟合得到的电阻率;图8(d)为30~100K温度范围内用理论模型ρ(T)=ρ0exp(T0/T)1/4拟合得到的电阻率,拟合参数如表1所示。
表1电阻率在不同的温度范围内用不同的理论模型拟合出来的参数
Figure BDA0003496619340000101
注:ρ(T)=ρ0exp(-αT)为二维弱局域化模型,其中ρ为电阻率,T为温度,ρ0为电阻率系数,α为表明电子之间相互作用强度的参数。
ρ(T)=ρ0exp(Δ/2kBT)为热激活模型,其中ρ为电阻率,T为温度,ρ0为极限电阻率,Δ为能隙,kB为玻尔兹曼常数。
ρ(T)=ρ0exp(T0/T)1/4为三维可变程跃迁模型,其中ρ为电阻率,T为温度,ρ0为电阻率系数,T0为特征温度。
(八)介电参数
由图9可以看出,所有材料的介电常数和损耗随着频率的增加都呈现出下降趋势,但是随着掺杂量的增加,介电和损耗都呈现出非单调变化趋势。对于x=0.02的材料,介电常数最大而介电损耗最小。在107Hz高频情况下,损耗仅为0.739,在电容器储能方面具有潜在的应用价值。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内;本发明未涉及的技术均可通过现有技术加以实现。
显然,上述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (7)

1.一种多晶氧化物材料的制备方法,其特征在于,包括以下步骤:
步骤1,按照化学式Sr2-xEuxIrO4中的化学计量比,称取含氧的Sr源、Eu源和Ir源,备用;
其中,x表示元素摩尔百分比,且0.02≤x≤0.06;
步骤2,将含氧的Sr源、Eu源和Ir源混匀,于700~900℃的温度下进行第一次煅烧,然后于950~1050℃的温度下进行第二次煅烧,然后于1200~1300℃下进行第三次煅烧,即获得所述多晶氧化物材料。
2.如权利要求1所述的制备方法,其特征在于,所述Sr源为SrCO3
所述Ir源为IrO2
所述Eu源为Eu2O3
3.如权利要求1所述的制备方法,其特征在于,所述第一次煅烧后,将第一次煅烧后的产物研磨至粒径≤100µm,混匀,压制成第一陶瓷片,然后再进行第二次煅烧处理。
4.如权利要求1所述的制备方法,其特征在于,所述第二次煅烧后,将第二次煅烧后的产物研磨至粒径≤100µm,混匀,压制成第二陶瓷片,然后再进行第三次煅烧处理。
5.如权利要求1所述的制备方法,其特征在于,所述第一次煅烧的时间为10~18h。
6.如权利要求1所述的制备方法,其特征在于,所述第二次煅烧的时间为20~30h。
7.如权利要求1所述的制备方法,其特征在于,所述第三次煅烧的时间为36~60h。
CN202210116439.5A 2022-02-07 2022-02-07 一种Eu掺杂的多晶氧化物材料及其制备方法和应用 Active CN114349082B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210116439.5A CN114349082B (zh) 2022-02-07 2022-02-07 一种Eu掺杂的多晶氧化物材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210116439.5A CN114349082B (zh) 2022-02-07 2022-02-07 一种Eu掺杂的多晶氧化物材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114349082A CN114349082A (zh) 2022-04-15
CN114349082B true CN114349082B (zh) 2023-05-23

Family

ID=81092629

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210116439.5A Active CN114349082B (zh) 2022-02-07 2022-02-07 一种Eu掺杂的多晶氧化物材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114349082B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270653A (ja) * 1997-03-27 1998-10-09 Sony Corp 酸化物積層構造およびその製造方法ならびに強誘電体不揮発性メモリ
CN1317458A (zh) * 2000-03-30 2001-10-17 Tdk株式会社 陶瓷组合物的制备方法和电子器件的制备方法
CN1821164A (zh) * 2006-03-09 2006-08-23 中国科学院上海硅酸盐研究所 混合型石榴石基陶瓷材料的制备方法
CN106699167A (zh) * 2016-12-28 2017-05-24 中国电子科技集团公司第十八研究所 一种磁控储能电容的电介质材料及其制备方法
CN113773082A (zh) * 2021-08-04 2021-12-10 中山大学 一种新型Pt掺杂尖晶石结构超导材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270653A (ja) * 1997-03-27 1998-10-09 Sony Corp 酸化物積層構造およびその製造方法ならびに強誘電体不揮発性メモリ
CN1317458A (zh) * 2000-03-30 2001-10-17 Tdk株式会社 陶瓷组合物的制备方法和电子器件的制备方法
CN1821164A (zh) * 2006-03-09 2006-08-23 中国科学院上海硅酸盐研究所 混合型石榴石基陶瓷材料的制备方法
CN106699167A (zh) * 2016-12-28 2017-05-24 中国电子科技集团公司第十八研究所 一种磁控储能电容的电介质材料及其制备方法
CN113773082A (zh) * 2021-08-04 2021-12-10 中山大学 一种新型Pt掺杂尖晶石结构超导材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Isotropic and anisotropic regimes of the field-dependent spin dynamics in Sr2IrO4: Raman scattering studies;Y. Gim et al.;PHYSICAL REVIEW B;第93卷;全文 *
Sr_2IrO_4/SrTiO_3超晶格中Mott能带结构的调控(英文);刘鑫;杨宇犇;张庆华;闫大禹;鲁京迪;陈荣艳;石友国;熊昌民;王垡;谷林;张金星;;Science China Materials(第09期);全文 *
超导"小时代"之十五阳关道、醉中仙;罗会仟;;物理(第01期);全文 *

Also Published As

Publication number Publication date
CN114349082A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
Yan et al. Giant electro-strain and enhanced energy storage performance of (Y0. 5Ta0. 5) 4+ co-doped 0.94 (Bi0. 5Na0. 5) TiO3-0.06 BaTiO3 lead-free ceramics
Singh et al. Dielectric properties of Mn-substituted Ni–Zn ferrites
Babu et al. Dielectric, magnetic and magnetoelectric properties of multiferroic BiFe0. 5Cr0. 5O3–NiFe2O4 composites
Rahaman et al. Study the effect of sintering temperature on structural, microstructural and electromagnetic properties of 10% Ca-doped Mn0. 6Zn0. 4Fe2O4
CN101037326B (zh) 铁氧体烧结体和其制造方法
Li et al. Emerging magnetodielectric materials for 5G communications: 18H hexaferrites
Xu et al. Enhanced energy storage performance of (1-x)(BCT-BMT)-xBFO lead-free relaxor ferroelectric ceramics in a broad temperature range
Yao et al. Greatly reduced leakage current and defect mechanism in atmosphere sintered BiFeO 3–BaTiO 3 high temperature piezoceramics
Yildirim et al. Effect of Mn addition on structural and superconducting properties of (Bi, Pb)-2223 superconducting ceramics
Kumar et al. Fabrication and characterization of the multiferroic birelaxor lead–iron–tungstate/lead–zirconate–titanate
Li et al. Reduction of oxygen vacancy concentration and large enhancement of electrical performances in Cu/Sb co-doped Bi4Ti3O12 high temperature piezoelectric ceramics
CN115196959B (zh) 一种通过氧空位调控具有超低损耗和高绝缘电阻率的巨介电陶瓷及其制备方法
Ma et al. Charge compensation mechanisms of BaTiO3 ceramics co-doped with La2O3 and Bi2O3
Ullah et al. Dielectric abnormality and high-permittivity microwave dielectric properties of SrO-TiO2-CeO2 solid solution
Wang et al. Modified relaxor ferroelectrics in BiFeO3-(Ba, Sr) TiO3-BiScO3 ceramics for energy storage applications
Yin et al. Dielectric, multiferroic and magnetodielectric properties of Co/Fe co-doped Bi 4 Ti 3 O 12 ceramics
Guan et al. La1-xCaxMnO3 NTC ceramics for low temperature thermistors with high stability
CN114349082B (zh) 一种Eu掺杂的多晶氧化物材料及其制备方法和应用
Kanamadi et al. Synthesis and characterization of CoFe 2 O 4–Ba 0.9 Sr 0.1 TiO 3 magnetoelectric composites with dielectric and magnetic properties
Shen et al. Structural, electrical and magnetic properties of two-dimensional La 1.2 (Sr 1.8− x Ca x) Mn 2 O 7 manganites
KR970001525B1 (ko) 사각-평면 화합물계에서 초전도 현상의 개선책
JPH0780710B2 (ja) 酸化物高温超電導体の製造法
Rai et al. Magnetic and electrical transport properties of YbFe 2 O 4
Lather et al. CuO: V2O5 driven alterations in dielectric, ferroelectric and structural properties of Barium Zirconate Titanate ceramics
Chen et al. Chemically and mechanically engineered flux pinning for enhanced electromagnetic properties of MgB 2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant